
Tutorial, CPS PI Meeting, DC 3–5 Oct 2013



Formal Verification Technology

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby, SR I Formal Verification Technology: 1



Overview

• A tour of the landscape

• Some topics for the future/close to my heart

John Rushby, SR I Formal Verification Technology: 2



Formal Analysis: The Basic Idea

• Symbolic evaluation. . .

• Instead of evaluating, say, (5− 3)× (5 + 3) and observing that

this equals 52 − 32

• We evaluate (x− y)× (x+ y)

• And get some big symbolic expression

x× x− y × x+ x× y − y × y

• And we use automated deduction

◦ The laws of (some) logic

◦ And of various theories, e.g., arithmetic, arrays, datatypes

To establish some properties of that expression

◦ Like it always equals x2 − y2

• The symbolic evaluation can be over computational systems

expressed as hardware, programs, specifications, etc.

John Rushby, SR I Formal Verification Technology: 3



Formal Analysis: Relation to Engineering Calculations

• This is just like the calculations regular engineers do to

examine properties of their designs

◦ Computational fluid dynamics

◦ Finite element analysis

◦ And so on

• In each case, build models of the artifacts of interest in some

appropriate mathematical domain

• And do calculations over that domain

• Useful only when mechanized

John Rushby, SR I Formal Verification Technology: 4



Formal Analysis: The Difficulty

• For calculations about computational systems, the

appropriate mathematical domain is logic

• Where every problem is at least NP Hard

• And many are exponential, superexponential (22
n

),

nonelementary (22
2.

.. }n
), or undecidable

• Hence, the worst case computational complexity of formal

analysis is extremely high

• So we need clever algorithms that are fast much of the time

• But we also need to find ways to simplify the problems

John Rushby, SR I Formal Verification Technology: 5



Formal Analysis: The Benefit

• Can examine all possible cases

◦ Relative to the simplifications we made

• Because finite formulas can represent infinite sets of states

◦ e.g., x < y represents {(0,1), (0,2), . . . (1,2), (1,3). . . }

• Massive benefit: computational systems are (at least

partially) discrete and hence discontinuous, so no justification

for extrapolating from examined to unexamined cases

• In addition to providing strong assurance

• Also provides effective ways to find bugs, generate tests

• And to synthesize guaranteed designs

John Rushby, SR I Formal Verification Technology: 6



Basic Technology: BDDs

• For finite state systems (or approximations that are)

• We can grind everything down to Booleans and represent the

system as essentially a circuit

◦ Reduced Ordered Binary Decision Diagrams (BDDs) and

variants provide canonical forms with efficient operations

◦ Use these to calculate the reachable states by composing

BDD representing current set of states with BDD

representing the system until a fixed point is reached

◦ Check desired properties are true in all reachable states

? Desired properties can be represented as a synchronous

observer, or a formula in a temporal logic (CTL, LTL,

etc.), eventuality properties require Buchi automata

◦ Can also go backwards from a set of states where

property is violated to see if an initial state can be reached

• This is Symbolic Model Checking: SMV etc.

• Good for up to 300–1,000 state bits

John Rushby, SR I Formal Verification Technology: 7



Reachability

• Computing the set of reachable states is expensive

◦ Even when done symbolically

• Nowadays, generally seek methods that are sensitive to the

property concerned and thereby perform smaller

computations

• OTOH, reachability is often fully automatic

• Whereas other methods may require more human guidance

John Rushby, SR I Formal Verification Technology: 8



Basic Technology: SAT

• Can alternatively ask if a property is violated in k or less

steps, where k is a specific number, like 37

• Given system specified by initiality predicate I and transition

relation T on states S, and desired property P

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• SAT solvers have become amazingly effective recently, and

continue to improve (annual competition)

◦ 100,000s of variables and formulas

• This is called Bounded Model Checking (BMC): NuSMV etc.

• Can also perform verification rather than refutation by slight

adjustment that performs k-induction (may need invariants)
John Rushby, SR I Formal Verification Technology: 9



Basic Technology: Decision Procedures and SMT

• Suppose we don’t want to grind everything down to circuits

• Many useful theories are decidable (e.g., linear arithmetic,

equality with uninterpreted functions)

• Decision procedures work on conjunctions of formulas

• Combine these with SAT solving to handle propositionally

complex formulas over combinations of decided theories

• This yields solvers for Satisfiability Modulo Theories (SMT)

◦ Biggest advance in 20 years

• Which in turn yields infBMC and inf-k-induction

◦ Inf because some of the theories are infinite

John Rushby, SR I Formal Verification Technology: 10



Basic Technology: Beyond SMT

• All SMT solvers employ heuristics for performance

◦ On multicore, run different heuristics/strategies in parallel

◦ Called a portfolio

• Beyond SMT, there’s nonlinear arithmetic and other hard

theories, quantifiers (∃,∀, first and higher order), and lemma

generation (especially loop invariants)

◦ Active areas; lots of recent progress

• That’s the basic technology

◦ I’m going to describe some others later

But how do we use them?

• Remember even these stunningly powerful methods are

typically not polynomial, and do not scale (much)

John Rushby, SR I Formal Verification Technology: 11



Dealing With Computational Complexity

• Use human guidance

◦ Even with automation, often need user-supplied invariants

◦ Or interactive theorem proving—e.g., PVS

• Use approximate models, incomplete search

◦ model checkers are often used this way

• Aim at something other than verification

◦ E.g., bug finding, test case generation

• Verify weak properties

◦ That’s what static analysis typically does

• Give up soundness and/or completeness

◦ That’s what commercial static analysis typically does

• Concentrate on small, high criticality components

◦ For example, monitors

John Rushby, SR I Formal Verification Technology: 12



Approximations, Simplifications, Abstractions (1)

• These can be sound or unsound

◦ Sound means if no errors found, then there are none

• Unsound: downscaling

◦ Just chop things down

◦ e.g., replace 32 bit integers by 2 bits, limit size of data

structures, omit entire parts of the system

• Works for bug finding

◦ Exploring all behaviors of an approximation finds more

bugs than sampling some of the behaviors of the real

thing

John Rushby, SR I Formal Verification Technology: 13



Approximations, Simplifications, Abstractions (2)

• Sound: data abstraction, abstract interpretation

• Instead of computing on integers, say, compute on

{negative, zero, positive}

• And many more sophisticated domains

• Iterate to fixed point

◦ Need widening and other methods to force convergence

• Can be effective for weak properties

◦ Absence of runtime exceptions

◦ e.g., Microsoft system (Clousot)

• A lot of engineering, and/or annotation needed to reduce

false alarms

◦ e.g., Astrée (avionics floating point)

• Can deliver invariants useful to other methods

John Rushby, SR I Formal Verification Technology: 14



Approximations, Simplifications, Abstractions (3)

• Sound: predicate abstraction

• Instead of individual variables, focus on their relations

• e.g., eliminate x and y, track x < y (i.e., a Boolean)

• Use the relations appearing in conditionals, loops

John Rushby, SR I Formal Verification Technology: 15



CEGAR Loops

• Use aggressive, sound approximation

• Get a counterexample to desired property

• Is this due to overapproximation, or because the property

really is false?

• Try to evaluate the counterexample on original problem

• If it works, we are done (property is false)

• If not, mine it to find source of overapproximation

◦ Craig Interpolation often used for this

• Counter-Example-Guided Abstraction Refinement: CEGAR

John Rushby, SR I Formal Verification Technology: 16



Software (As Opposed to State Machines)

• There’s a program counter

• Inefficient to represent it as just another state variable

• Need Abstract Reachability Tree (ART), etc.

• Yields Software Model Checking (Blast, CMBC, CPA

Checker, etc.)

• Alternatively, focus on the abstract data types (e.g., Alloy)

• Or generate test cases using deliberate counterexamples

• Can interleave symbolic and concrete evaluation to force

tests to all reachable control locations

◦ Concolic testing (CUTE, Dart, KLEE, SAGE etc.)

John Rushby, SR I Formal Verification Technology: 17



Software, Again

• Software model checking, interactive program verification,

even static analysis often need user-supplied invariants, and

other annotations

• Difficult to obtain, even a spec can be difficult to obtain

• Powerful type systems can help

◦ Predicate subtypes, dependent types

• But software engineering is rarely concerned with creating

truly new code, mostly it is modifying existing code: fixing

bugs, adding APIs or functionality, refactoring

• The new code should be the same as the old code, except

for what was changed

• This is equivalence checking

• Tractable to SMT without annotations

• E.g., SymDiff (Microsoft)
John Rushby, SR I Formal Verification Technology: 18



Cyber Physical Systems

• We have realtime

• And a controlled plant

◦ Typically described by differential equations

• These yield timed automata, hybrid automata etc.

• Verification problems are harder, but the payoffs greater

◦ Because testing seldom encounters critical cases

• A lot of progress recently

• Some of it direct automation: UPPALL, SpaceEx

• Some of it abstractions to problems solved by SMT

◦ Timeout automata, relational abstractions etc.

John Rushby, SR I Formal Verification Technology: 19



State of the Art

• Few off the shelf tools for std. programming environments

◦ Some sound, often specialized, static analysis: Astrée

◦ Mostly unsound: Coverity, Code Sonar, PRQA etc.

• Quite good tools for some CPS environments

◦ Design Verifier for Stateflow/Simulink

◦ Similar for SCADE, Statemate

• Many good backend tools (model checkers), tool

components (SMT)

• SOA applications often employ many of these in ad-hoc

toolchains with a lot of glue code and engineering

• Sometimes starting from standard languages, sometimes

from specialized ones (SAL, Charon etc.)

• What’s needed is an ecosystem of components and a tool bus

• We are building one (ETB)

John Rushby, SR I Formal Verification Technology: 20



Interim Summary

• There’s a lot of backend power available (SMT)

• And a lot of good ideas, experimental tools, components

• Most of the work is building toolchains that start from

something acceptable to the shop concerned

• And that does something valuable while limiting annotation

and user interaction to a level acceptable to the shop

concerned

• It need not be full verification

John Rushby, SR I Formal Verification Technology: 21



So what? Verification and Safety

• Even if it is full verification, it is not an unequivocal

guarantee of properties like safety

• Safety often concerns attributes of the plant

• Like the hazards that it poses

• Verification may establish that each hazard is adequately

eliminated or managed

• But how do we know we’ve identified all the hazards?

John Rushby, SR I Formal Verification Technology: 22



Safety/Assurance Cases

• The intellectual foundation of all methods of system

assurance is that we have

◦ Claims about safety (or other critical attribute)

◦ Evidence about our system (tests, reputation of

developers, prior systems, formal assurance)

◦ Arguments that justify the claims, based on the evidence

• In standards-based approaches, claims and argument are

implicit, the standard specifies what evidence to produce

• But there is a notion of Safety (or more generally Assurance)

Case that makes the CAE structure explicit

◦ That’s why our tool bus is an Evidential Tool Bus (ETB)

• Standards work well in slow-moving, uniform fields (aircraft)

• Safety Cases may be best where there is a lot of innovation

and diversity (medical devices)

John Rushby, SR I Formal Verification Technology: 23



Epistemic and Logic Vulnerabilities in Safety Cases

• In civil aircraft, all accidents and incidents caused by software

are due to flaws in the system requirements specification or

to gaps between this and the software specification

◦ i.e., none are due to coding errors

◦ Because their verification is pretty good, albeit manual

• Verification is wrt. assumptions, requirements, knowledge of

the system and its environment

• These are all about epistemology: what you know

◦ Can get these wrong: e.g., overlooked hazard

• So there are two sources of vulnerability in safety cases

◦ Epistemic (flawed knowledge): new ideas needed here

? Maybe moving formal modeling upward

◦ Logic (flawed reasoning): verification can fix this

? Subject to epistemic concerns about its own soundness

• Cf. validation and verification in traditional V&V

John Rushby, SR I Formal Verification Technology: 24



A Conundrum

• Cannot eliminate failures with certainty (because the

environment is uncertain), so top-level safety claims about

systems are stated quantitatively

◦ E.g., no catastrophic failure in the lifetime of all airplanes

of one type

• And these lead to probabilistic requirements for

software-intensive subsystems

◦ E.g., probability of failure in civil flight control < 10−9 per

hour

• To assure this, do lots of verification and validation (V&V)

• But V&V is all about showing correctness

• And for stronger claims, we do more V&V

◦ Or more intensive V&V: e.g., formal verification

• So how does amount of V&V relate to probability of failure?

John Rushby, SR I Formal Verification Technology: 25



Useful Small Systems: Monitors

• These are particularly interesting in safety critical

applications, where you need extreme reliability

◦ One operational “channel” does the business

◦ Simpler monitor channel can shut it down on error

• Used in airplanes (ARP 4754)

• Turns malfunction and unintended function into loss of

function

◦ Which is dealt with OK by higher-level fault handling

Also prevents transitions into bad states

• Monitors against system requirements, not software

requirements

• Can be simple because it only need observe, rather than

generate, behavior

• Can be formally verified or synthesized

John Rushby, SR I Formal Verification Technology: 26



Reliability of Monitored Systems (1)

• The most critical aircraft software needs failure rates below

10−9 per hour sustained for 15 hours or more (flight duration)

• Suppose the failure rate of the operational system is 10−4

and that of the monitor is 10−5, does that give us 10−9?

• No! Failures may not be independent

◦ Failure of one channel probably indicates a hard demand

• No good way forward based on claims about reliability

◦ Need “covariance of the difficulty function”

John Rushby, SR I Formal Verification Technology: 27



Reliability of Monitored Systems (2)

• But the monitor is simple enough that it can be formally

verified or synthesized

• Claim is not that it is reliable but that it is perfect. . . probably

◦ Perfection means will never have a failure in operation

◦ Failure is defined wrt. system requirements, not software

requirements, hence differs from correctness

• Attach subjective probability to likelihood of perfection

• Theorem: probability of failure of monitor alone is related to

its probability of perfection: pfd = pnp × pf |np

• Theorem: probability of perfection of the monitor is

conditionally independent of the failure rate of the primary

• So if the monitor has probability of imperfection of 10−5, we

do get 10−9 overall!

John Rushby, SR I Formal Verification Technology: 28



Reliability of Monitored Systems (3)

• Lots of technical details omitted here

• This analysis is aleatoric, need the epistemic assessment

• And is 10−5 credible as a probability of imperfection?

• Monitor may go off when it should not (Type 2 failure)

• But the basic idea is sound

◦ IEEE TSE Spotlight Paper September/October 2012

• Idea is that you monitor the system specification

◦ Get this right by assumption synthesis etc.

• Whereas the operational system is built to the software

requirements specification

• Recall, all aircraft incidents due to problems precisely here

• So this approach precisely addresses most vulnerable point

John Rushby, SR I Formal Verification Technology: 29



Finally, A Thought Experiment

• Suppose that at some point in a system development I

discern the need to make some part of it fault tolerant

• I must choose the types and numbers of faults that it should

tolerate (this is called the fault model)

• Suppose I choose a “simple” fault model

e.g., “crash” faults, and no more than two of them

• Then that might enable me to design a correspondingly

simple algorithm to perform the fault tolerance

• Thus, I might have very few doubts about whether my

algorithm is correct (wrt. its fault model)

◦ i.e., little logic doubt

• But I might have considerable doubts about whether the

fault model will be valid in the real context of its deployment

◦ i.e., large epistemic doubt

John Rushby, SR I Formal Verification Technology: 30



Alternatively

• I could make very few assumptions about the faults

◦ That is, a weak fault model

• But then the mechanisms to tolerate those faults might take

me into the world of complex adaptive systems

• So here I reduce my epistemic doubt at the price of larger

logic doubt

• Traditionally, in critical systems, we have favored reducing

logic doubt at the expense of epistemic doubt

◦ e.g., no adaptive systems in flight control

• Resilience is about tipping the balance in the other direction

• But without too much logic doubt

• This is the CPS verification challenge of the future

John Rushby, SR I Formal Verification Technology: 31



Summary

• There’s a lot of verification technology available

• Off the shelf toolchains for weak properties

• For strong properties, still need to roll your own

• Emerging ecosystem of components, standardized

intermediate representations, APIs, tool buses

• Beyond the science and technology, big issues are integration

◦ Into industrial workflows and toolchains

◦ Into totality of an assurance case

• New opportunities

◦ Synthesis rather than verification: ∃∀ SMT solvers

? ∃A,B,C : ∀x, y : A× x+B × y = C

◦ Resilience: possibly move the verification to runtime

? Adaptive systems, online synthesis

John Rushby, SR I Formal Verification Technology: 32


