Tutorial, CPS PI Meeting, DC 3—5 Oct 2013

Formal Verification Technology

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, CA

John Rushby, SRI Formal Verification Technology: 1

Overview

e A tour of the landscape

e Some topics for the future/close to my heart

John Rushby, SRI Formal Verification Technology: 2

Formal Analysis: The Basic Idea
e Symbolic evaluation. ..

e Instead of evaluating, say, (5 —3) x (54 3) and observing that
this equals 52 — 32

e We evaluate (z —y) x (x + y)

e And get some big symbolic expression
TXT—YXT+TrXYy—yxy
e And we use automated deduction

o The laws of (some) logic
o And of various theories, e.g., arithmetic, arrays, datatypes
To establish some properties of that expression

o Like it always equals z2 — 32

e [he symbolic evaluation can be over computational systems
expressed as hardware, programs, specifications, etc.

John Rushby, SRI Formal Verification Technology: 3

Formal Analysis: Relation to Engineering Calculations

e [his is just like the calculations regular engineers do to
examine properties of their designs

o Computational fluid dynamics
o Finite element analysis
o And so on

e In each case, build models of the artifacts of interest in some
appropriate mathematical domain

e And do calculations over that domain

e Useful only when mechanized

John Rushby, SRI Formal Verification Technology: 4

Formal Analysis: The Difficulty

e For calculations about computational systems, the
appropriate mathematical domain is logic

e \Where every problem is at least NP Hard

e And many are exponential, superexponential (22"),

}

2 n
nonelementary (22), or undecidable

e Hence, the worst case computational complexity of formal
analysis is extremely high

e SO we need clever algorithms that are fast much of the time

e But we also need to find ways to simplify the problems

John Rushby, SRI Formal Verification Technology: 5

Formal Analysis: The Benefit

e Can examine all possible cases

o Relative to the simplifications we made

e Because finite formulas can represent infinite sets of states
o e.g., r <y represents {(0,1), (0,2), ...(1,2), (1,3)...}

e Massive benefit: computational systems are (at least
partially) discrete and hence discontinuous, so no justification
for extrapolating from examined to unexamined cases

e In addition to providing strong assurance
e AIlso provides effective ways to find bugs, generate tests

e And to synthesize guaranteed designs

John Rushby, SRI Formal Verification Technology: 6

Basic Technology: BDDs
e For finite state systems (or approximations that are)

e \We can grind everything down to Booleans and represent the
system as essentially a circuit

o Reduced Ordered Binary Decision Diagrams (BDDs) and
variants provide canonical forms with efficient operations
o Use these to calculate the reachable states by composing
BDD representing current set of states with BDD
representing the system until a fixed point is reached
o Check desired properties are true in all reachable states
* Desired properties can be represented as a synchronous
observer, or a formula in a temporal logic (CTL, LTL,
etc.), eventuality properties require Buchi automata

o Can also go backwards from a set of states where
property is violated to see if an initial state can be reached

e [his is Symbolic Model Checking: SMV etc.

e Good for up to 300—1,000 state bits
John Rushby, SRI Formal Verification Technology: 7

Reachability

e Computing the set of reachable states is expensive

o Even when done symbolically

e Nowadays, generally seek methods that are sensitive to the
property concerned and thereby perform smaller
computations

e OTOMH, reachability is often fully automatic

e \Whereas other methods may require more human guidance

John Rushby, SRI Formal Verification Technology: 8

Basic Technology: SAT

e Can alternatively ask if a property is violated in k£ or less
steps, where k is a specific number, like 37

e Given system specified by initiality predicate I and transition
relation 7" on states S, and desired property P

e Find assignment to states sg,..., s, satisfying
I(sg) NT(sg,81) NT(s1,82) N+ ANT(Sk—1,5k) N (P(s1) A--- A\ P(sk))

e Given a Boolean encoding of I, T, and P (i.e., circuit), this is
a propositional satisfiability (SAT) problem

e SAT solvers have become amazingly effective recently, and
continue to improve (annual competition)

o 100,000s of variables and formulas
e This is called Bounded Model Checking (BMC): NuSMV etc.

e Can also perform verification rather than refutation by slight

adjustment that performs k-induction (may need invariants)
John Rushby, SRI Formal Verification Technology: 9

Basic Technology: Decision Procedures and SMT
e Suppose we don't want to grind everything down to circuits

e Many useful theories are decidable (e.g., linear arithmetic,
equality with uninterpreted functions)

e Decision procedures work on conjunctions of formulas

e Combine these with SAT solving to handle propositionally
complex formulas over combinations of decided theories

e This yields solvers for Satisfiability Modulo Theories (SMT)

o Biggest advance in 20 years

e Which in turn vields infBMC and inf-k-induction

o Inf because some of the theories are infinite

John Rushby, SRI Formal Verification Technology: 10

John

Basic Technology: Beyond SMT

All SMT solvers employ heuristics for performance
o On multicore, run different heuristics/strategies in parallel
o Called a portfolio

Beyond SMT, there's nonlinear arithmetic and other hard
theories, quantifiers (3,V, first and higher order), and lemma
generation (especially loop invariants)

o Active areas; lots of recent progress

That’s the basic technology
o I'm going to describe some others later

But how do we use them?

Remember even these stunningly powerful methods are
typically not polynomial, and do not scale (much)

Rushby, SR Formal Verification Technology: 11

Dealing With Computational Complexity

e Use human guidance

o Even with automation, often need user-supplied invariants
o Or interactive theorem proving—e.qg., PVS

e Use approximate models, incomplete search

o model checkers are often used this way

e Aim at something other than verification

o E.g., bug finding, test case generation

e \Verify weak properties

o That's what static analysis typically does

e Give up soundness and/or completeness

o That's what commercial static analysis typically does

e Concentrate on small, high criticality components

o For example, monitors

John Rushby, SRI Formal Verification Technology: 12

Approximations, Simplifications, Abstractions (1)

e [hese can be sound or unsound

o Sound means if no errors found, then there are none

e Unsound: downscaling

o Just chop things down

o e.g., replace 32 bit integers by 2 bits, limit size of data
structures, omit entire parts of the system

e Works for bug finding

o Exploring all behaviors of an approximation finds more
bugs than sampling some of the behaviors of the real
thing

John Rushby, SRI Formal Verification Technology: 13

Approximations, Simplifications, Abstractions (2)
e Sound: data abstraction, abstract interpretation

e Instead of computing on integers, say, compute on

{negative, zero, positive}
e And many more sophisticated domains

e Iterate to fixed point

o Need widening and other methods to force convergence

e Can be effective for weak properties

o Absence of runtime exceptions
o e.g., Microsoft system (Clousot)

e A lot of engineering, and/or annotation needed to reduce
false alarms

o e.g., Astrée (avionics floating point)

e Can deliver invariants useful to other methods

John Rushby, SRI Formal Verification Technology: 14

Approximations, Simplifications, Abstractions (3)

e Sound: predicate abstraction

e Instead of individual variables, focus on their relations

e e.d., eliminate z and y, track x <y (i.e., a Boolean)

e Use the relations appearing in conditionals, loops

John Rushby, SRI Formal Verification Technology: 15

John

CEGAR Loops
Use aggressive, sound approximation
Get a counterexample to desired property

Is this due to overapproximation, or because the property
really is false?

Try to evaluate the counterexample on original problem
If it works, we are done (property is false)

If not, mine it to find source of overapproximation

o Craig Interpolation often used for this

Counter-Example-Guided Abstraction Refinement: CEGAR

Rushby, SR Formal Verification Technology: 16

Software (As Opposed to State Machines)
e There's a program counter
e Inefficient to represent it as just another state variable
e Need Abstract Reachability Tree (ART), etc.

e VYields Software Model Checking (Blast, CMBC, CPA
Checker, etc.)

e Alternatively, focus on the abstract data types (e.g., Alloy)
e Or generate test cases using deliberate counterexamples

e Can interleave symbolic and concrete evaluation to force
tests to all reachable control locations

o Concolic testing (CUTE, Dart, KLEE, SAGE etc.)

John Rushby, SRI Formal Verification Technology: 17

Software, Again

e Software model checking, interactive program verification,
even static analysis often need user-supplied invariants, and
other annotations

e Difficult to obtain, even a spec can be difficult to obtain

e Powerful type systems can help

o Predicate subtypes, dependent types

e But software engineering is rarely concerned with creating
truly new code, mostly it is modifying existing code: fixing
bugs, adding APIs or functionality, refactoring

e [he new code should be the same as the old code, except
for what was changed

e [his is equivalence checking
e [ractable to SMT without annotations

e E.g., SymDiff (Microsoft)
John Rushby, SRI Formal Verification Technology: 18

Cyber Physical Systems
e \We have realtime

e And a controlled plant

o Typically described by differential equations
e [hese vield timed automata, hybrid automata etc.

e Verification problems are harder, but the payoffs greater

o Because testing seldom encounters critical cases
e A |ot of progress recently
e Some of it direct automation: UPPALL, SpaceEx

e Some of it abstractions to problems solved by SMT

o Timeout automata, relational abstractions etc.

John Rushby, SRI Formal Verification Technology: 19

State of the Art

e Few Off the shelf tools for std. programming environments

o Some sound, often specialized, static analysis: Astrée
o Mostly unsound: Coverity, Code Sonar, PRQA etc.

e Quite good tools for some CPS environments

o Design Verifier for Stateflow/Simulink
o Similar for SCADE, Statemate

e Many good backend tools (model checkers), tool
components (SMT)

e SOA applications often employ many of these in ad-hoc
toolchains with a lot of glue code and engineering

e Sometimes starting from standard languages, sometimes
from specialized ones (SAL, Charon etc.)

e \What's needed is an ecosystem of components and a tool bus

e We are building one (ETB)
John Rushby, SRI Formal Verification Technology: 20

Interim Summary

e There's a lot of backend power available (SMT)

e And a lot of good ideas, experimental tools, components

e Most of the work is building toolchains that start from
something acceptable to the shop concerned

e And that does something valuable while limiting annotation
and user interaction to a level acceptable to the shop
concerned

e It need not be full verification

John Rushby, SRI Formal Verification Technology: 21

So what? Verification and Safety

e Even if it is full verification, it is not an unequivocal
guarantee of properties like safety

e Safety often concerns attributes of the plant

e Like the hazards that it poses

e Verification may establish that each hazard is adequately
eliminated or managed

e But how do we know we’'ve identified all the hazards?

John Rushby, SRI Formal Verification Technology: 22

John

Safety/Assurance Cases

The intellectual foundation of all methods of system
assurance is that we have

o Claims about safety (or other critical attribute)

o Evidence about our system (tests, reputation of
developers, prior systems, formal assurance)

o Arguments that justify the claims, based on the evidence

In standards-based approaches, claims and argument are
implicit, the standard specifies what evidence to produce

But there is a notion of Safety (or more generally Assurance)
Case that makes the CAE structure explicit

o That's why our tool bus is an Evidential Tool Bus (ETB)
Standards work well in slow-moving, uniform fields (aircraft)

Safety Cases may be best where there is a lot of innovation
and diversity (medical devices)

Rushby, SRI Formal Verification Technology: 23

Epistemic and Logic Vulnerabilities in Safety Cases

e In civil aircraft, all accidents and incidents caused by software
are due to flaws in the system requirements specification or
to gaps between this and the software specification

o i.e., none are due to coding errors
o Because their verification is pretty good, albeit manual

e Verification is wrt. assumptions, requirements, knowledge of
the system and its environment

e [hese are all about epistemology: what you know
o Can get these wrong: e.g., overlooked hazard
e SO there are two sources of vulnerability in safety cases

o Epistemic (flawed knowledge): new ideas needed here
* Maybe moving formal modeling upward
o Logic (flawed reasoning): verification can fix this
* Subject to epistemic concerns about its own soundness

e Cf. validation and verification in traditional V&V

John Rushby, SRI Formal Verification Technology: 24

A Conundrum

e Cannot eliminate failures with certainty (because the
environment is uncertain), so top-level safety claims about
systems are stated quantitatively

o E.g., no catastrophic failure in the lifetime of all airplanes
of one type

e And these lead to probabilistic requirements for
software-intensive subsystems

o E.g., probability of failure in civil flight control < 10~ per
hour

e To assure this, do lots of verification and validation (V&V)
e But V&V is all about showing correctness

e And for stronger claims, we do more V&V

o Or more intensive V&V: e.g., formal verification
e SO how does amount of V&V relate to probability of failure?

John Rushby, SRI Formal Verification Technology: 25

Useful Small Systems: Monitors

e [hese are particularly interesting in safety critical
applications, where you need extreme reliability
o One operational “channel” does the business
o Simpler monitor channel can shut it down on error
e Used in airplanes (ARP 4754)
e Turns malfunction and unintended function into loss of
function
o Which is dealt with OK by higher-level fault handling
Also prevents transitions into bad states

e Monitors against system requirements, not software
requirements

e Can be simple because it only need observe, rather than
generate, behavior

e Can be formally verified or synthesized

John Rushby, SRI Formal Verification Technology: 26

Reliability of Monitored Systems (1)

e [he most critical aircraft software needs failure rates below
10~ per hour sustained for 15 hours or more (flight duration)

e Suppose the failure rate of the operational system is 104
and that of the monitor is 10~°, does that give us 107°7

e No! Failures may not be independent

o Failure of one channel probably indicates a hard demand

e NoO good way forward based on claims about reliability

o Need “covariance of the difficulty function”

John Rushby, SRI Formal Verification Technology: 27

Reliability of Monitored Systems (2)

e But the monitor is simple enough that it can be formally
verified or synthesized

e Claim is not that it is reliable but that it is perfect. .. probably

o Perfection means will never have a failure in operation

o Failure is defined wrt. system requirements, not software
requirements, hence differs from correctness

e Attach subjective probability to likelihood of perfection

e [heorem: probability of failure of monitor alone is related to
its probability of perfection: pfd = pnp X Dfnp

e [heorem: probability of perfection of the monitor is
conditionally independent of the failure rate of the primary

e So if the monitor has probability of imperfection of 107°, we
do get 10~ overall!

John Rushby, SRI Formal Verification Technology: 28

John

Reliability of Monitored Systems (3)
Lots of technical details omitted here
T his analysis is aleatoric, need the epistemic assessment
And is 107° credible as a probability of imperfection?
Monitor may go off when it should not (Type 2 failure)

But the basic idea is sound
o IEEE TSE Spotlight Paper September/October 2012

Idea is that you monitor the system specification

o @Get this right by assumption synthesis etc.

Whereas the operational system is built to the software
requirements specification

Recall, all aircraft incidents due to problems precisely here

So this approach precisely addresses most vulnherable point

Rushby, SR Formal Verification Technology: 29

Finally, A Thought Experiment

e Suppose that at some point in a system development I
discern the need to make some part of it fault tolerant

e I must choose the types and numbers of faults that it should
tolerate (this is called the fault model)

e Suppose I choose a ‘simple” fault model
e.g., ‘‘crash” faults, and no more than two of them

e [hen that might enable me to design a correspondingly
simple algorithm to perform the fault tolerance

e [hus, I might have very few doubts about whether my
algorithm is correct (wrt. its fault model)
o i.e., little logic doubt
e But I might have considerable doubts about whether the
fault model will be valid in the real context of its deployment

o i.e., large epistemic doubt

John Rushby, SRI Formal Verification Technology: 30

Alternatively

e I could make very few assumptions about the faults

o That is, a weak fault model

e But then the mechanisms to tolerate those faults might take
me into the world of complex adaptive systems

e SO here I reduce my epistemic doubt at the price of larger
logic doubt

e [raditionally, in critical systems, we have favored reducing
logic doubt at the expense of epistemic doubt

o e.g., ho adaptive systems in flight control
e Resilience is about tipping the balance in the other direction
e But without too much logic doubt

e [his is the CPS verification challenge of the future

John Rushby, SRI Formal Verification Technology: 31

Summary
e T here's a lot of verification technology available
e Off the shelf toolchains for weak properties
e For strong properties, still need to roll your own

e Emerging ecosystem of components, standardized
intermediate representations, APIs, tool buses

e Beyond the science and technology, big issues are integration
o Into industrial workflows and toolchains
o Into totality of an assurance case

e New opportunities
o Synthesis rather than verification: dv SMT solvers
* dJA,B,C:Vx,y: Axx+Bxy=C
o Resilience: possibly move the verification to runtime
* Adaptive systems, online synthesis

John Rushby, SRI Formal Verification Technology: 32

