
Open Group, RTES, Wed 30 Jan 2008

Separation and Integration in MILS

Or What is MILS? (and HAP?)

Toward MILS Definitions

John Rushby,

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I MILS Definitions: 1

Motivation

• The July 2007 “Layered Assurance” workshop

• Email requests

• Needed for “The Constitution”

• And for MILS Integration (MIPP)

John Rushby, SR I MILS Definitions: 2

Existing Ideas

• Bottom-up descriptions via partitioning, separation, SKPP

• Catalogs of components and examples

• Do without: “Component Security Integration”

• Top-down description: separation and integration

John Rushby, SR I MILS Definitions: 3

Top-Down Description

• MILS is a two-level approach

• Cf. classical policy-mechanism distinction

• Policy Level: perform a decomposition to a virtual

architecture (circles and arrows picture) and identify the

trusted components and their local policies

◦ Do this in a way that minimizes complexity of trusted

components and their policies

◦ assume components and arrows are free

Resource Sharing Level: figure out how to allocate virtual

components to physical resources

◦ MILS provides technologies (basically, separation) so

that virtual components of various types can share

physical resources without compromising the integrity

of the policy level

John Rushby, SR I MILS Definitions: 4

Example: The Classical Crypto Controller

dataheader encrypted dataheader
header bypass

side
red

side
black

encryption

John Rushby, SR I MILS Definitions: 5

Policy-Level Decomposition

red

bypass

black

crypto

hardware

minimal runtime

John Rushby, SR I MILS Definitions: 6

Underlying Model

• Arrows indicate interfaces

• Only interaction among components is through these

explicitly shown interfaces

• Absence of arrows is often crucial

• Formally, circles/components are state machines, arrows are

shared variables or queues (depending on the exact formal

model)

John Rushby, SR I MILS Definitions: 7

Properties of Arrows

• Need to annotate assumed properties of channels

• Be aware most arrows require a reverse channel

red

bypass

black

crypto

John Rushby, SR I MILS Definitions: 8

Ports

• Arrows don’t contaminate entire state

• Need to identify the explicit interface (or port)

red

bypass

black

crypto

John Rushby, SR I MILS Definitions: 9

Resource Sharing Level

Separation Kernel

bypass blackred

crypto

John Rushby, SR I MILS Definitions: 10

MILS Components

• MILS has a business/uptake model as well as an architectural

approach

• Identify generally useful components, fund their protection

profiles

Policy Level: none yet, but could imagine generic

guard/filter

Resource Sharing Level: separation kernels (SKPP),

CORBA/Comms (PCSPP), networks (MNSPP), file

system, etc.

• Encourage a COTS marketplace to supply compliant

components

John Rushby, SR I MILS Definitions: 11

A Generic MILS System

Separation Kernel

Trusted
File System

TSE

Care and skill needed to determine which logical components

share physical resources (performance, faults)

John Rushby, SR I MILS Definitions: 12

MILS and HAP

• Many similarities

• Both are two-level approaches

• Difference is MILS lower level develops resource sharing

components, HAP provides a specific platform

• Would be best to work together

John Rushby, SR I MILS Definitions: 13

The MIPP

• Traditionally, MILS is about how decompose systems and

allocate components to subsystems

• Urgent need to consider integration

• Need to show that the individual policies of the upper level

policy components “add up” to enforce the overall security

policy

• And that the lower level resource sharing components do

their job, which is to enforce the upper level architectural

configuration

◦ Invisible to good upper level components

John Rushby, SR I MILS Definitions: 14

Two Kinds of Components, Two Kinds of PPs

The foundational and operational levels of the MILS

architecture have different concerns and are realized by

different kinds of components having different kinds of PPs

Operational level: components that provide or enforce

application-specific security functionality and policy

• Examples: downgrading, authentication, MLS flow

• Their PPs are concerned with the specific security

function that they provide

Foundational level: components that securely share physical

resources among logical entities

• Examples: separation kernel, partitioning communication

system, console, file system, network stack

• Their PPs are concerned with

partitioning/separation/secure sharing

John Rushby, SR I MILS Definitions: 15

Two Kinds of Components, Three Kinds of Composition

We need to consider three kinds of component compositions

operational/operational: need compositionality

foundational/operational: need composability

foundational/foundational: need additivity

Take these in turn

John Rushby, SR I MILS Definitions: 16

Compositionality

Operational components combine in a way that ensures

compositionality

• There’s some way to calculate the properties of interacting

operational components from the properties of the

components (with no need to look inside), e.g.:

◦ Component A guarantees P if environment ensures Q

◦ Component B guarantees Q if environment ensures P

◦ Conclude that A ||B guarantees P and Q

• Assumes components interact only through explicit

computational mechanisms (e.g., shared variables)

John Rushby, SR I MILS Definitions: 17

Composability

Foundational components ensure composability of operational

components

• Properties of a collection of interacting operational

components are preserved when they are placed (suitably) in

the environment provided by a collection of foundational

components

• Hence foundational components do not get in the way

• And the combination is itself composable

• Hence operational components cannot interfere with each

other nor with the foundational ones

Composability makes the world safe for compositional reasoning

John Rushby, SR I MILS Definitions: 18

Additivity

Foundational components compose with each other additively

• e.g., composable(kernel) + composable(network)

provides composable(kernel + network)

• There is an asymmetry: partitioning network stacks and file

systems and so on run as clients of the partitioning kernel

John Rushby, SR I MILS Definitions: 19

Going Forward

• Dynamic configuration (cf. Michael’s presentation)

• And SOA

• Properties other than/additional to security

◦ Cf. partitioning for safety

John Rushby, SR I MILS Definitions: 20

