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Formal Methods

• These are ways for exploring properties of computational

systems for all possible executions

• As opposed to testing or simulation

◦ These just sample the space of executions

• Formal methods use symbolic methods of calculation, e.g.,

◦ Abstract interpretation

◦ Model checking

◦ Theorem proving

• Cf. x2 − y2 = (x− y)(x + y) vs. 5*5-3*3 = (5-3)*(5+3)
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Practical Formal Methods

• Symbolic calculations have high computational complexity

◦ NP Hard or worse, often superexponential, sometimes

undecidable

• So to make them practical we have to compromise

◦ Accept some wrong answers

? Incompleteness (false alarms)

? Unsoundness (undetected bugs)

◦ Consider only very simple properties (not full correctness)

◦ Focus on models of the software, not the actual code

◦ Use human guidance

• Let’s look at some of these
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Bug Finding by Static Analysis

• Many commercial tools are available for this

◦ E.g., Coverity, KlocWork, CodeSonar,

. . . FindBugs, . . . Lint

◦ These work on C, C++, Java

• Most are tuned to reduce the number of false alarms

• Even at the cost of missing some real bugs (i.e., unsound)

• Because the main market is in bug finding
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Example: Bug Finding by Static Analysis

unsigned int X, Y;

while (1) {

/* ... */

B = (X == 0);

/* ... */

if (B) {

Y = 1 / X

};

/* ... */

};

int x, y, z;

y = 1;

while (1) {

if (x > 0) {

y = y+x

} else {

y = y-x

}

z = 1 / y

}

A simple static analyzer will find the bug on the left, but will

probably give a false alarm for the correct program on the right

• Or else fail to find the bug when y is initialized to 0
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Verification by Static Analysis

• Some tools are tuned the other way

• Mostly for safety-critical applications

• Guarantee to find all bugs in a certain class (i.e., sound)

• Possibly at the cost of false alarms

• For example

Spark Examiner: guarantee absence of runtime errors

(e.g., divide by zero) in Ada

Astrée guarantee no over/underflow or loss of precision in

floating point calculations (in C generated from SCADE)
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Example: Verification by Static Analysis

We abstract integers by their signs

int x, y, z; x, y in {neg, zero, pos}

y = 1; y is pos

while (1) {

if (x > 0) {

y = y+x x is pos; y ← pos ⊕ pos; i.e., pos

} else {

y = y-x x ∈ {zero, neg}; y ← pos 	 {zero, neg},

} i.e., pos

z = 1 / y division is ok

}

This is an example of data abstraction; other methods include

predicate abstraction, and abstract interpretation
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Model Checking

• Most static analyzers consider only simple properties

◦ Often the properties are built-in and fixed

◦ E.g., range of values each variable may take

• Model checking is more versatile

• User can specify property

• There are model checkers for C and Java

• But most work on more abstract models of software

(typically state machines)

• We’ll do an example
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Car Door Locking Example

• Highly simplified from an example by Philipps and Scholz

• Controller for door locks

◦ To keep it simple, we’ll have just one door

• The lock can be in one of four states:

locking, unlocking, locked, unlocked

Starts in the unlocked state

• At each time step it takes an input with one of three values

open, close, idle

And asserts a signal ready when it is locked or unlocked

• The controller receives the ready signal from the lock, a

crash signal from the airbag, and a command from the user

open, close, idle

• Safety requirement:

◦ Door is unlocked following open command, or crash

John Rushby, SR I CAL Inauguration Seminar: 9



Car Door Locking Example (ctd)

• The lock is given, it behaves as follows

◦ When it receives a close input:

? Does nothing if already locked

? If it is unlocked, goes to the intermediate locking state

? If it is locking, goes to locked

? If it is unlocking, nondeterministically continues to

unlocked, or reverses to locking

◦ Mutatis mutandis for open input

◦ See state machine on next page

• Our task is to design the controller

◦ Lock may still be performing a previous action

◦ Only visibility into the lock’s state is the ready signal

◦ Which it sees with one cycle delay
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Lock and Controller

Lock (given)

unlocked locking

locked

close

open

unlocking

Output ready in green

states

Controller (designed)

Inputs output

crash open

open open

close close

idle & ready idle

else repeat last
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Model Checking the Car Door Locking Example

• Typically, we would specify this in a statecharts-like graphical

formalism (e.g., StateFlow)

• But I will use the textual input to the SAL model checkers so

we can see more of what is going on

• It’s fairly easy to build translators and GUIs from engineering

notations to the raw notation of a model checker
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The Car Door Locking Example: Model Checker Input

Ideally, use an integrated front end; here we look at raw

model-checker input

This example

Evidential Tool Bus (ETB)

SAL PVS Yices

Integrated front−end development environment

AADL, UML2, Matlab

TOPCASED, SSIV etc.

Ideally
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Beginning of the lock Module in SAL

lock: MODULE =

BEGIN

INPUT

action: lockaction

OUTPUT

ready: BOOLEAN

LOCAL

state: lockstate

INITIALIZATION

state = unlocked

DEFINITION

ready = (state = locked OR state = unlocked);

TRANSITION

[

locking:

action = close AND state = unlocked --> state’ = locking;

[]

reverse_unlocking:

action = close AND state = unlocking -->

state’ IN {s: lockstate | s = locking OR s = unlocked}
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Rest of the lock Module in SAL

[]

lock:

state = locking --> state’ = locked;

[]

unlocking:

action = open AND state = locked --> state’ = unlocking;

[]

reverse_locking:

action = open AND state = locking -->

state’ IN {s: lockstate | s = unlocking OR s = locked}

[]

unlock:

state = unlocking --> state’ = unlocked;

[]

ELSE -->

]

END;
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Beginning of the controller Module in SAL

controller: MODULE =

BEGIN

INPUT

user: lockaction,

ready: BOOLEAN,

crash: BOOLEAN

OUTPUT

action: lockaction

INITIALIZATION

action = idle;
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Rest of the controller Module in SAL

TRANSITION

[

crash:

crash --> action’ = open;

[]

open:

user = open --> action’ = open;

[]

close:

user = close --> action’ = close;

[]

return_to_idle:

user = idle AND ready --> action’ = idle;

[]

ELSE -->

]

END;
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Specifying The System and a Property

• The system is the synchronous composition of the two

modules

system: MODULE = lock || controller;

• Inputs and outputs with matching names (i.e., lockaction

and ready) are automatically “wired up”

• Now we’ll check a property: whenever the user gives an open

input, then the state will eventually be unlocked

◦ We need to be careful that the user doesn’t immediately

cancel the open with a close

◦ So we’ll require that there are no close inputs following

the open

• We could have GUI for specifying properties, but here we’ll

use Linear Temporal Logic (LTL) which is the raw input to a

model checker
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A Formal Analysis

• We specify the property in LTL as follows:

prop1: LEMMA system |-

G(user=open AND X(G(user /= close)) => F(state=unlocked));

• In LTL, G means always, F means eventually, and X means

next state

◦ These are sometimes written 2, 3, and ◦, respectively

• We put all the SAL text into a file door.sal

• Then we can ask the SAL symbolic model checker to check

the property prop1:

sal-smc -v 3 door prop1

• In a fraction of a second it says: proved

• Unlike a simulation, this has considered all possible scenarios

satisfying the hypothesis (e.g., whether lock is ready or not).
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More Analyses

• We can check that the door eventually always stays unlocked

prop1a: LEMMA system |-

G(user = open AND X(G(user /= close))

=> F(G(state = unlocked)));

• And we can sharpen eventually to four steps

prop1b: LEMMA system |-

G(user=open AND X(G(user/=close))

=> XXXX(G(state = unlocked)));

(XXXX is a macro for four applications of X)

• We can check that four is the minimum by trying three

prop1c: LEMMA system |-

G(user=open AND X(G(user/=close))

=> XXX(state = unlocked));

• Sure enough, SAL says invalid
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Counterexamples

• But it also gives us a counterexample

user : close open idle idle

action: close open idle idle

state : unlocked unlocked locking locked unlocking unlocked

• Push-button proof is nice, but counterexamples are a major

additional benefit of model checking: when a property is

invalid, we get a trace that manifests its invalidity

• For example, let’s check that the crash input always results

in the door becoming unlocked

• We’ll start by assuming the user does no close inputs when

the crash occurs

• prop2: LEMMA system |-

G(crash AND G(user /= close) => F(state = unlocked));
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Another Counterexample

• SAL says invalid and the counterexample shows that the

crash input occurs when the door is locked and the guard on

the return to idle transition is enabled. . . and the system

chooses to take the latter transition

• We need to add NOT crash to the guard for the return to idle

transition to ensure it cannot occur when crash is enabled

• Now prop2 is proved
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Yet Another Counterexample

• Next, let’s check whether we can allow a close input when

the crash occurs

• prop3: LEMMA system |-

G(crash AND X(G(user /= close)) => F(state = unlocked));

• We get another counterexample!

• A fix is to add NOT crash to the guard for the close

transition, too
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Counterexamples And Test Case Generation

• We can generate test cases by providing deliberately false

assertions

• The counterexample is a test case

• To get a test case that drives the system to a state where

property P is true, use the property G(not P)

• Example: test case to get the system into the unlocking

state

test1: LEMMA system |- G(state /= unlocking);

• The test case is the is the input sequence close, open
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Model Checking Technology

• Technically, a model checker tests whether a system

specification is a Kripke model of a property expressed as

temporal logic formula

• The simplest kind of property is an invariant (G(p) in LTL)

◦ i.e., one that is true in every reachable state

• So the simplest kind of model checking is reachability analysis

• Construct every reachable state of the system and check that

desired properties (invariants) hold

◦ Feasible if all state variables are finite

◦ May require abstraction to achieve this

• Simplest method: explicit state reachability analysis

◦ E.g., SPIN
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Explicit State Reachability Analysis and Model Checking

• Imagine a simulator for some system/environment model

• Keep a set of all states visited so far, and a list of all states

whose successors have not yet been calculated

◦ Initialize both with the initial states

• Pick a state off the list and calculate all its successors

◦ i.e., run all possible one-step simulations from that state

Throw away those seen before

• Add new ones to the set and the list

• Check each new state for the desired properties

• Iterate to termination, or some state fails the property

◦ Or run out of memory, time, patience

• On failure, counterexample (backtrace) manifests problem

• Extend to model checking of general LTL properties using

Büchi automata
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Symbolic Model Checking

• Explicit state model checkers run out of power around

10-100 million reachable states

• But that’s only around 25 state bits

• Can often represent states more compactly using symbolic

representation

• E.g., the infinite set of states

{(0, 1), (0, 2), (0, 3), . . . (1, 2), (1, 3), . . . (2, 3), . . .} can be

symbolically represented as the finite expression {(x, y) |x < y}

• Symbolic model checkers use such symbolic representations

• ◦ E.g. NuSMV, sal-smc
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Symbolic Model Checking (ctd)

• Compile the model to a Boolean transition relation T

◦ i.e., a circuit

• Initialize the Boolean representation of the stateset S to the

initial states I

• Repeatedly apply T to S until a fixpoint

◦ S′ = S ∪ {t | ∃s ∈ S : T (s, t)}

◦ Final S is a formula representing all the reachable states

• Check the property against final S

• Mechanized efficiently using BDDs

◦ Reduced ordered Binary Decision Diagrams

Commodity software, honed by competition (CUDD)
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Bounded Model Checking

• Modern symbolic model checkers can handle 600 state bits

before special tricks are needed

• seldom get beyond 1,000 state bits

• Bounded model checkers are specialized to finding

counterexamples

• Sometimes can handle bigger problems than SMC

◦ E.g, NuSMV, sal-bmc
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Bounded Model Checking

• Is there a counterexample to P in k steps or less?

• Find assignments to states s0, . . . , sk such that

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• SAT is the quintessential NP-Complete problem

• But current SAT solvers are amazingly fast

• Commodity software, honed by competition

(MiniSAT, Siege, zChaff, Berkmin)

• BMC uses same representation as SMC, different backend
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Verification with BMC

• BMC was originally developed for refutation (bug finding)

• But can be used for verification of invariants via k-induction

• 1-induction; ordinary inductive invariance (for P ):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k (cf. strong induction):

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

◦ Can also use lemmas

• Note that counterexamples help debug invariant

John Rushby, SR I CAL Inauguration Seminar: 31



SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000s of variables and clauses
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SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

? Building on earlier innovations in SATO, GRASP

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states
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SAT Plus Theories

• SAT can encode operations on bounded integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories

• But their basic form works only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what a solver for Satisfiability Modulo Theories does

◦ SMT solvers: e.g., Barcelogic, CVC, MathSAT, Yices

◦ Sustained improvements, honed by competition

John Rushby, SR I CAL Inauguration Seminar: 34



Decidable Theories

• Many useful theories are decidable

(at least in their unquantified forms)

◦ Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

◦ Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

◦ Linear arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1− y ∧ 2× x ≥ 1 ⊃ 4× x = 2

◦ Special (fast) case: difference logic

x− y < c

• Combinations of decidable theories are (usually) decidable

e.g., 2× car(x)− 3× cdr(x) = f(cdr(x)) ⊃

f(cons(4× car(x)− 2× f(cdr(x)), y)) = f(cons(6× cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists
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SMT Solving

• Individual and combined decision procedures decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Should exploit search strategies of modern SAT solvers

• So replace the terms by propositional variables

◦ i.e., (A ∨B) ∧ (C ∨D) ∧E

• Get a solution from a SAT solver (if none, we are done)

◦ e.g., A, D, E

• Restore the interpretation of variables and send the

conjunction to the core decision procedure

◦ i.e., x ≤ y ∧ y ≤ x ∧ x 6= y
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SMT Solving by “Lemmas On Demand”

• If satisfiable, we are done

• If not, ask SAT solver for a new assignment

• But isn’t it expensive to keep doing this?

• Yes, so first, do a little bit of work to find fragments that

explain the unsatisfiability, and send these back to the SAT

solver as additional constraints (i.e., lemmas)

◦ A ∧D ⊃ Ē (equivalently, Ā ∨ D̄ ∨ Ē)

• Iterate to termination

◦ e.g., A, C, E, D̄

◦ i.e., x ≤ y, x < 0, x 6= y, y 6≤ x (simplifies to x < y, x < 0)

◦ A satisfying assignment is x = −3, y = 1

• This is called “lemmas on demand” (de Moura, Ruess,

Sorea) or “DPLL(T)”; it yields effective SMT solvers
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Infinite Bounded Model Checking

• These are bounded model checkers that use SMT solvers

◦ E.g., sal-inf-bmc

• Allow analysis of models with infinite state spaces

◦ E.g., real-time, other continuous variables
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Model Checking for Hybrid Systems

• Often need plant models with continuous dynamics

◦ i.e., differential equations

• Hybrid systems mix discrete and continuous behavior

◦ As in Simulink/StateFlow

◦ Timed systems are a special case

• There are specialized model checkers for hybrid systems

◦ E.g., Checkmate

Seldom get beyond 5 or 6 continuous variables

• Another approach uses automated theorem proving to

abstract hybrid systems to conservative discrete

approximations

◦ E.g., hybrid-sal

Can sometimes handle 25 continuous variables
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The Ecosystem of Formal Methods Tools

• Underlying technology is highly competitive, specialized

◦ Abstract interpreters, BDDs, SAT, SMT solvers, general

theorem proving

• Next level is well-understood, established incumbents

◦ Static analyzers, model checkers, full theorem provers

• The action is in automation of the outer loop

◦ Counterexample-guided abstraction refinement,

interpolants

And specialized combinations

◦ Mixed concrete and symbolic (concolic) execution

◦ Combinations of methods

? Static analysis generates lemmas for model checker

• The opportunities are in enabling these combinations

◦ Tool buses: open up the tools, make them scriptable
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Integration Example: LAST

• LAST (Xia, DiVito, Muñoz) generates MC/DC tests for

avionics code involving nonlinear arithmetic (with floating

point numbers, trigonometric functions etc.)

• Applied it to Boeing autopilot simulator

• Generated tests to (almost) full MC/DC coverage in minutes

• It’s built on Blast (Henzinger et al)

◦ A software model checker, itself built of components

◦ Including CIL and CVC-Lite

• But extends it to handle nonlinear arithmetic using RealPaver

(a numerical nonlinear constraint unsatisfiability checker)

◦ Added 1,000 lines to CIL front end for MC/DC

◦ Added 2,000 lines to integrate RealPaver with CVC-Lite

◦ Changed 2,000 lines in Blast to tie it all together

• Toolbus goal is to simplify this kind of construction
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Opportunities for Applications of Formal Methods

• The ability of formal methods to consider all possible

executions creates powerful opportunities

• Exploration of properties in early-lifecycle models

• Thorough analysis of detailed design models

• Guaranteed detection of certain classes of errors in

implementations

• Automated generation of test cases
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Traditional Vee Diagram (Much Simplified)

system
requirements test

design/code unit/integration
test

time and money
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Vee Diagram Tightened with Formal Methods

system
requirements test

design/code unit/integration
test

time and money

Example: Rockwell-Collins
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Industrial Applications of Formal Methods

• Need to integrate formal methods in the development

tool-chain

◦ Interfacing different notations

◦ Automating/assisting abstraction and lemma generation

• Do so in an open-ended way that allows new tools

• And combinations of tools

• Get in early

◦ Pick the low-hanging fruit

Ride the wave of increasing power as the technology matures

• Good luck!
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