
Architecture, Arguments, and Confidence

(Joint work with Bev Littlewood, City University, London UK)

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby Architecture, Arguments, Confidence: 1



Overview

• Many assurance cases involve quantification of risk

• Which in turn requires quantifying failure rates of software

• Notoriously hard to do, beyond about 10−3

◦ Which you can test for

• So to provide assessments for higher reliabilities, either need

very strong analysis

◦ Viewed skeptically by some: e.g., CAST 24

• Or software redundancy

• And that requires choices about the software architecture,

the kinds of claims, and the types of argument that can

support an assurance case that involves software redundancy

John Rushby Architecture, Arguments, Confidence: 2



Overview (ctd.)

• I’ll outline an approach that combines consideration of

architecture, claims about formal verification, and novel

probabilistic reasoning

• Will apply it first to one-out-of-two architectures of the kind

used for nuclear shutdown

• Then to monitored architectures of a kind proposed for

aircraft (software IVHM)

John Rushby Architecture, Arguments, Confidence: 3



Reliability of Redundant and Monitored Systems

• It is well-known that the reliability of systems with redundant

software channels cannot be estimated simply by multiplying

the reliabilities of their constituent channels

• Empirical and theoretical studies confirm that failures may

not be independent

◦ Even when channels are deliberately diverse

◦ Some situations are intrinsically more difficult

• Littlewood and Miller model gives probability of system

failure as pfdA × pfdB + Cov(θA, θB) where θA, θB are the

difficulty function random variables for the two channels

• Hard to estimate these, and their covariance

• Same considerations apply when we have an operational

(sub)system and a monitor

John Rushby Architecture, Arguments, Confidence: 4



Reliability of Systems With a Possibly-Perfect Monitor

• But suppose the claim we make for the monitor is not that it

achieves some particular reliability

◦ i.e., has some probability of failure on demand

• But that it is possibly perfect

◦ Will need to be simple, and have very strong assurance

• Perfect means that it will never experience a failure

• Possibly perfect means there is some uncertainty about its

perfection

◦ In particular, it has a probability of imperfection

• We need to be careful about the uncertainties and

probabilities here

John Rushby Architecture, Arguments, Confidence: 5



Aleatory and Epistemic Uncertainty

• Aleatory or irreducible uncertainty

◦ is “uncertainty in the world”

◦ e.g., if I have a biased coin with P (heads) = ph, I cannot

predict exactly how many heads will occur in 100 trials

because of randomness in the world

Frequentist interpretation of probability needed here

• Epistemic or reducible uncertainty

◦ is “uncertainty about the world”

◦ e.g., if I give you the biased coin, you will not know ph;

you can estimate it, and can try to improve your estimate

by doing experiments, learning something about its

manufacture, the historical record of similar coins etc.

Frequentist and subjective interpretations OK here

John Rushby Architecture, Arguments, Confidence: 6



Aleatory and Epistemic Uncertainty in Models

• In much scientific modeling, the aleatory uncertainty is

captured conditionally in a model with parameters

• And the epistemic uncertainty centers upon the values of

these parameters

• As in the coin tossing example

John Rushby Architecture, Arguments, Confidence: 7



One Out Of Two (1oo2) Architectures

• These are systems, like those used for nuclear shutdown, that

have two dissimilar channels in parallel

• Either can shut the system down (no voting)

• So system failure requires both channels to fail

• Suppose one is a complex, but highly reliable system A, with

aleatory probability of failure on demand (pfd) pA

• And suppose the other is a simple system B that is possibly

perfect with aleatory probability of imperfection (pnp) pB

◦ One way to give this a frequentist interpretation is to

consider all the channels that might have been developed

by the same process, and then consider the proportion of

those that are imperfect

• Note that we are assuming pA and pB are known

• What is the probability of system failure?

John Rushby Architecture, Arguments, Confidence: 8



Aleatory Uncertainty for 1oo2 Architectures

P (system fails [on randomly selected demand] | pfdA = pA, pnpB = pB)

= P (system fails |A fails, B imperfect, pfdA = pA, pnpB = pB)

× P (A fails, B imperfect | pfdA = pA, pnpB = pB)

+ P (system fails |A succeeds, B imperfect, pfdA = pA, pnpB = pB)

× P (A succeeds, B imperfect | pfdA = pA, pnpB = pB)

+ P (system fails |A fails, B perfect, pfdA = pA, pnpB = pB)

× P (A fails, B perfect | pfdA = pA, pnpB = pB)

+ P (system fails |A succeeds, B perfect, pfdA = pA, pnpB = pB)

× P (A succeeds, B perfect | pfdA = pA, pnpB = pB)

Assume, conservatively, that if A fails and B is imperfect, then

B will fail on the same demand

≤ 1 × P (A fails, B imperfect | pfdA = pA, pnpB = pB) + 0 + 0 + 0

John Rushby Architecture, Arguments, Confidence: 9



Aleatory Uncertainty for 1oo2 Architectures (ctd.)

P (A fails, B imperfect | pfdA = pA, pnpB = pB)

= P (A fails |B imperfect, pfdA = pA, pnpB = pB)

× P (B imperfect | pfdA = pA, pnpB = pB)

(Im)perfection of B tells us nothing about the failure of A on

this demand; hence,

= P (A fails | pfdA = pA, pnpB = pB)

× P (B imperfect | pfdA = pA, pnpB = pB)

= pA × pB

Compare with two (un)reliable channels, where failure of B on

this demand does increase likelihood A will fail on same demand

P (A fails |B fails, pfdA = pA, pfdB = pB)

≥ P (A fails | pfdA = pA, pfdB = pB)

John Rushby Architecture, Arguments, Confidence: 10



Aleatory Uncertainty for 1oo2 Architectures (ctd. 2)

I could have factored the conditional probability involving the

perfect channel the other way around:

P (A fails, B imperfect | pfdA = pA, pnpB = pB)

= P (B imperfect |A fails, pfdA = pA, pnpB = pB)

× P (A fails | pfdA = pA, pnpB = pB)

You might say knowledge that A has failed should affect my

estimate of B’s imperfection, but we are dealing with aleatory

uncertainty where these probabilities are known; hence

= P (B imperfect | pfdA = pA, pnpB = pB)

× P (A fails | pfdA = pA, pnpB = pB)

= pB × pA as before

Note: the claim must be perfection, other global properties

(e.g., proven correct) are not aleatory (they are reducible)

John Rushby Architecture, Arguments, Confidence: 11



Epistemic Uncertainty for 1oo2 Architectures

• We have shown that the events “A fails” “B is imperfect”

are conditionally independent at the aleatory level

• Knowing aleatory probabilities of these allows probability of

system failure to be conservatively bounded by pA × pB

• But we do not know pA and pB with certainty: assessor

formulates beliefs about these as subjective probabilities

• The beliefs may not be independent, so they will be

represented by a joint probability density function

dF (pA, pB) = P (pfdA < pA, pnpB < pB)

• The unconditional probability of system failure is then

P (system fails on randomly selected demand)

=

∫

0≤pA≤1

0≤pB≤1

pA × pB dF (pA, pB)

(That’s a Riemann-Stieltjes integral)

John Rushby Architecture, Arguments, Confidence: 12



Reliability Estimate for 1oo2 Architectures

• The only source of dependence is in the assessor’s bivariate

density function dF (pA, pB)

• But it is really hard to elicit such bivariate beliefs

• What stops beliefs about the two parameters being

independent?

• It’s not difficulty variation over the demand space

◦ Formal verification is uniformly credible

• Surely, it’s concern about common-cause errors such as

misunderstood requirements, common mechanisms, etc.

• So combine all beliefs about common-cause faults in a third

parameter C

◦ Place probability mass C at point (1, 1) in (pA, pB)-plane

as subjective probability for such common faults

John Rushby Architecture, Arguments, Confidence: 13



Reliability Estimate for 1oo2 Architectures (ctd.)

• With probability C, A will fail with certainty, and B will be

imperfect with certainty (and conservatively assumed to fail)

• If assessor believes all dependence between his beliefs about

the model parameters has been captured conservatively in C,

the conditional distribution factorizes, so

P (system fails on randomly selected demand)

= C + (1 − C) ×

∫

0≤pA<1

pA dF (pA) ×

∫

0≤pB<1

pB dF (pB)

= C + (1 − C) × P ∗
A × P ∗

B

where P ∗
A and P ∗

B are the means of the marginal distributions

excluding (1, 1)

John Rushby Architecture, Arguments, Confidence: 14



Reliability Estimate for 1oo2 Architectures (ctd. 2)

• If C is small (as will be likely), can approximate as

C + PA × PB

where PA and PB are the means of the marginal distributions

• Construct probability C by considering top-level development

◦ Or by claim limits (10−5)

• Construct probability PA by statistically valid random testing

(10−3)

• Construct probability PB by considering mechanically checked

formal verification (see later) (10−3)

• Hence overall system pfd is about 1.1 × 10−5

John Rushby Architecture, Arguments, Confidence: 15



Failures of Commission

• Focus so far is failure of omission

◦ e.g., not shutting down reactor when you should

• Also need to consider failures of commission

◦ i.e., shutting down reactor when you should not

◦ Failure of either channel can do this

• Failures of commission can be mere nuisances, have

economic cost, or be safety-critical

• Have to be careful about demands (points in time) vs.

nondemands (absence of demands over intervals of time)

• Discretize time: e.g., single flight of an aircraft

• Can then use pfds for both demands and nondemands

John Rushby Architecture, Arguments, Confidence: 16



Failures of Commission

• By similar arguments as before, get

P (system fails on randomly selected nondemand | pfdA = pA2, pnpB = pB2)

= pA2 + pB2 − pA2 × pB2

• where pA2 and pB2 are aleatory probabilities of failure and

imperfection, respectively, for A and B wrt. failures of

commission

• This result shows us that the diversity in a 1oo2 architectures

provides no benefit with respect to these failures

• For epistemic assessment, conservative to ignore final term,

do not then need a factoring argument for epistemic values

• So system pfd wrt. failures of commission is PA2 + PB2 where

PA2 and PB2 are means of the marginal distributions

John Rushby Architecture, Arguments, Confidence: 17



Risk of Failures

• Denote the consequence (cost) of a failure of omission by c1,

and the consequences of failures of commission by the A and

B channels by cA2 and cB2, respectively

◦ The costs are different because the two channels may

operate in different ways

• Denote the probability that a randomly selected interval

triggers a demand by f

• Then epistemic risk is bounded by

f × c1 × (C + PA1 × PB1)+(1 − f) × cA2 × PA2 + (1 − f) × cB2 × PB2

omission + commission

John Rushby Architecture, Arguments, Confidence: 18



Assurance Case for Formal Verification

• How might we construct probabilities PB1, PB2 ≤ 10−3?

• i.e., less than 1 in 1,000 chance that the monitor is imperfect

• We will formally verify or formally synthesize the monitor

◦ i.e., prove it correct using automated tools

• What are the dominant hazards to this process?

◦ Topics outside formal analysis (e.g., compiler

bugs)—those have to be included in C

⋆ Can be verified by testing (autogenerated from specs)

◦ Incorrect claims—that’s dealt with in C, too

◦ Incorrect formalization of claims and supporting theories

◦ Unsound formalization of these (e.g., flawed axioms)

◦ Unsound theorem prover or monitor synthesis

John Rushby Architecture, Arguments, Confidence: 19



Soundness Guarantees for Formal Verification

• Unsound axiomatizations can be eliminated by constructive

methods, or by exhibiting a constructive model

• Of the remaining hazards, incorrect formalization of the

claims and theories are surely dominant

◦ Allocate most of our 10−3 “budget” here

• Then, an adequate soundness guarantee for our theorem

prover or formal synthesis procedure will be about 10−4

• This is not a very demanding requirement

John Rushby Architecture, Arguments, Confidence: 20



Soundness Guarantees for Formal Verification Tools

• A verification will certainly fail if your tools and deductive

components lack the power to complete it

• We need ways to guarantee soundness that do not

compromise deductive power

• Many options: computational reflection, diverse verifiers,

trusted core, proof generation and verified checker

• Computational reflection is fine, but has to build on

something more basic

• Diversity has well-known weaknesses

• Trusted core is slow, and a weak guarantee

◦ Even the relatively solid and small (∼ 400 lines of OCaml)

HOL Light core was found to have two soundness bugs.

◦ Has since been (self) verified

John Rushby Architecture, Arguments, Confidence: 21



Proof Generation and Verified Checkers

• Traditional approach is to generate primitive proof objects

that can be independently checked by a verified proof kernel

◦ An instance of an operational system with a monitor!

• Problem is the primitive proof objects from powerful provers

(e.g., SMT solvers) are vast (gigabytes)

• We favor more powerful checkers and offline verifiers that can

be driven by more succinct certificates and hints, respectively

◦ Developing and formally verifying useful checkers and

offline verifiers is a major research challenge

◦ A high-performance SAT solver is a good start: checking

of many verifiers can be reduced to SAT plus something

◦ Shankar and Marc Vaucher have verified a modern SAT

solver in PVS; the formal specification is efficiently

executable (modulo lacunae in the PVS evaluator)

John Rushby Architecture, Arguments, Confidence: 22



Verified Reference Kernels

Hints

Certificates

Proofs

Offline

Trusted

Verified

Verifier

Untrusted
Frontline

Kernel

Verified
Checker

Proof 

Verifier

John Rushby Architecture, Arguments, Confidence: 23



Software IVHM for Aircraft

• Requirements for safety critical software in aircraft are

extreme (e.g., probability of failure 10−9/hour)

• Retrospective evidence it was achieved

◦ At least, until recent accidents and incidents

◦ A330 accident near Perth, 777 incident near Perth, A340

incident near Schiphol, 737 crash at Schiphol

• But how to assess it prospectively, in certification?

• Skepticism it can be achieved by analysis alone

◦ e.g., CAST 24 report: suggests diversity

• IVHM is Integrated Vehicle Health Maintenance

◦ Monitoring, prognosis, mitigation etc.

• Software IVHM applies this to software

John Rushby Architecture, Arguments, Confidence: 24



A Recent Incident Due to Software

• An Airbus A340 en-route from Hong Kong to London on 8

February 2005

• Toward the end of the flight, two engines flamed out, crew

found certain tanks were critically low on fuel, declared an

emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed

John Rushby Architecture, Arguments, Confidence: 25



Software Health Management and Monitoring

• System hazards due to software faults are a topic of concern

in aviation safety: one accident, and several serious incidents

• Traditional approach is fault avoidance

◦ Strive to eliminate software faults

◦ The intent of DO-178B, DO-297, etc.

May be reaching the limits of effectiveness

• So consider buttressing it by software health management

◦ Techniques for monitoring, diagnosing, prognosing, and

mitigating the manifestations of residual faults.

• But what specifications do we monitor against?

◦ DO-178B does a good job ensuring the software correctly

implements its low and high level specifications

◦ Faults are likely to be in these specifications

Need higher-level, independent specifications

John Rushby Architecture, Arguments, Confidence: 26



Safety Cases and Formal Monitors

• Intellectual basis for assurance in support of certification is a

credible argument based on documented evidence that

supports suitable claims

• DO-178B is an example of standards-based assurance

◦ Specifies just the evidence to be developed

◦ The claims and argument are largely implicit

Effective in slow-moving fields, but can be a barrier and a

hazard to innovation

• Hence, growing interest in safety-case approach to assurance

◦ Make all of the argument, claims, evidence explicit

• Aha: monitor against the (sub)claims in the safety case

• Formal monitors are synthesized from or verified against

safety claims using automated formal methods

John Rushby Architecture, Arguments, Confidence: 27



Interpretation for Formal Monitors

• In a monitored architecture

◦ Have an operational channel A completely responsible for

functions of the system

◦ And a monitor B that can trigger an alarm if it sees

violation of safety properties

◦ Requires higher level fault-recovery

◦ So really an subsystem architecture

• Reuse previous analysis, where A has only failures of omission

• Demands arrive at some constant rate per unit time

• Nondemands arrive each time A succeeds

• Hence,

risk/unit time ≤ c1 × (C + PA1 × PB1) + (1 − PA1) × c2 × PB2

John Rushby Architecture, Arguments, Confidence: 28



Consequences For Formal Monitors

• Our analysis yields prob. of failure wrt. failures of omission in

monitored system as (C + PA1 × PB1), vs. PA1 without monitor

• Credible and modest claims for perfection of a monitor (e.g.,

PB1 < 10−3) deliver useful improvement

• Provided probability of common cause faults C is small

• I think it can be, because the monitor is derived from the

safety case

John Rushby Architecture, Arguments, Confidence: 29



Consequences For Formal Monitors (ctd.)

• But we also need to be concerned about failures of

commission: risk is c2 × PB2

• These depend on the monitor alone

• Cost of these failures must be commensurate with credible

claims for probability of perfection

◦ A340 fuel system monitor: warn pilot—OK

◦ A300 roll rate anomaly: reboot EFIS bus—not OK

• Imperfection wrt. failures of commission likely depends more

on selection of monitored properties than correctness of the

monitor

• Hence, selection of these properties is critical

John Rushby Architecture, Arguments, Confidence: 30



Summary

• Started with analysis of 1oo2 systems

◦ Failure of one channel and imperfection of the other are

conditionally independent at the aleatory level

◦ Only dependence is in epistemic assessment of their

probabilities

◦ Dependencies can be absorbed in a common-cause

probability C

• The analysis was extended to failures of commission

• Then carried over to monitored systems

• And the epistemic failure rates and risk depend on

C, PA1, PB1, PB2 and f, c1, cB2

• It is feasible to assess these parameters

John Rushby Architecture, Arguments, Confidence: 31



Conclusions

• Asymmetric 1oo2 systems, and monitored systems are

plausible ways to achieve high reliability

• With a possibly perfect channel they also provide a credible

way to assess it

• Risk of failures of commission (false alarms) requires careful

consideration and engineering: for formal monitors, focus

should be on choice of monitored properties

• Reasonable rates of perfection require only modest

guarantees for the prover; suggested how these can be

provided without compromising performance

• Caution: focus was on failure of monitored subsystems—we

still have to respond to those failures at the system level

John Rushby Architecture, Arguments, Confidence: 32



Research Topics

• Can significant properties be monitored at the subsystem

level, or are they emergent?

• More generally, can we develop approaches to assurance

cases that are compositional?

◦ Given the cases for components

◦ Assemble these to provide case for system

◦ Or for new context of deployment

These are very difficult topics (cf. IMA)

• We have a plausible approach for NSA-grade security

◦ The MILS approach

• Yet more generally, can we assess assurance cases reliably?

◦ Currently, it’s all human judgement

◦ Reserve this for where it’s really indispensable

◦ Formalize and automate all that can be

John Rushby Architecture, Arguments, Confidence: 33


