
PVS, SAL, and the ToolBus

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby, SR I An Evidential Tool Bus 1

Overview

• Backends (PVS) and frontends (SAL)

• What’s wrong with that?

• A Tool Bus

• Trust and evidence

• An Evidential Tool Bus

John Rushby, SR I An Evidential Tool Bus 2

PVS and its Backends

PVS included powerful automation since its first release (1993)

• Shostak’s combination of integer and real linear arithmetic

with uninterpreted functions

◦ Previously in STP (1980) and Ehdm (1988)

◦ Conjunctions only

• Propositional calculus at an outer level

◦ Using BDDs (1995)

• Rewriting and heuristic quantifier instantiation

• Symbolic model checking for CTL (1995)

• Predicate abstraction

◦ Invented and first realized as a PVS extension (1996)

• WS1S, via Mona library (2000)

• Execution (2001) and computational reflection, semantic

attachments (2001, PVSio 2003), random tester (2005)

John Rushby, SR I An Evidential Tool Bus 3

PVS and its Backends (ctd.)

• Nonlinear arithmetic

◦ RAHD (Real Algebra in High Dimensions)

? By Grant Passmore (2008)

◦ Not tightly integrated with other DPs, but loses little

• SMT solvers (Satisfiability Modulo Theories)

◦ ICS (2002)

? The “lazy” integration of decision procedures and a

SAT solver (supplanted the earlier “eager” integration)

◦ Yices 0.1 and Simplics (2005)

◦ Yices 1 (2006), integrated with PVS (2008)

◦ Decides the combination of uninterpreted function

symbols with equality, linear real and integer arithmetic,

scalar types, recursive datatypes, tuples, records,

extensional arrays, fixed-size bit-vectors, quantifiers, and

lambda expressions

John Rushby, SR I An Evidential Tool Bus 4

SMT Solving is a Competitive Sport

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 156 158 160 162 164 166 168 170 172

tim
e

BCLT 2007
Mathsat 2007

Yices 2007
Z3 2007

BCLT 2008
Mathsat 2008
Yices2 2008

Z3 2008

Progress of 2007 and 2008 competitors on real difference logic

John Rushby, SR I An Evidential Tool Bus 5

How Best to Exploit the Power of SMT Solvers?

• SMT solvers routinely solve problems with tens of thousands

of variables and constraints

◦ A disruptive innovation

• You don’t interact with formulas this big

• So an uncomfortable match for interactive provers like PVS

◦ Only useful for endgames; elsewhere grind is better

• But SMT solvers also provide satisfying assignments

• Hence a natural application is bounded model checking over

“infinite” domains (“infinite BMC,” SAL 2002)

◦ Extends to verification via k-induction (SAL 2003)

John Rushby, SR I An Evidential Tool Bus 6

The Awesome Power of SMT Solvers

Example: biphase mark

• An asynchronous communications protocol with realtime

constraints

ACL2: Moore (1994), one of his “10 best ideas”

PVS: three different versions

• One by Groote and Vaandrager used PVS + UPPAAL

• Required 37 invariants, 4,000 proof steps, hours of prover

time to check

SAL: Brown and Pike (2006)

• Compact, readable specification

• Verification by infinite BMC with k-induction

• Three trivial lemmas

• And one large systematic one (disjunctive invariant)

• Under 5 seconds of prover time

John Rushby, SR I An Evidential Tool Bus 7

SAL and its Frontends

• SAL is a model checking environment

Finite state: symbolic (BDD), and bounded (SAT)

◦ Also used for test case generation

Infinite state: infinite bounded (SMT)

Hybrid: hybrid abstraction (RAHD-like abstractor)

• Has its own language; type system is similar to PVS

• Intended as a target for translation from widely used

languages—e.g., Simulink/Stateflow

◦ Formal semantics for Stateflow and prototype translator,

and cool method of test case generation (Hamon 2004)

◦ Simulink Design Verifier is a standard Mathworks product:

test generation, checking, verification (Hamon 2007)

? Uses an SMT-like solver (Prover) directly

John Rushby, SR I An Evidential Tool Bus 8

Rockwell-Collins Simulink/Stateflow Toolchain

© Copyright 2008 Rockwell Collins, Inc.

All rights reserved.
18

SCADE

Lustre

 NuSMV

 PVS
Safe State
Machines

 SAL Symbolic

 Model Checker

SAL

Simulink
Simulink

Gateway

StateFlow

Reactis ACL2

 Prover

Simulink

Gateway Design
Verifier

 SAL Infinite
 Model Checker

 SAL Bounded

 Model Checker

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Verification - Rockwell Collins Translation Framework

John Rushby, SR I An Evidential Tool Bus 9

What’s Wrong With All That?

• Deduction is no longer the hard part of verification

• Invariant generation is now the hard problem

◦ Abstract interpretation (over logical lattices), templates

(solve ∃∀ problems), predicate/data abstraction, CEGAR

and interpolants, van Eijk methods, dynamic analysis

• Verification is not the only task of interest

◦ Debugging, test case generation, static analysis,

abstraction, scheduling, plan generation, controller

synthesis, approximate and maxSAT-like problems

• Users want direct access to components

John Rushby, SR I An Evidential Tool Bus 10

So We Need to Link Tools

Desiderata:

• Make it worthwhile for people to open up their tools

◦ Extract and package components

◦ Make internal computations available

• Low cost of entry, network effect

• Allow tools to work together in ad-hoc combinations

Observation:

• Components return values other than (sub)proof outcomes

• E.g., Unsat cores, sets of predicates, counterexamples,

invariants, abstractions

• i.e., heterogeneous functionality

John Rushby, SR I An Evidential Tool Bus 11

Backends or Bus?

Backends Bus

• Heterogeneity argues against theorem prover backends

• Bus is a federation of equals; theorem prover is just another

component

John Rushby, SR I An Evidential Tool Bus 12

Interactions on A Tool Bus

• We need ways for one tool find another

• We need ways for one tool to invoke another

• We need ways for one tool to provide the right kind of input

for another, and to understand its outputs

• This starts to look like Service-Oriented Architecture (SOA)

◦ SOAP, WSDL, RDF, etc.

• Ugh! Want a higher-level, more declarative notation

John Rushby, SR I An Evidential Tool Bus 13

Tool Bus Judgements

Propose that Tool Bus interactions take the form of judgments

• T ` A

• Tool instance T verifies assertion A

• Both the tool and the assertion can include variables

Query: ? ` predicate-abstraction(?, B, φ)

Response:

SAL-abstractor(. . .) ` predicate-abstraction?(A, B, φ)

• Tools operate by implicit invocation

• The responding tool constructs the witness, and returns the

result or its handle, along with its own invocation

John Rushby, SR I An Evidential Tool Bus 14

Arguments in Tool Bus Assertions

• These are formulas, counterexamples, sets of predicates,

state machines, etc.

• Do we need a universal Tool Bus Language to specify all of

these?

• Or are they opaque to the bus, interpreted only by the

relevant tools?

• Propose that semantics are opaque, labeled by a Tool Bus

Ontology

◦ Two dimensions

? Logic (e.g., Yices)

? Representation (e.g., state machine)

• But syntax is registered (as XML, e.g., using RELAX NG)

John Rushby, SR I An Evidential Tool Bus 15

Tool Bus Ontology

Representations

unsat−coresformulas etc.

propositional

SMT

first−order

first−order+theories

PVS

COQ

etc

counterexamples state−machines

state−machines
in SMT

higher−order

Logics

John Rushby, SR I An Evidential Tool Bus 16

Tool Bus Operation

• The tool bus operates like a distributed Datalog framework,

chaining forward and backward on queries and responses

• Similar to SRI AIC’s Open Agent Architecture (OAA)

◦ And maybe similar to MyGrid, Linda, TIB, . . . ?

• Can have hints, preferences etc.

• The bus needs to integrate with version management

• Tools can be local or remote

• Tools can run in parallel, in competition

• Some tools may be simple scripts

John Rushby, SR I An Evidential Tool Bus 17

Tool Bus Scripts

• Example

◦ If A is a finite state machine and P a safety property,

then a model checker can verify P for A

◦ If B is a conservative abstraction of B, then verification of

B verifies A

◦ If A is a state machine, and B is a predicate abstraction

for A, then B is conservative for A

• How do we know this is sound?

• And that we can trust the computations performed by the

components?

John Rushby, SR I An Evidential Tool Bus 18

Trustworthy Software

• The World is not interested in software

• It’s interested in (socio-technic) systems

• Formal analysis of software contributes only part of the

evidence required for evaluation or certification of

trustworthy systems

• Also need hazard analysis and its kin (FTA, FMEA, HAZOP),

consideration of the environment, human factors etc.

• Modern treatment uses idea of a Safety or Assurance Case

◦ Explicit claims, evidence, argument

• In critical systems, will often run multiple software channels:

primary/backup or operational/monitor

• How much confidence do we need in a verified backup or

monitor?

John Rushby, SR I An Evidential Tool Bus 19

Confidence in Verification

• By consideration of aleatory uncertainty, Littlewood (2008)

shows that failures of a reliable (tested) channel A and a

possibly perfect (verified) channel B are conditionally

independent

• Hence P(failure) = pfdA × pnpB

• We have epistemic uncertainty about these parameters, but

can estimate

• P(failure) = C + pfd ∗A ×pnp∗B

◦ Where C estimates common mode failures across testing

and verification (e.g., misunderstood requirements)

◦ pfd∗A is estimated failure rate of tested channel

◦ And pnp∗B is estimated probability of unsound verification

• Modest confidence in verification (e.g., 1− 10−4) is adequate

John Rushby, SR I An Evidential Tool Bus 20

Sound Deduction

• Most failures in verification are due to incorrect

formalization, bugs in language processing (e.g.,

typechecking errors), translation errors

• Very few (if any) can be traced to unsound deduction

• But a verification will certainly fail if your tools and deductive

components lack the power to complete it

• We need ways to guarantee soundness that do not

compromise deductive power

• Many options: trusted core, proof generation and verified

checker, computational reflection, diverse verifiers

• Our preference is for verified checkers that are rather

powerful, driven by compact hints, or certificates

John Rushby, SR I An Evidential Tool Bus 21

Verified Reference Kernels

Hints

Certificates

Proofs

Offline

Trusted

Verified

Verifier

Untrusted

Frontline

Kernel

Verified

Checker

Proof

Verifier

Shankar and Marc Vaucher have verified a modern SAT solver

that is executable (modulo lacunae in the PVS evaluator)

John Rushby, SR I An Evidential Tool Bus 22

An Evidential Tool Bus

• Each tool should deliver evidence for its judgments

◦ Could be hints and certificates for a reference kernel

◦ Could be reputation (“Proved by PVS”)

◦ Could be diversity (“using both Yices and Z3”)

◦ Could be declaration by user

? “By testing,” or “Because I say so”

• A full judgment is T ` E : A, which is the claim that tool

instance T provides evidence E for assertion A

• And the tool bus assembles these (on demand)

• Can chain on the evidence component

• To construct evidence for overall analysis for use in an

assurance case—hence evidential tool bus

• In fact, an evidential tool bus could be (part of) ideal

support environment for assurance cases

John Rushby, SR I An Evidential Tool Bus 23

Summary

• We’ve built and used powerful tools

• And linked them with backends and frontends

• But what The World wants are components

• Individual components must be tightly integrated

(e.g., SMT solvers may do 1012 internal interactions)

• But separate components can be loosely integrated

• And this should be done as peers on a bus

• Proposed a fairly specific outline for an Evidential Tool Bus

• We have a built prototype

◦ Too heavyweight: used OAA, toolbus metalogic

• Now starting the second iteration

• Please join in

John Rushby, SR I An Evidential Tool Bus 24

