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Overview

• Backends (PVS) and frontends (SAL)

• What’s wrong with that?

• A Tool Bus

• Trust and evidence

• An Evidential Tool Bus
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PVS and its Backends

PVS included powerful automation since its first release (1993)

• Shostak’s combination of integer and real linear arithmetic

with uninterpreted functions

◦ Previously in STP (1980) and Ehdm (1988)

◦ Conjunctions only

• Propositional calculus at an outer level

◦ Using BDDs (1995)

• Rewriting and heuristic quantifier instantiation

• Symbolic model checking for CTL (1995)

• Predicate abstraction

◦ Invented and first realized as a PVS extension (1996)

• WS1S, via Mona library (2000)

• Execution (2001) and computational reflection, semantic

attachments (2001, PVSio 2003), random tester (2005)
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PVS and its Backends (ctd.)

• Nonlinear arithmetic

◦ RAHD (Real Algebra in High Dimensions)

? By Grant Passmore (2008)

◦ Not tightly integrated with other DPs, but loses little

• SMT solvers (Satisfiability Modulo Theories)

◦ ICS (2002)

? The “lazy” integration of decision procedures and a

SAT solver (supplanted the earlier “eager” integration)

◦ Yices 0.1 and Simplics (2005)

◦ Yices 1 (2006), integrated with PVS (2008)

◦ Decides the combination of uninterpreted function

symbols with equality, linear real and integer arithmetic,

scalar types, recursive datatypes, tuples, records,

extensional arrays, fixed-size bit-vectors, quantifiers, and

lambda expressions
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SMT Solving is a Competitive Sport
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How Best to Exploit the Power of SMT Solvers?

• SMT solvers routinely solve problems with tens of thousands

of variables and constraints

◦ A disruptive innovation

• You don’t interact with formulas this big

• So an uncomfortable match for interactive provers like PVS

◦ Only useful for endgames; elsewhere grind is better

• But SMT solvers also provide satisfying assignments

• Hence a natural application is bounded model checking over

“infinite” domains (“infinite BMC,” SAL 2002)

◦ Extends to verification via k-induction (SAL 2003)
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The Awesome Power of SMT Solvers

Example: biphase mark

• An asynchronous communications protocol with realtime

constraints

ACL2: Moore (1994), one of his “10 best ideas”

PVS: three different versions

• One by Groote and Vaandrager used PVS + UPPAAL

• Required 37 invariants, 4,000 proof steps, hours of prover

time to check

SAL: Brown and Pike (2006)

• Compact, readable specification

• Verification by infinite BMC with k-induction

• Three trivial lemmas

• And one large systematic one (disjunctive invariant)

• Under 5 seconds of prover time
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SAL and its Frontends

• SAL is a model checking environment

Finite state: symbolic (BDD), and bounded (SAT)

◦ Also used for test case generation

Infinite state: infinite bounded (SMT)

Hybrid: hybrid abstraction (RAHD-like abstractor)

• Has its own language; type system is similar to PVS

• Intended as a target for translation from widely used

languages—e.g., Simulink/Stateflow

◦ Formal semantics for Stateflow and prototype translator,

and cool method of test case generation (Hamon 2004)

◦ Simulink Design Verifier is a standard Mathworks product:

test generation, checking, verification (Hamon 2007)

? Uses an SMT-like solver (Prover) directly
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What’s Wrong With All That?

• Deduction is no longer the hard part of verification

• Invariant generation is now the hard problem

◦ Abstract interpretation (over logical lattices), templates

(solve ∃∀ problems), predicate/data abstraction, CEGAR

and interpolants, van Eijk methods, dynamic analysis

• Verification is not the only task of interest

◦ Debugging, test case generation, static analysis,

abstraction, scheduling, plan generation, controller

synthesis, approximate and maxSAT-like problems

• Users want direct access to components
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So We Need to Link Tools

Desiderata:

• Make it worthwhile for people to open up their tools

◦ Extract and package components

◦ Make internal computations available

• Low cost of entry, network effect

• Allow tools to work together in ad-hoc combinations

Observation:

• Components return values other than (sub)proof outcomes

• E.g., Unsat cores, sets of predicates, counterexamples,

invariants, abstractions

• i.e., heterogeneous functionality
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Backends or Bus?

Backends Bus

• Heterogeneity argues against theorem prover backends

• Bus is a federation of equals; theorem prover is just another

component
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Interactions on A Tool Bus

• We need ways for one tool find another

• We need ways for one tool to invoke another

• We need ways for one tool to provide the right kind of input

for another, and to understand its outputs

• This starts to look like Service-Oriented Architecture (SOA)

◦ SOAP, WSDL, RDF, etc.

• Ugh! Want a higher-level, more declarative notation
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Tool Bus Judgements

Propose that Tool Bus interactions take the form of judgments

• T ` A

• Tool instance T verifies assertion A

• Both the tool and the assertion can include variables

Query: ? ` predicate-abstraction(?, B, φ)

Response:

SAL-abstractor(. . . ) ` predicate-abstraction?(A, B, φ)

• Tools operate by implicit invocation

• The responding tool constructs the witness, and returns the

result or its handle, along with its own invocation
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Arguments in Tool Bus Assertions

• These are formulas, counterexamples, sets of predicates,

state machines, etc.

• Do we need a universal Tool Bus Language to specify all of

these?

• Or are they opaque to the bus, interpreted only by the

relevant tools?

• Propose that semantics are opaque, labeled by a Tool Bus

Ontology

◦ Two dimensions

? Logic (e.g., Yices)

? Representation (e.g., state machine)

• But syntax is registered (as XML, e.g., using RELAX NG)
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Tool Bus Ontology
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Tool Bus Operation

• The tool bus operates like a distributed Datalog framework,

chaining forward and backward on queries and responses

• Similar to SRI AIC’s Open Agent Architecture (OAA)

◦ And maybe similar to MyGrid, Linda, TIB, . . . ?

• Can have hints, preferences etc.

• The bus needs to integrate with version management

• Tools can be local or remote

• Tools can run in parallel, in competition

• Some tools may be simple scripts
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Tool Bus Scripts

• Example

◦ If A is a finite state machine and P a safety property,

then a model checker can verify P for A

◦ If B is a conservative abstraction of B, then verification of

B verifies A

◦ If A is a state machine, and B is a predicate abstraction

for A, then B is conservative for A

• How do we know this is sound?

• And that we can trust the computations performed by the

components?
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Trustworthy Software

• The World is not interested in software

• It’s interested in (socio-technic) systems

• Formal analysis of software contributes only part of the

evidence required for evaluation or certification of

trustworthy systems

• Also need hazard analysis and its kin (FTA, FMEA, HAZOP),

consideration of the environment, human factors etc.

• Modern treatment uses idea of a Safety or Assurance Case

◦ Explicit claims, evidence, argument

• In critical systems, will often run multiple software channels:

primary/backup or operational/monitor

• How much confidence do we need in a verified backup or

monitor?
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Confidence in Verification

• By consideration of aleatory uncertainty, Littlewood (2008)

shows that failures of a reliable (tested) channel A and a

possibly perfect (verified) channel B are conditionally

independent

• Hence P(failure) = pfdA × pnpB

• We have epistemic uncertainty about these parameters, but

can estimate

• P(failure) = C + pfd ∗A ×pnp∗B

◦ Where C estimates common mode failures across testing

and verification (e.g., misunderstood requirements)

◦ pfd∗A is estimated failure rate of tested channel

◦ And pnp∗B is estimated probability of unsound verification

• Modest confidence in verification (e.g., 1− 10−4) is adequate
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Sound Deduction

• Most failures in verification are due to incorrect

formalization, bugs in language processing (e.g.,

typechecking errors), translation errors

• Very few (if any) can be traced to unsound deduction

• But a verification will certainly fail if your tools and deductive

components lack the power to complete it

• We need ways to guarantee soundness that do not

compromise deductive power

• Many options: trusted core, proof generation and verified

checker, computational reflection, diverse verifiers

• Our preference is for verified checkers that are rather

powerful, driven by compact hints, or certificates
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Verified Reference Kernels

Hints

Certificates

Proofs

Offline

Trusted

Verified

Verifier

Untrusted

Frontline

Kernel

Verified

Checker

Proof 

Verifier

Shankar and Marc Vaucher have verified a modern SAT solver

that is executable (modulo lacunae in the PVS evaluator)
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An Evidential Tool Bus

• Each tool should deliver evidence for its judgments

◦ Could be hints and certificates for a reference kernel

◦ Could be reputation (“Proved by PVS”)

◦ Could be diversity (“using both Yices and Z3”)

◦ Could be declaration by user

? “By testing,” or “Because I say so”

• A full judgment is T ` E : A, which is the claim that tool

instance T provides evidence E for assertion A

• And the tool bus assembles these (on demand)

• Can chain on the evidence component

• To construct evidence for overall analysis for use in an

assurance case—hence evidential tool bus

• In fact, an evidential tool bus could be (part of) ideal

support environment for assurance cases

John Rushby, SR I An Evidential Tool Bus 23



Summary

• We’ve built and used powerful tools

• And linked them with backends and frontends

• But what The World wants are components

• Individual components must be tightly integrated

(e.g., SMT solvers may do 1012 internal interactions)

• But separate components can be loosely integrated

• And this should be done as peers on a bus

• Proposed a fairly specific outline for an Evidential Tool Bus

• We have a built prototype

◦ Too heavyweight: used OAA, toolbus metalogic

• Now starting the second iteration

• Please join in
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