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The Basic Challenge: Systems Level

• Some systems must not fail or go wrong

◦ Nuclear power, chemical plants, flight control

◦ Phone system, air traffic control

◦ Pacemakers, automobile braking and steering

• So, think of everything that could go wrong

◦ Those are the hazards

Design them out, find ways to mitigate them

◦ i.e., reduce consequences, frequency

This may add complexity (a source of hazards)

• Iterate

• And then recurse down through subsystems

• Until you get to widgets

◦ Build those correctly

• Provide assurance that you have done all this successfully
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The Basic Challenge: Software

• Software is a widget in this scheme

• We don’t analyze it for safety, we build it correctly

• In more detail. . .

◦ Systems development yields functional and safety

requirements on a subsystem that will be implemented in

software; call these (sub)system requirements

? Often expressed as constraints or goals

◦ From these, develop the high level software requirements

? How to achieve those goals

◦ Elaborate through more detailed levels of requirements

◦ Until you get to code (or something that generates code)

• Provide assurance that you have done all this successfully
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Aside: Software is a Mighty Big Widget

The example of aircraft

safety

verification

correctness

safety goal aircraft−level requirements

code

high−level software requirements

aircraft function requirements

validation
(sub)system requirements

• As more of the system design goes into software

• Maybe the widget boundary should move

• Safety vs. correctness analysis would move with it

• But has not done so yet
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Software Safety Assurance: 4+1 Principles (Tim Kelly)

1. Safety elements of high level software requirements must

address software contribution to system hazards

2. Intent of these software safety requirements is maintained

throughout development

3. New hazards are identified and mitigated

4. Running code must satisfy software safety requirements

+ 1:

Must address the 4 principles in ways that establish confidence

commensurate to contribution of software to system risk
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Software Safety Assurance: Aircraft Case

DO-178B/C guidelines

1. Safety elements of high level software requirements must

address software contribution to system hazards

This is done at the systems level (ARP 4761, 4754A)

2. Intent of these software safety requirements is maintained

Lots of requirements documentation, analysis, traceability

3. New hazards are identified and mitigated

Derived requirements are thrown to the systems level

4. Running code must satisfy software safety requirements

More documentation, analysis, traceability, testing

Must address the 4 principles in ways that establish confidence

commensurate to contribution of software to system risk

Which brings us to. . .

John Rushby, SR I High-Assurance SW 6



The Conundrum

• Cannot eliminate hazards with certainty (because the

environment is uncertain), so top-level claims about the

system are stated quantitatively

◦ E.g., no catastrophic failure in the lifetime of all airplanes

of one type (“in the life of the fleet”)

• And these lead to probabilistic systems-level requirements for

software-intensive subsystems

◦ E.g., probability of failure in flight control < 10−9 per hour

• To assure this, do lots of software assurance

• But this is all about showing correctness

• For stronger subsystem claims, do more software assurance

• How does amount of correctness-based software assurance

relate to probability of failure?
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The Conundrum Illustrated: The Example of Aircraft

• Aircraft failure conditions are classified in terms of the

severity of their consequences

• Catastrophic failure conditions are those that could prevent

continued safe flight and landing

• And so on through severe major, major, minor, to no effect

• Severity and probability/frequency must be inversely related

• AC 25.1309: No catastrophic failure conditions in the

operational life of all aircraft of one type

• Arithmetic and regulation require the probability of

catastrophic failure conditions to be less than 10−9 per hour,

sustained for many hours

• And 10−7, 10−5, 10−3 for the lesser failure conditions
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The Conundrum Illustrated: Example of Aircraft (ctd.)

• DO-178C identifies five Software Levels

• And 71 assurance objectives

◦ E.g., documentation of requirements, analysis, traceability

from requirements to code, test coverage, etc.

• More objectives (plus independence) at higher levels

◦ 26 objectives at DO178C Level D (10−3)

◦ 62 objectives at DO178C Level C (10−5)

◦ 69 objectives at DO178C Level B (10−7)

◦ 71 objectives at DO178C Level A (10−9)

• The Conundrum: how does doing more correctness-based

objectives relate to lower probability of failure?
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Some Background and Terminology
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Aleatory and Epistemic Uncertainty

• Aleatory or irreducible uncertainty

◦ is “uncertainty in the world”

◦ e.g., if I have a coin with P (heads) = ph, I cannot predict

exactly how many heads will occur in 100 trials because

of randomness in the world

Frequentist interpretation of probability needed here

• Epistemic or reducible uncertainty

◦ is “uncertainty about the world”

◦ e.g., if I give you the coin, you will not know ph; you can

estimate it, and can try to improve your estimate by

doing experiments, learning something about its

manufacture, the historical record of similar coins etc.

Frequentist and subjective interpretations OK here
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Aleatory and Epistemic Uncertainty in Models

• In much scientific modeling, the aleatory uncertainty is

captured conditionally in a model with parameters

• And the epistemic uncertainty centers upon the values of

these parameters

• As in the coin tossing example: ph is the parameter
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Software Reliability

• Not just software, any artifacts of comparably complex design

• Software contributes to system failures through faults in its

requirements, design, implementation—bugs

• A bug that leads to failure is certain to do so whenever it is

encountered in similar circumstances

◦ There’s nothing probabilistic about it

• Aaah, but the circumstances of the system are a stochastic

process

• So there is a probability of encountering the circumstances

that activate the bug

• Hence, probabilistic statements about software reliability or

failure are perfectly reasonable

• Typically speak of probability of failure on demand (pfd), or

failure rate (per hour, say)
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Testing and Software Reliability

• The basic way to determine the reliability of given software is

by experiment

◦ Statistically valid random testing

◦ Tests must reproduce the operational profile

◦ Requires a lot of tests

• Feasible to get to pfd around 10−3, but not much further

◦ 10−9 would require 114,000 years on test

• Note that the testing in DO-178C is not of this kind

◦ it’s coverage-based unit testing: a local correctness check

• So how can we estimate reliability for software?
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Back To The Main Thread
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Assurance is About Confidence

• We do correctness-based software assurance

• And do more of it when higher reliability is required

• But the amount of correctness-based software assurance has

no obvious relation to reliability

• And it certainly doesn’t make the software “more correct”

• Aha! What it does is make us more confident in its

correctness

• And we can measure that as a subjective probability

◦ More assurance, higher probability, roughly. . .

• But is it really correctness that we want?
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Perfect Software

• Correctness is relative to software requirements, which

themselves may be flawed

◦ Actually, the main source of failure in aircraft software

• We want correctness relative to the critical claims in the

(sub)system requirements

• Call that perfection

• Software that will never experience a critical failure in

operation, no matter how much operational exposure it has
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Correct but Imperfect Software: Example

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Toward the end of a flight from Hong Kong to London: two

engines flamed out, crew found certain tanks were critically

low on fuel, declared an emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; each a self-checking pair with a backup (so

6-fold redundant in total); they cross-compare and the

“healthiest” one drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• The backups were suppressed because the FCMCs indicated

they were not both failed
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Possibly Perfect Software

• You might not believe a given piece of software is perfect

• But you might concede it has a possibility of being perfect

• And the more assurance it has had, the greater that

possibility

• So we can speak of a (subjective) probability of perfection

• For a frequentist interpretation: think of all the software that

might have been developed by comparable engineering

processes to solve the same design problem

◦ And that has had the same degree of assurance

◦ The probability of perfection is then the probability that

any software randomly selected from this class is perfect
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Probabilities of Perfection and Failure

• Probability of perfection relates to software assurance

• But it also relates to reliability:

By the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w perfect)× P (s/w perfect)

+ P (s/w fails | s/w imperfect)× P (s/w imperfect).

• The first term in this sum is zero, because the software does

not fail if it is perfect (other properties won’t do)

• Hence, define

◦ pnp probability the software is imperfect

◦ pfnp probability that it fails, if it is imperfect

• Then P (software fails) = pfnp × pnp

• This analysis is aleatoric, with parameters pfnp and pnp
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Epistemic Estimation

• To apply this result, we need to assess values for pfnp and pnp

• These are most likely subjective probabilities

◦ i.e., degrees of belief

• Beliefs about pfnp and pnp may not be independent

• So will be represented by some joint distribution F (pfnp, pnp)

• Probability of software failure will be given by the

Riemann-Stieltjes integral∫
0≤pfnp≤1
0≤pnp≤1

pfnp × pnp dF (pfnp, pnp). (2)

• If beliefs can be separated F factorizes as F (pfnp)× F (pnp)

• And (2) becomes Pfnp × Pnp

Where these are the means of the posterior distributions

representing the assessor’s beliefs about the two parameters
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Practical Application—Nuclear

• Traditionally, nuclear protection systems are assured by

statistically valid random testing

• Very expensive to get to pfd of 10−4 this way

• Our analysis says pfd ≤ Pfnp × Pnp

• They are essentially setting Pnp to 1 and doing the work to

assess Pfnp < 10−4

◦ Conservative assumption that allows separation of beliefs

• Any software assurance process that could give them Pnp < 1

Would reduce the amount of testing they need to do

◦ e.g., Pnp < 10−1, which seems very plausible

◦ Would deliver the the same pfd with Pfnp < 10−3

• This could reduce the total cost of certification

◦ Conservative methods available if beliefs not independent
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Practical Application—Aircraft, Version 1

• Aircraft software is assured by processes such as DO-178C

Level A, needs failure rate < 10−9 per hour

• They also do a massive amount of all-up testing but do not

take assurance credit for this

• Our analysis says software failure rate ≤ Pfnp × Pnp

• So they are setting Pfnp = 1 and Pnp < 10−9

• No plane crashes due to software, enough operational

exposure to validate software failure rate < 10−7, even 10−8

• Does this mean flight software has probabilities of

imperfection < 10−7 or 10−8?

• And that DO178C delivers this?
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Practical Application—Aircraft, Version 2

• That seems unlikely; an alternative measure is psrv (n), the

probability of surviving n demands without failure, where

psrv (n) = (1− pnp) + pnp × (1− pfnp)n (3)

i.e., probability of failure-free operation over long periods

remains constant with high probability of perfection, but

decays exponentially for imperfect but reliable

• Cannot do 10−9 this way

• But can make n equal to “life of the fleet” and get there

with modest pnp and pfnp

• Need a “bootstrap” for pfnp to have confidence in first few

months of flight, and could get that from the all-up system

and flight tests

• Thereafter, experience to date provides confidence for next

increment: see SafeComp13 paper by Strigini and Povyakalo
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Practical Application: Two Channel Systems

• Many safety-critical systems have two (or more) diverse

“channels” arranged in 1-out-of-2 (1oo2) structure

◦ E.g., nuclear shutdown

• A primary protection system is responsible for plant safety

• A simpler secondary channel provides a backup

• Cannot simply multiply the pfds of the two channels to get

pfd for the system

◦ Failures are unlikely to be independent

◦ E.g., failure of one channel suggests this is a difficult

case, so failure of the other is more likely

◦ Infeasible to measure amount of dependence

So, traditionally, difficult to assess the reliability delivered
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Two Channel Systems and Possible Perfection

• But if the second channel is simple enough to support a

plausible claim of possible perfection, then

◦ Its imperfection is conditionally independent of failures in

the first channel at the aleatory level

◦ Hence, system pfd is conservatively bounded by product

of pfd of first channel and probability of imperfection of

the second

◦ P (system fails on randomly selected demand ≤ pfdA × pnpB

This is a theorem

• Epistemic assessment similar to previous case

◦ But may be more difficult to separate beliefs

◦ Conservative approximations are available
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Type 1 and Type 2 Failures in 1oo2 Systems

• So far, considered only failures of omission

◦ Type 1 failure: both channels fail to respond to a demand

• Must also consider failures of commission

◦ Type 2 failure: either channel responds to a nondemand

• Demands are events at a point in time; nondemands are

absence of demands over an interval of time

• So full model must unify these

• Details straightforward but lengthy
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Monitored Architectures

• A variant on 1oo2

• One operational channel does the business

• Simpler monitor channel can shut it down if things look bad

• Used in airplanes, avoids malfunction and unintended function

◦ Higher level redundancy copes with loss of function

• Analysis is a variant of 1oo2:

◦ No Type 2 failures for operational channel

• Monitored architecture risk per unit time

≤ c1 × (M1 + FA × PB1) + c2 × (M2 + FB2|np × PB2)
where the Ms are due to mechanism shared between channels

• May provide justification for some of the architectures

suggested in ARP 4754

◦ e.g., 10−9 system made of Level C operational channel

and Level A monitor
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Monitors Do Fail

• Fuel emergency on Airbus A340-642, G-VATL,

8 February 2005 (already discussed)

◦ Type 1 failure

• EFIS Reboot during spin recovery on Airbus A300 (American

Airlines Flight 903), 12 May 1997

◦ Type 2 failure

• These weren’t very good monitors

• So what’s to be done? . . . hold that question
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Diagnosis and Prescriptions

• Need a framework for discussing whole process of assurance

• Idea of an assurance case provides this

◦ Claims ◦ Argument ◦ Evidence

◦ The argument justifies the claims, based on the evidence

• Some fields require assurance or safety case for certification

◦ e.g., FDA requires them for Infusion pumps

• Others use standards and guidelines such as DO-178C

◦ The claims are largely established by regulation,

guidelines specify the evidence to be produced, and the

argument was presumably hashed out in the committee

meetings that produced the guidelines

◦ In the absence of a documented argument, it’s not clear

what some of the evidence is for: e.g., MC/DC testing
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Assurance Cases and Formal Verification

• The argument justifies the claims, based on the evidence

• This is a bit like logic (cf. “argumentation,” later)

◦ A proof justifies a conclusion, based on given assumptions

and axioms

• So what’s the difference between an assurance case and a

formal verification?

• Aha! An assurance case also closely examines the

interpretation of the formalized assumptions and conclusion

and why we should believe the assumptions and axioms

◦ e.g., contemplate my formal verif’n in PVS of Anselm’s

Ontological Argument (for the existence of God)

• We could expand formal verification to include the elements

traditionally outside its scope, and attention would then

focus on credibility of their representation in logic
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Logic And The Real World

• Formal verification is calculation in logic

◦ It’s difficult because calculations in logic are all NP-Hard

◦ But benefits are the same as those for calculation in other

engineering fields (can consider all cases)

• Software is logic

• But it interacts with the world

◦ What it is supposed to do (i.e., requirements)

◦ The actual semantics of its implementation

◦ Uncertainties and hazards posed by sensors, actuators,

devices, the environment, people, other systems

We must consider what we know about all these,

and how we represent them

• For formal verification we describe them by models, in logic
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Logic and Epistemology in Assurance Cases

• We have just two sources of doubt in an assurance case

• Logic doubt: the validity of the argument

◦ Can be eliminated by formal verification

◦ Subject to caveats on soundness of methods & tools

◦ This is Leibniz’ Dream: “let us calculate”

• Epistemic doubt: the accuracy and completeness of our

knowledge of the world in its interaction with the system

◦ As expressed in our models and requirements

◦ This is where we need to focus

• Same distinction underlies Verification and Validation (V&V)

◦ Did I build the system right?

? Did I truly prove the theorems?

◦ Did I build the right system?

? Did I prove the right theorems?
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Aside: Resilience

• It is often possible to trade epistemic and logic doubts

◦ Weaker assumptions, fewer epistemic doubts

◦ But more complex implementations, more logic doubt

• For example, highly specific fault assumptions, vs. Byzantine

fault tolerance

• I claim resilience is about favoring weaker assumptions

• Good for security also: the bad guys attack your assumptions

• Formal verification lets us cope with the added logic doubt

◦ cf. FAA disallows adaptive control due to logic doubt
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Reducing Epistemic Doubt: Validity

• We have a model and we want to know if it is valid

• One way is to run experiments against it

• That’s why simulation models are popular

◦ To be executable, have to include a lot of detail

◦ But detail is not necessarily a good thing in a model

◦ Epistemic doubt whether real world matches all that detail

• Instead we should favor descriptions in terms of constraints

◦ Our task is to describe the world, not to implement it

◦ Less is more!

• Calculation on constraint-based models is now feasible

◦ Recent advances in fully automated verification

◦ Infinite bounded model checking (Inf-BMC), enabled by

solvers for satisfiability modulo theories (SMT)

• Cf. equivalence checking on (coercive) reference

implementations, vs. constraint checking on loose models
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Reducing Epistemic Doubt: Validity (ctd. 1)

• All aircraft incidents due to software had their root cause in

flawed requirements

◦ Either the system level requirements were wrong

◦ Or the high level software requirements did not correctly

reproduce their intent

• None were due to implementation defects

◦ Might not be so in other application areas

• One problem is that descriptions at the system level are

(rightly) very abstract

◦ Typically box and arrow pictures, supplemented with math

◦ Little support for automated exploration and analysis

• And these descriptions are getting more complex, because

there are more cases to deal with (i.e., more like software)
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Reducing Epistemic Doubt: Validity (ctd. 2)

• Traditional ways to explore system-level models, such as

failure modes and effects analysis (FMEA) and fault tree

analysis (FTA) can be seen as manual ways to do incomplete

state exploration with some heuristic focus that directs

attention to the paths most likely to be informative

• Modern system models have increasingly many cases, like

software. so it makes sense to apply methods from software

to the specification and analysis of these designs

• But must keep things abstract

• Aha! Inf-BMC can do this

• Inf-BMC allows use of uninterpreted functions, e.g., f(x)

• Constraints can be encoded as synchronous observers

• With comparable models Inf-BMC can do automated model

checking and cover the entire modeled space
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Recall This Picture

safety

verification

correctness

safety goal aircraft−level requirements

code

high−level software requirements

aircraft function requirements

validation
(sub)system requirements

• As more of the system design goes into software

• Software analysis methods should be applied to system req’ts
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Reducing Epistemic Doubt: Completeness

• Quintessential completeness problem is hazard analysis

◦ Have I thought of all the things that could go wrong?

• There are systematic techniques that help suggest possible

hazards: FMEA, HAZOP etc.

◦ These can be partially automated

◦ cf. notion in Epistemology that knowledge is belief

justified by a generally reliable method

• But there seems no way to prove we do have all the hazards

• So surely need some measure of our confidence that we do

• Same for all the other reasons (called defeaters) why our

safety argument might be flawed
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Eliminative Induction, Baconian Probability

• Some take inspiration from scientific method

• Many candidate theories, design experiments to test them,

eliminate those shown to be wrong (Francis Bacon, roughly)

• “Once you eliminate the impossible, whatever remains, no

matter how improbable, must be the truth” (Holmes)

• Substitute defeaters for theories

◦ Have many reasons why safety argument could be flawed,

eliminate them one by one

• Baconian Probability is a measure for this:

number eliminated ÷ number considered

• More complex form advocated in Philosophy of Law (Cohen)

◦ “Beyond reasonable doubt,” “balance of probabilities”

• Doesn’t behave like a probability

• Can be gamed (split up defeaters)
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Bayesian Induction

• An intellectually justifiable method should allow us to

quantify

◦ Confidence that we have identified all defeaters

◦ Confidence that we have eliminated or mitigated any

given defeater

◦ A way to apportion effort: confidence required in the

elimination of any given defeater should depend on the

risk (i.e., likelihood and consequence) that it poses

• Surely the right way to do this is to use genuine probabilities

◦ Subjective prior probabilities updated (via Bayes rule) as

evidence becomes available

• “Bayesian Induction is Eliminative Induction” (Hawthorne)

• Making this practical would be a significant research agenda
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Reasoning and Communication

• I’ve focused on the idea that an assurance case is about

reasoning: it should be a deductively sound argument

• But an assurance case is not (just) a proof

• It also has to unite human stakeholders in shared

understanding and belief

• And there’s a separate tradition called argumentation that

focuses on these communication aspects within logic

• e.g., Toulmin-style argumentation, Dung-style argument

structures, defeasible reasoning, etc.

• My belief is that communication is best assisted by active

exploration (e.g., “what-if”) and this is supported by

automated support for the deductive aspect

◦ Toulmin had same technology as Aristotle: a printed page

• But there’s excellent scope for exploration and research here
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Conclusion

• Probability of perfection is a radical and valuable idea

◦ It’s due to Bev Littlewood, and Lorenzo Strigini

• Provides the bridge between correctness-based verification

activities and probabilistic claims needed at the system level

• Explains what software assurance is

• Relieves formal verification, and its tools, of the burden of

infallibility

• Explains the merit of monitors

• Distinguishing logic and epistemic doubts allows different

methods to be focused on each

• Possibly explains resilience

• Suggests approaches for reducing epistemic doubts

• And for quantifying confidence in total case
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Proposals: Practical and Speculative

• Use monitors formally verified or synthesized against the

system-level safety requirements

• Use formal methods in analysis of system-level designs and

requirements

• Develop a priori estimates of probability of perfection based

on assurance performed

◦ May be able to compose estimates from each element of

the case (e.g., each objective of DO-178C), BBN-style

• Combine testing and correctness-based software assurance in

estimating reliability

• Develop an intellectually justifiable approach to certification

• But note that none of this is compositional: fix that!
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