
AFM, Seattle 21 August 2006



Automated Formal Methods 2006

Welcome and Introduction

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I AFM’06 Introduction–1



Welcome to AFM 2006

Agenda

• This introduction

• Overviews/news about PVS, SAL, Yices

• Lunch

• Invited talk: Joseph Kiniry

• Contributed talks and papers

John Rushby, SR I AFM’06 Introduction–2



Introduction

• Goal: dialog between developers and users

• Two-slide introductions to PVS, SAL, Yices

• Responding to changes in the world around us

John Rushby, SR I AFM’06 Introduction–3



PVS in Two Slides

• Comprehensive system for formal specification and analysis

• Specification language based on higher order logic extended

with dependent types and structural and predicate subtypes,

and includes constructs for recursively defined abstract data

types, recursive functions, inductive relations, and tabular

specifications, as well as traditional logical formulas

• Analysis capabilities include very strong typechecking (which

can involve theorem proving), direct execution (at speeds

within a factor of five of hand-crafted C), theorem proving,

and symbolic model checking (with predicate abstraction)

• The PVS theorem prover provides powerful automation

including rewriting and decision procedures for real and

integer arithmetic, and is scriptable (strategies)

John Rushby, SR I AFM’06 Introduction–4



PVS in Two Slides (ctd.)

• Properties to be verified can be expressed as individual

logical formulas, as CTL properties (for model checking), or

as theory interpretations

• The system is supported by massive built-in and

user-provided libraries of specifications for mathematics and

computer science

• New in PVS 4.0: random testing, Yices as endgame prover,

language extensions, port to CMU Lisp and new platforms

John Rushby, SR I AFM’06 Introduction–5



SAL in Two Slides

• PVS can be applied to any formalized mathematics

• SAL is specialized to the specification and analysis of state

machines and can therefore apply more targeted automation

• SAL is supported by a suite of tools based on state-of-the-art

model-checking technology for LTL properties (and CTL on

the common fragment) but, unlike other model checkers, it is

not restricted to finite-state state systems

• Unlike most other languages for model checkers, SAL

supports fairly high-level specifications, with a type system

similar to that of PVS; language uses guarded commands

(good for protocols, not for sequential programs), supports

synchronous and asynchronous composition of modules

• SAL is scriptable (in Scheme)

John Rushby, SR I AFM’06 Introduction–6



SAL in Two Slides (ctd.)

• For finite state systems, SAL provides both a symbolic model

checker (using BDDs) and a bounded model checker (using a

SAT solver), and a prototype “witness” model checker;

there’s also a deadlock checker and simulator

• For infinite state systems SAL provides an “infinite bounded”

model checker that uses SMT solving

• The bounded model checkers can verify safety properties by

k-induction and can use lemmas

• The infinite bounded model checker blurs the line between

theorem proving and model checking

• New in SAL 2.4: Yices as default SAT and SMT solver

(several others also supported); concrete counterexamples

from infinite bounded model checker when using Yices;

application to test generation

John Rushby, SR I AFM’06 Introduction–7



Yices in Two Slides

• One of the strengths of PVS has been its decision procedures

for theories such as linear arithmetic and equality with

uninterpreted functions

• Yices makes these capabilities available to other applications

in an extended and vastly more powerful form

• Whereas decision procedures consider only conjunctions of

terms, Yices integrates decision procedures with SAT solving

and is able to handle arbitrary propositional combinations of

terms in its decided theories

• It’s an SMT solver (satisfiability modulo theories)

◦ Won every division in the CAV SMT competition

John Rushby, SR I AFM’06 Introduction–8



Yices in Two Slides (ctd.)

• Yices decides formulas in the combined theories of linear

arithmetic over integers and reals (including mixed forms),

fixed size bitvectors, equality with uninterpreted functions,

recursive datatypes (such as lists and trees), extensional

arrays, dependently typed tuples and records of all these,

lambda expressions, and some quantified formulas

• Decides whether formulas are unsatisfiable or satisfiable, and

in the latter case it can construct an explicit satisfying

instance

• For unsatisfiable formulas, it can optionally find an

assignment that maximizes the weight of satisfied clauses

(i.e., MaxSMT) or, dually, find a minimal set of unsatisfiable

clauses (the unsat core)

• New in Yices 1.0: It’s all new

John Rushby, SR I AFM’06 Introduction–9



Responding to Changes in the World Around Us

Direct competitors; mysteriously, these still have users

PVS: ACL2, Caveat, Coq, HOL, Isabelle

SAL: NuSMV

(JPF, Spin, TLC etc. are explicit state—a different category)

Yices: Barcelogic, CVCL, MathSAT,

The new world; specialization

Static analyzers: Astrée, Absint, Coverity, ESC, Findbugs,

Fortify, Prefix/Prefast, Smallfoot, Terminator, TLV

Dynamic analyzers: Daikon

Software model checkers: Blast, CMBC, SDV

Hardware model checkers: Cadence SMV and other CEGARs

Timed and hybrid systems: Charon, Checkmate, UPPAAL

And real languages: C, Simulink/Stateflow, Verilog (UML?)

John Rushby, SR I AFM’06 Introduction–10



Responding to These Changes

• Cannot be a single “one size fits all” solution

• The big systems must be open to customization and

extension

• And we need an integrating environment for tying big

systems and (many) specialized components together

John Rushby, SR I AFM’06 Introduction–11



Open to Customization and Extension

• We’ve changed PVS, SAL and Yices to “dual license” models

• PVS and SAL are now Open Source under GPL

◦ Have made all the changes necessary for compliance

◦ Ported PVS to CMU Lisp (Allegro still available)

• Yices is “free binary,” GPL in the future

• Result: binaries for all our systems can be downloaded

without hassle, commercial use is OK

• Dual license: http://en.wikipedia.org/wiki/Dual_license

• We own the copyright on all these, so can create custom

licenses for commercial developers

• Consequence: contributors to the main branches are asked to

assign copyright to us (there’s a form for this)

John Rushby, SR I AFM’06 Introduction–12



Open to Customization and Extension (ctd.)

There have been many valuable contributions to PVS

• Libraries (NASA, Jerry James, many others)

• Strategies (Myla Archer, Hanne Gottliebsen, César Muñoz,

several others)

• PVSio, ProofLite, Besc (César Muñoz)

And integrations with other systems

• Computer algebra systems (Hanne Gottliebsen and others)

• Other specification systems (Chris George and others)

Hope that open source encourages more of these, and creates

opportunities for new kinds of contributions

We’re also extending our web pages with Wikis for each system

Hope for collaborative FAQs, documentation, examples etc.

John Rushby, SR I AFM’06 Introduction–13



Open to Customization and Extension (ctd. 2)

We’d love to see projects extending these systems; we’ll host

and help student visitors if you can pay them; examples

• PVS ported to SCH

• PVS evaluator for Ada, C

• PVS random tester exploiting Yices

• Proof strategy for existential formulas that uses testers

• Platform-independent GUI for SAL (50% done)

• GUI/visualizer for SAL module compositions

• Counterexample visualizer

• Incremental BMC that retains SAT/SMT context

• Explicit-state model checker for SAL (90% done)

• Predicate abstractor using Yices

• Exploitation of multi-core CPUs

John Rushby, SR I AFM’06 Introduction–14



An Integrating Environment

• We have a proposal for an Evidential Tool Bus

◦ The topic of my talk at Verify’06 last week

◦ http://www.csl.sri.com/~rushby/abstracts/sefm06

• An implicit invocation blackboard architecture that uses two

dimensions of logic (sublogic/representation) as its ontology

• Expect to start work next month

• Plan to attach our tools and components, and those of Blast

• And invariant generators based on predicate abstraction and

static analysis (Ashish Tiwari’s logical lattices)

• Hope to reconstruct analyzer for Hybrid SAL based on hybrid

abstraction, and a model checker for C

John Rushby, SR I AFM’06 Introduction–15



An Integrating Environment (ctd. 2)

• We’d love to see projects helping develop the ETB, adding

components, and using it

• We hope to make it an integral contribution to the Verified

Software Grand Challenge

• Examples

◦ Reconstruct LAST

◦ Build an ESC for C

◦ Integrate a dynamic analyzer (e.g., Daikon)

◦ Integrate visibly pushdown automata

◦ Do controller synthesis

◦ Do a cool application

John Rushby, SR I AFM’06 Introduction–16



Summary

• We hope you find these licensing changes and our technical

plans attractive and stimulating

• And that you’ll contribute to the development, use,

documentation, and support of the tools

• And, above all, help us expand this community

• We welcome your suggestions and comments

John Rushby, SR I AFM’06 Introduction–17


