
AESSCS Workshop, Newcastle upon Tyne UK, 13 May 2014



Evaluating
The Assessment of Software Fault-Freeness

John Rushby

SRI International, Menlo Park CA USA

Bev Littlewood and Lorenzo Strigini

City University, London UK

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 1



What Do Standards Do?

• Encourage good development process

◦ e.g., high-quality requirements

◦ Ideally, prevents the introduction of faults

• Require assessment of the product

◦ e.g., static analysis, MC/DC testing

◦ Ideally, detects many/most/all faults

• But the quality required in safety-critical software (e.g., flight

control) is so great that we do not expect to detect any

faults at final assessment, nor to see any failures in operation

◦ e.g., Catastrophic failure conditions: not expected to

occur in the entire lifetime of all airplanes of one type

• So what standards (and operational experience) provide is

evidence for the absence of faults

• How does this support certification?

• And how can we measure it?
Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 2



Larger Hypothesis

• Before we can frame testable hypotheses about standards

• We need to posit a larger hypothesis that evidence for

absence of faults provides a quantifiable basis for certification

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 3



How Does Assurance Relate To Reliability?

• Top level requirements are stated as reliability measures

◦ e.g., failure condition of severity XX not expected to

occur in YY hours/flights

◦ Inverse relationship between severity and likelihood

• We do more assurance for software that could contribute to

or cause higher failure severities

• e.g., DO-178C identifies five Software Levels (associated

with failure severities) and 71 assurance objectives

◦ 26 objectives at DO178C Level D (10−3)

◦ 62 objectives at DO178C Level C (10−5)

◦ 69 objectives at DO178C Level B (10−7)

◦ 71 objectives at DO178C Level A (10−9)

There are also independence requirements at higher levels

• How does doing more of these correctness-based objectives

relate to lower probability of failure?

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 4



Confidence in Fault-Freeness

• Assurance makes us confident

• So more assurance makes us. . .

◦ Confident in fewer faults, or

◦ More confident in some given rarity of faults

• The last of these is what works

◦ Specifically, zero faults (aka. perfection, fault-freeness)

• Degree of confidence that the software is fault-free is

expressed as a probability: P (s/w fault-free)

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 5



Relationship Between Fault-Freeness and pfd

• By the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w fault-free)× P (s/w fault-free)

+ P (s/w fails | s/w faulty)× P (s/w faulty).

• The first term in this sum is zero

◦ Because the software does not fail if it is fault-free

◦ Which is why the theory needs this property

• Define pnf as the probability the software is fault-free

◦ Or nonfaulty

◦ So that P (s/w faulty) = 1− pnf

• And define pF |f as the probability that it Fails, if faulty

• Then pfd = pF |f × (1− pnf )

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 6



Relationship Between Fault-Freeness and Survival

• More importantly, psrv (n), the probability of surviving n

independent demands (e.g., flights) without failure is given by

psrv (n) = pnf + (1− pnf )× (1− pF |f )
n (2)

• A suitably large n can represent “the entire lifetime of all

aircraft of one type”

◦ A320 series has had over 62 million flights to date,

so n will be about 108 or 109

• First term in (2) establishes a lower bound for psrv (n) that is

independent of n

• If assurance gives us the confidence to assess pnf > 0.99

◦ Or whatever threshold “not expected to occur” means

• Then it looks like we have sufficient evidence to certify the

aircraft as safe (with respect to software aspects)

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 7



But What If The Software Does Have Faults?

• In this case, we need confidence that the second term in (2)

will be well above zero, despite exponential decay

• Confidence could come from prior failure-free operation

• Calculating overall psrv (n) is a problem in Bayesian inference

◦ We have assessed a value for pnf

◦ Have observed some number r of failure-free demands

◦ Want to predict prob. of n− r future failure-free demands

• Need a prior distribution for pF |f

◦ Difficult to obtain, and difficult to justify for certification

◦ However, there is a distribution that delivers provably

worst-case predictions

? One where pF |f is a prob. mass at some qn ∈ (0, 1]

◦ So can make predictions that are guaranteed

conservative, given only pnf , r, and n

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 8



Take Home Message

• For values of pnf above 0.9

• psrv (n) is well above the floor given by pnf

• Provided r > n
10

• So it looks like we need to fly 108 hours to certify 109

• No!

• Entering service, we have only a few planes, need confidence

for only, say, first six months of operation

• Flight tests are enough for this

• Next six months, have more planes, but can base prediction

on first six months (or ground the fleet, fix things)

• And bootstrap our way forward

• We think this is the first scientific explanation of how

software certification actually works

• It provides a model that is consistent with practice

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 9



Experiments

• Objective is to validate our model

• Populate it with credible parameters

◦ See if the overall numbers work

◦ See if certifiers believe it

◦ Then use it to improve current practice

• Three parameters: pnf , r, and n, only the first is difficult

• Two approaches for a preliminary check

◦ Consider how many such systems have been in use and

never exhibited failures

◦ Ask certifiers what pnf , cast in a frequentist

interpretation, they might assess (next page)

Both approaches have (different) weaknesses

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 10



Initial Experiments

• Typical question: “given 100 software systems assessed to

have accomplished all 7 objectives of DO-178C Section 6.3.2,

how many of those systems do you believe might ever suffer

a software failure due to flawed low level requirements?”

• To do this well, need the argument for the different

objectives and sections of DO-178C

◦ Michael Holloway’s Explicate’78 project provides this

• Can then construct a first-cut argument

◦ E.g., using Bayesian Belief Nets and suitable conservative

simplifications

To yield assessment of pnf for the whole of DO-178C

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 11



Further Development and Applications

• Refine the model

◦ E.g. Using historical data about individual methods

◦ Or a priori estimates based on analysis of the argument

supporting each cluster of objectives

Experiments of other participants would supply these

• Explore modified objectives

◦ For lower cost or increased confidence

• Evaluate alternative means

◦ E.g., software monitors, explicitly designed for high pnf

◦ pnf of the monitor is conditionally independent of

reliability of the primary and yields multiplicative increase

in overall reliability

◦ That’s an aleatoric result, epistemic applic’n needs care

Littlewood, Rushby, Strigini Evaluating the Assessment of S/W Fault-Freeness 12


