
Invited paper for FLoC’02. Appears in the Proceedings of RTA’02, LNCS.
c©Springer-Verlag

Combining Shostak Theories?

Natarajan Shankar and Harald Rueß

SRI International Computer Science Laboratory
Menlo Park CA 94025 USA
{shankar, ruess}@csl.sri.com

URL: http://www.csl.sri.com/{˜shankar, ˜ruess}
Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844

Abstract. Ground decision procedures for combinations of theories are
used in many systems for automated deduction. There are two ba-
sic paradigms for combining decision procedures. The Nelson–Oppen
method combines decision procedures for disjoint theories by exchanging
equality information on the shared variables. In Shostak’s method, the
combination of the theory of pure equality with canonizable and solvable
theories is decided through an extension of congruence closure that yields
a canonizer for the combined theory. Shostak’s original presentation, and
others that followed it, contained serious errors which were corrected for
the basic procedure by the present authors. Shostak also claimed that
it was possible to combine canonizers and solvers for disjoint theories.
This claim is easily verifiable for canonizers, but is unsubstantiated for
the case of solvers. We show how our earlier procedure can be extended
to combine multiple disjoint canonizable, solvable theories within the
Shostak framework.

1 Introduction

Consider the sequent

2 ∗ car(x)− 3 ∗ cdr(x) = f(cdr(x))
` f(cons(4 ∗ car(x)− 2 ∗ f(cdr(x)), y)) = f(cons(6 ∗ cdr(x), y)).

? This work was funded by NSF Grant CCR-0082560, DARPA/AFRL Contract
F33615-00-C-3043, and NASA Contract NAS1-00079. During a phone conversation
with the first author on 2nd April 2001, Rob Shostak suggested that the problem of
combining Shostak solvers could be solved through variable abstraction. His sugges-
tion is the key inspiration for the combination of Shostak theories presented here.
We thank Clark Barrett, Sam Owre, and Ashish Tiwari for their meticulous reading
of earlier drafts. We also thank Harald Ganzinger for pointing out certain limitations
of our original definition of solvability with respect to σ-models. The first author is
grateful to the program committees and program chairs of the FME, LICS, and RTA
conferences at FLoC 2002 for their kind invitation.

1

It involves symbols from three different theories. The symbol f is uninterpreted,
the operations ∗ and − are from the theory of linear arithmetic, and the pairing
and projection operations cons, car , and cdr , are from the theory of lists. There
are two basic methods for building combined decision procedures for disjoint the-
ories, i.e., theories that share no function symbols. Nelson and Oppen [NO79]
gave a method for combining decision procedures through the use of variable
abstraction for replacing subterms with variables, and the exchange of equality
information on the shared variables. Thus, with respect to the example above,
decision procedures for pure equality, linear arithmetic, and the theory of lists
can be composed into a decision procedure for the combined theory. The other
combination method, due to Shostak, yields a decision procedure for the com-
bination of canonizable and solvable theories, based on the congruence closure
procedure. Shostak’s original algorithm and proof were seriously flawed. His al-
gorithm is neither terminating nor complete (even when terminating). These
flaws went unnoticed for a long time even though the method was widely used,
implemented, and studied [CLS96,BDL96,Bjø99]. In earlier work [RS01], we de-
scribed a correct algorithm for the basic combination of a single canonizable,
solvable theory with the theory of equality over uninterpreted terms. That cor-
rectness proof has been mechanically verified using PVS [FS02]. The generality
of the basic combination rests on Shostak’s claim that it is possible to combine
solvers and canonizers from disjoint theories into a single canonizer and solver.
This claim is easily verifiable for canonizers, but fails for the case of solvers.
In this paper, we extend our earlier decision procedure to the combination of
uninterpreted equality with multiple canonizable, solvable theories. The decision
procedure does not require the combination of solvers. We present proofs for the
termination, soundness, and completeness of our procedure.

2 Preliminaries

We introduce some of the basic terminology needed to understand Shostak-
style decision procedures. Fixing a countable set of variables X and a set of
function symbols F , a term is either a variable x from X or an n-ary function
symbol f from F applied to n terms as in f(a1, . . . , an). Equations between
terms are represented as a = b. Let vars(a), vars(a = b), and vars(T) represent
the sets of variables in a, a = b, and the set of equalities T , respectively. We are
interested in deciding the validity of sequents of the form T ` c = d where c and
d are terms, and T is a set of equalities such that vars(c = d) ⊆ vars(T). The
condition vars(c = d) ⊆ vars(T) is there for technical reasons. It can always be
satisfied by padding T with reflexivity assertions x = x for any variables x in
vars(c = d)− vars(T). We write ddaee for the set of subterms of a, which includes
a.

The semantics for a term a, written as M [[a]]ρ, is given relative to an inter-
pretation M over a domain D and an assignment ρ. For an n-ary function f ,
the interpretation M(f) of f in M is a map from Dn to D. For an uninterpreted

2

n-ary function symbol f , the interpretation M(f) may be any map from Dn to
D, whereas only restricted interpretations might be suitable for an interpreted
function symbol like the arithmetic + operation. An assignment ρ is a map from
variables in X to values in D. We define M [[a]]ρ to return a value in D by means
of the following equations.

M [[x]]ρ = ρ(x)
M [[f(a1, . . . , an)]]ρ = M(f)(M [[a1]]ρ, . . . ,M [[an]]ρ)

We say that M,ρ |= a = b iff M [[a]]ρ = M [[b]]ρ, and M |= a = b iff M,ρ |= a = b
for all assignments ρ. We write M,ρ |= S when ∀a, b : a = b ∈ S ⇒M,ρ |= a = b,
and M,ρ |= (T ` a = b) when (M,ρ |= T) ⇒ (M,ρ |= a = b). A sequent
T ` c = d is valid, written as |= (T ` c = d), when M,ρ |= (T ` c = d), for all
M and ρ.

There is a simple pattern underlying the class of decision procedures studied
here. Let ψ be the state of the decision procedure as given by a set of formulas.1

Let τ be a family of state transformations so that we write ψ τ−→ ψ′ if ψ′ is the
result of applying a transformation in τ to ψ, where vars(ψ) ⊆ vars(ψ′) (variable
preservation). An assignment ρ′ is said to extend ρ over vars(ψ′) − vars(ψ)
when it agrees with ρ on all variables except those in vars(ψ′) − vars(ψ) for
vars(ψ) ⊆ vars(ψ′). We say that ψ′ preserves ψ if vars(ψ) ⊆ vars(ψ′) and
for all interpretations M and assignments ρ, M,ρ |= ψ holds iff there exists an
assignment ρ′ extending ρ such that M,ρ′ |= ψ′.2 When preservation is restricted
to a limited class of interpretations ι, we say that ψ′ ι-preserves ψ. Note that
the preserves relation is transitive. When the operation τ is deterministic, τ(ψ)
represents the result of the transformation, and we call τ a conservative operation
to indicate that τ(ψ) preserves ψ for all ψ. Correspondingly, τ is said to be ι-
conservative when τ(ψ) ι-preserves ψ. Let τn represent the n-fold iteration of
τ , then τn is a conservative operation. The composition τ2 ◦ τ1 of conservative
operations τ1 and τ2, is also a conservative operation. The operation τ∗(ψ) is
defined as τ i(ψ) for the least i such that τ i+1(ψ) = τ i(ψ). The existence of such
a bound i must be demonstrated for the termination of τ∗. If τ is conservative,
so is τ∗.

If τ is a conservative operation, it is sound and complete in the sense that
for a formula φ with vars(φ) ⊆ vars(ψ), |= (ψ ` φ) iff |= (τ(ψ) ` φ). This is
clear since τ is a conservative operation and vars(φ) ⊆ vars(ψ).
1 In our case, the state is actually represented by a list whose elements are sets of

equalities. We abuse notation by viewing such a state as the set of equalities corre-
sponding to the union of the sets of equalities contained in it.

2 In general, one could allow the interpretation M to be extended to M ′ in the trans-
formation from ψ to ψ′ to allow for the introduction of new function symbols, e.g.,
skolem functions. This abstract design pattern then also covers skolemization in ad-
dition to methods like prenexing, clausification, resolution, variable abstraction, and
Knuth-Bendix completion.

3

If τ∗(ψ) returns a state ψ′ such that |= (ψ′ ` ⊥), where ⊥ is an unsatisfiable
formula, then ψ′ and ψ are both clearly unsatisfiable. Otherwise, if ψ′ is canon-
ical, as explained below, |= (ψ′ ` φ) can be decided by computing a canonical
form ψ′[[φ]] for φ with respect to ψ′.

3 Congruence Closure

In this section, we present a warm-up exercise for deciding equality over terms
where all function symbols are uninterpreted, i.e., the interpretation of these
operations is unconstrained. This means that a sequent T ` c = d is valid, i.e.,
|= (T ` c = d) iff for all interpretations M and assignments ρ, the satisfaction
relationM,ρ |= (T ` c = d) holds. Whenever we write f(a1, . . . , an), the function
symbol f is uninterpreted, and f(a1, . . . , an) is then said to be uninterpreted.
Later on, we will extend the procedure to allow interpreted function symbols
from disjoint Shostak theories such as linear arithmetic and lists. The congruence
closure procedure sets up the template for the extended procedure in Section 5.

The congruence closure decision procedure for pure equality has been studied
by Kozen [Koz77], Shostak [Sho78], Nelson and Oppen [NO80], Downey, Sethi,
and Tarjan [DST80], and, more recently, by Kapur [Kap97]. We present the
congruence closure algorithm in a Shostak-style, i.e., as an online algorithm
for computing and using canonical forms by successively processing the input
equations from the set T . For ease of presentation, we make use of variable
abstraction in the style of the abstract congruence closure technique due to
Bachmair, Tiwari, and Vigneron [BTV02]. Terms of the form f(a1, . . . , an) are
variable-abstracted into the form f(x1, . . . , xn) where the variables x1, . . . , xn
abstract the terms a1, . . . , an, respectively. The procedure shown here can be
seen as a specific strategy for applying the abstract congruence closure rules. In
Section 5, we make essential use of variable abstraction in the Nelson–Oppen
style where it is not merely a presentation device.

Let T = {a1 = b1, . . . , an = bn} for n ≥ 0 so that T is empty when n = 0. Let
x and y be metavariables that range over variables. The state of the algorithm
consists of a solution state S and the input equalities T . The solution state S
will be maintained as the pair (SV ;SU), where (l1; l2; . . . ; ln) represents a list
with n elements and semi-colon is an associative separator for list elements.
The set SU then contains equalities of the form x = f(x1, . . . , xn) for an n-ary
uninterpreted function f , and the set SV contains equalities of the form x = y
between variables. We blur the distinction between the equality a = b and the
singleton set {a = b}. Syntactic identity is written as a ≡ b as opposed to
semantic equality a = b.

A set of equalities R is functional if b ≡ c whenever a = b ∈ R and a = c ∈ R,
for any a, b, and c. If R is functional, it can be used as a lookup table for
obtaining the right-hand side entry corresponding to a left-hand side expression.
Thus R(a) = b if a = b ∈ R, and otherwise, R(a) = a. The domain of R, dom(R)

4

is defined as {a | a = b ∈ R for some b}. When R is not necessarily functional,
we use R({a}) to represent the set {b | a = b ∈ R∨ b ≡ a} which is the image of
{a} with respect to the reflexive closure of R. The inverse of R, written as R−1,
is the set {b = a | a = b ∈ R}. A functional set R of equalities can be applied as
in R[a].

R[x] = R(x)
R[f(a1, . . . , an)] = R(f(R[a1], . . . , R[an]))

R[{a1 = b1, . . . , an = bn}] = {R[a1] = R[b1], . . . , R[an] = R[bn]}

In typical usage, R will be a solution set where the left-hand sides are all vari-
ables, so that R[a] is just the result of applying R as a substitution to a.

When SV is functional, then S given by (SV ;SU) can also be used to compute
the canonical form S[[a]] of a term a with respect to S. Hilbert’s epsilon operator
is used in the form of the when operator: F (x) when x : P (x) is an abbreviation
for F (εx : P (x)), if ∃x : P (x).

S[[x]] = SV (x)
S[[f(a1, . . . , an)]] = SV (x), when x : x = f(S[[a1]], . . . , S[[an]]) ∈ SU
S[[f(a1, . . . , an)]] = f(S[[a1]], . . . , S[[an]]), otherwise.

The set SV of variable equalities will be maintained so that vars(SV) ∪
vars(SU) = dom(SV). The set SV partitions the variables in dom(SV) into
equivalence classes. Two variables x and y are said to be in the same equivalence
class with respect to SV if SV (x) ≡ SV (y). If R and R′ are solution sets and R′

is functional, then R .R′ = {a = R′[b] | a = b ∈ R}, and R ◦R′ = R′ ∪ (R .R′).
The set SV is maintained in idempotent form so that SV ◦ SV = SV . Note that
SU need not be functional since it can, for example, simultaneously contain the
equations x = f(y), x = f(z), and x = g(y).

We assume a strict total ordering x ≺ y on variables. The operation
orient(x = y) returns {x = y} if x ≺ y, and returns {y = x}, otherwise.
The solution state S is said to be congruence-closed if SU ({x}) ∩ SU ({y}) = ∅
whenever SV (x) 6≡ SV (y). A solution set S is canonical if S is congruence-closed,
SV is functional and idempotent, and SU is normalized, i.e., SU . SV = SU .

In order to determine if |= (T ` c = d), we check if S′[[c]] ≡ S′[[d]] for S′ =
process(S;T), where S = (SV ;SU), SV = idT , idT = {x = x | x ∈ vars(T)},
and SU = ∅. The congruence closure procedure process is defined in Figure 1.

Explanation. We explain the congruence closure procedure using the valid-
ity of the sequent f(f(f(x))) = x, x = f(f(x)) ` f(x) = x as an exam-
ple. Its validity will be verified by constructing a solution state S′ equal to
process(SV ;SU ;T) for T = {f(f(f(x))) = x, x = f(f(x))}, SV = idT , SU = ∅,
and checking S′[[f(x)]] ≡ S′[[x]]. Note that idT is {x = x}. In processing
f(f(f(x))) = x with respect to S, the canonization step, S[[f(f(f(x))) = x]]

5

process(S; ∅) = S

process(S; {a = b} ∪ T) = process(S′;T), where,

S′ = close∗(merge(abstract∗(S;S[[a = b]]))).

close(S) = merge(S;SV (x) = SV (y)),

when x, y : SV (x) 6≡ SV (y), (SU ({x}) ∩ SU ({y}) 6= ∅)
close(S) = S, otherwise.

merge(S;x = x) = S

merge(S;x = y) = (S′V ; S′U), where x 6≡ y,R = orient(x = y),
S′V = SV ◦R, S′U = SU . R.

abstract(S;x = y) = (S; x = y)

abstract(S; a = b) = (S′; a′ = b′),when S′, a′, b′, x1, . . . , xn :
f(x1, . . . , xn) ∈ dda = bee
x 6∈ vars(S; a = b)
R = {x = f(x1, . . . , xn)},
S′ = (SV ∪ {x = x}; SU ∪R),
a′ = R−1[a], b′ = R−1[b].

Fig. 1. Congruence closure

yields f(f(f(x))) = x, unchanged. Next, the variable abstraction step com-
putes abstract∗(f(f(f(x))) = x). First f(x) is abstracted to v1 yielding the
state {x = x, v1 = v1}; {v1 = f(x)}; {f(f(v1)) = x}. Variable abstraction
eventually terminates renaming f(v1) to v2 and f(v2) to v3 so that S is
{x = x, v1 = v1, v2 = v2, v3 = v3}; {v1 = f(x), v2 = f(v1), v3 = f(v2)}. The
variable abstracted input equality is then v3 = x. Let orient(v3 = x) return
v3 = x. Next, merge(S; v3 = x) yields the solution state {x = x, v1 = v1, v2 =
v2, v3 = x}; {v1 = f(x), v2 = f(v1), v3 = f(v2)}. The congruence closure step
close∗(S) leaves S unchanged since there are no variables that are merged in SU
and not in SV .

The next input equality x = f(f(x)) is canonized as x = v2 which can be
oriented as v2 = x and merged with S to yield the new value {x = x, v1 =
v1, v2 = x, v3 = x}; {v1 = f(x), v2 = f(v1), v3 = f(x)} for S. The congruence
closure step close∗(S) now detects that v1 and v3 are merged in SU but not in
SV and generates the equality v1 = v3. This equality is merged to yield the new
value of S as {x = x, v1 = x, v2 = x, v3 = x}; {v1 = f(x), v2 = f(x), v3 = f(x)},
which is congruence-closed.

With respect to this final value of the solution state S, it can be checked that
S[[f(x)]] ≡ x ≡ S[[x]].

6

Invariants. The Shostak-style congruence closure algorithm makes heavy use
of canonical forms and this requires some key invariants to be preserved on the
solution state S. If vars(SV)∪vars(SU) ⊆ dom(SV), then vars(S′V)∪vars(S′U) ⊆
dom(S′V), when S′ is either abstract(S; a = b) or close(S). If S is canonical and
a′ = S[[a]], then SV [a′] = a′. If SU . SV = SU , SV [a] = a, and SV [b] = b, then
S′U . S

′
V = S′U where S′; a′ = b′ is abstract(S; a = b). Similarly, if SU . SV = SU ,

SV (x) ≡ x, SV (y) ≡ y, then S′U ◦ S′V = S′U for S′ = merge(S;x = y). If SV is
functional and idempotent, then so is S′V , where S′ is either of abstract(S; a =
b) or close(S). If S′ = close∗(S), then S′ is congruence-closed, and if SV is
functional and idempotent, SU is normalized, then S′ is canonical.

Variations. In the merge operation, if S′U is computed as R[SU] instead of
SU . R, this would preserve the invariant that S−1

U is always functional and
SV [SU] = SU . If this is the case, the canonizer can be simplified to just return
S−1
U (f(S[[a1]], . . . , S[[an]])).

Termination. The procedure process(S; T) terminates after each equality in
T has been asserted into S. The operation abstract∗ terminates because each
recursive call decreases the number of occurrences of function applications in the
given equality a = b by at least one. The operation close∗ terminates because
each invocation of the merge operation merges two distinct equivalence classes of
variables in SV . The process operation terminates because the number of input
equations in T decreases with each recursive call. Therefore the computation of
process(S; T) terminates returning a canonical solution set S′.

Soundness and Completeness. We need to show that |= (T ` c = d) ⇐⇒
S′[[c]] ≡ S′[[d]] for S′ = process(idT ; ∅; T) and vars(c = d) ⊆ vars(T). We
do this by showing that S′ preserves (idT ; ∅; T), and hence |= (T ` c = d) ⇐⇒
|= (S′ ` c = d), and |= (S′ ` c = d) ⇐⇒ S′[[c]] ≡ S′[[d]]. We can easily establish
that if process(S; T) = S′, then S′ preserves (S; T). If a′ = b′ is obtained from
a = b by applying equality replacements from S, then (S; a′ = b′) preserves
(S; a = b). In particular, |= (S ` S[[c]] = c) holds. The following claims can then
be easily verified.

1. (S; S[[a = b]]) preserves (S; a = b).
2. abstract(S; a = b) preserves (S; a = b).
3. merge(S; a = b) preserves (S; a = b).
4. close(S) preserves S.

The only remaining step is to show that if S′ is canonical, then |= (S′ ` c =
d) ⇐⇒ S′[[c]] ≡ S′[[d]] for vars(c = d) ⊆ vars(S). Since we know that |= S′ `
S′[[c]] = c and |= S′ ` S′[[d]] = d, hence |= (S′ ` c = d) follows from S′[[c]] ≡ S′[[d]].
For the only if direction, we show that if S′[[c]] 6≡ S′[[d]], then there is an inter-
pretation MS′ and assignment ρS′ such that MS′ , ρS′ |= S but MS′ , ρS′ 6|= c = d.
A canonical term (in S’) is a term a such that S′[[a]] ≡ a. The domain DS′ is
taken to be the set of canonical terms built from the function symbols F and
variables from vars(S′). We constrain MS′ so that MS′(f)(a1, . . . , an) = S′V (x)

7

when there is an x such that x = f(a1, . . . , an) ∈ S′U , and f(a1, . . . , an), other-
wise. Let ρS′ map x in vars(S′) to S′V (x); the mappings for the variables outside
vars(S′) are irrelevant. It is easy to see that MS′ [[c]]ρS′ = S′[[c]] by induction on
the structure of c. In particular, when S′ is canonical, MS′(f)(x1 . . . , xn) = x
for x = f(x1, . . . , xn) ∈ S′U , so that one can easily verify that MS′ , ρS′ |= S′.
Hence, if S′[[c]] 6≡ S′[[d]], then 6|= (S′ ` c = d).

4 Shostak Theories

A Shostak theory [Sho84] is a theory that is canonizable and solvable. We assume
a collection of Shostak theories θ1, . . . , θN . In this section, we give a decision pro-
cedure for a single Shostak theory θi, but with i as a parameter. This background
material is adapted from Shankar [Sha01]. Satisfiability M,ρ |= a = b is with
respect to i-models M . The equality a = b is i-valid, i.e., |=i a = b, if for all i-
models M and assignments ρ, M [[a]]ρ = M [[b]]ρ. Similarly, a = b is i-unsatisfiable,
i.e., |=i a 6= b, when for all i-models M and assignments ρ, M [[a]]ρ 6= M [[b]]ρ. An
i-term a is a term whose function symbols all belong to θi and vars(a) ⊆ X∪Xi.

A canonizable theory θi admits a computable operation σi on terms such
that |=i a = b iff σi(a) ≡ σi(b), for i-terms a and b. An i-term a is canonical if
σi(a) ≡ a. Additionally, vars(σi(a)) ⊆ vars(a) and every subterm of σi(a) must
be canonical. For example, a canonizer for the theory θA of linear arithmetic can
be defined to convert expressions into an ordered sum-of-monomials form. Then,
σA(y + x+ x) ≡ 2 ∗ x+ y ≡ σA(x+ y + x).

A solvable theory admits a procedure solvei on equalities such that
solvei(Y)(a = b) for a set of variables Y with vars(a = b) ⊆ Y , returns a
solved form for a = b as explained below. solvei(Y)(a = b) might contain fresh
variables that do not appear in Y . A functional solution set R is in i-solved
form if it is of the form {x1 = t1, . . . , xn = tn}, where for j, 1 ≤ j ≤ n, tj is
a canonical i-term, σi(tj) ≡ tj , and vars(tj) ∩ dom(R) = ∅ unless tj ≡ xj . The
i-solved form solvei(Y)(a = b) is either ⊥i, when |=i a 6= b, or is a solution set
of equalities which is the union of sets R1 and R2. The set R1 is the solved form
{x1 = t1, . . . , xn = tn} with xj ∈ vars(a = b) for 1 ≤ j ≤ n, and for any i-model
M and assignment ρ, we have that M,ρ |= a = b iff there is a ρ′ extending ρ
over vars(solvei(Y)(a = b)) − Y such that M,ρ′ |= xj = tj , for 1 ≤ j ≤ n. The
set R2 is just {x = x | x ∈ vars(R1) − Y } and is included in order to preserve
variables. In other words, solvei(Y)(a = b) i-preserves a = b. For example, a
solver for linear arithmetic can be constructed to isolate a variable on one side
of the equality through scaling and cancellation. We assume that the fresh vari-
ables generated by solvei are from the set Xi. We take vars(⊥i) to be X ∪Xi

so as to maintain variable preservation, and indeed ⊥i could be represented as
just ⊥ were it not for this condition.

We now describe a decision procedure for sequents of the form T ` c = d in a
single Shostak theory with canonizer σi and solver solvei. Here the solution state

8

S is just a functional solution set of equalities in i-solved form. Given a solution
set S, we define S〈〈a〉〉i as σi(S[a]). The composition of solutions sets is defined
so that S ◦i ⊥i = ⊥i ◦i S = ⊥i and S ◦i R = R ∪ {a = R〈〈b〉〉i | a = b ∈ S}. Note
that solved forms are idempotent with respect to composition so that S ◦iS = S.
The solved form solveclosei(idT ; T) is obtained by processing the equations in
T to build up a solution set S. An equation a = b is first canonized with respect
to S as S〈〈a〉〉i = S〈〈b〉〉i and then solved to yield the solution R. If R is ⊥i, then
T is i-unsatisfiable and we return the solution state with Si = ⊥i as the result.
Otherwise, the composition S ◦iR is computed and used to similarly process the
remaining formulas in T .

solveclosei(S; ∅) = S

solveclosei(⊥i; T) = ⊥i
solveclosei(S; {a = b} ∪ T) = solveclosei(S′, T),

where S′ = S ◦i solvei(vars(S))(S〈〈a〉〉i = S〈〈b〉〉i)

To check i-validity, |=i (T ` c = d), it is sufficient to check that either
solveclosei(idT ; T) = ⊥ or S′〈〈c〉〉i ≡ S′〈〈d〉〉i, where S′ = solveclosei(idT ; T).

Soundness and Completeness. As with the congruence closure procedure, each
step in solveclosei is i-conservative. Hence solveclosei is sound and complete: if
S′ = solveclosei(S; T), then for every i-model M and assignment ρ, M,ρ |= S∪T
iff there is a ρ′ extending ρ over the variables in vars(S′) − vars(S) such that
M,ρ′ |= S′. If σi(S′[a]) ≡ σi(S′[b]), then M,ρ′ |= a = S′[a] = σi(S′[a]) =
σi(S′[b]) = S′[b] = b, and hence M,ρ |= a = b. Otherwise, when σi(S′[a]) 6≡
σi(S′[b]), we know by the condition on σi that there is an i-model M and an
assignment ρ′ such that M [[S′[a]]]ρ′ 6= M [[S′[b]]]ρ′. The solved form S′ divides
the variables into independent variables x such that S′(x) = x, and dependent
variables y where y 6= S′(y) and the variables in vars(S′(y)) are all independent.
We can therefore extend ρ′ to an assignment ρ where the dependent variables y
are mapped to M [[S′(y)]]ρ′. Clearly, M,ρ |= S′, M,ρ |= a = S′[a], and M,ρ |=
b = S′[b]. Since S′ i-preserves (idT ; T), M,ρ |= T but M,ρ 6|= a = b and
hence T ` a = b is not i-valid, so the procedure is complete. The correctness
argument is thus similar to that of Section 3 but for the case of a single Shostak
theory considered here, there is no need to construct a canonical term model
since |=i a = σi(a), and σi(a) ≡ σi(b) iff |=i a = b.

Canonical term model. The situation is different when we wish to combine
Shostak theories. It is important to resolve potential semantic incompatibilities
between two Shostak theories. With respect to some fixed notion of i-validity
for θi and j-validity for θj with i 6= j, a formula A in the union of θi and θj
may be satisfiable in an i-interpretation of only a specific finite cardinality for
which there might be no corresponding satisfying j-interpretation for the for-
mula. Such an incompatibility can arise even when a theory θi is extended with
uninterpreted function symbols. For example, if φ is a formula with variables x
and y that is satisfiable only in a two-element model M where ρ(x) 6= ρ(y), then

9

the set of formulas Γ where Γ = {φ, f(x) = x, f(u) = y, f(y) = x} additionally
requires ρ(x) 6= ρ(u) and ρ(y) 6= ρ(u). Hence, a model for Γ must have at least
three elements, so that Γ is unsatisfiable. However, there is no way to detect
this kind of unsatisfiability purely through the use of solving and canonization.

We introduce a canonical term model as a way around such semantic incom-
patibilities. The set of canonical i-terms a such that σi(a) ≡ a yields a domain
for a term model Mi where Mi(f)(a1, . . . , an) = σi(f(a1, . . . , an)). If Mi is (iso-
morphic to) an i-model, then we say that the theory θi is composable. Note that
the solve operation is conservative with respect to the model Mi as well, since
Mi is taken as an i-model.

Given the usual interpretation of disjunction, a notion of validity is said to
be convex when |= (T ` c1 = d1 ∨ . . . ∨ cn = dn) implies |= (T ` ck = dk) for
some k, 1 ≤ k ≤ n. If a theory θi is composable, then i-validity is convex. Recall
that |=i (T ` c1 = d1 ∨ . . .∨ cn = dn) iff |=i (S ` c1 = d1 ∨ . . .∨ cn = dn) for S =
solveclosei(idT ;T). If S = ⊥i, then |=i (T ` ck = dk), for 1 ≤ k ≤ n. If S 6= ⊥i,
then since S i-preserves T , |=i (S ` c1 = d1∨ . . .∨cn = dn), but (by assumption)
6|=i (S ` ck = dk). An assignment ρS can be constructed so that for independent
(i.e., where S(x) = x) variables x ∈ vars(S), ρS(x) = x, and for dependent
variables y ∈ vars(S), ρS(y) = Mi[[S(y)]]ρS . If for S 6= ⊥i, 6|=σi (S ` ck = dk),
then Mi, ρS |= S and Mi, ρS 6|= ck = dk. Hence Mi, ρS 6|= (S ` ck = dk), for
1 ≤ k ≤ n. This yields Mi, ρS 6|= (T ` c1 = d1 ∨ . . .∨ cn = dn), contradicting the
assumption.

5 Combining Shostak Theories

We now examine the combination of the theory of equality over uninterpreted
function symbols with several disjoint Shostak theories. Examples of interpreted
operations from Shostak theories include + and − from the theory of linear arith-
metic, select and update from the theory of arrays, and cons, car , and cdr from
the theory of lists. The basic Shostak combination algorithm covers the union of
equality over uninterpreted function symbols and a single canonizable and solv-
able equational theory [Sho84,CLS96,RS01]. Shostak [Sho84] had claimed that
the basic combination algorithm was sufficient because canonizers and solvers
for disjoint theories could be combined into a single canonizer and solver for
their union. This claim is incorrect.3 We present a combined decision procedure
for multiple Shostak theories that overcomes the difficulty of combining solvers.

Two theories θ1 and θ2 are said to be disjoint if they have no function symbols
in common. A typical subgoal in a proof can involve interpreted symbols from
several theories. Let σi be the canonizer for θi. A term f(a1, . . . , an) is said to
be in θi if f is in θi even though some ai might contain function symbols outside
θi. In processing terms from the union of pairwise disjoint theories θ1, . . . , θN ,
3 The difficulty with combining Shostak solvers was observed by Jeremy Levitt [Lev99].

10

it is quite easy to combine the canonizers so that each theory treats terms in
the other theory as variables. Since σi is only applicable to i-terms, we first
have to extend the canonizer σi to treat terms in θj for j 6= i, as variables.
Let πi be a chosen bijective set of equalities between the variables X and the
set {a|(∃j : j 6= i ∧ a is a j-term)}. We treat uninterpreted function symbols
as belonging to a special theory θ0 where σ0(a) = a for a ∈ θ0. The extended
operation σ′i is defined below.

σ′i(a) = πi[σi(a′)], when a′ : a′ is an i-term,
πi[a′] ≡ a.

Note that the when condition in the above definition can always be satisfied.
The combined canonizer σ can then be defined as

σ(x) = x

σ(f(a1, . . . , an)) = σ′i(f(σ(a1), . . . , σ(an))), when i : f is in θi.

This canonizer is, however, not used in the remainder of the paper.

We now discuss the difficulty of combining the solvers solve1 and solve2 for
θ1 and θ2, respectively, into a single solver. The example uses the theory θA
of linear arithmetic and the theory θL of the pairing and projection operations
cons, car , cdr , where, somewhat nonsensically, the projection operations also
apply to numerical expressions. Shostak illustrated the combination using the
example

5 + car(x+ 2) = cdr(x+ 1) + 3.

Since the top-level operation on the left-hand side is +, we can treat car(x+ 2)
and cdr(x + 1) as variables and use solveA. This might yield a partially solved
equation of the form car(x + 2) = cdr(x + 1) − 2. Now since the top-level
operation on the left-hand side is from the theory of lists, we use solveL to
obtain x + 2 = cons(cdr(x + 1) − 2, u) with a fresh variable u. We once again
apply solveA to obtain x = cons(cdr(x+ 1)− 2, u)− 2. This is, however, not in
solved form: the left-hand side variable occurs in an interpreted context in its
solution. There is no way to prevent this from happening as long as each solver
treats terms from another theory as variables. Therefore the union of Shostak
theories is not necessarily a Shostak theory.

The problem of combining disjoint Shostak theories actually has a very simple
solution. There is no need to combine solvers. Since the theories are disjoint, the
canonizer can tolerate multiple solutions for the same variable as long as there
is at most one solution from any individual theory. This can be illustrated on
the same example: 5 + car(x+ 2) = cdr(x+ 1) + 3. By variable abstraction, we
obtain the equation v3 = v6, where v1 = x + 2, v2 = car(v1), v3 = v2 + 5, v4 =
x + 1, v5 = cdr(v4), v6 = v5 + 3. We can separate these equations out into the
respective theories so that S is (SV ; SU ; SA; SL), where SV contains the variable
equalities in canonical form, SU is as in congruence closure but is always ∅ since
there are no uninterpreted operations in this example, and SA and SL are the

11

solution sets for θA and θL, respectively. We then get SV = {x = x, v1 = v1, v2 =
v2, v3 = v6, v4 = v4, v5 = v5, v6 = v6}, SA = {v1 = x + 2, v3 = v2 + 5, v4 =
x+ 1, v6 = v5 + 3}, and SL = {v2 = car(v1), v5 = cdr(v4)}. Since v3 and v6 are
merged in SV , but not in SA, we solve the equality between SA(v3) and SA(v6),
i.e., solveA(v2 + 5 = v5 + 3) to get v2 = v5 − 2. This result is composed with
SA to get {v1 = x+ 2, v3 = v5 + 3, v4 = x+ 1, v6 = v5 + 3, v2 = v5 − 2} for SA.
There are no new variable equalities to be propagated out of either SA, SL, or
SV . Notice that v2 and v5 both have different solved forms in SA and SL. This
is tolerated since the solutions are from disjoint theories and the canonizer can
pick a solution that is appropriate to the context. For example, when canonizing
a term of the form f(x) for f ∈ θi, it is clear that the only relevant solution for
x is the one from Si.

We can now check whether the resulting solution state verifies the original
equation 5 + car(x+ 2) = cdr(x+ 1) + 3. In canonizing f(a1, . . . , an) we return
SV (y) whenever the term f(Si(S[[a1]]), . . . , Si(S[[an]])) being canonized is such
that y = f(Si(S[[a1]]), . . . , Si(S[[an]])) ∈ Si for f ∈ θi. Thus x+ 2 canonizes to v1

using SA, and car(v1) canonizes to v2 using SL. The resulting term 5+v2, using
the solution for v2 from SA, simplifies to v5 + 3, which returns the canonical
form v6 by using SA. On the right-hand side, x + 1 is equivalent to v4 in SA,
and car(v4) simplifies to v5 using SL The right-hand side therefore simplifies to
v5+3 which is canonized to v6 using SA. The canonized left-hand and right-hand
sides are identical.

We present a formal description of the procedure used informally in the above
example. We show how process from Section 3 can be extended to combine the
union of disjoint solvable, canonizable, composable theories. We assume that
there are N disjoint theories θ1,. . . , θN . Each theory θi is equipped with a
canonizer σi and solver solvei for i-terms. If we let I represent the interval
[1, N], then an I-model is a model M that is an i-model for each i ∈ I. We
will ensure that each inference step is conservative with respect to I-models, i.e.,
I-conservative. We represent the uninterpreted part of S as S0 instead of SU .
The solution state S of the algorithm now consists of a list of sets of equations
(SV ; S0; S1; . . . ; SN). Here SV is a set of variable equations of the form
x = y, and S0 is the set of equations of the form x = f(x1, . . . , xn) where f is
uninterpreted. Each Si is in i-solved form and is the solution set for θi.

Terms now contain a mixture of function symbols that are uninterpreted or
are interpreted in one of the theories θi. A solution state S is confluent if for all
x, y ∈ dom(SV) and i, 0 ≤ i ≤ N : SV (x) ≡ SV (y) ⇐⇒ Si({x}) ∩ Si({y}) 6= ∅.
A solution state S is canonical if it is confluent; SV is functional and idempotent,
i.e., SV ◦SV = SV ; the uninterpreted solution set S0 is normalized, i.e., S0.SV =
S0; each Si, for i > 0, is functional, idempotent, i.e., Si ◦i Si = Si, normalized
i.e., Si . SV = Si, and in i-solved form. The canonization of expressions with
respect to a canonical solution set S is defined as follows.

S[[x]] = SV (x)

12

abstract(S; x = y) = (S; x = y),

abstract(S; a = b) = (S′; a′ = b′),

when S′, c, i : c ∈ max(dda = beei),
x 6∈ vars(S ∪ a = b),
S′V = SV ∪ {x = x},
S′i = Si ∪ {x = c},
S′j = Sj , for , i 6= j
a′ = S′[[a]],
b′ = S′[[b]].

Fig. 2. Variable abstraction step for multiple Shostak theories

S[[f(a1, . . . , an)]] = SV (x), when i, x :
i ≥ 0, f ∈ θi, x = σ′i(f(Si(S[[a1]]), . . . , Si(S[[an]]))) ∈ Si

S[[f(a1, . . . , an)]] = σ′i(f(Si(S[[a1]]), . . . , Si(S[[an]]))), when i : f ∈ θi, i ≥ 0.

Since variables are used to communicate between the different theories, the
canonical variable x in SV is returned when the term being canonized is known
to be equivalent to an expression a such that y = a in Si, where x ≡ SV (y).
The definition of the above global canonizer is one of the key contributions of
this paper. This definition can be applied to the example above of computing
S[[5 + car(x+ 2)]].

Variable Abstraction. The variable abstraction procedure abstract(S; a = b)
is shown in Figure 2. If a is an i-term such that a 6∈ X, then a is said to
be a pure i-term. Let dda = beei represent the set of subterms of a = b that
are pure i-terms. The set max (M) of maximal terms in M is defined to be
{a ∈ M |a ≡ b ∨ a 6∈ ddbee, for any b ∈ M}. In a single variable abstraction step,
abstract(S; a = b) picks a maximal pure i-subterm c from the canonized input
equality a = b, and replaces it with a fresh variable x from X while adding
x = c to Si. By abstracting a maximal pure i-term, we ensure that Si remains
in i-solved form.

Explanation. The procedure in Figure 3 is similar to that of Figure 1. Equa-
tions from the input set T are processed into the solution state S of the form
SV ;S0; . . . , SN . Initially, S must be canonical. In processing the input equation
a = b into S, we take steps to systematically restore the canonicity of S. The
first step is to compute the canonical form S[[a = b]] of a = b with respect to S.
It is easy to see that (S;S[[a = b]]) I-preserves (S; a = b).

The result of the canonization step a′ = b′ is then variable abstracted as
abstract∗(a′ = b′) (shown in Figure 2) so that in each step, a maximal, pure
i-subterm c of a′ = b′ is replaced by a fresh variable x, and the equality x = c is
added to Si. This is also easily seen to be an I-conservative step. The equality
x = y resulting from the variable abstraction of a′ = b′ is then merged into SV

13

process(S; ∅) = S

process(S; T) = S, when i : Si = ⊥i
process(S; {a = b} ∪ T) = process(S′; T), where

S′ = close∗(mergeV (abstract∗(S; S[[a = b]]))).

close(S) = S, when i : Si = ⊥i
close(S) = S′, when S′, i, x, y :

x, y ∈ dom(SV),
(i > 0, SV (x) ≡ SV (y), Si(x) 6≡ Si(y), and
S′ = mergei(S; x = y))

or
(i ≥ 0, SV (x) 6≡ SV (y), Si({x}) ∩ Si({y}) 6= ∅, and
S′ = mergeV (S; SV (x) = SV (y)))

close(S) = normalize(S), otherwise.

normalize(S) = (SV ; S0; S1 . SV ; . . . ; SN . SV).

mergei(S;x = y) = S′, where i > 0,
S′i = Si ◦i solvei(vars(Si))(Si(x) = Si(y)),
S′j = Sj , for i 6= j,
S′V = SV .

mergeV (S;x = x) = S

mergeV (S;x = y) = (SV ◦R; S0 . R; S1; . . . ; SN), where R = orient(x = y).

Fig. 3. Combining Multiple Shostak Theories

and S0. This can destroy confluence since there may be variables w and z such
that w and z are merged in SV (i.e., SV (w) ≡ SV (z)) that are unmerged in
some Si (i.e., Si({w}) ∩ Si({z}) = ∅), or vice-versa.4 The number of variables
in dom(SV) remains fixed during the computation of close∗(S). Confluence is
restored by close∗(S) which finds a pair of variables that are merged in some Si
but not in SV , and merging them in SV , or that are merged in SV and not in
some Si and merging them in Si. Each such merge step is also I-conservative.
When this process terminates, S is once again canonical. The solution sets Si
are normalized with respect to SV in order to ensure that the entries are in the
normalized form for lookup during canonization.

Invariants. As with congruence closure, several key invariants are needed to
ensure that the solution state S is maintained in canonical form whenever it is
given as the argument to process. If S is canonical and a and b are canonical
with respect to S, then for (S′; a′ = b′) = abstract(S; a = b), S′ is canonical,
and a′ and b′ are canonical with respect to S′. The state abstract(S; a = b) I-
preserves (S; a = b). A solution state is said to be well-formed if SV is functional
4 For i > 0, Si is maintained in i-solved form and hence, Si({x}) = {x, Si(x)}.

14

and idempotent, S0 is normalized, and each Si is functional, idempotent, and in
solved form. Note that if S is well-formed, confluent, and each Si is normalized,
then it is canonical. When S is well-formed, and S′ = mergeV (S;x = y) or
S′ = mergei(S;x = y), then S′ is well-formed and I-preserves (S;x = y). If S
is well-formed and congruence-closed, and S′ = normalize(S), then S′ is well-
formed and each S′i is normalized. If S′ = normalize(S), then each S′i is in
solved form because if x replaces y on the right-hand side of a solution set Si,
then Si(y) ≡ y since Si is in i-solved form. By congruence closure, we already
have that Si(x) ≡ Si(y) ≡ y. Therefore, the uniform replacement of y by x
ensures that S′i(x) ≡ x, thus leaving S in solved form. If S′ = close∗(S), where
S is well-formed, then S′ is canonical.

Variations. As with congruence closure, once S is confluent, it is safe to
strengthen the normalization step to replace each Si by SV [Si]. This renders
S−1

0 functional, but S−1
i may still be non-functional for i > 0, since it might

contain left-hand side variables that are local. However, if Ŝi is taken to be Si
restricted to dom(SV), then Ŝ−1

i with the strengthened normalization is func-
tional and can be used in canonization. The solutions for local variables can
be safely discarded in an actual implementation. The canonization and variable
abstraction steps can be combined within a single recursion.

Termination. The operations S[[a = b]] and abstract∗(S; a = b) are easily seen
to be terminating. The operation close∗(S) also terminates because the sum of
the number of equivalence classes of variables in dom(SV) with respect to each
of the solution sets SV , S0, S1, . . . , SN , decreases with each merge operation.

Soundness and Completeness. We have already seen that each of the steps:
canonization, variable abstraction, composition, merging, and normalization,
is I-conservative. It therefore follows that if S′ = process(S;T), then S′ I-
preserves S. Hence, if S′[[c]] ≡ S′[[d]], then clearly |=I (S′ ` c = d), and hence
|=I (S;T ` c = d).

The completeness argument requires the demonstration that if S′[[c]] 6≡ S′[[d]],
then 6|=I (S′ ` c = d) when S′ is canonical. This is done by means of a con-
struction of MS′ and ρS′ such that MS′ , ρS′ |= S′ but MS′ , ρS′ 6|= c = d. The
domain D consists of canonical terms e such that S′[[e]] = e. As with congruence
closure, MS′ is defined so that MS′(f)(e1, . . . , en) = S′[[f(e1, . . . , en)]]. The as-
signment ρS′ is defined so that ρS′(x) = SV (x). By induction on c, we have that
MS′ [[c]]ρS′ = S′[[c]]. We can also easily check that MS′ , ρS′ |= S′.

It is also the case that MS′ is an I-model since MS′ is isomorphic to Mi for
each i, 1 ≤ i ≤ N . This can be demonstrated by constructing a bijective map µi
between D and the domain Di corresponding to Mi. Let Pi be the set of pure
i-terms in D, and let γ be a bijection between D−Pi and X such that γ(x) = x
if S′i(x) = x for x ∈ dom(S′V). Define µi so that µi(x) = S′i(x) for x ∈ dom(S′V)
and S′V (x) = x, µi(y) = y for y ∈ Xi, µi(f(a1, . . . , an)) = f(µi(a1), . . . , µi(an))
for f ∈ θi, and µi(a) = γ(a), otherwise. It can then be verified that for an i-term

15

a, µi(MS′ [[a]]ρ) = Mi[[a]]ρi, where ρi(x) = µi(ρ(x)). This concludes the proof of
completeness.

Convexity revisited. As in Section 4, the term model construction of MS′ once
again establishes that I-validity is convex. In other words, a sequent |=I (T `
c1 = d1 ∨ . . . ∨ cn = dn) iff |=I (T ` ck = dk) for some k, 1 ≤ k ≤ n.

6 Conclusions

Ground decision procedures for equality are crucial for discharging the myriad
proof obligations that arise in numerous applications of automated reasoning.
These goals typically contain operations from a combination of theories, includ-
ing uninterpreted symbols. Shostak’s basic method deals only with the combi-
nation of a single canonizable, solvable theory with equality over uninterpreted
function symbols. Indeed, in all previous work based on Shostak’s method, only
the basic combination is considered. Though Shostak asserted that the basic
combination was adequate to cover the more general case of multiple Shostak
theories, this claim has turned out to be unsubstantiated. We have given here the
first Shostak-style combination method for the general case of multiple Shostak
theories. The algorithm is quite simple and is supported by straightforward ar-
guments for termination, soundness, and completeness.

Shostak’s combination method, as we have described it, is clearly an instance
of a Nelson–Oppen combination [NO79] since it involves the exchange of equal-
ities between variables through the solution set SV . The added advantage of a
Shostak combination is that it combines the canonizers of the individual theories
into a global canonizer. The definition of such a canonizer for multiple Shostak
theories is the key contribution of this paper. The technique of achieving con-
fluence across the different solution sets is unique to our method. Confluence
is needed for obtaining useful canonical forms, and is therefore not essential
in a general Nelson–Oppen combination. The global canonizer S[[a]] can be ap-
plied to input formulas to discharge queries and simplify input formulas. The
reduction to canonical form with respect to the given equalities helps keep the
size of the term universe small, and makes the algorithm more efficient than
a black box Nelson–Oppen combination. The decision algorithm for a Shostak
theory given in Section 4 fits the requirements for a black box procedure that
can be used within a Nelson–Oppen combination. The Nelson–Oppen combi-
nation of Shostak theories with other decision procedures has been studied by
Tiwari [Tiw00], Barrett, Dill, and Stump [BDS02], and Ganzinger [Gan02], but
none of these methods includes a general canonization procedure as is required
for a Shostak combination.

Variable abstraction is also used in the combination unification procedure of
Baader and Schulz [BS96], which addresses a similar problem to that of com-
bining Shostak solvers. In our case, there is no need to ensure that solutions
are compatible across distinct theories. Furthermore, variable dependencies can

16

be cyclic across theories so that it is possible to have y ∈ vars(Si(x)) and
x ∈ vars(Sj(y)) for i 6= j. Our algorithm can be easily and usefully adapted
for combining unification and matching algorithms with constraint solving in
Shostak theories.

Insights derived from the Nelson–Oppen combination method have been cru-
cial in the design of our algorithm and its proof. Our presentation here is different
from that of our previous algorithm for the basic Shostak combination [RS01]
in the use of variable abstraction and the theory-wise separation of solution
sets. Our proof of the basic algorithm additionally demonstrated the existence
of proof objects in a sound and complete proof system. This can easily be repli-
cated for the general algorithm studied here. The soundness and completeness
proofs given here are for composable theories and avoid the use of σ-models.

Our Shostak-style algorithm fits modularly within the Nelson–Oppen frame-
work. It can be employed within a Nelson–Oppen combination (as suggested
by Rushby [CLS96]) in which there are other decision procedures that generate
equalities between variables. It is also possible to combine it with decision pro-
cedures that are not disjoint, as for example with linear arithmetic inequalities.
Here, the existence of a canonizer with respect to equality is useful for repre-
senting inequality information in a canonical form. A variant of the procedure
described here is implemented in ICS [FORS01] in exactly such a combination.

References

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-
nations of theories with equality. In Mandayam Srivas and Albert Camilleri,
editors, Formal Methods in Computer-Aided Design (FMCAD ’96), volume
1166 of Lecture Notes in Computer Science, pages 187–201, Palo Alto, CA,
November 1996. Springer-Verlag.

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization of
Shostak’s method for combining decision procedures. In A. Armando, ed-
itor, Frontiers of Combining Systems, 4th International Workshop, FroCos
2002, number 2309 in Lecture Notes in Artificial Intelligence, pages 132–146,
Berlin, Germany, April 2002. Springer-Verlag.

[Bjø99] Nikolaj Bjørner. Integrating Decision Procedures for Temporal Verification.
PhD thesis, Stanford University, 1999.

[BS96] F. Baader and K. Schulz. Unification in the union of disjoint equational
theories: Combining decision procedures. J. Symbolic Computation, 21:211–
243, 1996.

[BTV02] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence
closure. Journal of Automated Reasoning, 2002. To appear.

[CLS96] David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak’s decision proce-
dure for combinations of theories. In M. A. McRobbie and J. K. Slaney, edi-
tors, Automated Deduction—CADE-13, volume 1104 of Lecture Notes in Ar-
tificial Intelligence, pages 463–477, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

17

[DST80] P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the common subex-
pressions problem. Journal of the ACM, 27(4):758–771, 1980.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canoniza-
tion and Solving. In G. Berry, H. Comon, and A. Finkel, editors, Computer-
Aided Verification, CAV ’2001, volume 2102 of Lecture Notes in Computer
Science, pages 246–249, Paris, France, July 2001. Springer-Verlag.

[FS02] Jonathan Ford and Natarajan Shankar. Formal verification of a combination
decision procedure. In A. Voronkov, editor, Proceedings of CADE-19, Berlin,
Germany, 2002. Springer-Verlag.

[Gan02] Harald Ganzinger. Shostak light. In A. Voronkov, editor, Proceedings of
CADE-19, Berlin, Germany, 2002. Springer-Verlag.

[Kap97] Deepak Kapur. Shostak’s congruence closure as completion. In H. Comon,
editor, International Conference on Rewriting Techniques and Applications,
RTA ‘97, number 1232 in Lecture Notes in Computer Science, pages 23–37,
Berlin, 1997. Springer-Verlag.

[Koz77] Dexter Kozen. Complexity of finitely presented algebras. In Conference
Record of the Ninth Annual ACM Symposium on Theory of Computing, pages
164–177, Boulder, Colorado, 2–4 May 1977.

[Lev99] Jeremy R. Levitt. Formal Verification Techniques for Digital Systems. PhD
thesis, Stanford University, 1999.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[NO80] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364, 1980.

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In 16th An-
nual IEEE Symposium on Logic in Computer Science, pages 19–28, Boston,
MA, July 2001. IEEE Computer Society.

[Sha01] Natarajan Shankar. Using decision procedures with a higher-order logic.
In Theorem Proving in Higher Order Logics: 14th International Conference,
TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages
5–26, Edinburgh, Scotland, September 2001. Springer-Verlag. Available at
ftp://ftp.csl.sri.com/pub/users/shankar/tphols2001.ps.gz.

[Sho78] R. Shostak. An algorithm for reasoning about equality. Comm. ACM,
21:583–585, July 1978.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[Tiw00] Ashish Tiwari. Decision Procedures in Automated Deduction. PhD thesis,
State University of New York at Stony Brook, 2000.

18

