A Case-Study in Component-Based Mechanical Verification
of Fault-Tolerant Programs!

Sandeep S. Kulkarni John Rushby Natarajan Shankar
Department of Computer and Computer Science Laboratory
Information Science SRI International
The Ohio State University Menlo Park CA 94025
Columbus Ohio 43210 USA USA
Abstract to a state from where its specification is satisfied, can be de-

In this paper, we present a case study to demonstraf@mposed mtp_afault—lntolerantprogram and correc;or(s).
that the decomposition of a fault-tolerant program into its D€composition of a fault-tolerant program permits the
components is useful in its mechanical verification. Morderification of a given property by focusing on the compo-
specifically, we discuss our experience in using the thegent that is responsible for satisfying it. For example, if we
rem prover PVS to verify Dijkstra’s token ring program in aheed to show that a program eventually recovers to a state

component-based manner. We also demonstrate the adv@m where it satisfies its specification, we should focus on
tages of component based mechanical verification. its corrector components. Likewise, if we are interested in

showing that the program satisfies its specification in the ab-

Keywords : Component-based verification, Fault- Sence of faults, we should focus on the corresponding fault-
tolerance, Program decomposition, Mechanical verifica- intolerant program. Of course, we will have to show that
tion, Self-stabilization other components of the program do not interfere with the

. component of interest. But this proof is typically simpler
1 Introduction than the proof required to show that the overall program

In this paper, we argue that the decomposition of a faulgatisfies the given property. Moreover, if we change some
tolerant program into its components is beneficial in its mecomponents used in that program, the proofs of other com-
chanical verification, and that such a decomposition adminents are not affected. Thus, it is possible for a small
reuse of the proofs for other fault-tolerant programs as weihange in the programto lead to a small change in the proof.
as the variations of the given fault-tolerant program. With the motivation of developing a systematic approach

Arora and Kulkarni [3] have shown that a fault-tolerantfor mechanical verification using program decomposition,
program can be decomposed into a fault-intolerant prografe are implementing the theory of detectors and correc-
and a set of ‘tolerance’-components, namedectorsand tors into the theorem prover PVS [£1]in this paper, we
correctors Intuitively, a detector is a component that ‘de-Present a proof of one of Dijkstra’s token ring program [5]
tects’ whether a given predicate is true in the program statélat has been proved using this theory. Previously, Qadeer
and itis used for ensuring that the program satisfies its safetd Shankar [13] have verified this token ring program using
specification in the presence of faults. Likewise, a correctdtVS. While their proof is impressive, it is very specific to
is a component that ‘corrects’ the system to a state whef&€ programand, hence, much of their proof-technique can-
the given state predicate is true, and it is used for ensurifpt be reused to prove other fault-tolerant programs. More-
that the program eventually recovers to a state from wheR¥er, since they focus on the entire program, instead of its
its specification is satisfied. components, their proof is more complex than it needs to be.

For example, a fail-safe program, which satisfies only it¥Ve use this case-study to illustrate how the decomposition
safety specification in the presence of faults, can be deco®f the program into its components can help in making the
posed into a fault-intolerant program and detector(s). LikgRroofs simple and reusable.

wise, a self-stabilizing program, which guarantees recovery Being self-stabilizing, Dijkstra’s program can be decom-
posed into a fault-intolerant program and a corrector. The

o 1Ekm%1 s kUWaf\f}\i/@z)CiS-f;mo-lsltate-em . futs?by@w-Sfi@omvfault-intolerant program circulates the token along an ini-
Shankar@csi.sri.com en: p://www.ClIs.onio-Sstate. Al H H H

edurkulkarni http://www.csl.sri.com/ rushby ’ tialized ring in the absence of faplt;. On the other hand, if
http://www.csl.sri.com/"shankar faults perturb the program from its ideal states, the correc-

This work was partially supported by National Science Foundation graor restores the fault-intolerant program back to some ideal
CCR-9509931 and by the Air Force Office of Scientific Research, Air Forcgtate, from where it continues to circulate the token. This

Materiel Command, USAF, under contract F49620-95-C0044. - T ; ;
The views and conclusions contained herein are those of the authors ePIEOgram 1S self-stablhzmg in that even if the faults perturb

should not be interpreted as necessarily representing the official policié8€ program to an arbitrary state, the corrector restores it to

or endorsements, either expressed or implied, of the Air Force Office of

Scientific Research or the U.S. Government. 2The URLhttp://www.cis.ohio-state.edu/"kulkarni/
pvs/ contains the PVS specification and proofs.

an ideal state.

In Dijkstra’s token ring program, processesV, N > 1, The invariant of this program is, where

are organized in a ring. Each procgssaintains a counter S = (Fj,v:0<j<N,0<v< M :
z.j,0 < z.j < M for someM > 1. A non-zero process (VE:0<k<j:z.k=v) A
has a token iffc.j differs fromz.(j — 1), and proces8 has (Vk:j< k< N:z.k =v—1mod M))

a token iffz.0 is the same as.N. If processj has a token

then it passes it to procegs- 1 mod N 11 by settingz.; The invariantS characterizes the states where there exists

a procesg such that the: values of processdk.(j—1) are

to z.(j — 1), and if proces$) has a token then it passes it)
. . equal tov, and thez values of processes.N are equal to
to procesd by incrementinge.0. For anyM, M > 1, the w1 mod M. Thus, procesg has the unique token, and

program guarantees that in the absence of faults there W?Iﬁy the action aj is enabled in that state. The execution of

be exactly one token that is being circulated in the ring. | hi ; . .
. is action results in a state where procgssl mod N +1
M > N + 1, the program guarantees that starting from aMYas the token. Thus, starting frompa st’:\te wheiie true,

arbitrary state, the program will reach a state where there g ¢, 1 intolerant program circulates a unique token along
exactly one token which is circulated along the ring. he ring

To decompose Dijkstra’s program into a fault-intoleran orrector. If the faults perturb ther values maintained

program and a corrector, we first consider the foIIowm%It the processes, we need to recover the program to a state

glt(’)enSt'c;?]: iraﬁtgﬁzgtrje r%ﬂ|y Ag&,?,rgzﬁ]e?h:gn tgkt:r!(erir;] C|rcrl(J)Iartgo whereS holds in order to ensure that the token circulation
g 9, 9 programs e _established. This can be achieved by the corrector that

be simplified? The answer to this question identifies thfa(t‘ets each non-zero process copy ihealue of its predeces-

fault-intolerant program. Next we ask the question abo . .
fault-tolerance: what are the ideal states of the resultirl%or' Thus, the actions of the corrector are as follows:

fault-intolerant program, and how can it be recovered to j£0 A z.j#z.(j — 1) — zji=x.(i—1)
these ideal states if the faults perturb it? The answer to this . . - .
question identifies the corrector. Then, we show how the Obsgrve that if the corrector actions execute in isolation,
fault-intolerant program and the corrector can be indepe/-State is reached where allvalues are same, and at that
dently verified in PVS and how they can be shown to b&tates is true. Also, if the corrector executes in any state
interference-free. whereS is true,S continues to be true in the resulting state.
The rest of the paper is organized as follows: In Section Note that although the actions of the fault-tolerant pro-
2, we present Dijkstra’s token ring program and its deconfram and 'ghat o_f the fault—lnyolerant program are the same,
position into a fault-intolerant program and a corrector. Ifvhen dealing with the fault-intolerant program we can as-
Section 3, we show how the token ring program is modsume that the invariar is true. In this sense, the fault-
eled in PVS. In Section 4 and 5, we present the correctne€éolerant program is simpler than the fault-tolerant pro-
proof for the fault-intolerant program and the corrector regram. Of course, the actions of the corrector are a subset of
spectively. In Section 6, we show that the corrector and tH8€ fault-tolerant program and, hence, the corrector is sim-
fault-intolerant program do not interfere with each other. FiPler than the fault-tolerant program.
nally, in Section 7, we discuss the advantages of componeitterference-freedom between the fault-intolerant pro-
based verification over non-component-based verificatiogram and the corrector. Since the corrector is a subset

and present concluding remarks in Section 8. of the fault-intolerant program, it is trivial that the corrector
. . does not interfere with the fault-intolerant program. Like-
2 The Token Ring Program and its wise, the actions of the fault-intolerant program at non-zero
Decomposition processes are a subset of the corrector and, hence, do not in-

In this section, we first present the decomposition oferfere with the corrector. Thus, we only need to show that

Dijkstra’s token ring program into a fault-intolerant programthe action at procegksdoes not interfere with the corrector.

and a corrector. Then, we argue that they work in isolatioli/€ Prove the interference-freedom as follows:

and that they do not interfere with each other. We use the)))
same arguments for mechanical verification in Sections 4, 51 For proces$ to interfere with the corrector, it must
and 6. execute infinitely often. Otherwise, aft@rstops exe-
Fault-intolerant program. If we are not interested in cuting, convergence t8 will be achieved.
fault-tolerance, a token ring program can be designed by
maintaining a variablec.j (in the range 0..(M-1), where
M > 1) as follows: Each non-zero procegschecks
whetherz.j is different fromz.(j —1). If this condition

is true thenz.j is set toz.(j—1). Proces$ checks whether
z.0 is the same ag.N. If this condition is true, process

0 incrementse.0. Thus, the actions of the fault-intolerant
program are as follows:

2. If the action at procegsexecutes infinitely often.0
will take all possible values in the ran@e(M — 1) .

3. If the domain ofz is large enough, specifically/ >
N + 1, then in the initial state, there must be a value
in the range0..(M — 1) which is not present at any
non-zero process.

JEO AN zj#z.(j—1) — z.j:=z.(j —1) 4. From 2 and 3, it follows that eventualty0 will obtain
z.0=z.N — z0:=2.0+1 a value missing in the initial state.

5. Afterz.0 is equal to this missing value, proceswill satisfies(p)(R) = Vseq :: run(p)(seq) = R(seq)
obtain this missing value only after proces8egj — 1) We use two types of properties in the proof of Dijkstra’s
obtain this missing value. Thus, when proc8ssxe- token ring program, closure and convergence.
cutes next (from 1, we know that procéssill execute Closure. The propertyclosed(S) is the set of all traces
next), all processes will have the samealue. Thus, a sy, s1, ... where for eaclm, n >0, if S is true ats,, thenS is

state wheres is true is reached. trues,1. Thus,closed(S) is defined as follows:
) o closed(S)(seq) = Vn :: S(seq(n)) = S(seq(n+1)))
3 Modeling of the Token Ring in PVS Convergence. The propertyconverges(T, S) is the set

: . ; n ., of all tracessy, s1, ... whereclosed(S) andclosed(T') are
In this section, we discuss how we modeled Dijkstra’s t0g,e and if there exists.n > 0. for which T is true ats,,

ken ring program in PVS. More specifically, we first definemen there existsy, m > n, for which S is true ats,,. Thus,
program independent concepts such as states, state pr%ghverges(T S) is defined as follows:

cates, actions, program compositions, etc. Then, we define ’
the actions of the token ring program and its invariant.
State. The state of the program consists of thealues at
processeb..N, eachz value is in the rang8..(M —1).
Trace. A trace is an infinite sequence of statessdf is
a trace and is a natural number theseq(i) denotes the'"
element insegq.

converges(T, S)(seq) =

closed(T)(seq) A closed(S)(seq) A

Vn :: T(seq(n)) = (Im:m>n: S(seq(m)))
Num_steps. Given an actiorc, a traceseq, and a natural
numbern, the number of times actiomc is executed until
thent” state is defined as follows:

Assertion. An assertion is a predicate over statesP lis num_steps(ac)(seq,n) = _

an assertion angis a state thetP(s) denotes whetheP is 0 ifn=0

true in states. num_steps(ac)(seq,n—1) + 1 if ac(seq(n—1), seq(n))
num_steps(ac)(seq,n—1) otherwise

Action. An action is a relation over states.Afis an action
ands1, s2 are states theA(s1, s2) denotes whetherstate ~ Corrector. The corrector action at a non-zero procgss
can be reached by executirgn states1. is executed only in states wherej differs fromz.(j — 1).
Property. A property is a predicate over traces.Rfis a The execution of this action results in a state whepehas
property andseq is a trace thetR(seq) denotes whether the the same value as that of(j — 1) and the other values
propertyR is true ofseq. remain unchanged. Thus, corrector action & defined as
Notation. Henceforth, we usg andg to denote programs; follows:

s, 50, s1 and s2 to denote program stateseq to denote a corr(7)(s0,s1) = z(s0)(j)Zz(s0)(j —1) A

trace;S andT to denote assertion®, to denote a property; z(s1)(j) = z(s0)(j —1) A

m,n to denote natural numberg; k to denote processes; Vk: k#j: x(s1)(k) = z(s0)(k)
a.”d”» vl,v2to denqte the: values at processes. Moreover, The corrector consists of the actions at all non-zero pro-
given a state, z(s)(y) denotes the value f.; in states. cesses. We, therefore, use parallel compositiotoof (),

Program compositions. In the base case, a program isy 't define the correctotorr_prog, as follows :
just a single action. The parallel composition of programs - '

andg, denoted ag|q, is a program consisting of the actions ~ €or"-pProg = (15 : 3 #0 : corr(4))

of p and the actions of. (While we have defined other Action at process 0. The action at procedsis executed
program compositions used for fault-tolerant programs, wenly in states where.0 is the same ag.N. The execu-
omit them here as they are not used in Dijkstra’s token ringon of this action results in a state where the value.6fis

program.) one greater than its initial value (in mod M arithmetic) and
CanExecute. Programp can execute in statel iff there the otherz values remain unchanged. Thus, the action at
exists a state2 such thap(sl, s2) is true. procesd) is defined as follows:
CanEzecute(p)(s1) = (3s2:: p(sl,s2)) action_zero(s0,s1) =
Next. The predicateVezt(p)(sl, s2) denotes whether 2(50)(0) = z(s0)(N) A
states2 can be reached by execution of some actiop. df 2(s1)(0) = 2(s0)(0) + 1 mod M A
no action ofp is enabled in statel thenNezt(p)(s1, s2) is Vj:j£0:z(s1)(j) = 2(s0)(j)
true iff s1=1s2.

Note that the fault-intolerant program consists of the
parallel composition of the action at proce$s and
the corrector. Thus, the fault-intolerant program is
action_zero|corr_prog .

Next(p)(sl,s2) =
(CanEzxecute(p)(sl) A p(sl,s2))

V (=CanEzecute(p)(sl) N sl=s2)
Computation. A computation of a program is a trace . ' , . .
S0, 81, ... Such that for each, Nezt(p)(sn, snt1) IS true. étg?ess'aatsoﬁ{gwswe define the predicate; has a token in
Thus, the predicate characterizingg is a computation of o)
programp’ is represented as follows: token(s)(j) = (7=0 A x(s)(0) = z(s)(N))

run(p)(seq) = Vn:: Next(p)(seq(n),seq(n+1)) vV ([G#0 A x(s)(d) #z(s)(7 — 1))
Satisfies. Programp satisfies a property iff for ev- Invariant of the fault-intolerant program. Finally, we de-
ery trace that is a computation pf R(seq) is true. Thus, fine the invariant of the fault-intolerant progracarr_pred,
satis fies(p)(R) is defined as follows: as follows:

corr_pred(s) = Vs :: CanEzecute(action_zero|corr_prog)(s)

(Fj,ve: Vk:k<j:z(s)(k)=v A : : : .
Vk:k>j: 2(s)(k) = v—1mod M) Proof. We prove this lemma by first doing a case-split on

L . . whether allz values are equal. If alt values are equal, it
Remark. ~Although in this presentation, we have given &giows thatz.0 = 2. N and, hencegetion_zero is enabled.
specific instantiation for the program state, it is initially de1I all z values are not equal, we induct on the processes to

fined as an uninterpreted type, and then instantiated suitaiyq the first process, saj such thatz.; differs fromz.0.
for the token ring program. This allows program indepenél- ;

: jncez.(j—1)=z.0 andz.j #z.0, it follows that procesg
dent concepts such as traces, assertions to be reused for l-1) i P 3

‘ énabled. m|
erent programs. Theorem 4.5 Starting from a state whererr_pred is true,

4 \Verification of the Fault-Intolerant if the token is at procesg then the execution of an action
of the fault-intolerant program results in a state where the

Program token is at procesg+1 mod N +1. Formally,
To prove the correctness of the fault-intolerant program, ; .. token(s1)(j)
we need to show (1yorr_pred is closed in the fault- A corr_pred(sl)
intolerant program, and (2) if the token is at procgssd A Next(action_zero|corr_prog)(sl, s2)
an action of the fault-intolerant program is executed then the =
token is at procespg+1 mod N +1 in the resulting state. (j#N = token(s2)(j+1))
In Theorem 4.3, we show thabrr_pred is closed in the A (j=N = token(s2)(0))

fault-intolerant program. In this proof, we use Lemmas 4.1 _

and 4.2 which show thabrr_pred is closed in the action of Proof. ~ Lemma 4.4 shows that execution of the fault-
procesd) and the actions of non-zero process respectivel{olerant program does not result in stuttering. We then show
Finally, we show the token circulation property in Theorenthat if procesg has the token no other process is enabled.

45. Finally, we show, as in Lemmas 4.1 and 4.2, that the execu-
Lemma 4.1 In the computation ofuction_zero alone, tionof the action af results in a state wheper1 mod N+1
corr_pred is closed. Formally, has the token. O

satis fies(action_zero)(closed(corr_pred)) I
Proof. After eliminating the quantifiers and expanding the5 Verification of the Corrector

definitions, we need to show thatdérr_pred is true in the To prove thatcorr_prog satisfies its specification, we

h i it i h . .
n'* state of the computation then itis true(in+1)"" state heed to show (1yorr_pred is closed incorr_prog, and (2)

of that computation. To this end, we first do a case split 08arting from any state, in the executionwofr_prog alone
the process that has the token in #ié state: In the case, ; gtate is reached wheeerr_pred is true. Note that (1)

where proces8 has the token, i.e., thevalues of processes fq||ows from Lemma 4.2. In this section, we prove that the
0..N arev—1mod M for somev, we show that execution ¢qrrector satisfies property (2) based on the following obser-
of action_zero results in a state where thevalues ofl.. N ation:

remainu—1 mod M and ther value of0 is v, i.e.,corr_pred opservation. If only the actions at processgsN execute

is true. In the case, where procgsg 7 0, has the token, j, 5 computation then eventually thevalues of processes

we show thatr.0 is v andz.V is v—1 mod M for Somev ;1 n will be identical and the actions of procesgesy
and, hencegction_zero is disabled, i.e., thén+1)*" state |y pe disabled.

|
is identical to thent” state and, henceorr_pred is true in If j =1, the actions at processgsN are the same as
(n+1)"" state.] i U the actions of the corrector and, hence, in the execution of
Lemma 4.2 In the computation of the action at a non-zergne corrector, eventually thevalues of all processes will be
processcorr_pred is closed. Formally, identical. Thus, convergencedorr_pred is achieved.
Vj i satis fies(corr(j))(closed(corr_pred)) In order to obtain the proof of the above observation in

Proof. The proof of this lemma is similar to that of LemmaPVS, we first define the program consisting of actions of
4.1. We show that if procesg has the token then in the processeg..N and an assertion characterizing the states
resulting state procegst 1 mod N +1 has the token, and where ther values of processes.V are equal. Then, we

if any other process has the token, the execution results irpgovide a proof of the above observation in Lemma 5.2. Fi-

stuttering. In either caseprr_pred is true. o nally, we prove the convergence property in Theorem 5.3.
Theorem 4.3 In the computation of the fault-intolerant pro- We definecorr_above(j), and same_as_N(j) as fol-
gram,corr_pred is closed. Formally, lows:

satis fies(action_zero|corr_prog)(closed(corr_pred)) Definition corr_above(j). For anyj, j0, corr_above(j)
Proof. This lemmais proved by using Lemmas 4.1 and 4.5 the program consisting of the actions at procegses.

and the following property about parallel composition: if ar 2mally,

assertiorS is closed in programg andg then it is closed in _c‘?r,r-above(j) = (ﬂk,‘ J<k<N: CO,”"(k)) U
plq. g Definition same_as_N(j). For anyj, same_as_N(j)

Lemma 4.4. At least one action of the fault-intolerant IS @n assertion which is true in stateff the « values of
program is enabled in any program state. Formally, processeg..N are identical in state. Formally,

same_as_N(j)(s) = to show that they do not interfere with each other. As men-
Vk:j<k<N:z(s)(k) =z(s)(N) O tionedin Section 2, towards this end, we show that the action
Lemma 5.1 If z.j is the same as.(j —1) in some state in at proces$ does not interfere with the corrector. Our proof
the computation oforr_above(j), then this condition con- follows the outline discussed in Section 2. More specifi-
tinues to be true in the rest of the computation. Formally, cally, in Lemma 6.1, we show that procesgxecutes in-

Vseq,j,n : j50 : run(corr_above(j))(seq) finitely often. Then, in Lemma 6.4, we show that there ex-
Az(seq(n))(j —1) = z(seq(n))(j)) ists a value that is different from thevalues of all non-zero
= processes. Subsequently, in Lemma 6.6, we show that even-
Vm:m2>n: tually proces$ gets this missing value, and in Theorem 6.8,

z(seq(m))(j — 1) = z(seq(m))(7) we conclude that the action at procésdoes not interfere
O with the corrector.
Lemma 5.2 In the computation of the corrector actions at.temma 6.1 In the computation of the corrector and the
processeg..N, a state is reached where th@alues of pro- action at process, either proces8 executes infinitely often
cessegj—1)..N are identical. Formally, or a state is reached wheterr_pred is true. Formally,

Vseq,j:: run(corr_above(j))(seq) Vseq,n : run(action_zero|corr_prog)(seq)

; =
=3n :: same_as_N(j—1)(seq(n)) Vm : (In:n>m:
Proof. We prove this lemma by measure-induction on action_zero(seq(n), seq(n+1)))
the j, where the measure used&—j. In the base case, V 3Im :: corr_pred(seq(m))

j =N, we do a case split on whethesrr(N) is enabled in Proof. ~ Note that proces® executes infinitely often iff
the initial state: Ifcorr(N) is enabled, we show that in the given any numbem, it executes in the"" state for some
successor statdame_as_N(N —1) is true. Ifcorr(N) is n > m. Thus, to prove this lemma we need to show
disabled, we show that in the initial stateme_as_N(N—1) that either (1) there exists a numbern > m, such that
is true. action_zero executes in thex!" state, or (2) there exists
In the induction case, we do a case-split on whethe state whereorr_pred is true. We prove this lemma by
the action at procesg executes in the computation of a case-split on whether the suffix of the computation start-
corr_above(j). If j executes in the" state, we show that ing fromm*" state is a computation @brr_prog. If that
the suffix of the computation from the, + 1)** state is a Suffix is a computation otorr_prog, by Theorem 5.3, it
computation otorr_above(j+1). Therefore, there exists a IS straightforward to show that (2) is true. If the suffix is
state, say, wheresame_as_N(j) is true. Moreover, since Not a computation OffOTT—pg{L)g, there exists a number,
the values of.j andz.(j—1) are equal in thén+1)*" state, ™ = ™, such that thén +1)** state is not obtained by ex-
by Lemma 5.1, it follows that the values ofj andz.(j—1) ~ ecutingcorr_prog in then'* state. Since in the’" state
are equal in state. Thus,same_as_N(j—1) is true in state €itheraction_zero executes ororr_prog executes, it fol-

s. lows that in thent® stateaction_zero executes, i.e., (1) is
If j never executes in the computationcofr_above(j), — true. . 0
we show that that computation is also a computation dfémma 6.2 In the computation of the corrector and the
corr_above(j +1). Therefore, there exists a state, sgy action at proces8, the value ofz.0 in the nt_h_ state of the
in this computation whergame_as_N (j) is true. Thus, the computation is equal to the sum of the initial valuezof

actions ofj+1..N are disabled in state Since the program and the number of steps taken by prodesSormally,
tries to execute an action unless all its actions are disabled, it Vseq:: run(action_zero|corr_prog)(seq)
follows that the action at must also be disabled. It follows =

thatsame_as_N(j—1) is true ins. O z(seq(n))(0) = (z(seq(0)(0) +

Theorem 5.3The computation of the corrector eventually num_steps(action._zero)(seq,n)) mod M
converges taorr_pred. Formally, Proof. We prove this lemma by induction on the length

of the computation. In the initial state, this condition is triv-

satis fies(corr_prog)(converges(true, corr_pred)) jally satisfied. In the induction case, we do a case-split on
Proof. We prove this lemma by instantiating= 1 in Whether process executes or whethebrr_prog executes.
Lemma 5.2. From Lemma 5.2, it follows that in the comdn each case, the proof is straightforward. O

putation of the corrector alone, eventually a state is reaché@mma 6.3 In the computation of the corrector and the
where allz values are identical and, henaeyr_pred is action at process, eitherz.0 tak_es on all possible values in
true in that state. Moreover, the closurecofr_pred fol- the range..(M —1) or a state is reached wheterr_pred

lows from Lemma 4.2. o istrue. Formally,
Vseq :: run(action_zero|corr_prog)(seq) =
6 Interference-Freedom Between the Yo:0<v< M : (3n :: z(seq(n))(0) = v)
Corrector and the Fault-Intolerant V 3n :: corr_pred(seq(n))
Program Proof. We prove this lemma by using Lemmas 6.1 and 6.2 .

InLemma 6.2, if the value af.0 in the initial state i20 then
After we showed that the fault-intolerant program and thafter proces$ executegv — v0) mod M steps, the value
corrector satisfy their specification in isolation, we proceedf z.0 will be v. By Lemma 6.1, either proce$sexecutes

infinitely often or a state is reached wherer_pred is true. Proof. We prove this lemma by induction on the length

In the former case, we know that procéssxecute§v — of the computation. The base case, the initial state, is triv-
v0) mod M times and, hence, the valuemb is eventually ial; thez values of all non-zero processes are present in the
v. In the latter case, the lemmais trivially true. O initial state.

Lemma 6.4 If M > N + 1, then in any state there exists a For the inductive case, our proof obligation is that if the

value, say, in the rangé..(M —1) such that the: values value of a non-zero process is changed in(the 1)t" state

of all non-zero processes are different from~ormally, then that new value is either present in the initial state or
Vs (Fu:0<o<M:(Vj:j#0:z(s)(j) ;évg) _ it is generated by proce$dn an earlier state. Towards this

Proof. Note that this lemma essentially states the pigeorend, we first do a case-split on which process executes in the

hole principle: There are at maatdistinctz values of non- ¢tk step: If proces$ executes in thet" step, ther values

zero processes and, henceMf> N + 1, there must exist of non-zero processes remain unchanged. Thus, the proof

a value that is different from the values of all non-zero opligation is trivially satisfied. If a non-zero process, gay

processes. We prove this lemma in the following steps: executes in the" step, only the value af.; is changed it

(1) [{z.j : j#0}|is at mostV, is set toz.(j —1). We then do a case-split on whether 1
2 (Hv:0<v<M}—{z.j:j#0})isnon-zeroif orj#1. If j =1, we show that the value af.j in the
M> N+1. (n+1)t" state is generated by procdsim thent” state. If

We use the set library in PVS in our proof of (1) andj # 1, by induction on the value af.(j — 1), it follows that
(2). This library defines various operations with sets such dke new value of.j is either present in the initial state or it
union, intersection, difference, cardinality, etc, and providels generated by proce8sn an earlier state. O
some standard lemmas about them. Lemma 6.6 In the computation of the corrector and the

Given a state s, we define the setrofalues of non-zero action at process, a state is reached that satisfies one of the
processes uptp nonz_set_upto(s)(j) as follows: following conditions: (1)r.0 is equal to a value missing in

nonz_set-upto(s)(j) = . the initial state and the values of non-zero processes are
if j=0 different fromz.0, or (2) corr_pred is true. Formally,

nonz_set_upto(s)(7 — 1) U {z(s)(j otherwise .. :
By induction onj. v(veg %en p))roée Eh)a(ggﬁe cardinality of ~ "*¢7 ¥ N run(action.zerolcorr prog)(seq)

nonz_set_upto(s)(j) is atmostj: The base casg, = 0, .. — missi
is trivial sincenonz_set_upto(s)(0) is the empty set. For s féje:q}’%(?) = missing(seq(0)) A
the induction case, we use the fact thahz_set_upto(j + z(seq(n))(j) #missing(seq(0)))
1) = ’I’LO’I’LZ-Set_’U,ptO(j) U {j+1} and that the cardinality of V' 3n :: corr_pred(seq(n))
the union is no greater than the sum of cardinalities. Novprgof. From Lemma 6.3, in the computation of the
observe that (1) is trivially true if we instantiafe= V. corrector and the action at proce@sa state is reached
To prove (2), we use the fact that the for any two set@here eitherz.0 = missing(seq(0)) is true orcorr_pred
X andY, |[X = Y| > |X| - [Y]. Letting X be the set js true. In the latter case, Lemma 6.6 is trivially satis-
0..(M —1), andY" be the set values of non-zero processes.fied. In the former case, we induct on the length of the
we show that in any state there exists a missing value, i.@gmputation to show that there exists a state, saguch
a value that is different from the values of all non-zero thatz.0 = missing(seq(0)) is true in states, andz.0 =
processes. o _ 0O missing(seq(0)) is false in all states precedingin the
To identify some missing value in staie we define a computation. We then use Lemma 6.5 to show that in state
constantmissing(s) which denotes some arbitrary values, 7.0 is different from thez values of all non-zero pro-

that is missing in state . o _ _ cesses. By the construction ef z.0 is never equal to
Definition. ~ Given a state, mzssmg(’s) is some arbitrary missing(seq(0)) in any state preceding. Moreover, by
value inthe sef{v: 0<v <M} —{z.j : j#0}) O definition ofmissing(seq(0)), it is not present in the initial

Remark. Note that the definition ofnissing(s) is sen- state at any non-zero process. Thus, from Lemma 6.5, it fol-
sible only if M > N +1. Thus, all theorems that use this|ows that in states, the value ofz.0 is different from ther
definition rely on this assumption. For brevity, however, we/alues of non-zero processes. 0O

will not explicitly specify this assumption in the subsequent emma 6.7 If the corrector executes starting from a state
theorems. In PVS, we definel > N+1 as an axiom so that wherez.0 differs from thez values of all non-zero processes
it can be omitted in the statement of the theorems. then in any state of that computationzf0 is the same as

Lemma 6.5 Let s be any state in the computation of thez. ; then ther values of processds.j are the same as0.
corrector and the action at process The z value of any Formally,

non-zero process inis either present in the initial state of Vseq :: run(corr_prog)(seq)
that computation or it is generated by procéss a state A (V52 j#£0: z(seq(0))(5) £z(seq(0))(0))
precvedings. Formally, =
seq,n :: . N
run(action_zero|corr_prog)(seq) (vn’(ij xésf%(z)j) (]) = (seq(0))(0) =
N :0<k<y:
Viij#£0: (3k : o(seq(n)(j) = o(seq(0))(k)) z(seq(n)) (k) = 2(seq(0))(0)))
V (3m:m<n: Proof. ~ We prove this result by induction on the length

z(seq(n))(j) = z(seq(m))(0)) of the computation as well. In the induction case jlebe

a process that executes in th& step, and let2 be any the token using the following variangi(j) = sum{k : k
process that satisfies;j2 = z.0 in the (n+1)t" state. To has a token :(i —j) mod N + 1 }. One of the reasons
prove that in thgn +1)*" state ther values of0..;2 are the they need such a variant function is that they are trying to
same ag.0, we do a case-split on whethi@ < 51, j2=341, prove thatstarting from an arbitrary stateventually each
orj2>jl. process will get the token. However, this property is more

In the first case, we show that threvalues of processes general than necessary; one only needs to proveafitet
0..72 remain unchanged and, hence;j2 = z.0 must be the invariantis establishe@ventually each process will get
true in then?” state. Therefore, in thgx+1)*" state of the the token. Since we prove the token circulation property
computation, the: values of processék.j2 are the same as only in the invariant states, we do not need such a variant
z.0. function.

In the second case, we show that it must be the case thatin related work on mechanical verification of self-
in thent” state,z.(j2—1) is the same as.0. Hence, in the stabilization, Prasetya [12] has verified a self-stabilizing
nth state, ther values of0..(j2—1) are the same a8.0. routing program in a variant of UNITY logic [4] using the
Since in the(n+1)*" stater.;2 is the same as.0 and ther ~ theorem prover HOL [7]. He also presents an elegant devel-
values of processés. (;j2—1) remain unchanged, it follows opment of the theory needed in the verification but he seems
that in the(n+1)*" state ther values of processdk.;j2 are 0 require a prohibitively high level of verification effort.
the same as.0. Advantages of component-based mechanical verifica-

In the third case alsa;.j2 remains unchanged. Thus, intion. Fault-tolerant programs are often tricky and so need
thent" state, ther.j2 = 2.0 is true. Therefore, in tha!® strong assurance; mechanical verification is a very strong
statez.j = z.0 andz.(j1—1) = z.0 is also true. Thus, the form of assurance but previous examples were tours-de-
action of procesgl is disabled. O force that required great insight and talent and are not read-
Theorem 6.8 The action at proces® does not in- ily transferable to other problems or other people. By way of
terfere with the corrector, i.e., the computation ofcontrast, our component-based approach is systematic and
action_zero|corr_prog converges teorr_pred. Formally, offers some hope of making these verifications routine. The
detector-correctors theory and its application to Dijkstra’s
token ring program shows that the effort required as well as
the amount of invention is reduced. We find that the advan-
\fgges of component-based mechanical proofs are the same

as that of component-based non-mechanical proofs. We dis-
from thex values of all non-zero processes. From Lemm

6.1, proces$ executes aftes. Until 0 executes for the first Buss some of these advantages below.

time, the corresponding computation is a computation of tHgeusability for a variation of the token ring programThe
corrector. Moreover, whefi executese.0 is the same as modification of a component in the program preserves the

z.N. Hence, by Lemma 6.7, the values of all processes correctness proofs of other components. We find that this

are identical. It follows that whefi executes for the first ProPerty is useful in the mechanical verification of the re-
time after state, corr_pred is true. sulting program as well. For example, observe that if the

action at proces$ is changed so that.0 is incremented

satis fies(action_zero|corr_prog)
(converges(true, corr_pred))
Proof. We use Lemmas 6.1, 6.4 and 6.7 to prove the abo
lemma. From 6.4, a state, sa)is reached where.0 differs

7 Discussion by £ (instead of 1), where is relatively prime toM, the
self-stabilization is preserved. After we proved the correct-
Related work. Since Dijkstra presented the self-ness of Dijkstra’s token ring program, we verified the self-

stabilizing token ring program in 1974, it has been provegtabilization property of this new program and found that it
using various techniques [1, 6, 10, 13, 15]. Of these, tH®0k approximately 30 add|t]onal minutes to obtain thg new
proofs by Qadeer and Shankar [13] and Merz [10] have bed¥oof (compared to approximately 4-5 days for the initial
verified by a theorem prover. Merz constructs a compliProof), and most of the proof was reused.
cated variant function—consisting of the enabled processd®eusability of proofs for other fault-tolerant programs.
the distance between thevalue of the proces8 and the Lemmaé.1 shows that either proce$sexecutes infinitely
missing value, etc.—and shows that it decreases in evesften or the correction predicate is established. This proof
step. In terms of number of interactions required with thenly depends on the fact that the corrector satisfies its spec-
theorem prover, it outperforms the proof presented in thigication in isolation, and not on the actual programs and
paper as well as that by Qadeer and Shankar. However, thggedicates involved. We, therefore, have extracted a sim-
reduced interactions come at a very high cost; the creativiple interference-freedom lemma that is applicable in other
required to find this variant function. Also, that proofis hardorograms. Likewise, Lemma 5.2, only depends upon the or-
to comprehend since it does not match with the intuitive urdering between the corrector actions. Such a ordering ex-
derstanding of the token ring program. ists in various programs—including most tree based pro-
Qadeer and Shankar closely follow the proof by Varghesgrams. Therefore, the same proof technique can be used
[15], and their proof is simpler than that by Merz. Howeverjn those programs as well. Also, lemmas that relate to pro-
since they try to prove the properties of the entire prograngram compositions or interference-freedom techniques such
some of their proofs are more complex than they need to bas superposition and eventual termination can be reused in
For example, they prove that each process eventually getther fault-tolerant programs.

Role of assumptionsObserve that our proof clearly shows [2] A. Arora and S. S. Kulkarni. Component based design of

the assumptiod/ > N +1 is not required for the correct-
ness of the fault-intolerant program or the corrector; it is

multitolerant systemslEEE Transactions on Software Engi-
neering 24(1):63-78, January 1998.

required only to prove that they do not interfere with each[3] A. Arora and S. S. Kulkarni. Detectors and correctors: A

other. Thus, if we were to weaken this assumption—say be-

cause it is possible to prove stabilization whegh> N—

we will need to redo only the proofs that depend on this as-
sumption, namely Lemmas 6.4, 6.6 and 6.8. Likewise, if we
could relax this assumption, say by providing higher atom-14

icity to proces9), we could reuse most of the proof.

8 Conclusion and Future Work

In this paper, we presented a component-based proof o[f
Dijkstra’s self-stabilizing token program that has been veri-[7]
fied in PVS. To prove correctness of this self-stabilizing pro-
gram, we needed to show two properties: (1) in the absence
of faults, the program circulates a token along the ring, andg]
(2) in the presence of faults, the program eventually recov-
ers to a state from where the token circulation is restored.
Following our philosophy of program decomposition, we [9]
decomposed the fault-tolerant program into the correspond-
ing fault-intolerant program and the corrector. Then, we
proved that property (1) is satisfied by focusing on the faulf10]
intolerant program, and considering its execution starting
from the invariant states. Subsequently, we proved properiyl]
(2) by focusing on the corrector, and considering its exe-
cution starting from all states. Finally, we showed that the
fault-intolerant program and the corrector do not interfere

with each other.

Our case study illustrates that the advantages of program
decomposition in non-mechanical proofs also apply to me-
chanical verification. It shows that by focusing on the com-
ponent responsible for satisfying the property at hand, tH&3l
proof of the required property is simplified. Also, it shows
that the component-based approach readily supports design
exploration as modifications to a program often permits the
reuse of proofs. Moreover, it demonstrates that mechani
verification of fault-tolerant programs is less of a tour-de-

force and more of a straightforward activity.

Regarding future work, we plan to investigate whether
other techniques such as phased reasoning [14] based[0s)
convergence stairs [8] and hierarchical design of compo-

theory of fault-tolerance componentsinternational Con-
ference on Distributed Computing Systempages 436-443,
May 1998. An extended version of this paper is submitted to
IEEE Transactions on Computers.

] K. M. Chandy and J. Misra.Parallel Program Design: A

Foundation Addison-Wesley, 1988.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM7(11), 1974.

] E. W. Dijkstra. A belated proof of self-stabilizationDis-

tributed Computing1(1):5-6, 1986.

M. J. C. Gordon and T. F. Melhanintroduction to HOL: A
Theorem proving Environment for Higher Order Logigam-
bridge University Press, 1993.

M. G. Gouda and N. Multari. Stabilizing communication
protocols.IEEE Transactions on Computer0(4):448—-458,
1991.

Y. Lakhnech and M. Siegel. Deductive verification of stabi-
lizing systems.Proceedings of the Third Workshop on Self-
Stabilizing Systemgpages 201-216, 1997.

S. Merz. Mechanical verification of self-stabilizing token
ring. Personal communication.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich
von Henke. Formal verification for fault-tolerant architec-
tures: Prolegomena to the design of PVMSEE Transactions
on Software Engineerin@1(2):107-125, February 1995.

I. S. W. B. Prasetya. Mechanically verified self-stabilizing
hierarchical algorithms.Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS'97), volume 1217
of Lecture Notes in Computer Scienpages 399-415, 1997.
S. Qadeer and N. Shankar. Verifying a self-stabilizing mu-
tual exclusion algorithm. In David Gries and Willem-Paul
de Roever, editorsiFIP International Conference on Pro-
gramming Concepts and Methods (PROCOMET , ¢f)ges
424-443, Shelter Island, NY, June 1998. Chapman & Hall.

M. Siegel and F. Stomp. Extending the limits of sequentially
phased reasoning. In P. S. Thiagarajan, edfmundations of
software technology and theoretical computer science, Lec-
ture Notes in computer science 88®94.

G. VargheseSelf-stabilization by local checking and correc-
tion. PhD thesis, MIT/LCS/TR-583, 1993.

nents offer the same advantage in mechanical verification

as they do in non-mechanical verification. We also plan tSymboIs

investigate the use of program decomposition in mechani-

cal verification of multitolerant programs [2], i.e., programs

that tolerate multiple types of faults with possibly a different
type of tolerance to each fault. Multitolerant programs can
be decomposed into a fault-intolerant program and compo-
nents responsible for tolerating each type of fault. Thus, the
proof of tolerance property to a given type of fault can be
simplified by focusing only on the components responsible
for providing tolerance to that type of fault.

References

[1] A. Arora. A foundation of fault-tolerant computingPhD

Variable Used as

p,q program

s,s0,s1,s2 | state

seq trace

S, T assertion

R property

m,n natural number

ik process, domaifi.. N
v,vl,v2 z value for a process, domain.(M —1)
Expression | Meaning

z(s)(7) The value ofz.j in states
seq(n) nt" state in the sequenceq

thesis, The University of Texas at Austin, 1992.

