
A Case-Study in Component-Based Mechanical Verification
of Fault-Tolerant Programs1

Sandeep S. Kulkarni John Rushby Natarajan Shankar
Department of Computer and Computer Science Laboratory

Information Science SRI International
The Ohio State University Menlo Park CA 94025

Columbus Ohio 43210 USA USA

Abstract
In this paper, we present a case study to demonstrate

that the decomposition of a fault-tolerant program into its
components is useful in its mechanical verification. More
specifically, we discuss our experience in using the theo-
rem prover PVS to verify Dijkstra’s token ring program in a
component-based manner. We also demonstrate the advan-
tages of component based mechanical verification.

Keywords : Component-based verification, Fault-
tolerance, Program decomposition, Mechanical verifica-
tion, Self-stabilization

1 Introduction

In this paper, we argue that the decomposition of a fault-
tolerant program into its components is beneficial in its me-
chanical verification, and that such a decomposition admits
reuse of the proofs for other fault-tolerant programs as well
as the variations of the given fault-tolerant program.

Arora and Kulkarni [3] have shown that a fault-tolerant
program can be decomposed into a fault-intolerant program
and a set of ‘tolerance’-components, namelydetectorsand
correctors. Intuitively, a detector is a component that ‘de-
tects’ whether a given predicate is true in the program state,
and it is used for ensuring that the program satisfies its safety
specification in the presence of faults. Likewise, a corrector
is a component that ‘corrects’ the system to a state where
the given state predicate is true, and it is used for ensuring
that the program eventually recovers to a state from where
its specification is satisfied.

For example, a fail-safe program, which satisfies only its
safety specification in the presence of faults, can be decom-
posed into a fault-intolerant program and detector(s). Like-
wise, a self-stabilizing program, which guarantees recovery

1Email: kulkarni@cis.ohio-state.edu, rushby@csl.sri.com,
shankar@csl.sri.com Web: http://www.cis.ohio-state.
edu/˜kulkarni , http://www.csl.sri.com/˜rushby ,
http://www.csl.sri.com/˜shankar

This work was partially supported by National Science Foundation grant
CCR-9509931 and by the Air Force Office of Scientific Research, Air Force
Materiel Command, USAF, under contract F49620-95-C0044.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air Force Office of
Scientific Research or the U.S. Government.

to a state from where its specification is satisfied, can be de-
composed into a fault-intolerant program and corrector(s).

Decomposition of a fault-tolerant program permits the
verification of a given property by focusing on the compo-
nent that is responsible for satisfying it. For example, if we
need to show that a program eventually recovers to a state
from where it satisfies its specification, we should focus on
its corrector components. Likewise, if we are interested in
showing that the program satisfies its specification in the ab-
sence of faults, we should focus on the corresponding fault-
intolerant program. Of course, we will have to show that
other components of the program do not interfere with the
component of interest. But this proof is typically simpler
than the proof required to show that the overall program
satisfies the given property. Moreover, if we change some
components used in that program, the proofs of other com-
ponents are not affected. Thus, it is possible for a small
change in the program to lead to a small change in the proof.

With the motivation of developing a systematic approach
for mechanical verification using program decomposition,
we are implementing the theory of detectors and correc-
tors into the theorem prover PVS [11]2. In this paper, we
present a proof of one of Dijkstra’s token ring program [5]
that has been proved using this theory. Previously, Qadeer
and Shankar [13] have verified this token ring program using
PVS. While their proof is impressive, it is very specific to
one program and, hence, much of their proof-technique can-
not be reused to prove other fault-tolerant programs. More-
over, since they focus on the entire program, instead of its
components, their proof is more complex than it needs to be.
We use this case-study to illustrate how the decomposition
of the program into its components can help in making the
proofs simple and reusable.

Being self-stabilizing, Dijkstra’s program can be decom-
posed into a fault-intolerant program and a corrector. The
fault-intolerant program circulates the token along an ini-
tialized ring in the absence of faults. On the other hand, if
faults perturb the program from its ideal states, the correc-
tor restores the fault-intolerant program back to some ideal
state, from where it continues to circulate the token. This
program is self-stabilizing in that even if the faults perturb
the program to an arbitrary state, the corrector restores it to

2The URLhttp://www.cis.ohio-state.edu/˜kulkarni/
pvs/ contains the PVS specification and proofs.

an ideal state.
In Dijkstra’s token ring program, processes0::N , N�1,

are organized in a ring. Each processj maintains a counter
x:j, 0 � x:j < M for someM > 1. A non-zero processj
has a token iffx:j differs fromx:(j � 1), and process0 has
a token iffx:0 is the same asx:N . If processj has a token
then it passes it to processj+1 mod N+1 by settingx:j
to x:(j � 1), and if process0 has a token then it passes it
to process1 by incrementingx:0. For anyM , M > 1, the
program guarantees that in the absence of faults there will
be exactly one token that is being circulated in the ring. If
M � N + 1, the program guarantees that starting from any
arbitrary state, the program will reach a state where there is
exactly one token which is circulated along the ring.

To decompose Dijkstra’s program into a fault-intolerant
program and a corrector, we first consider the following
question: If we are only interested in a token circulation
along an initialized ring, how can the token ring program
be simplified? The answer to this question identifies the
fault-intolerant program. Next we ask the question about
fault-tolerance: what are the ideal states of the resulting
fault-intolerant program, and how can it be recovered to
these ideal states if the faults perturb it? The answer to this
question identifies the corrector. Then, we show how the
fault-intolerant program and the corrector can be indepen-
dently verified in PVS and how they can be shown to be
interference-free.

The rest of the paper is organized as follows: In Section
2, we present Dijkstra’s token ring program and its decom-
position into a fault-intolerant program and a corrector. In
Section 3, we show how the token ring program is mod-
eled in PVS. In Section 4 and 5, we present the correctness
proof for the fault-intolerant program and the corrector re-
spectively. In Section 6, we show that the corrector and the
fault-intolerant program do not interfere with each other. Fi-
nally, in Section 7, we discuss the advantages of component-
based verification over non-component-based verification,
and present concluding remarks in Section 8.

2 The Token Ring Program and its
Decomposition

In this section, we first present the decomposition of
Dijkstra’s token ring program into a fault-intolerant program
and a corrector. Then, we argue that they work in isolation
and that they do not interfere with each other. We use the
same arguments for mechanical verification in Sections 4, 5
and 6.
Fault-intolerant program. If we are not interested in
fault-tolerance, a token ring program can be designed by
maintaining a variablex:j (in the range 0..(M-1), where
M > 1) as follows: Each non-zero processj checks
whetherx:j is different fromx:(j� 1). If this condition
is true thenx:j is set tox:(j�1). Process0 checks whether
x:0 is the same asx:N . If this condition is true, process
0 incrementsx:0. Thus, the actions of the fault-intolerant
program are as follows:

j 6= 0 ^ x:j 6= x:(j � 1) �! x:j := x:(j � 1)
x:0 = x:N �! x:0 := x:0 + 1

The invariant of this program isS, where

S = (9j; v : 0�j�N; 0 � v < M :
(8k : 0�k<j : x:k=v) ^
(8k : j� k� N : x:k = v�1mod M))

The invariantS characterizes the states where there exists
a processj such that thex values of processes0::(j�1) are
equal tov, and thex values of processesj::N are equal to
v�1 mod M . Thus, processj has the unique token, and
only the action atj is enabled in that state. The execution of
this action results in a state where processj+1 mod N+1
has the token. Thus, starting from a state whereS is true,
the fault-intolerant program circulates a unique token along
the ring.
Corrector. If the faults perturb thex values maintained
at the processes, we need to recover the program to a state
whereS holds in order to ensure that the token circulation
is re-established. This can be achieved by the corrector that
lets each non-zero process copy thex value of its predeces-
sor. Thus, the actions of the corrector are as follows:

j 6=0 ^ x:j 6=x:(j � 1) �! x:j := x:(j � 1)

Observe that if the corrector actions execute in isolation,
a state is reached where allx values are same, and at that
stateS is true. Also, if the corrector executes in any state
whereS is true,S continues to be true in the resulting state.

Note that although the actions of the fault-tolerant pro-
gram and that of the fault-intolerant program are the same,
when dealing with the fault-intolerant program we can as-
sume that the invariantS is true. In this sense, the fault-
intolerant program is simpler than the fault-tolerant pro-
gram. Of course, the actions of the corrector are a subset of
the fault-tolerant program and, hence, the corrector is sim-
pler than the fault-tolerant program.

Interference-freedom between the fault-intolerant pro-
gram and the corrector. Since the corrector is a subset
of the fault-intolerant program, it is trivial that the corrector
does not interfere with the fault-intolerant program. Like-
wise, the actions of the fault-intolerant program at non-zero
processes are a subset of the corrector and, hence, do not in-
terfere with the corrector. Thus, we only need to show that
the action at process0 does not interfere with the corrector.
We prove the interference-freedom as follows:

1. For process0 to interfere with the corrector, it must
execute infinitely often. Otherwise, after0 stops exe-
cuting, convergence toS will be achieved.

2. If the action at process0 executes infinitely often,x:0
will take all possible values in the range0::(M � 1) .

3. If the domain ofx is large enough, specificallyM �
N + 1, then in the initial state, there must be a value
in the range0::(M � 1) which is not present at any
non-zero process.

4. From 2 and 3, it follows that eventuallyx:0 will obtain
a value missing in the initial state.

5. After x:0 is equal to this missing value, processj will
obtain this missing value only after processes0::(j�1)
obtain this missing value. Thus, when process0 exe-
cutes next (from 1, we know that process0 will execute
next), all processes will have the samex value. Thus, a
state whereS is true is reached.

3 Modeling of the Token Ring in PVS

In this section, we discuss how we modeled Dijkstra’s to-
ken ring program in PVS. More specifically, we first define
program independent concepts such as states, state predi-
cates, actions, program compositions, etc. Then, we define
the actions of the token ring program and its invariant.
State. The state of the program consists of thex values at
processes0::N , eachx value is in the range0::(M�1).
Trace. A trace is an infinite sequence of states. Ifseq is
a trace andi is a natural number thenseq(i) denotes theith

element inseq.
Assertion. An assertion is a predicate over states. IfP is
an assertion ands is a state thenP (s) denotes whetherP is
true in states.
Action. An action is a relation over states. IfA is an action
ands1; s2 are states thenA(s1; s2) denotes whether states2
can be reached by executingA in states1.
Property. A property is a predicate over traces. IfR is a
property andseq is a trace thenR(seq) denotes whether the
propertyR is true ofseq.
Notation. Henceforth, we usep andq to denote programs;
s; s0; s1 ands2 to denote program states;seq to denote a
trace;S andT to denote assertions;R to denote a property;
m;n to denote natural numbers;j; k to denote processes;
andv; v1; v2 to denote thex values at processes. Moreover,
given a states, x(s)(j) denotes the value ofx:j in states.
Program compositions. In the base case, a program is
just a single action. The parallel composition of programsp
andq, denoted asp[]q, is a program consisting of the actions
of p and the actions ofq. (While we have defined other
program compositions used for fault-tolerant programs, we
omit them here as they are not used in Dijkstra’s token ring
program.)
CanExecute. Programp can execute in states1 iff there
exists a states2 such thatp(s1; s2) is true.

CanExecute(p)(s1) = (9s2 :: p(s1; s2))
Next. The predicateNext(p)(s1; s2) denotes whether
states2 can be reached by execution of some action ofp. If
no action ofp is enabled in states1 thenNext(p)(s1; s2) is
true iff s1=s2.

Next(p)(s1; s2) =
(CanExecute(p)(s1) ^ p(s1; s2))

_ (:CanExecute(p)(s1) ^ s1=s2)
Computation. A computation of a programp is a trace
s0; s1; ::: such that for eachn, Next(p)(sn; sn+1) is true.
Thus, the predicate characterizing ‘seq is a computation of
programp’ is represented as follows:

run(p)(seq) = 8n :: Next(p)(seq(n); seq(n+1))
Satisfies. Programp satisfies a propertyR iff for ev-
ery trace that is a computation ofp, R(seq) is true. Thus,
satisfies(p)(R) is defined as follows:

satisfies(p)(R) = 8seq :: run(p)(seq)) R(seq)
We use two types of properties in the proof of Dijkstra’s

token ring program, closure and convergence.
Closure. The propertyclosed(S) is the set of all traces
s0; s1; ::: where for eachn; n�0, if S is true atsn thenS is
truesn+1. Thus,closed(S) is defined as follows:

closed(S)(seq) = 8n :: S(seq(n))) S(seq(n+1)))

Convergence. The propertyconverges(T; S) is the set
of all tracess0; s1; ::: whereclosed(S) andclosed(T) are
true, and if there existsn; n� 0, for whichT is true atsn
then there existsm, m�n, for whichS is true atsm. Thus,
converges(T; S) is defined as follows:

converges(T; S)(seq) =
closed(T)(seq) ^ closed(S)(seq) ^
8n :: T (seq(n))) (9m : m�n : S(seq(m)))

Num steps. Given an actionac, a traceseq, and a natural
numbern, the number of times actionac is executed until
thenth state is defined as follows:

num steps(ac)(seq;n) =
0 if n=0
num steps(ac)(seq;n�1) + 1 if ac(seq(n�1); seq(n))
num steps(ac)(seq;n�1) otherwise

Corrector. The corrector action at a non-zero processj
is executed only in states wherex:j differs fromx:(j � 1).
The execution of this action results in a state wherex:j has
the same value as that ofx:(j � 1) and the otherx values
remain unchanged. Thus, corrector action atj is defined as
follows:

corr(j)(s0; s1) = x(s0)(j) 6=x(s0)(j � 1) ^
x(s1)(j) = x(s0)(j � 1) ^
8k : k 6=j : x(s1)(k) = x(s0)(k)

The corrector consists of the actions at all non-zero pro-
cesses. We, therefore, use parallel composition ofcorr(j),
0<j�N , to define the corrector,corr prog, as follows :

corr prog = ([]j : j 6=0 : corr(j))

Action at process 0. The action at process0 is executed
only in states wherex:0 is the same asx:N . The execu-
tion of this action results in a state where the value ofx:0 is
one greater than its initial value (in mod M arithmetic) and
the otherx values remain unchanged. Thus, the action at
process0 is defined as follows:

action zero(s0; s1) =
x(s0)(0) = x(s0)(N) ^
x(s1)(0) = x(s0)(0) + 1mod M ^
8j : j 6=0 : x(s1)(j) = x(s0)(j)

Note that the fault-intolerant program consists of the
parallel composition of the action at process0 and
the corrector. Thus, the fault-intolerant program is
action zero[]corr prog .
j has a token. We define the predicate, ‘j has a token in
states’ as follows:

token(s)(j) = (j=0 ^ x(s)(0) = x(s)(N))
_ (j 6=0 ^ x(s)(j) 6=x(s)(j � 1))

Invariant of the fault-intolerant program. Finally, we de-
fine the invariant of the fault-intolerant program,corr pred,
as follows:

corr pred(s) =
(9j; v :: 8k : k<j : x(s)(k) = v ^

8k : k�j : x(s)(k) = v�1mod M)

Remark. Although in this presentation, we have given a
specific instantiation for the program state, it is initially de-
fined as an uninterpreted type, and then instantiated suitably
for the token ring program. This allows program indepen-
dent concepts such as traces, assertions to be reused for dif-
ferent programs.

4 Verification of the Fault-Intolerant
Program

To prove the correctness of the fault-intolerant program,
we need to show (1)corr pred is closed in the fault-
intolerant program, and (2) if the token is at processj and
an action of the fault-intolerant program is executed then the
token is at processj+1mod N+1 in the resulting state.

In Theorem 4.3, we show thatcorr pred is closed in the
fault-intolerant program. In this proof, we use Lemmas 4.1
and 4.2 which show thatcorr pred is closed in the action of
process0 and the actions of non-zero process respectively.
Finally, we show the token circulation property in Theorem
4.5.
Lemma 4.1 In the computation ofaction zero alone,
corr pred is closed. Formally,

satisfies(action zero)(closed(corr pred))

Proof. After eliminating the quantifiers and expanding the
definitions, we need to show that ifcorr pred is true in the
nth state of the computation then it is true in(n+1)th state
of that computation. To this end, we first do a case split on
the process that has the token in thenth state: In the case,
where process0 has the token, i.e., thex values of processes
0::N arev�1 mod M for somev, we show that execution
of action zero results in a state where thex values of1::N
remainv�1modM and thex value of0 is v, i.e.,corr pred
is true. In the case, where processj, j 6= 0, has the token,
we show thatx:0 is v andx:N is v�1 mod M for somev
and, hence,action zero is disabled, i.e., the(n+1)th state
is identical to thenth state and, hence,corr pred is true in
(n+1)th state.
Lemma 4.2 In the computation of the action at a non-zero
process,corr pred is closed. Formally,

8j :: satisfies(corr(j))(closed(corr pred))

Proof. The proof of this lemma is similar to that of Lemma
4.1. We show that if processj has the token then in the
resulting state processj+1 mod N+1 has the token, and
if any other process has the token, the execution results in a
stuttering. In either case,corr pred is true.
Theorem 4.3 In the computation of the fault-intolerant pro-
gram,corr pred is closed. Formally,

satisfies(action zero[]corr prog)(closed(corr pred))

Proof. This lemma is proved by using Lemmas 4.1 and 4.2
and the following property about parallel composition: if an
assertionS is closed in programsp andq then it is closed in
p[]q.
Lemma 4.4. At least one action of the fault-intolerant
program is enabled in any program state. Formally,

8s :: CanExecute(action zero[]corr prog)(s)

Proof. We prove this lemma by first doing a case-split on
whether allx values are equal. If allx values are equal, it
follows thatx:0=x:N and, hence,action zero is enabled.
If all x values are not equal, we induct on the processes to
find the first process, sayj, such thatx:j differs fromx:0.
Sincex:(j�1)=x:0 andx:j 6=x:0, it follows that processj
is enabled.
Theorem 4.5 Starting from a state wherecorr pred is true,
if the token is at processj then the execution of an action
of the fault-intolerant program results in a state where the
token is at processj+1mod N+1. Formally,

8j :: token(s1)(j)
^ corr pred(s1)
^ Next(action zero[]corr prog)(s1; s2)

)
(j 6=N) token(s2)(j+1))

^ (j=N) token(s2)(0))

Proof. Lemma 4.4 shows that execution of the fault-
tolerant program does not result in stuttering. We then show
that if processj has the token no other process is enabled.
Finally, we show, as in Lemmas 4.1 and 4.2, that the execu-
tion of the action atj results in a state wherej+1mod N+1
has the token.

5 Verification of the Corrector

To prove thatcorr prog satisfies its specification, we
need to show (1)corr pred is closed incorr prog, and (2)
starting from any state, in the execution ofcorr prog alone
a state is reached wherecorr pred is true. Note that (1)
follows from Lemma 4.2. In this section, we prove that the
corrector satisfies property (2) based on the following obser-
vation:
Observation. If only the actions at processesj::N execute
in a computation then eventually thex values of processes
j�1::N will be identical and the actions of processesj::N
will be disabled.

If j = 1, the actions at processesj::N are the same as
the actions of the corrector and, hence, in the execution of
the corrector, eventually thex values of all processes will be
identical. Thus, convergence tocorr pred is achieved.

In order to obtain the proof of the above observation in
PVS, we first define the program consisting of actions of
processesj::N and an assertion characterizing the states
where thex values of processesj::N are equal. Then, we
provide a proof of the above observation in Lemma 5.2. Fi-
nally, we prove the convergence property in Theorem 5.3.

We definecorr above(j), and same as N(j) as fol-
lows:
Definition corr above(j). For anyj, j 6=0, corr above(j)
is the program consisting of the actions at processesj::N .
Formally,

corr above(j) = ([]k : j�k�N : corr(k))
Definition same as N(j). For anyj, same as N(j)
is an assertion which is true in states iff the x values of
processesj::N are identical in states. Formally,

same as N(j)(s) =
8k : j�k�N : x(s)(k) = x(s)(N)

Lemma 5.1 If x:j is the same asx:(j�1) in some state in
the computation ofcorr above(j), then this condition con-
tinues to be true in the rest of the computation. Formally,

8seq; j; n : j 6=0 : run(corr above(j))(seq)
^ x(seq(n))(j � 1) = x(seq(n))(j))

)
8m : m�n :

x(seq(m))(j � 1) = x(seq(m))(j)

Lemma 5.2 In the computation of the corrector actions at
processesj::N , a state is reached where thex values of pro-
cesses(j�1)::N are identical. Formally,

8seq; j :: run(corr above(j))(seq)
)9n :: same as N(j�1)(seq(n))

Proof. We prove this lemma by measure-induction on
the j, where the measure used isN�j. In the base case,
j=N , we do a case split on whethercorr(N) is enabled in
the initial state: Ifcorr(N) is enabled, we show that in the
successor state,same as N(N�1) is true. If corr(N) is
disabled, we show that in the initial statesame as N(N�1)
is true.

In the induction case, we do a case-split on whether
the action at processj executes in the computation of
corr above(j). If j executes in thenth state, we show that
the suffix of the computation from the(n+1)th state is a
computation ofcorr above(j+1). Therefore, there exists a
state, says, wheresame as N(j) is true. Moreover, since
the values ofx:j andx:(j�1) are equal in the(n+1)th state,
by Lemma 5.1, it follows that the values ofx:j andx:(j�1)
are equal in states. Thus,same as N(j�1) is true in state
s.

If j never executes in the computation ofcorr above(j),
we show that that computation is also a computation of
corr above(j+1). Therefore, there exists a state, says,
in this computation wheresame as N(j) is true. Thus, the
actions ofj+1::N are disabled in states. Since the program
tries to execute an action unless all its actions are disabled, it
follows that the action atj must also be disabled. It follows
thatsame as N(j�1) is true ins.
Theorem 5.3The computation of the corrector eventually
converges tocorr pred. Formally,

satisfies(corr prog)(converges(true; corr pred))

Proof. We prove this lemma by instantiatingj = 1 in
Lemma 5.2. From Lemma 5.2, it follows that in the com-
putation of the corrector alone, eventually a state is reached
where allx values are identical and, hence,corr pred is
true in that state. Moreover, the closure ofcorr pred fol-
lows from Lemma 4.2.

6 Interference-Freedom Between the
Corrector and the Fault-Intolerant
Program

After we showed that the fault-intolerant program and the
corrector satisfy their specification in isolation, we proceed

to show that they do not interfere with each other. As men-
tioned in Section 2, towards this end, we show that the action
at process0 does not interfere with the corrector. Our proof
follows the outline discussed in Section 2. More specifi-
cally, in Lemma 6.1, we show that process0 executes in-
finitely often. Then, in Lemma 6.4, we show that there ex-
ists a value that is different from thex values of all non-zero
processes. Subsequently, in Lemma 6.6, we show that even-
tually process0 gets this missing value, and in Theorem 6.8,
we conclude that the action at process0 does not interfere
with the corrector.
Lemma 6.1 In the computation of the corrector and the
action at process0, either process0 executes infinitely often
or a state is reached wherecorr pred is true. Formally,

8seq; n :: run(action zero[]corr prog)(seq)
)

8m :: (9n : n�m :
action zero(seq(n); seq(n+1)))

_ 9m :: corr pred(seq(m))

Proof. Note that process0 executes infinitely often iff
given any numberm, it executes in thenth state for some
n � m. Thus, to prove this lemma we need to show
that either (1) there exists a numbern, n � m, such that
action zero executes in thenth state, or (2) there exists
a state wherecorr pred is true. We prove this lemma by
a case-split on whether the suffix of the computation start-
ing frommth state is a computation ofcorr prog. If that
suffix is a computation ofcorr prog, by Theorem 5.3, it
is straightforward to show that (2) is true. If the suffix is
not a computation ofcorr prog, there exists a numbern,
n � m, such that the(n+1)th state is not obtained by ex-
ecutingcorr prog in thenth state. Since in thenth state
eitheraction zero executes orcorr prog executes, it fol-
lows that in thenth stateaction zero executes, i.e., (1) is
true.
Lemma 6.2 In the computation of the corrector and the
action at process0, the value ofx:0 in thenth state of the
computation is equal to the sum of the initial value ofx:0
and the number of steps taken by process0. Formally,

8seq :: run(action zero[]corr prog)(seq)
)

x(seq(n))(0) = (x(seq(0))(0) +
num steps(action zero)(seq;n))modM

Proof. We prove this lemma by induction on the length
of the computation. In the initial state, this condition is triv-
ially satisfied. In the induction case, we do a case-split on
whether process0 executes or whethercorr prog executes.
In each case, the proof is straightforward.
Lemma 6.3 In the computation of the corrector and the
action at process0, eitherx:0 takes on all possible values in
the range0::(M�1) or a state is reached wherecorr pred
is true. Formally,

8seq :: run(action zero[]corr prog)(seq))
8v : 0�v< M : (9n :: x(seq(n))(0) = v)

_ 9n :: corr pred(seq(n))
Proof. We prove this lemma by using Lemmas 6.1 and 6.2 .
In Lemma 6.2, if the value ofx:0 in the initial state isv0 then
after process0 executes(v � v0) mod M steps, the value
of x:0 will be v. By Lemma 6.1, either process0 executes

infinitely often or a state is reached wherecorr pred is true.
In the former case, we know that process0 executes(v �
v0)mod M times and, hence, the value ofx:0 is eventually
v. In the latter case, the lemma is trivially true.
Lemma 6.4 If M �N + 1, then in any state there exists a
value, sayv, in the range0::(M�1) such that thex values
of all non-zero processes are different fromv. Formally,

8s :: (9v : 0�v<M : (8j : j 6=0 : x(s)(j) 6=v))
Proof. Note that this lemma essentially states the pigeon-
hole principle: There are at mostN distinctx values of non-
zero processes and, hence, ifM �N + 1, there must exist
a value that is different from thex values of all non-zero
processes. We prove this lemma in the following steps:
(1) jfx:j : j 6=0gj is at mostN ,
(2) (jfv : 0 � v < Mg � fx:j : j 6= 0gj) is non-zero if

M� N+1.
We use the set library in PVS in our proof of (1) and

(2). This library defines various operations with sets such as
union, intersection, difference, cardinality, etc, and provides
some standard lemmas about them.

Given a state s, we define the set ofx values of non-zero
processes uptoj, nonz set upto(s)(j) as follows:

nonz set upto(s)(j) =
fg if j=0
nonz set upto(s)(j � 1) [fx(s)(j)g otherwise

By induction onj, we then prove that the cardinality of
nonz set upto(s)(j) is atmostj: The base case,j = 0,
is trivial sincenonz set upto(s)(0) is the empty set. For
the induction case, we use the fact thatnonz set upto(j +
1) = nonz set upto(j)[fj+1g and that the cardinality of
the union is no greater than the sum of cardinalities. Now,
observe that (1) is trivially true if we instantiatej=N .

To prove (2), we use the fact that the for any two sets
X andY , jX � Y j � jX j � jY j . LettingX be the set
0::(M�1), andY be the setx values of non-zero processes,
we show that in any state there exists a missing value, i.e.,
a value that is different from thex values of all non-zero
processes.

To identify some missing value in states, we define a
constantmissing(s) which denotes some arbitrary value
that is missing in states .
Definition. Given a states, missing(s) is some arbitrary
value in the set(fv : 0�v<Mg � fx:j : j 6=0g)
Remark. Note that the definition ofmissing(s) is sen-
sible only if M � N+1. Thus, all theorems that use this
definition rely on this assumption. For brevity, however, we
will not explicitly specify this assumption in the subsequent
theorems. In PVS, we defineM�N+1 as an axiom so that
it can be omitted in the statement of the theorems.
Lemma 6.5 Let s be any state in the computation of the
corrector and the action at process0. Thex value of any
non-zero process ins is either present in the initial state of
that computation or it is generated by process0 in a state
precedings. Formally,

8seq; n ::
run(action zero[]corr prog)(seq)

)
8j : j 6=0 : (9k :: x(seq(n))(j) = x(seq(0))(k))

_ (9m : m<n :
x(seq(n))(j) = x(seq(m))(0))

Proof. We prove this lemma by induction on the length
of the computation. The base case, the initial state, is triv-
ial; thex values of all non-zero processes are present in the
initial state.

For the inductive case, our proof obligation is that if thex
value of a non-zero process is changed in the(n+1)th state
then that new value is either present in the initial state or
it is generated by process0 in an earlier state. Towards this
end, we first do a case-split on which process executes in the
nth step: If process0 executes in thenth step, thex values
of non-zero processes remain unchanged. Thus, the proof
obligation is trivially satisfied. If a non-zero process, sayj,
executes in thenth step, only the value ofx:j is changed it
is set tox:(j�1). We then do a case-split on whetherj=1
or j 6= 1. If j = 1, we show that the value ofx:j in the
(n+1)th state is generated by process0 in thenth state. If
j 6=1, by induction on the value ofx:(j�1), it follows that
the new value ofx:j is either present in the initial state or it
is generated by process0 in an earlier state.
Lemma 6.6 In the computation of the corrector and the
action at process0, a state is reached that satisfies one of the
following conditions: (1)x:0 is equal to a value missing in
the initial state and thex values of non-zero processes are
different fromx:0, or (2)corr pred is true. Formally,

8seq :: run(action zero[]corr prog)(seq)
)

9n :: x(seq(n))(0) = missing(seq(0)) ^
(8j : j 6=0 :

x(seq(n))(j) 6=missing(seq(0)))
_ 9n :: corr pred(seq(n))

Proof. From Lemma 6.3, in the computation of the
corrector and the action at process0, a state is reached
where eitherx:0 = missing(seq(0)) is true orcorr pred
is true. In the latter case, Lemma 6.6 is trivially satis-
fied. In the former case, we induct on the length of the
computation to show that there exists a state, says, such
that x:0 = missing(seq(0)) is true in states, andx:0 =
missing(seq(0)) is false in all states precedings in the
computation. We then use Lemma 6.5 to show that in state
s, x:0 is different from thex values of all non-zero pro-
cesses. By the construction ofs, x:0 is never equal to
missing(seq(0)) in any state precedings. Moreover, by
definition ofmissing(seq(0)), it is not present in the initial
state at any non-zero process. Thus, from Lemma 6.5, it fol-
lows that in states, the value ofx:0 is different from thex
values of non-zero processes.
Lemma 6.7 If the corrector executes starting from a state
wherex:0 differs from thex values of all non-zero processes
then in any state of that computation ifx:0 is the same as
x:j then thex values of processes0::j are the same asx:0.
Formally,

8seq :: run(corr prog)(seq)
^ (8j : j 6=0 : x(seq(0))(j) 6=x(seq(0))(0))

)
(8n; j :: x(seq(n))(j) = x(seq(0))(0))

(8k : 0�k�j :
x(seq(n))(k) = x(seq(0))(0)))

Proof. We prove this result by induction on the length
of the computation as well. In the induction case, letj1 be

a process that executes in thenth step, and letj2 be any
process that satisfiesx:j2 = x:0 in the (n+1)th state. To
prove that in the(n+1)th state thex values of0::j2 are the
same asx:0, we do a case-split on whetherj2<j1, j2=j1,
or j2>j1.

In the first case, we show that thex values of processes
0::j2 remain unchanged and, hence,x:j2 = x:0 must be
true in thenth state. Therefore, in the(n+1)th state of the
computation, thex values of processes0::j2 are the same as
x:0.

In the second case, we show that it must be the case that
in thenth state,x:(j2�1) is the same asx:0. Hence, in the
nth state, thex values of0::(j2�1) are the same asx:0.
Since in the(n+1)th statex:j2 is the same asx:0 and thex
values of processes0::(j2�1) remain unchanged, it follows
that in the(n+1)th state thex values of processes0::j2 are
the same asx:0.

In the third case also,x:j2 remains unchanged. Thus, in
thenth state, thex:j2 = x:0 is true. Therefore, in thenth

statex:j = x:0 andx:(j1�1) = x:0 is also true. Thus, the
action of processj1 is disabled.
Theorem 6.8 The action at process0 does not in-
terfere with the corrector, i.e., the computation of
action zero[]corr prog converges tocorr pred. Formally,

satisfies(action zero[]corr prog)
(converges(true; corr pred))

Proof. We use Lemmas 6.1, 6.4 and 6.7 to prove the above
lemma. From 6.4, a state, says, is reached wherex:0 differs
from thex values of all non-zero processes. From Lemma
6.1, process0 executes afters. Until 0 executes for the first
time, the corresponding computation is a computation of the
corrector. Moreover, when0 executesx:0 is the same as
x:N . Hence, by Lemma 6.7, thex values of all processes
are identical. It follows that when0 executes for the first
time after states, corr pred is true.

7 Discussion

Related work. Since Dijkstra presented the self-
stabilizing token ring program in 1974, it has been proved
using various techniques [1, 6, 10, 13, 15]. Of these, the
proofs by Qadeer and Shankar [13] and Merz [10] have been
verified by a theorem prover. Merz constructs a compli-
cated variant function–consisting of the enabled processes,
the distance between thex value of the process0 and the
missing value, etc.—and shows that it decreases in every
step. In terms of number of interactions required with the
theorem prover, it outperforms the proof presented in this
paper as well as that by Qadeer and Shankar. However, these
reduced interactions come at a very high cost; the creativity
required to find this variant function. Also, that proof is hard
to comprehend since it does not match with the intuitive un-
derstanding of the token ring program.

Qadeer and Shankar closely follow the proof by Varghese
[15], and their proof is simpler than that by Merz. However,
since they try to prove the properties of the entire program,
some of their proofs are more complex than they need to be.
For example, they prove that each process eventually gets

the token using the following variant:p(j) = sumfk : k
has a token :(i� j) mod N + 1 g. One of the reasons
they need such a variant function is that they are trying to
prove thatstarting from an arbitrary stateeventually each
process will get the token. However, this property is more
general than necessary; one only needs to prove thatafter
the invariant is established, eventually each process will get
the token. Since we prove the token circulation property
only in the invariant states, we do not need such a variant
function.

In related work on mechanical verification of self-
stabilization, Prasetya [12] has verified a self-stabilizing
routing program in a variant of UNITY logic [4] using the
theorem prover HOL [7]. He also presents an elegant devel-
opment of the theory needed in the verification but he seems
to require a prohibitively high level of verification effort.
Advantages of component-based mechanical verifica-
tion. Fault-tolerant programs are often tricky and so need
strong assurance; mechanical verification is a very strong
form of assurance but previous examples were tours-de-
force that required great insight and talent and are not read-
ily transferable to other problems or other people. By way of
contrast, our component-based approach is systematic and
offers some hope of making these verifications routine. The
detector-correctors theory and its application to Dijkstra’s
token ring program shows that the effort required as well as
the amount of invention is reduced. We find that the advan-
tages of component-based mechanical proofs are the same
as that of component-based non-mechanical proofs. We dis-
cuss some of these advantages below.
Reusability for a variation of the token ring program.The
modification of a component in the program preserves the
correctness proofs of other components. We find that this
property is useful in the mechanical verification of the re-
sulting program as well. For example, observe that if the
action at process0 is changed so thatx:0 is incremented
by k (instead of 1), wherek is relatively prime toM , the
self-stabilization is preserved. After we proved the correct-
ness of Dijkstra’s token ring program, we verified the self-
stabilization property of this new program and found that it
took approximately 30 additional minutes to obtain the new
proof (compared to approximately 4-5 days for the initial
proof), and most of the proof was reused.
Reusability of proofs for other fault-tolerant programs.
Lemma6:1 shows that either process0 executes infinitely
often or the correction predicate is established. This proof
only depends on the fact that the corrector satisfies its spec-
ification in isolation, and not on the actual programs and
predicates involved. We, therefore, have extracted a sim-
ple interference-freedom lemma that is applicable in other
programs. Likewise, Lemma 5.2, only depends upon the or-
dering between the corrector actions. Such a ordering ex-
ists in various programs—including most tree based pro-
grams. Therefore, the same proof technique can be used
in those programs as well. Also, lemmas that relate to pro-
gram compositions or interference-freedom techniques such
as superposition and eventual termination can be reused in
other fault-tolerant programs.

Role of assumptions.Observe that our proof clearly shows
the assumptionM � N+1 is not required for the correct-
ness of the fault-intolerant program or the corrector; it is
required only to prove that they do not interfere with each
other. Thus, if we were to weaken this assumption—say be-
cause it is possible to prove stabilization whenM � N—
we will need to redo only the proofs that depend on this as-
sumption, namely Lemmas 6.4, 6.6 and 6.8. Likewise, if we
could relax this assumption, say by providing higher atom-
icity to process0, we could reuse most of the proof.

8 Conclusion and Future Work

In this paper, we presented a component-based proof of
Dijkstra’s self-stabilizing token program that has been veri-
fied in PVS. To prove correctness of this self-stabilizing pro-
gram, we needed to show two properties: (1) in the absence
of faults, the program circulates a token along the ring, and
(2) in the presence of faults, the program eventually recov-
ers to a state from where the token circulation is restored.
Following our philosophy of program decomposition, we
decomposed the fault-tolerant program into the correspond-
ing fault-intolerant program and the corrector. Then, we
proved that property (1) is satisfied by focusing on the fault-
intolerant program, and considering its execution starting
from the invariant states. Subsequently, we proved property
(2) by focusing on the corrector, and considering its exe-
cution starting from all states. Finally, we showed that the
fault-intolerant program and the corrector do not interfere
with each other.

Our case study illustrates that the advantages of program
decomposition in non-mechanical proofs also apply to me-
chanical verification. It shows that by focusing on the com-
ponent responsible for satisfying the property at hand, the
proof of the required property is simplified. Also, it shows
that the component-based approach readily supports design
exploration as modifications to a program often permits the
reuse of proofs. Moreover, it demonstrates that mechanical
verification of fault-tolerant programs is less of a tour-de-
force and more of a straightforward activity.

Regarding future work, we plan to investigate whether
other techniques such as phased reasoning [14] based on
convergence stairs [8] and hierarchical design of compo-
nents offer the same advantage in mechanical verification
as they do in non-mechanical verification. We also plan to
investigate the use of program decomposition in mechani-
cal verification of multitolerant programs [2], i.e., programs
that tolerate multiple types of faults with possibly a different
type of tolerance to each fault. Multitolerant programs can
be decomposed into a fault-intolerant program and compo-
nents responsible for tolerating each type of fault. Thus, the
proof of tolerance property to a given type of fault can be
simplified by focusing only on the components responsible
for providing tolerance to that type of fault.

References

[1] A. Arora. A foundation of fault-tolerant computing. PhD
thesis, The University of Texas at Austin, 1992.

[2] A. Arora and S. S. Kulkarni. Component based design of
multitolerant systems.IEEE Transactions on Software Engi-
neering, 24(1):63–78, January 1998.

[3] A. Arora and S. S. Kulkarni. Detectors and correctors: A
theory of fault-tolerance components.International Con-
ference on Distributed Computing Systems, pages 436–443,
May 1998. An extended version of this paper is submitted to
IEEE Transactions on Computers.

[4] K. M. Chandy and J. Misra.Parallel Program Design: A
Foundation. Addison-Wesley, 1988.

[5] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11), 1974.

[6] E. W. Dijkstra. A belated proof of self-stabilization.Dis-
tributed Computing, 1(1):5–6, 1986.

[7] M. J. C. Gordon and T. F. Melham.Introduction to HOL: A
Theorem proving Environment for Higher Order Logic. Cam-
bridge University Press, 1993.

[8] M. G. Gouda and N. Multari. Stabilizing communication
protocols.IEEE Transactions on Computers, 40(4):448–458,
1991.

[9] Y. Lakhnech and M. Siegel. Deductive verification of stabi-
lizing systems.Proceedings of the Third Workshop on Self-
Stabilizing Systems, pages 201–216, 1997.

[10] S. Merz. Mechanical verification of self-stabilizing token
ring. Personal communication.

[11] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich
von Henke. Formal verification for fault-tolerant architec-
tures: Prolegomena to the design of PVS.IEEE Transactions
on Software Engineering, 21(2):107–125, February 1995.

[12] I. S. W. B. Prasetya. Mechanically verified self-stabilizing
hierarchical algorithms.Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’97), volume 1217
of Lecture Notes in Computer Science, pages 399–415, 1997.

[13] S. Qadeer and N. Shankar. Verifying a self-stabilizing mu-
tual exclusion algorithm. In David Gries and Willem-Paul
de Roever, editors,IFIP International Conference on Pro-
gramming Concepts and Methods (PROCOMET ’98), pages
424–443, Shelter Island, NY, June 1998. Chapman & Hall.

[14] M. Siegel and F. Stomp. Extending the limits of sequentially
phased reasoning. In P. S. Thiagarajan, editor,Foundations of
software technology and theoretical computer science, Lec-
ture Notes in computer science 880, 1994.

[15] G. Varghese.Self-stabilization by local checking and correc-
tion. PhD thesis, MIT/LCS/TR-583, 1993.

Symbols

Variable Used as
p; q program
s; s0; s1; s2 state
seq trace
S; T assertion
R property
m;n natural number
j; k process, domain0::N
v; v1; v2 x value for a process, domain0::(M�1)

Expression Meaning
x(s)(j) The value ofx:j in states
seq(n) nth state in the sequenceseq

