
Invited paper (slightly expanded) for a special session on the Verified Software Initiative, 12th IEEE International Conference on the
Engineering of Complex Computer Systems (ICECCS), Auckland, New Zealand, July 2007, pp. 270–276.

What Use is Verified Software?∗

John Rushby
Computer Science Laboratory,

SRI International
Menlo Park CA USA

rushby@csl.sri.com

Abstract

The world at large cares little for verified software; what
it cares about are trustworthy and cost-effective systems
that do their jobs well. We examine the value of verified soft-
ware and of verification technology in the systems context
from two perspectives, one analytic, the other synthetic. We
propose some research opportunities that could enhance the
contribution of the verified software initiative to the prac-
tices of systems engineering and assurance.

1. Introduction

The Verified Software Initiative (VSI) aims to foster the
science and technology of formal verification—and the cul-
ture of software development—so that it becomes routine
for software to be delivered with a guarantee of correctness.

But we as users, and larger society as stakeholders, have
little direct interest in the correctness of software; what we
care about aresystems(such as those for air traffic control,
credit cards, or cellphones), whose operation is the result
of complex interactions among many software subsystems,
and whose failures and infelicities are generally due to sub-
tle faults in those interactions, sometimes provoked by hard-
ware malfunction, user error, or other unanticipated combi-
nations of circumstances, and sometimes the result of mis-
understood requirements and expectations.

What is the relationship between guaranteed properties
of software programs and the reliability, safety, and gen-
eral felicity of systems? It is not a simple one, for it is well-
known that systems built on correct programs can fail (be-
cause they are correct with respect to inadequate properties)
and that satisfactory systems can contain incorrect programs

∗ This research was partially supported by AFRL through a subcontract
to Raytheon, by NASA Langley contract NNL06AA07B through a
subcontract to ERA Corporation, and by NSF grant CNS-0644783.

(because the system shields its programs from the circum-
stances that provoke their faults, or because it has ways of
coping with the manifestations of those faults).

Furthermore, the technology of program verification can
be applied in many different ways and to many different tar-
gets and for different purposes. For example, as static anal-
ysis it can be applied to large suites of executable programs
in a highly automated way but can guarantee only relatively
shallow and local properties (e.g., absence of runtime errors,
such as those caused by dereferencing a null pointer, or di-
viding by zero); as theorem proving it is often applied under
skilled human guidance to rather abstract representations of
small programs (e.g., as algorithms described in a speci-
fication language) and can guarantee fairly strong proper-
ties (e.g., that the algorithm achieves its purpose); and as
model checking it can be used for many purposes other than
verification (e.g., for test generation, bug finding, or explo-
ration).1 These different applications of formal verification
methods support very different claims and apply to very dif-
ferent artifacts in the software development process.

There seem to be two existing perspectives from which
to view the potential contributions of verified software and
of verification technology to systems. One is the perspective
of system assurance, which is best developed in its applica-
tion to safety-critical systems. Specifically, software verifi-
cation can be included among the evidence that supports a
safety case or, more generally, an assurance case. I consider
this perspective in Section 2. The other perspective, which I
will call the “systems view,” holds that component reliabil-
ity is not the most important factor in overall system qual-
ity, and that major system failures are generally the result of
unanticipated interactions among system components or be-
tween the system and its environment. I consider this per-
spective in Section 3. My considerations raise more ques-
tions than answers, and I conclude in Section 4 with sug-
gestions for further research.

1 These are examples only; each technology can be used for other pur-
poses as well.

1



2. The Assurance Perspective

Many industries require asafety caseto be demonstrated
before a potentially hazardous system may be deployed. A
safety case [1] is

“A documented body of evidence that provides a
convincing and valid argument that a system is
adequately safe for a given application in a given
environment.”

A safety case is generally structured as an explicitargu-
ment, based on documentedevidencethat supports suitable
claimsconcerning system safety. This general approach is
widely applicable, so that one hears of “security cases,” or
“dependability cases.” Beyond critical systems, this seems
a rational framework for justifying propositions that may
be made about any particular system and the goals it is in-
tended to achieve, and I refer to the general approach as pro-
viding anassurance case.

Formal verification is among the evidence that might be
considered in an assurance case, but it is unlikely to be the
only evidence. This is because the correctness properties
that have been verified might not include everything that is
important about the system, because only some parts of the
system might have been formally verified, because the veri-
fication itself may be considered fallible, and because some
aspects of behavior may be beyond the reach of formal ver-
ification (a topic that is considered in Section 3). Conse-
quently, we need a way to assemble multiple items of evi-
dence and their associated arguments into a coherent overall
assurance case. The claims supported by most forms of ev-
idence (and, indeed, the top level claims that we really care
about) usually are conditional and are often stated proba-
bilistically (e.g., a claim for the primary protection system
for a nuclear plant might be that its probability of failure
on demand (PFD) is less than10−3). The claims supported
by formal methods, on the other hand, usually are uncondi-
tional (e.g., this program will generateno runtime errors).
But although the claim may be unconditional, there will
be some uncertainty about the evidence itself—even for-
mal methods may be fallible—which can be expressed as
a subjective probability; thus we may speak of 99.9% confi-
dence that static analysis supports a claim of no runtime ex-
ceptions or, in the conditional case, of 95% confidence that
testing evidence supports a claim of10−3 PFD.

We now need a method for “adding up” multiple forms
of evidence, in which we have different degrees of confi-
dence, to support a possibly conditional claim: this is called
a “multi-legged” assurance case [3]. Bayes theorem is the
principal tool for analyzing subjective probabilities [14]: it
allows a prior assessment of probability to be updated by
new evidence to yield a rational posterior probability. It is
technically difficult to deal with large numbers of complex
conditional (i.e., interdependent) probabilities but Bayesian

Belief Nets (BBNs) provide a graphical way explicitly to
represent dependence among different items of evidence,
and they are supported by tools (e.g., HUGIN Expert [13])
that can perform the necessary calculations to estimate pos-
terior probabilities.

O

T

C

V

Z

S

Figure 1. BBN For A Two-Legged Assurance
Case (from [17])

Littlewood and Wright [17] examine a two-legged assur-
ance case whose BBN is shown in Figure 1. Here, evidence
from testing is combined with formal verification; the nodes
represent judgments about components of the argument and
the arcs indicate dependence between these. In particular,
the nodeZ concerns the specification for the system and the
analysis must consider two possibilities: that it iscorrect
(i.e., accurately represents the true requirements on the sys-
tem) orincorrect . The evaluator must attach some prior
probability distribution to these possibilities (e.g., 99% con-
fidence it iscorrect , vs. 1% that it isincorrect ). The
nodeV represents the outcome of formal verification (i.e.,
pass or fail ); we presumably will undertake some reme-
dial action if the verification fails, so we are only concerned
with the case that it passes. The nodeS represents the true
(but unknown) quality of the system (e.g., its probability
of failure on demand, in which caseS will have a value
between 0 and 1). There are arcs fromZ andS to V be-
cause the verification outcome should surely depend on the
correctness of the specification and the quality of the sys-
tem.O is the test oracle; it is derived in some way from the

2



specificationZ and may becorrect or incorrect —
the probability distribution over these will be some func-
tion of the distribution over the correctness ofZ (e.g., ifZ
is correct , we might suppose it is 95% probable thatO is
correct , but if Z is incorrect , then it is only 2% prob-
able thatO is correct ). T is the outcome of testing: that
is, whether or not failures were discovered. Again, we pre-
sumably will fix things if failures are discovered in testing,
so we are only concerned with the case ofno failures .
T depends on the oracleO and the true quality of the sys-
tem S and its probability distribution over these will rep-
resent the evaluator’s confidence in the test quality (as in-
dicated by coverage measures, or mutant detection, for ex-
ample). Finally, the nodeC represents the outcome or con-
clusion of the analysis; presumably this will be toaccept
the system only if the systempasses verification andno
failures are discovered in testing.

In this example, onlyT andV are directly observable,
andC is fully determined by these. Using a BBN tool, it is
possible to conduct “what if” exercises on this example to
see how prior estimates for the conditional probability dis-
tributions of the various nodes are updated by the evidence
(i.e., that verification passes and that testing finds no er-
rors) and thereby to determine the posterior probability dis-
tribution that the conclusion is correct. Rather than “what
if” exercises with a tool, Littlewood and Wright [17] exam-
ine this example symbolically. They observe that surprising
outcomes are possible; for example, if the prior probability
distributions onT are changed to represent harder (or more
numerous) tests, and still no failures are detected, this may
weaken confidence in correctness of the test oracle rather
than increase confidence in the conclusion. They show that
these surprising outcomes are eliminated when the claim
supported by verification is unconditional (i.e., when for-
mal verification supports the claim of “perfection,”S = 0).

This is an attractive conclusion: it suggests that the un-
conditional character of formal verification evidence yields
significant added value. However, Littlewood and Wright’s
analysis assumes that the correctness property guaranteed
by formal verification is the full specification for the sys-
tem (whose correctness is represented by the single node
Z). As we noted earlier, formal verification may consider
only weak properties, such as absence of runtime errors, or
properties of an abstraction such as correctness of an algo-
rithm.

If the formally verified properties are fragments of the
full specification, then I believe we can split the BBN into
two: one that considers the union of these verified frag-
ments, which we can represent asZ ′, and one that consid-
ers the rest of the specificationZ ′′ = Z\Z ′ (I am abus-
ing notation here and using these symbols to represent both
the specifications themselves, and the quantities actually
used in the BBNs, which are estimates of their correctness).

Analysis of Z ′′ proceeds without formal evidence, while
that ofZ ′ can use Littlewood and Wright’s insights. A com-
plicating factor is that the formally verified artifacts may be
algorithms or other intermediate products rather than the ac-
tual system S, but I suspect this can be handled by adding
nodes to the BBN to represent these artifacts (though only
the nodes corresponding to these artifacts will have uncon-
ditional claims).

Adaptations to the BBN of Figure 1 seem more prob-
lematic when formal verification has delivered only implicit
properties such as guaranteed absence of runtime errors. It
is not viable, in my opinion, to treat such implicit proper-
ties as conjuncts of the full specification; they are at best
derived properties that should be entailed by the full spec-
ification. It might seem that we could then extend Figure
1 by adding aZ ′ to represent the formal verified proper-
ties, and we might expect that the entailment ofZ ′ by Z al-
lows relatively straightforward analysis. Unfortunately, this
may not be so.

Philosophers interested in the scientific method study
topics similar to those considered here; they are interested in
the extent to which evidence supports one hypothesis rather
than another, and have notions of thecoherenceof evi-
dence [4] and a general topic ofconfirmation theory[8]. The
roots of much of their analysis lie in attempts to construct
a Bayesian account of inductive reasoning that would be a
close analog to classical logic for deductive reasoning [5].
It might be hoped to combine the two forms of reasoning,
so that if evidenceE supports a hypothesisH andH de-
ductively entailsH ′, then surelyE should also supportH ′.
This expectation is dashed under any plausible probabilis-
tic interpretation of “supports” by the following counterex-
ample. LetH be the hypothesis that a card drawn at random
from a shuffled deck is the Ace of Hearts, letH ′ be the hy-
pothesis that the card is red, and letE be the evidence that
the card is an Ace. CertainlyH entailsH ′ andE supports
H, but E cannot be considered to supportH ′. (I learned
this counterexample from a talk by Brandon Fitelson of UC
Berkeley; his websitehttp://fitelson.org/ con-
tains much material on these topics.) It is interesting in this
context to note that some exponents of goal-based assurance
look to Toulmin [27] rather than classical logic in fram-
ing assurance cases [2]; Toulmin stressesjustificationrather
thaninference.

Inquiries by philosophers also raise interesting questions
on how to estimate the strength of evidence. It seems im-
plicit in the BBN approach that the extent to which evi-
denceE tends to support hypothesisH is some function
of the prior probabilityP (H) and the posterior probability
P (H|E). Fitelson [8] considers measures related to these
and other conditional probabilities and gives compelling ar-
guments that the best are those that compareP (E|H) and
P (E|¬H) (in particular, the logarithm of their ratio is the

3



single most attractive choice). These measures are very dif-
ferent from one another and I suggest that some review the
philosophers’ considerations will be useful in developing
multi-legged assurance cases.

The conclusion I draw from this discussion and the coun-
terexample above is that it may not be straightforward to de-
velop schema for multi-legged assurance cases that use ev-
idence of formal verification for weak properties. In partic-
ular, the entailment relationships among the various partial
specifications may not yield simpler BBNs than unrelated
analyses. On the other hand, their unconditional character
should allow all the formal analyses to be “added up” sep-
arately in a fairly simple way (as evidence for the uncon-
ditional conjunction of their separate claims), and only that
“sum” need be added into the full BBN.

Absent more principled analyses that might follow from
reexamination of multi-legged cases to include formal evi-
dence for weak properties, we can describe an intuitive ar-
gument why this evidence may be valuable. This is an argu-
ment I call “coupling,” based on use of this term for a sim-
ilar idea in testing [19]. The idea from testing is that tests
that expose simple errors often catch subtle ones too; trans-
ferred to verification, it is the idea that violation of a small
property may indicate violation of a big one too.

Formal verification, even for weak properties, has the at-
tribute that it considers all possible executions. Thus, for-
mal verification may detect violation of a weak property by
discovering an unanticipated scenario; the detected viola-
tion (e.g., a runtime error) acts as a “canary in the mine”
that alerts us to overlooked cases that require deeper con-
sideration. Testing might overlook the scenario because the
tester shares the same lacunae as the developer, or because
the scenario is very rare and difficult to construct, but for-
mal verification will find it because it considers every case.
I suspect it is this examination of all possible scenarios that
explains how static analysis has been able to find bugs in
avionics code that had already been subjected to the testing
and other assurance methods for the highest level of FAA
certification (DO-178B Level A) [9]. Viewed from this per-
spective, it seems that the main value in static analysis and
other formal methods that examine implicit or local prop-
erties is that they provide a check on the efficacy of other
assurance activities: if testing and other assurance methods
did not find errors uncovered by static analysis, then they
cannot have been thorough enough and should be reexam-
ined.

Verification for weak properties has obvious value when
it exposes otherwise undetected problems; it is less obvious
what value should be attached to successful verifications of
this kind. Certainly, those who espouse the system view at-
tach very little value, and it is this perspective that we con-
sider next.

3. The System Perspective

Accident analysis is a mirror-image to assurance; by
studying how things fail, we can learn how to develop them
so they will not fail (at least, not in the same way as the
last accident) and how to provide assurance that we have
done so. The traditional view of accidents, which devel-
oped in the mid-20th century, was that they are triggered
by (often multiple) component faults that lead to a cascad-
ing chain of further events and, ultimately, to some bad out-
come. Remedies suggested by this analysis are to use reli-
able components, to detect latent faults, and to have mech-
anisms that interrupt the cascade. A more recent view, fa-
mously introduced by Perrow [20], is the notion of asys-
tem accident. Here, accidents are not (mainly) the result of
component failures but of flaws in the system as a whole,
which can create interactions among its components so that
bad outcomes follow from (what were thought to be) cor-
rect behaviors. Perrow identifiesinteractive complexityand
tight couplingas system attributes that contribute to acci-
dents. Leveson [15, 16] develops related ideas, with partic-
ular applications to computer-intensive systems.

Those who adopt the system perspective focus much at-
tention on human organizations and related topics (e.g., the
notion of resilience[12]) rather than specific engineering
technologies such as formal verification. However, I think it
is fair to say they would attach relatively little importance
to verified software as a contribution to system safety. This
is because they see software as a component and do not re-
gard component reliability as the main issue: rather it is in-
teractions between components where the big problems lie.
Thus, Leveson, in particular, places great stress on require-
ments engineering, but treats it from the point of view of
human problem solving.

One can agree with much of the systems view without
agreeing with all its diagnoses and prescriptions. In particu-
lar, we have the “luxury” of system accidents only because
components have become sufficiently reliable that they are
no longer the chief precipitators of accidents—and the tech-
nology of formal verification may be, or may become, the
most effective and cost-effective way to ensure reliable soft-
ware components. However, the systems view is surely cor-
rect to identify the importance of interactions among com-
ponents and the crucial significance of good requirements
engineering. The verified software initiative will not achieve
its full potential if it focuses solely on verification of soft-
ware with respect to its specifications without also address-
ing correctness and suitability of those specifications and
the requirements from which they are derived.

Conversely, traditional requirements engineering needs
help, for it demands great feats of human imagination: we
have to imagine the interaction of the proposed system with
its environment (to identify both its desired function and un-

4



desired hazards), imagine its design and its components and
imagine their interactions, and so on. Imagination may be
supported by sketches and physical models or prototypes,
and guided by checklists and by a carefully managed en-
gineering process, but it is chiefly a mental activity, and a
difficult one that benefits from long experience. We should
not expect—nor desire—to eliminate the need for human
imagination, intelligence, and experience from this process,
but surely we can augment these precious resources by the
power of computation.

The recent and growing adoption of model-based devel-
opment has created what seems to me a once-in-a-lifetime
opportunity to apply the technologies underlying formal
verification to the important topics of requirements analysis
and development. Model-based design environments such
as Esterel/SCADE, Matlab/Simulink/Stateflow, AADL, or
UML provide graphical specification notations based on
concepts familiar or acceptable to engineers (e.g., control
diagrams, state machines, sequence charts), methods for
simulating or otherwise exercising specifications, and some
means to generate or construct executable programs from
the models. Until the advent of model-based methods, arti-
facts produced in the early stages of system development
were generally descriptions in natural language, possibly
augmented by tables and sketches. While they could be vo-
luminous and precise, these documents were not amenable
to any kind of formal analysis. Model-based methods have
changed that: for the first time, early-lifecycle artifacts such
as requirements, specifications, and outline designs have be-
come available in forms that are useful for mechanized for-
mal analysis. Some of the notations used in model-based de-
sign environments have quite awkward semantics, but they
present no insuperable difficulties (see, e.g., [11]) and for-
mal methods have been applied successfully to most model-
based notations.

The opportunity as I see it is to combine the strengths
of man and machine: people are good at describing how
things work and at stating some of the things they do and do
not want to happen, but they are not good at imagining the
consequences of collections of such descriptions and state-
ments;2 computers are good at tireless calculation and, in
the guise of formal methods they can calculate these conse-
quences for us. The unique value of formal methods is that
they can compute properties of all reachable states, and this
extends their value far beyond that of simulation, which can
merely sample that space. The use of simulation in model-
based development does provide a significant benefit, how-

2 In evidence, I cite one very experienced software architect who ex-
plained that there are two phases in requirements acquisition: one per-
formed at the beginning of the project, and a second performed after
the first attempt at component integration reveals how much has been
overlooked. The idea here is to move the second phase into the first, by
using formal methods to explore “integration” issues early in the de-
velopment.

ever, which carries over to formal methods: namely, design
models are augmented by models of the environment (e.g.,
the controlled plant, in the case of embedded systems) and
these are no less valuable in verification than in simulation.

Another distinctive value of formal methods is that they
can calculate properties of highly abstract models: in the
early stages of exploration, a few axioms may adequately
characterize a component and may serve our purposes bet-
ter than a detailed model. (Training engineers to appreci-
ate and exploit abstraction may be one of the more difficult
tasks in technology transfer for formal methods.) Through
reachability analysis, initial models and properties can be
iteratively refined as oversights and undesirable behaviors
are discovered, and a more complete, precise, and consis-
tent requirements specification can be developed through
this symbiosis of man and machine. Many traditional safety
engineering analyses such as hazard analysis and failure
modes and effects analysis can be seen as informal ways
to do reachability analysis, and these can be recast as for-
mal analyses and integrated in this process. An early and
partial, but very encouraging, application of this approach
is described by researchers at Rockwell Collins [18]. Coun-
terexamples generated by formal analysis can be used to
drive the simulator of the modeling environment, or they
can be presented to the user in one of its modeling nota-
tions (e.g., as message sequence charts).

A weakness in my advocacy of formal analysis for
model-based designs in requirements development is that
there generally are many stakeholders, each with a partial
view of the system, and often conflicting expectations; each
of these may develop and analyze their own models, but
then we need ways to integrate these and to discover and
reconcile their inconsistencies. Integration is not easy be-
cause each constituency may have its own modeling meth-
ods that are entirely silent about the concerns of others (e.g.,
the scheduling people may say nothing about security, and
vice-versa), yet certain topics cut across both (e.g., covert
timing channels in security). Or we may find that different
constituencies have specified conflicting requirements (e.g.,
those scheduling the CPU and those scheduling the bus may
violate each others assumptions). I think these difficulties
should be seen as research opportunities, and there are al-
ready some encouraging developments, such as those that
show how modeling and analysis for real time can be under-
taken within a standard state machine framework [7]. There
are notations such as the Architecture Analysis and Design
Language (AADL) [23] that allow a single model to be an-
notated in different ways, but its semantics are weak for for-
mal verification and do not support cross-cutting analyses.
These limitations should be seen as a further research op-
portunity: we need to find ways to establish that different
views are projections of a common model and to combine
specialized analyses performed along different projections.

5



Whereas the assurance perspective encourages us to seek
ways in which the guarantee of correctness conferred on
software by formal verification can be elevated to support
claims about the overall system, the systems view encour-
ages us to think about how the technology of formal veri-
fication can help us engineer good systems from the begin-
ning: the first view is analytic, the second synthetic.

This synthetic view leads, inevitably in my opinion, to
advocacy forcorrectness by construction[10], which is a
process in which the products of every step of development
are subjected to rigorous analysis, both internal to the prod-
uct (e.g., static analysis of source code), and with respect
to the products of earlier steps (e.g., specification-based
testing of the source code); this is in contrast to the tra-
ditional “V Model,” where the verification and validation
steps follow the development steps. The idea is to find and
fix problems early, and before moving on to the next stage.
Such approaches are widely advocated in safety engineer-
ing (e.g., [21, 24, 25]), where intensive (informal) verifica-
tion is performed within each step and extensivetraceabil-
ity is required from one step to the next. The difference is
that the technology of formal verification could provide au-
tomated assistance for many of these activities, thereby re-
ducing their cost and increasing their efficacy. Examples in-
clude automated generation and monitoring of tests (at the
integration and systems levels, not merely the unit level),
model exploration (e.g., “show me an execution in which
both these states are active and this value is zero”), and im-
proved specification and enforcement of constraints on pro-
gramming at the unit level.

To illustrate the last point: faults often arise at the in-
terfaces between software components. Extended type an-
notations for interfaces would allow formal analysis of
limited—but better than current—checks that components
respect their interfaces. Stronger checks require specifica-
tion of how the interface is to be used (e.g., a protocol for in-
teraction);typestate[26] andinterface automata[6] provide
ways to do this. Formal methods can then attempt to verify
correct interface interactions, or can generate monitors to
check them at runtime or test benches to explore them dur-
ing development (rather like the bus functional models used
in hardware).

Integration frameworks such as the Time Triggered Ar-
chitecture (TTA) and operating system kernels for partition-
ing and separation provide yet stronger mechanisms for en-
forcing interfaces: those of well-behaved components are
guaranteed, even in the presence of faulty and malicious
components. Formal verification of these frameworks is a
challenging undertaking, but one that reduces the burden
for other components. I discuss these and related topics in a
companion paper [22].

4. Summary and Recommendations

Systems are more than software and the relationship be-
tween verified software and trustworthy and attractive sys-
tems is not simple. I have outlined two ways in which veri-
fied software and the technology of formal verification can
contribute to high quality systems.

The first way is analytic: it uses verification as evidence
in developing an assurance case for the system concerned.
Verification will be combined with other evidence, so we
are concerned with multi-legged assurance cases, and I de-
scribed some of the benefits and difficulties in using verifi-
cation evidence in such cases. The difficulties raise interest-
ing research questions for those skilled in BBNs and other
methods for analyzing and combining evidence: in partic-
ular, how to factor in evidence delivered by static analysis
(where the properties verified are not directly related to the
system specification), and how to respond to issues raised
by philosophers working on confirmation theory.

The second way is synthetic: it uses verification technol-
ogy to aid in the construction of high-quality systems (an
approach sometimes called correctness by construction).
The engineering challenges here are to integrate verifica-
tion technology into the processes and tools used in systems
engineering; the rise of model-based development provides
an opportunity to do this. The research challenges are to
find ways to deliver the singular advantages of formal anal-
ysis (the ability to work with highly abstract models, and
the ability to explore all reachable states) in contexts where
knowledge (e.g., of the real world, or of the customer’s
expectations) is imperfect, where some requirements may
conflict, and where properties other than functional correct-
ness (e.g., cost, performance) must also be considered.

The value of both analytic and synthetic formal verifica-
tion will surely increase as systems become more intercon-
nected and subject to constant evolution. It is no longer sen-
sible to think of systems as ever finished: components are
modified and added as new needs or opportunities emerge,
whole subsystems are grafted on, and deliberate and acci-
dental integrations are created between previously separate
systems. The local mechanics of adaptation and integration
may be mastered while emergent properties, both good and
ill, are left to chance. Medical systems provide interesting
examples: many devices that each manage some aspect of
physiology can be attached to a single patient, creating an
accidental system of systems that interact through the con-
trolled plant—the patient. It is known that patients respond
better when different elements of their physiology operate
in harmony (e.g., so many heartbeats to each breath) but the
separately designed devices each manage their own param-
eter in ignorance of the others.

Manual methods of analysis and design have limited util-
ity in the face of continual evolution: it is hard to apply these

6



methods to a single static system and vastly harder to re-
visit the assurance case or the requirements capture or de-
sign rationale for separate systems and components, years
after their initial construction, to explore the consequences
of modifications, extensions, or integrations. But automated
formal methods bring the same scrutiny to a specification
many years later as on the day of its creation, and in jux-
taposition with new environment specifications as with the
old: they are a reusable asset.

Acknowledgments. Presentations and discussions at meet-
ings for the verified software initiative and its earlier in-
carnations helped me formulate my views on these topics,
as did discussions with my colleagues Rance DeLong and
Shankar, and with Martyn Thomas. I am grateful to Robin
Bloomfield and Bev Littlewood and their colleagues for ed-
ucating me on safety cases and BBNs during a visit to CSR
at City University in November 2006.

References

[1] P. Bishop and R. Bloomfield. A methodology for safety
case development. InSafety-Critical Systems Sym-
posium, Birmingham, UK, Feb. 1998. Available at
http://www.adelard.com/resources/papers/
pdf/sss98web.pdf .

[2] P. Bishop, R. Bloomfield, and S. Guerra. The fu-
ture of goal-based assurance cases. InDSN Work-
shop on Assurance Cases: Best Practices, Possible Ob-
stacles, and Future Opportunities, Florence, Italy, July
2004. Available fromhttp://www.aitcnet.org/
AssuranceCases/agenda.html .

[3] R. Bloomfield and B. Littlewood. Multi-legged arguments:
The impact of diversity upon confidence in dependability ar-
guments. InThe International Conference on Dependable
Systems and Networks, pages 25–34, San Francisco, CA,
June 2003. IEEE Computer Society.

[4] L. Bovens and S. Hartmann.Bayesian Epistemology. Ox-
ford University Press, 2003.

[5] R. Carnap. Logical Foundations of Probability. Chicago
University Press, second edition, 1962.

[6] L. de Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering (FSE), pages 109–120. Association
for Computing Machinery, 2001.

[7] B. Dutertre and M. Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using calen-
dar automata. InFormal Techniques in Real-Time and
Fault-Tolerant Systems, volume 3253 ofLecture Notes in
Computer Science, Grenoble, France, Sept. 2004. Springer-
Verlag.

[8] B. Fitelson. Studies in Bayesian Confirmation Theory. PhD
thesis, Department of Philosophy, University of Wisconsin,
Madison, May 2001. Available athttp://fitelson.
org/thesis.pdf .

[9] A. German. Software static code analysis lessons
learned. Crosstalk, Nov. 2003. Available at
http://www.stsc.hill.af.mil/crosstalk/
2003/11/0311German.html .

[10] A. Hall. Software verification and software engineering: A
practitioner’s perspective. In N. Shankar, editor,IFIP Work-
ing Conference on Verified Software: Theories, Tools, and
Experiments, Zurich, Switzerland, Oct. 2005. Available at
http://vstte.inf.ethz.ch/papers.html .

[11] G. Hamon and J. Rushby. An operational semantics for
Stateflow. In M. Wermelinger and T. Margaria-Steffen, ed-
itors, Fundamental Approaches to Software Engineering:
7th International Conference (FASE), volume 2984 ofLec-
ture Notes in Computer Science, pages 229–243, Barcelona,
Spain, 2004. Springer-Verlag.

[12] E. Hollnagel, D. D. Woods, and N. Leveson, editors.Re-
silience Engineering. Ashgate, 2005.

[13] HUGIN home page. http://www.hugin.com/ .

[14] R. Jeffrey. Subjective Probability: The Real Thing. Cam-
bridge University Press, 2004.

[15] N. Leveson. A new accident model for engineering safer sys-
tems.Safety Science, 42(4):237–270, Apr. 2004.

[16] N. G. Leveson. Safety Engineering: Back to the Fu-
ture. Draft available athttp://sunnyday.mit.edu/
book2.pdf .

[17] B. Littlewood and D. Wright. The use of multi-legged argu-
ments to increase confidence in safety claims for software-
based systems: a study based on a BBN analysis of an ide-
alised example.IEEE Transactions on Software Engineer-
ing, 33(5):347–365, May 2007.

[18] S. P. Miller, A. C. Tribble, and M. P. E. Heimdahl. Proving
the shalls. In K. Araki, S. Gnesi, and D. Mandrioli, editors,
International Symposium of Formal Methods Europe, FME
2003, volume 2805 ofLecture Notes in Computer Science,
pages 75–93, Pisa, Italy, Mar. 2001. Springer-Verlag.

[19] R. A. D. Millo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer.IEEE
Computer, 11(4):34–41, Apr. 1978.

[20] C. Perrow. Normal Accidents: Living with High Risk Tech-
nologies. Basic Books, New York, NY, 1984.

[21] Requirements and Technical Concepts for Aviation, Wash-
ington, DC.DO-178B: Software Considerations in Airborne
Systems and Equipment Certification, Dec. 1992. This doc-
ument is known as EUROCAE ED-12B in Europe.

[22] J. Rushby. Just-in-time certification. In12th IEEE
International Conference on the Engineering of Com-
plex Computer Systems (ICECCS), pages 15–24, Auck-
land, New Zealand, July 2007. IEEE Computer Society.
Available at http://www.csl.sri.com/˜rushby/
abstracts/iceccs07 .

[23] AADL home page. http://www.aadl.info/ .

[24] Society of Automotive Engineers. Aerospace Recom-
mended Practice (ARP) 4754: Certification Considerations
for Highly-Integrated or Complex Aircraft Systems, Nov.
1996.

7



[25] Society of Automotive Engineers.Aerospace Recommended
Practice (ARP) 4761: Guidelines and Methods for Conduct-
ing the Safety Assessment Process on Civil Airborne Systems
and Equipment, Dec. 1996.

[26] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.IEEE
Transactions on Software Engineering, 12(1):157–171, Jan.
1986.

[27] S. E. Toulmin.The Uses of Argument. Cambridge University
Press, 2003. Updated edition (the original is dated 1958).

8


