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Systematic Formal Verification for Fault-Tolerant
Time-Triggered Algorithms

John Rushby

Abstract—Many critical real-time applications are imple-
mented as time-triggered systems. We present a systematic
way to derive such time-triggered implementations from al-
gorithms specified as functional programs (in which form
their correctness and fault-tolerance properties can be for-
mally and mechanically verified with relative ease). The
functional program is first transformed into an untimed syn-
chronous system, and then to its time-triggered implemen-
tation. The first step is specific to the algorithm concerned,
but the second is generic and we prove its correctness.
This proof has been formalized and mechanically checked
with the PVS verification system. The approach provides
a methodology that can ease the formal specification and
assurance of critical fault-tolerant systems.

Keywords—Formal methods, formal verification, time-
triggered algorithms, synchronous systems, PVS.

I. Introduction

SYNCHRONOUS systems are distributed computer sys-
tems where there are known upper bounds on the time

that it takes nonfaulty processors to perform certain oper-
ations, and on the time that it takes for a message sent by
one nonfaulty processor to be received by another. The ex-
istence of these bounds simplifies the development of fault-
tolerant systems because nonfaulty processes executing a
common algorithm can use the passage of time to predict
each others’ progress. This property contrasts with asyn-
chronous systems, where there are no upper bounds on
processing and message delays, and where it is therefore
provably impossible to achieve certain forms of consistent
knowledge or coordinated action in the presence of even
simple faults [1, 2].

For these reasons, fault-tolerant systems for critical con-
trol applications in aircraft, trains, automobiles, and indus-
trial plants are usually based on the synchronous approach,
though they differ in the extent to which the basic mecha-
nisms of the system really do guarantee satisfaction of the
synchrony assumption.

With systems based on conventional “commercial off
the shelf” (COTS) components, synchrony is merely an
assumption—these systems employ scheduling algorithms
that can miss deadlines, their operating systems admit the
possibility of buffer overflows, they use contention buses
such as Ethernet, and they have other characteristics that
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allow occasional violations of claimed time bounds. Vio-
lation of the synchrony assumption may lead to failure of
the higher-level system components that depend on it, so
adopting this assumption when it is only probabilistically
valid has ramifications on overall system reliability. No-
tice that adding timeouts does not make an asynchronous
system synchronous [3].

While probabilistic satisfaction of the synchrony assump-
tion may be “good enough” for less critical applications,
those that are truly critical must either rest on weaker as-
sumptions, or must be specially constructed to ensure that
the assumption is unconditionally valid. Those that take
the latter course often build on mechanisms that are not
merely synchronous, but synchronized and time-triggered:
the clocks of the different processors are kept close together,
processors perform their actions at specific times, and tasks
and messages are globally and statically scheduled. The
buses and operating systems used in these contexts are spe-
cialized and dedicated to satisfaction of the synchrony hy-
pothesis [4]. The Honeywell SAFEbusTM [5,6] that provides
the safety-critical backplane for the Boeing 777 Airplane
Information Management System (AIMS) [7, 8], the con-
trol system for the Shinkansen (Japanese Bullet Train) [9],
and the Time-Triggered Protocol (TTP) for safety-critical
automobile functions [10] all use this approach.

A number of basic functions have been identified that
provide important building blocks in the construction
of fault-tolerant synchronous systems [11, 12]; these in-
clude consensus (also known as interactive consistency
and Byzantine agreement) [13], reliable and atomic broad-
cast [14], and group membership [15]. Numerous algo-
rithms have been developed to perform these functions and,
because of their criticality and subtlety, several of them
have been subjected to detailed formal [16–18] and me-
chanically checked [19–23] verifications, as have their com-
bination into larger functions such as diagnosis [24], and
their synthesis into a fault-tolerant architecture based on
active (state-machine) replication [25,26].

Formal, and especially mechanically-checked, verifica-
tion of these algorithms is still something of a tour de force,
however. To have real impact on practice, we need to re-
duce the difficulty of formal verification in this domain to a
routine and largely automated process. In order to achieve
this, we should study the sources of difficulty in existing
treatments and attempt to reduce or eliminate them. In
particular, we should look for opportunities for systematic
treatments: these may allow aspects common to a range of
algorithms to be treated in a uniform way, and may even
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allow some of those aspects to be broken out and verified
in a generic manner once and for all.

There is a wide range in the apparent level of diffi-
culty and detail in the mechanized verifications cited above.
Some of the differences can be attributed to the ways in
which the problems are formalized or to the different re-
sources of the formal specification languages and theorem
provers employed. For example, Rushby [19] and Bevier
and Young [23] describe mechanically checked formal ver-
ifications of the same “Oral Messages” algorithm [27] for
the consensus problem that were performed using different
verification systems. Young [28] argues that differences in
the difficulty of these treatments (that of [19] is generally
considered simpler and clearer than that of [23]) are due to
choices in the way things are formalized, and not to the ca-
pabilities of the tools employed. We may assume that such
differences will be reduced or eliminated as experience is
gained and the better choices become more widely known.

More significant than differences due to how things are
formalized are differences due to what is formalized, and
the level of detail considered necessary. For example, both
verifications of the Oral Messages algorithm mentioned
above specify the algorithm as a functional program and
the proofs are conventional inductions. Following this ap-
proach, the special case of a two-round algorithm (a vari-
ant of the algorithm known as OM(1)) is specified in [22]
in a couple of lines and its verification is almost completely
automatic. In contrast, the treatment of OM(1) in [18]
is long and detailed and quite complicated. The reason
for its length and complexity is that this treatment ex-
plicitly considers the distributed, message passing charac-
ter of the intended implementation, and calculates tight
real-time bounds on the timeouts employed. All these de-
tails are abstracted away in the treatments using functional
programs—but this does not mean these verifications are
inferior to the more detailed analyses: on the contrary, I
would argue that they capture the essence of the algorithms
concerned (i.e., they explain why the algorithm is fault
tolerant) and that message-passing and real-time bounds
are implementation details that ought to be handled sep-
arately. In fact, most of the papers that introduce the
algorithms concerned, and the standard textbook [29], use
a similarly abstract and time-free treatment. On the other
hand, it is undeniably important also to verify a specifica-
tion that is reasonably close to the intended implementa-
tion, and to establish that the correct timeouts are used,
and that the concrete fault modes match those assumed in
the more abstract treatment.

The natural resolution for these competing claims for
abstractness and concreteness is a hierarchical approach in
which the essence of the algorithm is verified in an abstract
formulation, and a more realistic formulation is then shown
to be a refinement, in some suitable sense, of the abstract
formulation. This may not always be possible (e.g., for
event-based systems) but, when it is, we may hope that
the refinement argument will be a routine calculation of
timeouts and other concrete details.

The purpose of this paper is to present such a hierar-
chical treatment for the important case of time-triggered
implementations of round-based algorithms, and to show
that most of the details of refinement to a concrete formu-
lation can be worked out once and for all.

II. Round-Based Algorithms

In her textbook [29], Nancy Lynch identifies algorithms
for the synchronous system model with those that execute
in a series of “rounds.” Rounds have two phases: in the
first, each processor1 sends a message to some or all of the
other processors (different messages may be sent to differ-
ent processors; the messages depend on the current state of
the sending processor); in the second phase, each processor
changes its state in a manner that depends on its current
state and the collection of messages it received in the first
phase. There is no notion of real-time in this model: mes-
sages are transferred “instantaneously” from senders to re-
cipients between the two phases. The processors operate in
lockstep: all of them perform the two phases of the current
round, then move on to the first phase of the next round,
and so on.

Several of the algorithms of interest here were explicitly
formulated in terms of rounds when first presented, and
others can easily be recast into this form. For example, the
Oral Messages algorithm for consensus, OM(1), requires
two rounds as follows.

Algorithm OM(1).

Round 0:
Communication Phase: A distinguished processor called

the transmitter sends a value to all the other proces-
sors, which are called receivers; the receivers send no
messages.

Computation Phase: Each receiver stores the value re-
ceived from the transmitter in its state.

Round 1:
Communication Phase: Each receiver sends the value it

received from the transmitter to all the other receivers;
the transmitter sends no message.

Computation Phase: Each receiver sets the “decision”
component of its state to the majority value among
those received from the other receivers and that
(stored in its state) received from the transmitter.

In the presence of one or fewer arbitrary faults, OM(1)
ensures that all nonfaulty receivers decide on the same
value and, if the transmitter is nonfaulty, that value is the
one sent by the transmitter.

There are two different ways to implement round-based
algorithms. In the time-triggered approach, the implemen-
tation is very close to the model: the processors are closely
synchronized (e.g., to within a couple of bit-times in the
case of SAFEbus) and all run a common, deterministic

1I refer to the participants as processors to stress that they are
assumed to fail independently; the agents that perform these actions
will actually be processes.
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schedule that will cause them to execute specific algorithms
at specific times (according to their local clocks). The se-
quencing of phases and rounds is similarly driven by the
local clocks, and communication bandwidth is also allo-
cated as dedicated, fixed, time slots. The first (communi-
cation) phase in each round must be sufficiently long that
all nonfaulty processors will be able to exchange messages
successfully; consequently, no explicit timeouts are needed:
a message that has not arrived by the time the second
(computation) phase of a round begins is implicitly timed
out.

Whereas the allocation of resources is statically deter-
mined in the time-triggered approach, in the other, event-
triggered, approach, resources are scheduled dynamically
and processors respond to events as they occur. In this im-
plementation style, the initiation of a protocol may be trig-
gered by a local clock, but subsequent phases and rounds
are driven by the arrival of messages. In Lamport and
Merz’ treatment of OM(1), for example, a receiver that
has received a message from the transmitter may forward
it immediately to the other receivers without waiting for
its clock to indicate that the next round has started (in
other words, the pacing of phases and rounds is deter-
mined locally by the availability of messages). Unlike the
time-triggered approach, messages may have to be explic-
itly timed out in the event-triggered approach. For exam-
ple, in Lamport and Merz’ treatment of OM(1), a receiver
will not wait for relayed messages from other receivers be-
yond 2δ + ε past the start of the algorithm (where δ is the
maximum communication delay and ε the maximum time
that it can take a receiver to decide to relay a message).

Event-triggered systems are generally easier to construct
than time-triggered ones (which require a big planning and
scheduling effort upfront) and achieve better CPU utiliza-
tion under light load. On the other hand, Kopetz [4,10,30]
argues persuasively that time-triggered systems are more
predictable (and hence easier to verify), easier to test, eas-
ier to compose together, make better use of broadcast com-
munications bandwidth, can operate closer to capacity, and
are generally to be preferred for truly critical applications.
The previously mentioned SAFEbus for the Boeing 777, the
Shinkansen train control system, and the TTP protocol for
automobiles are all time-triggered.

Our goal is a systematic method for transforming round-
based protocols from very abstract functional programs,
whose properties are comparatively easy to formally and
mechanically verify, down to time-triggered implementa-
tions with appropriate timing constraints and considera-
tion for realistic fault modes. The transformation is ac-
complished in two steps: first from a functional program to
an (untimed) synchronous system, then to a time-triggered
implementation. The first step is systematic but must be
undertaken separately for each algorithm (see Section IV);
the other is generic and deals with a large class of algo-
rithms and fault assumptions in a single verification. This
generic treatment of the second step is described in the
following section.

III. Implementation of Round-Based Algorithms
as Time-Triggered Systems

The issues in transforming an untimed round-based al-
gorithm to a time-triggered implementation are basically
to ensure that the timing and duration of events in the
communication phase are such that messages between non-
faulty processors always arrive in the communication phase
of the same round, and fault modes are interpreted ap-
propriately. To verify the transformation, we introduce
formal models for untimed synchronous systems and for
time-triggered systems, and then establish a simulation re-
lation between them. We verify the simulation by means
of a traditional mathematical proof, and then describe a
mechanized verification performed using the PVS verifica-
tion system [31].

A. Synchronous Systems

For the untimed case, we use Nancy Lynch’s formal
model for synchronous systems [29, Chapter 2], with some
slight adjustments to the notation that make it easier to
match up with the mechanically verified treatment.

Definition 1: Untimed Synchronous Systems.

We assume a set mess of messages that includes a distin-
guished value null , and a set proc of processors. Processors
are partially connected by directed channels; each channel
can be thought of a buffer that can hold a single message.
Associated with each processor p are the following sets and
functions.

• A set of processors out-nbrsp to which p is connected by
outgoing channels.

• A set of processors in-nbrsp to which p is connected by
incoming channels; the function inputsp : in-nbrsp → mess
gives the message contained in each of those channels.

• A set statesp of states with a nonempty subset initp of
initial states. It is convenient to assume that there is a
component in the state that counts rounds; this counter is
zero in initial states.

• A function msgp : statesp × out-nbrsp → mess that de-
termines the message to be placed in each outgoing channel
in a way that depends on the current state.

• A function transp : statesp × inputsp → statesp that de-
termines the next state, in a way that depends on the cur-
rent state and the messages received in the incoming chan-
nels.

The system starts with each processor in an initial state.
All processors p then repeatedly perform the following two
actions in lockstep.

Communication Phase: apply the message generation
function msgp to the current state to determine the mes-
sages to be placed in each outgoing channel. (The mes-
sage value null is used to indicate “no message.”)

Computation Phase: apply the state transition function
transp to the current state and the message held in each
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incoming channel to yield the next state (with the round
counter incremented).

2

A particular algorithm is specified by supplying interpre-
tations to the various sets and functions identified above.

A.1 Faults

Distributed algorithms are usually required to operate in
the presence of faults: the specific kinds and numbers of
faults that may arise constitute the fault hypothesis. Usu-
ally, processor faults are distinguished from communication
faults; the former can be modeled by perturbations to the
transition functions transp , and the latter by allowing the
messages received along a channel to be changed from those
sent. Following [29, page 20], an execution of the system is
then an infinite sequence of triples

(S0,M0, N0), (S1,M1, N1), (S2,M2, N2), . . .

where Sr is the global state at the start of round r, Mr

is the collection of messages placed in the communication
channels, and Nr is the (possibly different) collection of
messages received.

Because our goal is to show that a time-triggered im-
plementation achieves the same behavior as the untimed
synchronous system that serves as its specification, we will
need some way to ensure that faults match up across the
two systems. For this reason, I prefer to model processor
and communication faults by perturbations to the transp
and msgp functions, respectively (rather than allowing mes-
sages received to differ from those sent); no faulty behaviors
are lost by this change. In particular, I assume that the
current round number is recorded as part of the state and
that if processor p is faulty in round r, with current state
s and the values of its input channels represented by the
array i, then transp(s, i) may yield a value other than that
intended; similarly, if the channel from p to q is faulty, then
the value msgp(s)(q) may be different than intended (and
may be null). Exactly how these values may differ from
those intended depends on the fault assumption. For ex-
ample, a crash fault in round r results in transp(s, i) = s
and msg(s)(q) = null for all i, q, and states s whose round
component is r or greater. Notice that although transp
and msgp may no longer be the intended functions, they
are still functions; in fact, there is no need to suppose that
the transp and msgp were changed when the fault arrived
in round r: since the round counter is part of the state, we
can just assume these functions behave differently than in-
tended when applied to states having round counters equal
or greater than r.

The benefit of this treatment is that, since transp and
msgp are uninterpreted, they can represent any algorithm
and any fault behavior whatsoever; if we can show that a
time-triggered system supplied with arbitrary transp and
msgp functions has the same behavior as the untimed syn-
chronous system supplied with the same functions, then
this demonstration encompasses behavior in the presence

of faults as well as the fault-free case. Furthermore, since
we no longer need to hypothesize that faults can cause dif-
ferences between those messages sent and those received
(we instead assume the fault is in msgp and the “different”
messages were actually sent), executions can be simplified
from sequences of triples to simple sequences of states

S0, S1, S2, . . .

where Sr is the global state at the start of round r. Conse-
quently, to demonstrate that a time-triggered system im-
plements the behavior specified by an untimed synchronous
system, we simply need to establish that both systems have
the same execution sequences; by mathematical induction,
this will reduce to showing that the global states of the two
systems are the same at the start of each round r.

B. Time-Triggered Systems

For the time-triggered system, we elaborate the model
of the previous section as follows.

Each processor is supplied with a clock that provides a
reasonably accurate approximation to “real” time. Follow-
ing [32], we distinguish two notions of time: clocktime, de-
noted C is the local notion of time supplied by each proces-
sor’s clock, while realtime, denoted R is an abstract global
quantity. We follow the usual convention and denote clock-
time quantities by upper case Roman or Greek letters, and
realtime quantities by lower case letters.

Formally, processor p’s clock is a function Cp : R → C.
The intended interpretation is that Cp(t) is the value of p’s
clock at realtime t.2 The clocks of nonfaulty processors are
assumed to be well-behaved in the sense that they satisfy
the following assumptions.

Assumption 1: Monotonicity. Nonfaulty clocks are
monotonic increasing functions:

t1 < t2 ⊃ Cp(t1) < Cp(t2).3

Satisfying this assumption requires some care in implemen-
tation, because clock synchronization algorithms can make
adjustments to clocks that cause them to jump backwards.
Lamport and Melliar-Smith describe some solutions [32],
and a particularly clever and economical technique for one
particular algorithm is introduced by Torres-Pomales [33]
and formally verified by Miner and Johnson [34]. Schmuck
and Cristian [35] examine the general case and show that
monotonicity can be achieved with no loss of precision.

Assumption 2: Clock Drift Rate. Nonfaulty clocks drift
from realtime at a rate bounded by a small positive quan-
tity ρ:

(1− ρ)(t1 − t2) ≤ Cp(t1)− Cp(t2) ≤ (1 + ρ)(t1 − t2).

This assumption concerns the hardware clocks employed
Inexpensive devices can achieve ρ < 10−6.

2In the terminology of [32], these are actually “inverse” clocks.
3The symbol ⊃ indicates logical implication.
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Assumption 3: Clock Synchronization. The clocks of
nonfaulty processors are synchronized within some small
clocktime bound Σ:

|Cp(t)− Cq(t)| ≤ Σ.

This assumption can be discharged by a suitable clock syn-
chronization algorithm. There are many such algorithms,
several of which have been formally verified [36–41].

Definition 2: Time-Triggered Systems.

The feature that characterizes a time-triggered system is
that all activity is driven by a global schedule: a processor
performs an action when the time on its local clock matches
that for which the action is scheduled. In our formal model,
the schedule is a function sched : N→ C, where sched(r) is
the clocktime at which round r should begin. The duration
of the r’th round is given by

dur(r) = sched(r + 1 )− sched(r).

In addition, there are fixed global clocktime constants
D and P that give the offsets into each round when mes-
sages are sent, and when the computation phase begins,
respectively. Obviously, we need the following constraint.

Constraint 1: 0 < D < P < dur(r).

Notice that the duration of the communication phase is
fixed (by P ); it is only the duration of the computation
phase that can differ from one round to another.4

The states, messages, and channels of a time-triggered
system are the same as those for the corresponding un-
timed synchronous system, as are the transition and mes-
sage functions. In addition, processors have a one-place
buffer for each incoming message channel.

The time-triggered system operates as follows. Initially
each processor is in an initial state, with its round counter
zero and its clock synchronized with the others and ini-
tialized so that Cp(t0) ≤ sched(0 ), where t0 is the current
realtime. All processors p then repeatedly perform the fol-
lowing two actions.

Communication Phase: This begins when the local clock
reads sched(r), where r is the current value of the round
counter. Apply the message generation function msgp to
the current state to determine the messages to be sent
on each outgoing channel. The messages are placed in
the channels at local clock time sched(r) + D . Incoming
messages that arrive during the communication phase
(i.e., no later than sched(r)+P) are moved to the corre-
sponding input buffer where they remain stable through
the computation phase. These buffers are initialized to
null at the beginning of each communication phase and

4There is no difficulty in generalizing the treatment to allow the
time at which messages are sent, and the duration of the communica-
tion phase, to vary from round to round. That is, the fixed clocktime
constants D and P can be systematically replaced by functions D(r)
and P (r), respectively. This generalization was developed during the
mechanized verification; see Section III-D.

their value is unspecified if more than one message ar-
rives on their associated communications channel in a
given communication phase.

Computation Phase: This begins at local clock time
sched(r) + P . Apply the state transition function transp
to the current state and the messages held in the in-
put buffers to yield the next state. The computation
will be complete at some local clock time earlier than
sched(r + 1 ). Increment the round counter, and wait for
the start of the next round.

2

Message transmission in the communication phase is ex-
plained as follows. We use sent(p, q ,m, t) to indicate that
processor p sent message m to processor q (a member of
out-nbrs(p)) at real time t (which must satisfy Cp(t) =
sched(r) + D for some round r). We use recv(q , p,m, t) to
indicate that processor q received message m from proces-
sor p (a member of in-nbrs(q)) at real time t (which must
satisfy the constraint sched(r) ≤ Cq(t) < sched(r) + P for
some round r). These two events are related as follows.

Assumption 4: Maximum Delay. When p and q are non-
faulty processors,

sent(p, q ,m, t) ⊃ recv(q , p,m, t + d)

for some 0 ≤ d ≤ δ.
In addition, we require no spontaneous generation of mes-
sages (i.e., recv(q , p,m, t) only if there is a corresponding
sent(p, q ,m, t ′) with t′ < t).

Provided there is exactly one recv(q , p,m, t) event for
each p in the communication phase for round r on pro-
cessor q (as there will be if p is nonfaulty), that unique
message m is moved into the input buffer associated with
p on processor q before the start of the computation phase
for that round and remains there throughout the phase.

Because the clocks are not perfectly synchronized, it is
possible for a message sent by a processor with a fast clock
to arrive while its recipient is still on the previous round.
It is for this reason that we do not send messages until D
clocktime units into the start of the round. In general, we
need to ensure that a message from a processor in round
r cannot arrive at its destination before that processor has
started round r, nor after it has finished the communica-
tion phase for round r. We must establish constraints on
parameters to ensure these conditions are satisfied.

Now processor p sends its message to processor q, say, at
realtime t where Cp(t) = sched(r) + D and, by the maxi-
mum delay assumption, the message will arrive at realtime
t+ d where d ≤ δ. We need to be sure that

sched(r) ≤ Cq(t + d) < sched(r) + P . (1)

By clock synchronization, we have |Cq(t) − Cp(t)| ≤ Σ;
substituting Cp(t) = sched(r) + D we obtain

−Σ ≤ Cq(t)− sched(r)−D ≤ Σ . (2)
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By the monotonic clocks assumption, this gives

sched(r) + D − Σ ≤ Cq(t) ≤ Cq(t + d)

and so the first inequality in (1) can be ensured by

Constraint 2: D ≥ Σ.

The clock synchronization calculation (2) above also
gives

Cq(t) ≤ sched(r) + D + Σ

and the clock drift rate assumption gives

(1− ρ)d ≤ Cq(t+ d)− Cq(t) ≤ (1 + ρ)d

from which it follows that

Cq(t+ d) ≤ Cq(t) + (1 + ρ)d.

Combining these and recalling that d ≤ δ, the second in-
equality in (1) can be ensured by

Constraint 3: P > D + Σ + (1 + ρ)δ.

B.1 Faults

We will prove that a time-triggered system satisfying
the various assumptions and constraints identified above
achieves the same behavior as an untimed synchronous sys-
tem supplied with the same transp and msgp functions. I
explained earlier that faults are assumed to be modeled in
the transp and msgp functions; by using the same func-
tions in both the untimed and time-triggered systems, we
ensure that the latter inherits the same fault behavior and
any fault-tolerance properties of the former. Thus, if we
have an algorithm that has been shown, in its untimed for-
mulation, to achieve some fault-tolerance properties (e.g.,
“this algorithm resists a single Byzantine fault or two crash
faults”), then we may conclude that the implementation
has the same properties.

This simple view is somewhat compromised, however,
because the time-triggered system contains a mechanism—
time triggering—that is not present in the untimed system.
This mechanism admits faults (notably, loss of clock syn-
chronization) that do not arise in the untimed system.

The implementation of a time-triggered system is re-
quired to satisfy the synchrony hypothesis and the four as-
sumptions about nonfaulty clocks listed previously. These
can be achieved using a suitable fault-tolerant clock syn-
chronization algorithm. The algorithm and its various pa-
rameters must be chosen to tolerate the number and kinds
of faults specified for the system concerned. For exam-
ple, the clock synchronization algorithm of TTP (which
is based on that of [42]) has recently been formally veri-
fied using PVS, and shown to satisfy the assumptions we
require [41]. However, a clock synchronization algorithm
only constrains the behavior of nonfaulty clocks: a proces-
sor with a faulty clock may behave in a way that violates
the fault model of our time-triggered construction. For ex-
ample, if one processor’s clock drifts to such an extent that
it is in the wrong round, then it will execute the transition

and message functions appropriate to that round and will
supply systematically incorrect messages to the other pro-
cessors. This could appear as Byzantine behavior at the
level of the untimed synchronous algorithm. Less drastic
synchronization faults may leave a processor in the right
round, but sending messages at the wrong time, so that
they arrive during the computation phases of other (cor-
rect) processors, possibly disrupting their activity.

The implementation of the time-triggered system must
include mechanisms that transform faults (such as those
due to loss of clock synchronization) that are outside the
model considered here, into those that are adequately mod-
eled as perturbations to the transp and msgp functions.
For example, the round number should be included in
messages, so that those from the wrong round can be re-
jected at the message communication layer (thereby reduc-
ing the manifestation of such a synchronization fault to fail-
silence). TTP goes further and includes all critical state in-
formation (operating mode, time, and group membership)
in its messages as part of the CRC calculation [10]; mes-
sages from a processor that is out of step with respect to
any of these items will be rejected by the TTP controllers
of other processors.

The impact of messages that arrive in the right round
but at the wrong time can be partly countered by moving
messages from their input channels to an input buffer at the
start of the communication phase: this shields the receiving
processor from any changes in channel contents during the
computation phase. However, the performance of the com-
putation phase may be degraded by the need to handle
interrupts from messages arriving unexpectedly, thereby
challenging the synchrony hypothesis. Strong elimination
of such timing faults is achieved in practice by techniques
to control the “babbling idiot” fault mode. This fault mode
occurs when a faulty or unsynchronized processor transmits
at arbitrarily wrong times. As well as undesirable mani-
festations at the synchronous system level, this fault is po-
tentially devastating to the underlying implementation if
that implementation multiplexes its communication chan-
nels onto shared buses—because the faulty processor can
then disrupt the communications of nonfaulty processors.
Babbling is eliminated by use of a Bus Interface Unit (BIU)
that only grants its processor access to the bus at appropri-
ate times. For example, in SAFEbus, processors are paired,
with each member of a pair controlling the other’s BIU; in
TTP, the BIU has an independent clock and independent
knowledge of the schedule [43]. In both cases, babbling can
occur only if there are undetected double failures. These
mechanisms prevent messages being sent at inappropriate
times and ensure that the fault modes of the time-triggered
implementation correspond those assumed for the untimed
synchronous system.

C. Verification

We now need to show that a time-triggered system
achieves the same behavior as its corresponding untimed
synchronous system. We do this in the traditional way by
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establishing a simulation relationship between the states of
an execution of the time-triggered system and those of the
corresponding untimed execution. It is usually necessary to
invent an “abstraction function” to relate the states of an
implementation to those of its specification; here, however,
the states of the two systems are the same, and the only
difficult point is to select the moments in time at which
states of the time-triggered system should correspond to
those of the untimed system.

The untimed system makes progress in discrete global
steps: all component processors perform their communica-
tion and computation phases in lockstep, so it is possible
to speak of the complete system being in a round r. The
processors of the time-triggered system, however, progress
separately at a rate governed by their internal clocks, which
are imperfectly synchronized, so that one processor may
still be on round r while another has moved on to round
r+ 1. We need to establish some consistent “cut” through
the time-triggered system that provides a global state in
which all processors are at the same point in the same
round. In some treatments of distributed systems, it is not
necessary for the global cut to correspond to a snapshot of
the system at a particular realtime instant: the cut may
be an abstract construction that has no direct realization.
In our case, however, it is natural to assume that the time-
triggered system is used in some control application and
that outputs of the individual processors (i.e., some func-
tions of their states) are used to provide redundant control
signals in real time—for example, a typical application will
be one in which the outputs of the processors are subjected
to majority voting, or separately drive some actuator in
a “force-summing” configuration.5 Consequently, we do
want to identify the cut through the system with its global
state at a specific real time instant.

In particular, we need some realtime instant gs(r) that
corresponds to the “global start” of the r’th round. We
want this instant to be one in which all nonfaulty processors
have started the r’th round, but have not yet started its
computation phase (when they will change their states).

We can achieve this by defining the global start time
gs(r) for round r to be the realtime when the processor with
the slowest clock begins round r. That is, gs(r) satisfies
the following conditions:

∀q : Cq(gs(r)) ≥ sched(r), (3)

and
∃p : Cp(gs(r)) = sched(r) (4)

(intuitively, p is the processor with the slowest clock).

Since the processors are not perfectly synchronized, we
need to be sure that they cannot drift so far apart that some
processor q has already reached its computation phase—or
is even on the next round—at gs(r). Thus, we need

∀q : Cq(gs(r)) < sched(r) + P . (5)

5For example, the outputs of different processors may energize sep-
arate coils of a single solenoid, or multiple hydraulic pistons may be
linked to a single shaft (see, e.g., [44, Figure 3.2–2]).

By (3) we have Cq(gs(r)) = sched(r) + X for some X ≥ 0,
and (4) plus the clock synchronization assumption then
gives X ≤ Σ. Now processor q will still be on round r and
in its communication phase provided X < P and this is
ensured by the inequality just derived when taken together
with Constraint 3.

We now wish to establish that the global state of a time-
triggered system at time gs(r) will be the same as that of
the corresponding untimed synchronous system at the start
of its r’th round. We denote the global state of the untimed
system at the start of the r’th round by gu(r) (for global
untimed). Global states are simply arrays of the states of
the individual processors, so that the state of processor p
at this point is gu(r)(p). Similarly, the global state of the
time-triggered system at time gs(r) is denoted gt(r) (for
global timed), and the state of its processor p is gt(r)(p).
We can now state and prove the desired result.

Theorem 1: Given the same initial states, the global
states of the untimed and time-triggered systems are the
same at the beginning of each round:

∀r : gt(r) = gu(r).

Proof: The proof is by induction.

Base case. This is the case r = 0. Both systems are then
in their initial states which, by hypothesis, are the same.
Inductive step. We assume the result for r and prove it
for r + 1. For the untimed case, the message inputsq(p)
from processor p received by q in the r’th round is
msgp(gu(r)(p))(q).6

By the inductive hypothesis, the global state of processor
p in the time-triggered system at time gs(r) is gu(r)(p)
also. Furthermore, processor p is in its communication
phase (ensured by (5)) and has not changed its state since
starting the round. Thus, at local clocktime sched(r) + D ,
it sends msgp(gu(r)(p))(q) to q. By (1), this is received
by q while in the communication phase of round r, and
transferred to its input buffer inputsq(p). Thus, the cor-
responding processors of the untimed and time-triggered
systems have the same state and input components when
they begin the computation phase of round r. The same
state transition functions transp are then applied by the
corresponding processors of the two systems to yield the
same values for the corresponding elements of gu(r + 1)
and gt(r + 1), thereby completing the inductive proof.

D. Mechanized Verification

The treatment of synchronous and time-triggered sys-
tems in Sections III-A and III-B has been formally speci-
fied in the language of the PVS verification system [31],
and the verification of Section III-C has been mechan-
ically checked using PVS’s theorem prover. The PVS

6For the benefit of those not used to reading Curried higher-order
function applications, this is decoded as follows: gu(r)(p) is p’s state
in round r; p’s message function msgp applied to that state gives

msgp(gu(r)(p)), which is an array of the messages sent to its outgoing

channels; q’s component of that array is msgp(gu(r)(p))(q).
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language is a higher-order logic with subtyping, and for-
malization of the semiformal treatment in Sections III-A
and III-B was quite straightforward. The PVS theorem
prover includes decision procedures for integer and real
linear arithmetic and mechanized checking of the calcu-
lations in Section III-C, and the proof of the Theorem,
were also quite straightforward. The complete formaliza-
tion and mechanical verification took less than a day, and
no errors were discovered. A description, and the formal
specifications and proofs themselves, are available at URL
http://www.csl.sri.com/dcca97.html.

While it is reassuring to know that the semiformal de-
velopment of the previous sections withstands mechani-
cal scrutiny, we have argued before (for example, [31, 39])
that mechanized formal verification provides several bene-
fits in addition to the “certification” of proofs. In particu-
lar, mechanization supports reliable and inexpensive explo-
ration of alternative designs, assumptions, and constraints.
After completing the first version of the work reported here,
I wondered whether the requirement that messages be sent
at the fixed offset D clocktime units into each round, and
that the computation phase begin at the fixed offset P ,
might not be unduly restrictive. It was the work of a few
minutes to generalize the formal specification to allow these
offsets to become functions of the round, and to adjust the
mechanized proofs. I contend that corresponding revisions
to the semiformal development in Sections III-B and III-C
would take longer than this, and that it would be difficult
to summon the fortitude to scrutinize the revised proofs
with the same care as the originals.

IV. Round-Based Algorithms as Functional
Programs

The Theorem of Section III-C ensures that synchronous
algorithms are correctly implemented by time-triggered im-
plementations that satisfy the various assumptions, con-
straints, and constructions introduced in the previous sec-
tion. The next (though logically preceding) step is to ask
how one might verify properties of a particular algorithm
expressed as an untimed synchronous system.

Although simpler than its time-triggered implementa-
tion, the specification of an algorithm as a synchronous
system is not especially convenient for formal (and par-
ticularly mechanized) verification because it requires rea-
soning about attributes of imperative programs: explicit
state and control. It is generally easier to verify functional,
rather than imperative, programs because these represent
state and control in an applicative manner that can be ex-
pressed directly in conventional logic.

There is a fairly systematic transformation between syn-
chronous systems and functional programs that can ease
the verification task by allowing it to be performed on
a functional program. I illustrate the idea (which comes
from Bevier and Young [23]) using the OM(1) algorithm
from Section II. Because that algorithm has already been
introduced as a synchronous system, I will illustrate its
transformation to a functional program; once the technique

becomes familiar, it is easy to perform the transformation
in the other direction.

We begin by introducing a function send(r , v , p, q) to
represent the sending of a message with value v from pro-
cessor p to processor q in round r. The value of the function
is the message received by q. If p and q are nonfaulty, then
this value is v:

nonfaulty(p) ∧ nonfaulty(q) ⊃ send(r , v , p, q) = v ,

otherwise it depends on the fault modes considered (in the
Byzantine case it is left entirely unconstrained, as here).

If T represents the transmitter, v its value, and q an
arbitrary receiver, then the communication phase of the
first round of OM(1) is represented by

send(0 , v ,T , q).

The computation phase of this round simply moves the
messages received into the states of the processors con-
cerned, and can be ignored in the functional treatment
(though see Footnote 7).

In the communication phase of the second round, each
processor q sends the value received in the first round (i.e.,
send(0 , v ,T , q)) on to the other receivers. If p is one such
receiver, then this is described by the functional composi-
tion

send(1 , send(0 , v ,T , q), q , p). (6)

In the computation phase for the second round, processor
p gathers all the messages received in the communication
phase and subjects them to majority voting.7 Now (6) rep-
resents the value p receives from q, so we need to gather
together in some way the values in the messages p receives
from all the other receivers q, and use that combination
as an argument to the majority vote function. How this
“gathering together” is represented will depend on the re-
sources of the specification language and logic concerned:
in the treatment using the Boyer-Moore logic, for example,
it is represented by a list of values [23]. In a higher-order
logic such as PVS [31], however, it can be represented by
a function, specified as a λ-abstraction:

λq : send(1 , send(0 , v ,T , q), q , p)

(i.e., a function that, when applied to q, returns the value
that p received from q).

Majority voting is represented by a function maj that
takes two arguments: the “participants” in the vote, and
a function over those participants that returns the value
associated with each of them. The function maj returns the
majority value if one exists; otherwise some functionally
determined value. (This behavior can either be specified

7 In the formulation of the algorithm as a synchronous system,
p votes on the messages from the other receivers, and the message
that it received directly from the transmitter, which it has saved in
its state. In the functional treatment, q includes itself among the
recipients of the message that it sends in the communication phase
of the second round, and so the vote is simply over messages received
in that round.
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axiomatically, or defined constructively using an algorithm
such as Boyer and Moore’s linear time MJRTY [45].) Thus,
p’s decision in the computation phase of the second round
is represented by

maj (rcvrs, λq : send(1 , send(0 , v ,T , q), q , p))

where rcvrs is the set of all receiver processors. We can use
this formula as the definition for a higher-order function
OM1(T, v) whose value is a function that gives the deci-
sion reached by each receiver p when the (possibly faulty)
transmitter T sends the value v :

OM1(T, v)(p) (7)

= maj (rcvrs, λq : send(1 , send(0 , v ,T , q), q , p)).

The properties required of this algorithm are the follow-
ing, whenever the number of receivers is three or more, and
at most one processor is faulty.

Requirement 1: Agreement

nonfaulty(p) ∧ nonfaulty(q)
⊃ OM1(T, v)(p) = OM1(T, v)(q),

Requirement 2: Validity

nonfaulty(T ) ∧ nonfaulty(p) ⊃ OM1 (T , v)(p) = v .

Definition (7) and the requirements for Agreement and Va-
lidity stated above are acceptable as specifications to PVS
almost as given (PVS requires us to be a little more ex-
plicit about the types and quantification involved). Using
a constructive definition for maj, PVS can prove Agree-
ment and Validity for a specific number of processors (e.g.,
4) completely automatically. For the general case of n ≥ 4
processors, PVS is able to prove Agreement with only a
single user-supplied proof directive, while Validity requires
half a dozen (the only one requiring “insight” is a case-split
on whether the transmitter is faulty).

Not all synchronous systems can be so easily transformed
into a recursive function, nor can their properties always
be formally verified so easily. Nonetheless, I believe the
approach has promise for many algorithms of practical in-
terest.

V. Conclusion

Many round-based fault-tolerant algorithms can be for-
mulated as synchronous systems. I have shown that syn-
chronous systems can be implemented as time-triggered
systems and have proved that, provided care is taken with
fault modes, the correctness and fault-tolerance properties
of an algorithm expressed as a synchronous system are in-
herited by its time-triggered implementation. The proof
identifies necessary timing constraints and is independent
of the particular algorithm concerned; it can be considered
a more general and abstract treatment of the analysis per-
formed for a particular system by Di Vito and Butler [46].
The relative simplicity of the proof supports the argument

that time-triggered systems allow for straightforward anal-
ysis and should be preferred in critical applications for that
reason [30].

In recent work, Pfeifer, Schwier, and von Henke of Uni-
versität Ulm have formally verified the clock synchroniza-
tion algorithm used in TTP [41]. Their verification was
conducted in PVS and explicitly incorporates the PVS
specification, described in Section III-D, that establishes
conditions under which synchronous systems can be im-
plemented as time-triggered systems. Thus, in particular,
their work provides a mechanically checked formal verifica-
tion that the TTP clock synchronization algorithm satisfies
the four assumptions of Section III-B.

I also showed, by example in Section IV, how a round-
based algorithm formulated as a synchronous system can
be transformed into a functional “program” in a specifica-
tion logic, where its properties can be verified more easily,
and more mechanically. I have used the same technique
to mechanically verify the three-phase commit algorithm
(with its termination protocol) [29, Section 7.3.3]. This is
a more difficult algorithm than OM(1) and its verification
requires proof by induction (in this respect, it is compara-
ble to the r-round algorithm OM(r)), but its representation
as a functional program made the mechanized verification
quite straightforward and allowed it to be accomplished in
a couple of days. Recently, I have verified a group member-
ship algorithm based on [47] (which is related to the group
membership algorithm of TTP) using a similar representa-
tion. This is a much more challenging exercise and required
further methodological development to make it tractable.

I hope this paper has demonstrated that systematic
transformations of fault-tolerant algorithms from func-
tional programs to synchronous systems to time-triggered
implementations provides a methodology that can signifi-
cantly ease the specification and assurance of critical fault-
tolerant systems. In collaboration with colleagues from
Ulm, I am currently applying the methodology to some
of the algorithms of TTP [10].
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[3] Rachid Guerraoui and André Schiper, “Consensus: The big mis-
understanding,” in 6th IEEE Workshop on Future Trends in
Distributed Computing, Tunis, Tunisia, Oct. 1997, IEEE Com-
puter Society, pp. 183–188.

[4] Hermann Kopetz, Real-Time Systems: Design Princples for
Distributed Embedded Applications, The Kluwer International



660 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 5, SEPTEMBER/OCTOBER 1999

Series in Engineering and Computer Science. Kluwer, Dordrecht,
The Netherlands, 1997.

[5] Kenneth Hoyme and Kevin Driscoll, “SAFEbusTM,” IEEE
Aerospace and Electronic Systems Magazine, vol. 8, no. 3, pp.
34–39, Mar. 1993.

[6] Aeronautical Radio, Inc, Annapolis, MD, ARINC Specification
659: Backplane Data Bus, Dec. 1993, Prepared by the Airlines
Electronic Engineering Committee.

[7] William Sweet and Dave Dooling, “Boeing’s seventh wonder,”
IEEE Spectrum, vol. 32, no. 10, pp. 20–23, Oct. 1995.

[8] Michael J. Morgan, “Integrated modular avionics for next-
generation commercial airplanes,” IEEE Aerospace and Elec-
tronic Systems Magazine, vol. 6, no. 8, pp. 9–12, Aug. 1991.

[9] Akira Hachiga, “The concepts and technologies of dependable
and real-time computer systems for Shinkansen train control,”
in Responsive Computer Systems, H. Kopetz and Y. Kakuda,
Eds. 1993, vol. 7 of Dependable Computing and Fault-Tolerant
Systems, pp. 225–252, Springer-Verlag, Vienna, Austria.

[10] Hermann Kopetz and Günter Grünsteidl, “TTP—a protocol for
fault-tolerant real-time systems,” IEEE Computer, vol. 27, no.
1, pp. 14–23, Jan. 1994.

[11] Flaviu Cristian, “Understanding fault-tolerant distributed sys-
tems,” Communications of the ACM, vol. 34, no. 2, pp. 56–78,
Feb. 1991.

[12] Flaviu Cristian, Bob Dancey, and Jon Dehn, “Fault-tolerance
in air traffic control systems,” ACM Transactions on Computer
Systems, vol. 14, no. 3, pp. 265–286, Aug. 1996.

[13] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in
the presence of faults,” Journal of the ACM, vol. 27, no. 2, pp.
228–234, Apr. 1980.

[14] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev,
“Atomic broadcast: From simple message diffusion to Byzantine
agreement,” in Fault Tolerant Computing Symposium 15, Ann
Arbor, MI, June 1985, IEEE Computer Society, pp. 200–206,
Reprinted in [48, pp. 431–437].

[15] Flaviu Cristian, “Reaching agreement on processor-group mem-
bership in synchronous distributed systems,” Distributed Sys-
tems, vol. 4, pp. 175–187, 1991.

[16] Ping Zhou and Jozef Hooman, “Formal specification and compo-
sitional verification of an atomic broadcast protocol,” Real-Time
Systems, vol. 9, no. 2, pp. 119–145, 1995.

[17] Yuri Gurevich and Raghu Mani, “Group membership protocol:
Specification and verification,” in Specification and Validation
Methods, Egon Börger, Ed., International Schools for Computer
Scientists, pp. 295–328. Oxford University Press, Oxford, UK,
1995.

[18] Leslie Lamport and Stephan Merz, “Specifying and verifying
fault-tolerant systems,” in Formal Techniques in Real-Time
and Fault-Tolerant Systems, H. Langmaack, W.-P. de Roever,
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