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Abstract

We describe our experience with formal, machine-checked verification of
algorithms for critical applications, concentrating on a Byzantine fault-tolerant
algorithm for synchronizing the clocks in the replicated computers of a digital
flight control system.

First, we explain the problems encountered in unsynchronized systems and
the necessity, and criticality, of fault-tolerant synchronization. We give an
overview of one such algorithm, and of the arguments for its correctness.

Next, we describe a verification of the algorithm that we performed using
our Ehdm system for formal specification and verification. We indicate the
errors we found in the published analysis of the algorithm, and other benefits
that we derived from the verification.

Based on our experience, we derive some key requirements for a formal
specification and verification system adequate to the task of verifying algorithms
of the type considered.

Finally, we summarize our conclusions regarding the benefits of formal ver-
ification in this domain, and the capabilities required of verification systems in
order to realize those benefits.
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tion, fault-tolerant systems.
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1 Introduction

Use of formal methods is often advocated, and sometimes required, in the construc-
tion of software and digital hardware for critical systems [7,33]. Formal methods can
range from pencil-and-paper descriptions and analyses in the style of conventional
mathematical discourse, through the use of formalized specification languages, to
truly formal specifications and mechanically-checked verification.

In this paper we describe our experience at one particular point in this spectrum
of formal methods: we focus on formal verification, rather than specification alone,
on algorithms rather than more concrete descriptions such as programs and circuits,
and on fully mechanized methods, rather than those used only by hand.

We draw on the experiences of ourselves and colleagues in performing a number
of substantial formal verifications of algorithms to support fault tolerance in digital
flight control systems [25, 30]. In order to keep the description focussed, we con-
centrate on one particular application that we first undertook some years ago: a
mechanically-checked formal verification of the Interactive Convergence Algorithm
for Byzantine fault-tolerant clock synchronization [17,27].

The paper is organized as follows. In the next section, we describe our problem
domain in general, and fault-tolerant clock synchronization in particular. We de-
scribe how attempts to avoid synchronization have been unsuccessful, and hence the
necessity and criticality of fault-tolerant synchronization algorithms. In the third
section we outline the Interactive Convergence Algorithm, and the arguments for
its correctness in the manner of a conventional mathematical presentation.

Our experience in performing a mechanically-checked verification of the algo-
rithm, and the benefits we perceive to have derived from that effort, are described
in the fourth section. In the fifth section we identify the capabilities required in
a specification and verification system in order to realize those benefits most effec-
tively. Our conclusions make up the sixth and final section.

2 Flight Control Systems

Increasingly, modern aircraft rely on Digital Flight-Control Systems (DFCS): com-
puter systems that interpret the pilot’s control inputs and send appropriate com-
mands to the control surfaces and engines.

The perceived advantages of DFCS over analog or direct mechanical and hy-
draulic control include lower manufacturing costs, improved performance, efficiency,
and handling, reduced pilot workload and, for military aircraft, improved agility,
expanded flight envelope (e.g., extreme angles of attack), and the ability to exploit
unstable airframes. Depending on the aircraft design, DFCS may manage all, or
merely some, of the control surfaces and may or may not have back-up systems
comprising either analog computers or direct mechanical and hydraulic connections
between the pilot and control surfaces.
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The Airbus A320 is the only passenger aircraft in current service with a full
DFCS—that is, one controlling the primary control surfaces and all three axes [23],
but forthcoming aircraft such as the Boeing 777 will also employ comprehensive
DFCS.1

It is clear that extreme reliability must be required of a flight-critical DFCS. A
much-quoted figure is a requirement for passenger aircraft that the probability of
catastrophic failure during a 10 hour flight should be less than 10−9 per hour [9].
Such reliabilities are beyond those that can be guaranteed for the computers and
other digital devices comprising the DFCS hardware. Not only must occasional
latent manufacturing defects and the effects of aging be considered, but also envi-
ronmental hazards such as power-supply disturbances, lightning strikes, and cosmic
rays. These factors conspire to yield an overall reliability well below that required.
It follows that some form of fault tolerance based on replication and redundancy
is needed in order to achieve an underlying “hardware platform” of the required
reliability.

In an N-modularly redundant (or N-plex) system, all calculations are performed
by N identical computer systems and the results are submitted to some form of
averaging or voting before being sent to the actuators. Great care is taken to
eliminate single-point failures, so the separate computer systems (or “channels,” as
they are often called in fault-tolerant systems) will generally use different power
supplies and be otherwise electrically and physically isolated as far as possible. It is
then reasonable to assume that failures of the separate channels will be statistically
independent, so that the probability of overall system failure is orders of magnitude
better than that of the individual channels.

Notice that the purpose of this design is simply to tolerate random hardware
faults; there is no protection against design faults. Any such faults in either the
hardware or the software will be common to all members of the N-plex and all
will fail together. In this paper, we do not address the issue of design faults in
the hardware, nor in the application software that it runs. We are, however, very
much concerned with the possibility of design faults in the redundancy-management
software that harnesses the failure-prone individual components together as a fault-
tolerant N-plex. Instead of a single computer executing the DFCS software, there
will be several, which must manage redundant sensors, coordinate and vote actuator
commands, and tolerate faults among their own members.

Complexity is a source of design faults, and there is a distinct possibility that a
large quantity of redundancy-management software may lessen, rather than enhance,
overall reliability. Consequently, some designers have sought simple solutions to the
redundancy management problem. A plausible and simple approach uses an “asyn-
chronous” design in which the computers run fairly independently of each other:
each computer samples sensors independently, evaluates the control laws indepen-
dently, and sends its actuator commands to an averaging or selection component

1The Concorde, which received FAA certification in 1969, has an analog flight control system
with mechanical backup in all three primary axes.
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that chooses the value to send to the actuator concerned. The triplex-redundant
DFCS of the experimental AFTI-F16 airplane was built this way, and its flight tests
reveal some of the shortcomings of the approach [20].

Because they are unsynchronized, individual channels can sample sensors at
slightly different times, and thereby obtain readings that differ quite appreciably
from one another. The gain in the control laws can amplify these input differences
to provide even larger differences in the results submitted to the output selection
algorithm. During ground qualification of the AFTI-F16, it was found that these
differences sometimes resulted in a channel being declared failed when no real failure
had occurred [19, p. 478]. An even more serious shortcoming of asynchronous
systems arises when the control laws contain decision points. Here, sensor noise
and sampling skew may cause independent channels to take different paths at the
decision points and to produce widely divergent outputs. This occurred on Flight 44
of the AFTI-F16 flight tests [20, p. 44]. Each channel declared the others failed; the
analog back-up was not selected because the simultaneous failure of two channels
had not been anticipated and the aircraft was flown home on a single digital channel.
Notice that all protective redundancy had been lost, and the aircraft was flown home
in a mode for which it had not been designed—yet no hardware failure had occurred.

The AFTI-F16 flight tests revealed numerous other problems of a similar nature,
to the extent that redundancy management became the primary source of unrelia-
bility in the DFCS and an impediment to testing [20, pp. 40–41]. Overcoming the
various problems involved modifications to the application tasks implementing the
control laws. These serious difficulties in plausibly simple designs have stimulated
research into principled approaches to redundancy management for DFCS that will
yield predictable behavior.

The favored approach uses synchronized channels, distribution of sensor data to
all channels, and exact-match voting [5,8,11,13,15,35]. Distribution of sensor data
ensures that each channel performs its computations on the same inputs, and should
therefore produce the same outputs. Channel failures can therefore be masked
by exact-match majority voting of outputs sent to the actuators. Synchronization
ensures that the clocks of the individual channels are kept within some bounded skew
of each other, so that each channel will perform the same computations and will be
ready to participate in votes and the distribution of sensor data at approximately
the same time as all the other channels.

Of course, it is crucial to this approach that the algorithms and protocols for
clock synchronization, sensor distribution, and voting are themselves fault tolerant.
Prior to the investigations of the SIFT project [17,22], the subtlety and delicacy of
the required algorithms and protocols were not properly understood, and the notion
of Byzantine faults had not been fully articulated.2 Consequently, early synchro-
nization protocols were seriously flawed: all were vulnerable to Byzantine faults,
and many were incapable of tolerating less severe classes of faults. For example, the

2A Byzantine fault is one where a faulty component provides conflicting information to other
components, potentially causing non-faulty components to declare each other failed.
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failure of the first attempt to launch the Space Shuttle was due to a synchronization
problem [10], and some observations were lost when the heavy radiation environ-
ment at Jupiter caused one of the clocks on the Voyager spacecraft to jump several
seconds [1].

Some of the difficulties in synchronizing clocks in the presence of faults can be
appreciated by considering a simple system with three components: A, B, and C.
A and C have good clocks, but B’s clock is faulty. A’s clock indicates 2.00 pm, C’s
2.01 pm, and B’s clock indicates 1:58 pm to A but 2.03 pm to C. A sees that C’s
clock is ahead of its own, and that B’s is behind by a somewhat greater amount; it
would be natural therefore for A to set its own clock back a little. This situation is
reversed, however, when considered from C’s perspective. C sees that A’s clock is
a little behind its own and that B’s is ahead by a rather greater amount; it will be
natural for C to set its own clock forward a little. Thus the faulty clock B has the
effect of driving the good clocks A and C further apart. The behavior of B’s clock
may seem actively malicious and therefore implausible. This is not so, however.
A failed clock may act as a random number generator and thereby distribute very
different values to different components at slightly different times.

Byzantine fault-tolerant clock synchronization algorithms are required to main-
tain synchronization despite the occurrence of any kind of fault whatever, provided
there are not too many of them. Lamport and Melliar-Smith’s paper [17] was a
landmark in the field. They not only introduced three Byzantine fault-tolerant
clock synchronization algorithms, but they developed formalizations of the assump-
tions and desired properties that made it possible to give a precise statement and
proof for the correctness of such algorithms. Other authors subsequently proposed
several additional clock synchronization protocols, but most of these can be seen as
variations on one of those introduced by Lamport and Melliar-Smith, namely the In-
teractive Convergence Algorithm (ICA) (see [24] for a brief survey). Schneider [29]
makes this observation precise and shows that most algorithms for fault-tolerant
clock synchronization are refinements of a single common paradigm, exemplified by
ICA.3

In the following section we outline the Interactive Convergence Algorithm and its
analysis. The outline includes precise statements of all the assumptions, constraints,
and key lemmas needed for the analysis. We include this level of detail because it
is necessary to convey the intricacy of the argument, and the challenge it poses to
those who require complete confidence that all the details and boundary cases are
handled correctly.

3 The Interactive Convergence Clock-Synchronization
Algorithm and its Analysis

The goal of ICA is to maintain the clocks of redundant channels within some
bounded skew δ of each other. All channels have reasonably accurate clocks with

3Our colleague Shankar has formally verified Schneider’s general paradigm [30].
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a maximum rate of drift from real time given by ρ, and are synchronized within
some bound δ0 initially. The slight differences in their running rates will cause the
clocks gradually to drift apart, so that they must be resynchronized periodically.
Each channel resynchronizes by determining the differences between its own clock
and those of other channels, forming a “fault-tolerant average” of those differences,
and adjusting its own clock by that amount. Trivial solutions, such as those in
which all clocks are reset to zero at every resynchronization must be excluded, so
there is a small bound Σ on the size of the adjustment that may be made at each
resynchronization. Determining the differences between their clock readings may
require cooperation among the channels, so they must all engage in the synchro-
nization protocol at approximately the same time. To do this, each channel engages
in the synchronization protocol every R seconds, and for a duration of S seconds,
according to its own clock. Channels may not be able to determine the differences
between their clocks with absolute accuracy: the quantity ε is assumed to bound

the error in ∆
(i)
q p, which denotes the difference between the clocks of channels q and

p, as determined by p during its ith resynchronization.

The key to making a clock synchronization algorithm resistant to Byzantine fail-
ures among its components is the use of a “fault-tolerant average” in the adjustment
step [29]. ICA is characterized by use of the egocentric mean as its averaging func-

tion. To compute the egocentric mean, a channel replaces all differences ∆
(i)
q p larger

than a fixed quantity ∆ by zero, and then calculates the arithmetic mean of the
resulting set of differences.

To gain an idea of why this works, consider two nonfaulty channels p and q. For
simplicity, assume that these channels perform their synchronization calculations
simultaneously and instantaneously. If r is also a nonfaulty channel, then the esti-
mates that p and q form of r’s clock value can differ by at most 2ε. If r is a faulty
channel, however, p and q could form estimates of its clock value that differ by as
much as 2∆ + δ (since r could indicate a value as large as ∆ different from each
of p and q without being disregarded, and these channels could themselves have
clocks that are δ apart). Assuming there are n channels, of which m are faulty, the
egocentric means formed by p and q can therefore differ from each other by as much
as

(n−m)2ε+m(δ + 2∆)

n
.

Thus, provided

δ ≥ 2ε+
2m∆

n−m
,

this procedure will maintain the clocks of p and q within δ of each other, as required.

The sketch we have just given neglects many important details (for example, the
channels do not perform the algorithm simultaneously and instantaneously, and their
clocks may drift further apart in the periods between resynchronizations). Since the
clock synchronization algorithm is a potential source of single point failure in DFCS,
we require an unusually high degree of confidence in the analysis of ICA. In the
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next subsection we outline the fully detailed analysis of ICA that we have subjected
to mechanically-checked verification.

3.1 Formalizing the Arguments

We need to distinguish two notions of time: clock time is the internal estimate of
time that a channel obtains from its clock, while real time is an external, abstract
notion of time that provides a common frame of reference. Real time need not be
directly observable, since clocks are only to be synchronized with respect to each
other, not to an external reference. Clocks are modeled as functions from clock to
real time: cp(T ) denotes the real time at which channel p’s physical clock reads T .
Clocks are adjusted by subtracting a correction from their readings: suppose p’s
clock reads T ′ when we would like it to read T , then C = T ′ − T is the correction
that should be subtracted from the physical clock reading to yield the value to be
reported as the “logical” clock reading. Since the corrected value T is reported
when the physical clock reads T ′ (i.e., T + C), we see that the logical clock time T
is reported at real time c(T + C).

Corrections are computed once every resynchronization period. The correction

for channel p in period i is denoted C
(i)
p , and we define

c(i)p (T ) = cp(T + C(i)
p )

as the logical clock for p during period i. The ith period is denoted R(i) and runs
from clock time T (i) to T (i+1), where T (i) = T 0 + iR (i ≥ 0) and T 0 is an arbitrary
constant. Synchronization takes place during the last S seconds of each period; S(i)

denotes the interval [T (i+1) − S, T (i+1)].
Now we can formalize the informal description given earlier. First we define a

good clock to be one that keeps reasonably accurate time.

Good clock: A clock c is a good clock during the clock time interval [T0, TN ] if∣∣∣∣c(T1)− c(T2)T1 − T2
− 1

∣∣∣∣ ≤ ρ

2

whenever T1 and T2 (T1 6= T2) are clock times in [T0, TN ].4

All channels start off with their clocks approximately synchronized.

A0: For all channels p and q,

|c(0)p (T (0))− c(0)q (T (0))| < δ0.

Channels and their clocks can develop faults, so we need to say what it means for a
channel to be nonfaulty.

4This definition implies that good clocks are monotonic—a fact that is proved in our formal
verification.
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A1: We say that a channel is nonfaulty through period i if its clock is a good clock

in the clock time interval [T (0) + C
(0)
p , T (i+1) + C

(i)
p ].

Now we can state the conditions that ICA is to maintain. The first says that the
skew between the clocks of nonfaulty channels must be bounded; the second says
that corrections must be bounded.

Clock Synchronization Conditions: For all channels p and q, if all but at most
m channels (out of n) are nonfaulty through period i, then

S1: If p and q are nonfaulty through period i, then for all T in R(i)

|c(i)p (T )− c(i)q (T )| < δ.

S2: If channel p is nonfaulty through period i, then

|C(i+1)
p − C(i)

p | < Σ.

ICA requires that each nonfaulty channel can read the difference between its
own clock and that of another nonfaulty channel with a bounded error. In order to
do this, the channels may already need to be synchronized, and so we require S1
and S2 to hold.

A2: If conditions S1 and S2 hold for the i’th period, and channel p is nonfaulty

through period i, then for each other channel q, p obtains a value ∆
(i)
q p during

the synchronization period S(i). If q is also nonfaulty through period i, then

|∆(i)
q p| ≤ S

and
|c(i)p (T ′ + ∆(i)

q p)− c(i)q (T ′)| < ε

for some time T ′ in S(i).

If p = q, we take ∆
(i)
q p = 0 so that A2 holds in this case also.

Finally, we can give a formal description of ICA.

Algorithm ICA: For all channels p:

C(i+1)
p = C(i)

p + ∆(i)
p ,

where

∆(i)
p =

(
1

n

) n∑
r=1

∆̄(i)
r p, and

∆̄(i)
r p = if |∆(i)

r p| < ∆ then ∆(i)
r p else 0.

Note that C
(0)
p is constrained by A0.
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In order to establish that ICA satisfies S1 and S2, the following constraints
among its parameters must be satisfied.

C0: 0 ≤ m < n

C1: R ≥ 3S

C2: S ≥ Σ

C3: Σ ≥ ∆

C4: ∆ ≥ δ + ε+ ρ
2 S

C5: δ ≥ δ0 + ρR

C6: δ ≥ 2(ε+ ρS) +
2m∆

n−m
+

nρR

n−m
+

nρΣ

n−m
+ ρ∆

Lemma 1 If the clock synchronization conditions S1 and S2 hold for i, and channels
p and q are nonfaulty through period i+ 1, then

|∆(i)
q p| < ∆.

Lemma 2 If channel p is nonfaulty through period i + 1, and T and Π are such

that T +C
(i)
p and T + Π +C

(i)
p are both in the interval [T (0) +C

(0)
p , T (i+2) +C

(i+1)
p ],

then
|c(i)p (T + Π)− [c(i)p (T ) + Π]| ≤ ρ

2
|Π|.

Lemma 3 If the clock synchronization conditions S1 and S2 hold for i, channels p
and q are nonfaulty through period i+ 1, and T ∈ S(i), then

|c(i)p (T + ∆(i)
q p)− c(i)q (T )| < ε+ ρS.

Lemma 4 If the clock synchronization conditions S1 and S2 hold for i, channels
p, q, and r are nonfaulty through period i+ 1, and T ∈ S(i), then

|c(i)p (T ) + ∆̄(i)
r p − [c(i)q (T ) + ∆̄(i)

r q]| < 2(ε+ ρS) + ρ∆.

Lemma 5 If the clock synchronization condition S1 holds for i, channels p and q
are nonfaulty through period i+ 1, and T ∈ S(i), then

|c(i)p (T ) + ∆̄(i)
r p − [c(i)q (T ) + ∆̄(i)

r q]| < δ + 2∆.

Figure 1: Statements of the Principal Lemmas used in The Proof
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The proof that A0, A1, A2, A3, and C0 through C6 are sufficient to ensure
that ICA achieves S1 and S2 depends on the 5 lemmas shown in Figure 1. The
motivation for these lemmas can be described as follows.

We are interested in the skew between two nonfaulty processors during the i+1’st
period—that is, in the quantity

|c(i+1)
p (T )− c(i+1)

q (T )|

where T ∈ R(i+1). By the Algorithm,

|c(i+1)
p (T )− c(i+1)

q (T )| = |c(i)p (T + ∆(i)
p )− c(i)q (T + ∆(i)

q )|, (1)

and since good clocks run at approximately the correct rate, c
(i)
p (T + ∆

(i)
p ) and

c
(i)
q (T + ∆

(i)
q ) are close to c

(i)
p (T ) +∆

(i)
p and to c

(i)
q (T ) +∆

(i)
q , respectively. From this

it follows that the right hand side of (1) can be approximated by

|c(i)p (T ) + ∆(i)
p − [c(i)q (T ) + ∆(i)

q ]|.

A major step in the proof, identified as Lemma 2, is concerned with bounding the

error introduced by this approximation. Then, since ∆
(i)
p and ∆

(i)
q are the averages

of ∆̄
(i)
r p and ∆̄

(i)
r q, it is natural to consider the individual components

|c(i)p (T ) + ∆̄(i)
r p − [c(i)q (T ) + ∆̄(i)

r q]|. (2)

There are two cases to consider. The first, in which only p and q are assumed
nonfaulty, is the focus of Lemma 5, while the second, in which r is also assumed
nonfaulty, is considered in Lemma 4. The first case is quite easy—the Algorithm

ensures that ∆̄
(i)
r p and ∆̄

(i)
r q can be no larger than ∆, while c

(i)
p (T ) and c

(i)
q (T ) can

differ by no more than δ (by the inductive hypothesis). For the second case, Lemma

1 provides the result |∆(i)
r p| < ∆, so that the Algorithm will establish ∆̄

(i)
r p = ∆

(i)
r p

and ∆̄
(i)
r q = ∆

(i)
r q. The quantity (2) is then rewritten as

|c(i)p (T ) + ∆(i)
r p − c(i)r (T )− [c(i)q (T ) + ∆(i)

r q − c(i)r (T )]|.

Regarding this as the absolute difference of two similar expressions, we are led to
consider values of the form

|c(i)p (T ) + ∆(i)
r p − c(i)r (T )|

which, using Lemma 2, can be approximated by

|c(i)p (T + ∆(i)
r p)− c(i)r (T )|.

Lemma 3 is concerned with quantities of this form.
In the next section we describe our formal verification of this analysis, and the

benefits we derived.
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4 Formal Verification

Although a broad understanding of why ICA works can be obtained fairly readily,
detailed proof of its lemmas and of its main theorem requires attention to a mass of
details and an astonishingly intricate argument. The journal proof by Lamport and
Melliar-Smith [17] is unusually precise and detailed, yet it is hard to internalize: it
makes use of approximate arithmetic and neglect of insignificant terms, and when we
examined it we were unable to convince ourselves of all the details after several days
study. We needed to be convinced of the details, and of all the assumptions that
underlie the proof, because we had the goal of designing a combination of hardware
and software to implement the algorithm. ICA assumptions such as A2 become
specifications for the hardware that will perform the exchange of clock values, and
constraints such as C6 determine the closeness of the synchronization that can be
assumed by the rest of the DFCS redundancy management software.

In order to resolve our doubts concerning the analysis of ICA, we embarked
on a formal verification of ICA in 1988, using an early version of our Ehdm for-
mal verification system [28]. Our goal was to obtain a complete understanding of
the argument for the synchronization bound maintained by ICA, and a complete
enumeration of the assumptions on which the argument depends.

As we performed the formal specification and verification, we discovered that the
presentation given by Lamport and Melliar-Smith was flawed in several details. One
of the principal sources of error and difficulty was their use of approximations—i.e.,
approximate equality (≈) and inequalities (<∼ and >∼)—in order to “simplify the
calculations.” We eventually found that elimination of the approximations not only
removed one class of errors, but actually simplified the analysis and presentation.
We also found and corrected several other technical flaws in the published proof of
Lamport and Melliar-Smith.

In total, we found that four of the five lemmas in Lamport and Melliar-Smith’s
proof were false, or flawed in some other way, and that the main induction was
incorrect. Some of these errors are painfully obvious once they have been spotted:
for example, the problem in the main induction is that it seeks to establish S1, but
the inductive step provides only

|c(i)p (T )− c(i)q (T )| <∼ δ;

that is strict inequality is assumed, but only an approximation is delivered. Other
flaws include missing, or insufficiently tight constraints in the statements of some
lemmas, and typographical errors in two of them. Our corrections required slight
modifications to the assumptions underlying the algorithm, and to the constraints on
its parameters, and thus changed the external specifications of the algorithm. The
presentation in the previous section used our corrected statements of assumptions,
constraints, and lemmas. A full discussion of the flaws in Lamport and Melliar-
Smith’s original presentation, and of our revisions, is available in our report on the
verification [27, chapter 3].
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In addition to identifying and correcting flaws in the published analysis of ICA,
we were able to extract a journal-level description of our revised analysis fairly
directly from the text of our formal specification and proofs. The Ehdm theorem
prover is driven from “proof descriptions” that explicitly list the instantiations of all
lemmas and axioms to be used in the proof concerned. While tedious to construct,
these descriptions provide the key information needed for a journal-level proof. For
example, the Ehdm proof description for Lemma 2 lists the definition of a good clock,

the definition of the logical clock values c
(i)
p (T ) and c

(i)
p (T + Π), and the assumption

A1 as the key ingredients of the proof. It is easy to construct the journal-level proof
from these facts.

Another benefit that we derived from our formal specification and verification of
ICA was a complete enumeration of all the assumptions, definitions, and constraints
employed. This enumeration is a by-product of the Ehdm “proof-chain checker,”
which examines the macroscopic structure of a verification in order to ensure that
there are no undischarged proof obligations and no circularities in the argument. It
is important to those contemplating the construction of hardware support for ICA to
have this enumeration of assumptions available, since it comprises the specification
for their part of the overall enterprise.

Yet another benefit that we derived from our formal verification of ICA was
the ability to explore the consequences of changed assumptions. For example, the
journal proof of Lamport and Melliar-Smith employs an assumption that the initial

clock corrections C
(0)
p are all zero. We incorporated this assumption into our formal

verification. Later, when we were contemplating implementation of the algorithm,
we recognized that this was a very inconvenient constraint and wondered if it could
be eliminated. We explored this possibility by simply eliminating the constraint
from the formal specification and re-running all the proofs. We found that the
proofs of a few internal lemmas needed to be adjusted, but that the rest of the
verification was unaffected.

We found the formal verification of ICA to be quite challenging. The initial effort
took a little over a man-month, with the properties required of summations and
other “supporting theories” treated as “temporary axioms” (i.e., unproven lemmas)
at that stage. We gradually developed satisfactorily primitive axiomatizations—or
constructive definitions—for the supporting theories and developed proofs for all
our temporary axioms. The current version of the verification uses 19 axioms (most
of which are used to specify the ICA and its assumptions and constraints), and
requires mechanical checking of a shade under 200 proofs.

In the following section we draw on our experiences in verifying ICA and other
critical algorithms to identify the capabilities required or desirable in a formal veri-
fication system to undertake these verifications with maximum benefit and ease.
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5 Capabilities Required

Our verification of ICA helped us identify shortcomings in the implementation,
specification language, and theorem prover and other tools of Ehdm—as well as
confirming a number of its good features. In the years since we first completed
this verification, we and our colleagues have worked to improve Ehdm, and have
tested the benefits by undertaking several other verifications of difficult fault-tolerant
algorithms [25, 30], as well as a number of moderate test-pieces including the Oral
Messages algorithm for Byzantine Agreement [26], the finite Ramsey Theorem, and
several examples in hardware verification and software specification. We have revised
our specification and verification of ICA several times in order to take advantage
of new capabilities in Ehdm, or new insight into how best to formulate certain
properties.

In this section we draw on the experience gained in performing these verifications
and identify what we consider to be important issues in the design of specification
languages and verification systems. We will use ICA to supply concrete illustrations
of our points, and suggest that the ability to specify and verify ICA in reasonable
style could be considered a minimum benchmark for mechanized formal verification
systems.5

The first point to note is that mechanically-checked verification is the very
essence of exercises we have performed, and the chief source of the benefits that
accrued. In some domains, formal specifications, possibly augmented by pencil and
paper analysis, can provide worthwhile benefits on their own—that is, without un-
dertaking mechanically-checked verification [12]. That is not the case with most of
the examples we have undertaken: we have been concerned mainly with algorithms
and the theorems that sustain them, and these were adequately specified already—
albeit in the quasi-formal style of traditional mathematical presentations [17,18,29].
Merely casting these journal-level descriptions into a formal specification language
is unlikely to reap large dividends.

But although we have primarily been concerned with verification, this does not
mean that we regard formal specification as unimportant. On the contrary, we
consider human review essential for certification of truly critical systems, and it
is therefore crucial that the formal specifications should be accessible to anyone fa-
miliar with traditional mathematical presentations; similarly, the verification should
lend itself to the extraction of a genuine proof that can be followed by anyone willing
to devote modest effort.

A formal specification language to be used with mechanically-checked verifica-
tion must strike a very delicate balance between its convenience and expressiveness
as a specification medium and the automation and effectiveness of the mechanical
support that can be provided. Thus, the most powerful and automatic theorem
provers tend to be associated with the most limited facilities for specification (for

5Our original verification in Ehdm [27, unrevised edition] has been duplicated using the Boyer-
Moore prover [4] (with the constrain and defn-sk extensions) by Bill Young [36]. We invite
others to try it using their own favorite formal specification and verification system.
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example, the very powerful Boyer-Moore theorem prover [4] uses a highly construc-
tive, untyped, quantifier-free first order logic as its specification language), whereas
some more attractive and expressive specification notations (for example, Z [32])
lack mechanical support for verifications as difficult as that of ICA. In the next
two subsections we identify some requirements on specification languages and theo-
rem provers adequate to the task of verifying ICA, and suggest how the competing
requirements for expressiveness and mechanization can be reconciled.

5.1 Specification Languages

The purpose of specification is communication, and we believe that communica-
tion with those who will review or implement our specifications is best served by a
formalism that is as close as possible to that of conventional mathematical presenta-
tions in the field concerned. For our verification of ICA, we had a readily available
benchmark in the form of a conventional mathematical presentation of that very
algorithm [17]. Our goal was to formally specify and verify ICA in a manner that
would lend itself to a journal-level presentation similar to that of the original.

Examination of the original presentation reveals that it uses, at the very least,
first-order logic, with arithmetic and full quantification. (Most statements are, im-
plicitly, universally quantified in their free variables, but assumption A2, for exam-
ple, requires an explicit, nested, existential quantifier.)

Specification of the ICA algorithm uses a finite summation, which suggests that
it will be desirable to have available a facility for recursive or iterative definitions.
Summation is most naturally regarded as a higher-order functional (i.e., it takes the
function to be summed as an argument), which suggests that the specification lan-
guage should admit at least that fragment of higher-order logic that allows functions
to take functions as arguments and to return functions as values. The journal proof
for the correctness of ICA is by induction, and it is easy to anticipate that establish-
ing the properties of summations will also require proofs by induction. Thus, the
verification system must either provide a repertoire of built-in induction schemes, or
the specification language must permit higher-order quantification (i.e., quantifica-
tion over predicates and functions), so that induction schemes can be manipulated
as ordinary formulas.

Next, we can observe that at least two types of numerical quantities are required
for specification and verification of ICA. Clocktime and realtime are assumed to be
dense, whereas synchronizing periods are numbered by the naturals. It follows that
our specification language should be typed, and should provide interpretations for
(at least) the rational (or the real) numbers, and the naturals. In general, integers
are required as well.

Considered as numerical types, clocktime and realtime share the same properties,
yet they cannot be combined freely: for example, a formula that adds a term of type
clocktime to one of type realtime is likely to be erroneous. Thus there is a distinction
between clocktime and realtime akin to the notion of dimension, which distinguishes
length from velocity even though both have the same numerical properties. A good
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specification language should make it possible to catch simple errors early, and
by simple means; hence, strict typing, possibly augmented by dimensions, is very
desirable.

Although not needed for ICA, type-constructors such as records, enumerations,
and tuples are invaluable in most specifications, as is the ability to introduce new,
uninterpreted types.

Not only is it important for a specification language to provide a familiar and
reasonably rich logic, we consider it important that it should, to the extent possible,
express that logic in familiar notation. For example, a rich set of propositional
connectives can enhance the readability of the specification. Thus, specification of
ICA uses a polymorphic if-then-else in the definition

∆̄(i)
r p = if |∆(i)

r p| < ∆ then ∆(i)
r p else 0.

This is equivalent to the formula

(|∆(i)
r p| < ∆ ⊃ ∆̄(i)

r p = ∆(i)
r p) ∧ (|∆(i)

r p| ≥ ∆ ⊃ ∆̄(i)
r p = 0)

and there is no reason why the verification system should not silently perform this
“if-lifting” transformation and allow the specifier to use the more convenient if-then-
else form.

Similarly, we should expect to be able to write arithmetic operators and relations
in their familiar infix form, and to be able to overload infix and other symbols in a
reasonably natural way—so that the + in x+y is interpreted appropriately according
to the types of its arguments, and the context of its use. Maintaining such a natural
notation, while providing a rigorous yet straightforward semantics and supplying
the most effective information to the arithmetic reasoning component of a theorem
prover, can involve some sophistication.

For example, notice that the constraint C6 involves several division operations,
with divisor n−m. Clearly, the logic must make some provision for partial functions
such as division (which is undefined if the divisor is zero). There are several ways
to do this. One, which we favor, avoids partial functions (which rapidly complicate
matters and can require a three-valued logic [6] or a logic of partial terms [3, Section
5]) and instead defines the signature of division as Q×Qz → Q where Q denotes the
rationals and Qz denotes the nonzero rationals: a subtype of the rationals associated
with the predicate (λr : r 6= 0). We allow a term of a supertype to appear where
one of a subtype is required, provided the term can be proved to satisfy the defining
predicate of the subtype concerned—thus theorem proving can be required during
typechecking. To see how this works in Ehdm, consider a simplified fragment from
C6: ρ

n−m , where ρ is a rational, n and m are naturals, and n > m. There is no
subtraction operation defined on the naturals, so n and m are promoted to integers
(a supertype of naturals), and n−m is interpreted as integer subtraction, yielding
an integer result. We are now supplying an integer as the second argument to the
division operator, which requires a nonzero rational in this position. The rationals
are a common supertype to both the integers and the nonzero rationals, so n −m
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can be promoted to a rational, and then reduced to the nonzero rational required for
type-correctness if we can prove the theorem n−m 6= 0 (which in this case follows
obviously from the constraint n > m).

Correctness of ICA is contingent upon a number of assumptions that relate
the values of several quantities to each other. Some of these can be regarded as
definitions—for example:

∆(i)
p =

(
1

n

) n∑
r=1

∆̄(i)
r p.

It is best if the specification language has some definitional principle that admits
such definitions by conservative extension—that is, in a way that is guaranteed not
to introduce inconsistencies. The definitional principle should be strong enough to
admit recursive definitions, such as that underlying the recurrence

C(i+1)
p = C(i)

p + ∆(i)
p .

Ensuring the “termination” of recursive definitions requires theorem proving in gen-
eral.

Not all the assumptions underlying ICA are simple definitions, however: con-
straints C0 to C6, and A0 and A2, are inequalities. Some specification languages
are strictly constructive and prohibit the direct introduction of axioms. In such
cases, one must either provide a construction that satisfies the constraints, or make
the constraints into explicit hypotheses of the theorems to be proved. The first
approach overspecifies the problem: the sense surely intended by the conventional
mathematical presentation is that any implementation that satisfies the constraints
is considered acceptable. It is not the job of this level of specification to describe or
overly constrain possible implementations.

The second approach makes the specification cumbersome without adding any
useful security. The concern of those who advocate totally constructive specifications
is that unrestricted addition of axioms can introduce inconsistencies and thereby
render the specification meaningless and any verifications worthless. But moving
the constraints into the hypothesis of the theorem provides no advantage, since
although

` A0 ∧ . . . ∧ C0 . . . ∧ C6 ⊃ S1

is guaranteed to be sound, it is useless if the antecedent cannot be satisfied.
We argue that a useful specification language should permit the introduction of

axioms, but should also assist (or require) demonstration of their consistency (i.e.,
the existence of a model). This differs from the purely constructive approach in
that exhibition of a constructively defined model merely serves to demonstrate the
consistency of the axiomatization, it is not a prescriptive part of the specification.
Ehdm supports this through the mechanism of “theory interpretation,” which is also
used in other applications to verify hierarchical development (i.e., that one level of
refinement correctly “implements” another).6

6Our original specification used strict inequality in the definition of a good clock; Bill Young
pointed out that this definition is unsatisfiable if the clocks are perfect (i.e., if ρ = 0). We have since
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Another glance at the journal presentation of ICA shows that the verification
uses several properties of the absolute value function (|A|) and of finite summations.
It will clearly improve the structure and presentation of the overall development if
specification and proof of these subsidiary properties can be presented separately
from those of ICA itself. This argues for a module structure for specifications;
the modules for “absolute value” and of “finite summations,” for example, should
contain the statement and proof of generally useful properties, such as the triangle
inequality |x+ y| ≤ |x|+ |y|, and identities such as

n∑
i=m

(F (i) +G(i)) =
n∑

i=m

F (i) +
n∑

i=m

G(i).

It is desirable that the module mechanism should permit parameterization; it is
then often necessary to place semantic constraints on the actual parameters that
can be supplied to parameterized specification modules. For example, a module
specifying the general principle of Noetherian induction should only be applied to a
well-founded ordering. As we have noted several times before, it can require theorem
proving to check constraints such as this.

The mechanical support required for a specification language obviously includes
a parser and typechecker. In addition, since specifications can get quite large (1,300
lines of specification and 472 distinct identifiers are used in our verification of ICA),
browsers, cross-reference generators, and other similar support tools for navigating
a large body of material are highly desirable.

Finally, if formal specifications are to be used for effective communication, we
consider it highly desirable that its mechanical support should include tools that can
reproduce the typographical conventions of normal mathematical discourse. Ehdm,
for example, provides a LATEX-printer: a table-driven tool that converts specification
text such as

abs(c(p, i, T) - c(q, i, T))

into the notation of conventional mathematics used by Lamport and Melliar-Smith:

|c(i)p (T )− c(i)q (T )|.

Attractively typeset specifications are much easier to compare with arguments pre-
sented in normal mathematical notation, and much easier for persons not directly
involved in the specification effort to read and study. This latter point is particu-
larly important if formal specifications are to be subjected to useful peer review and
scrutiny.

5.2 Verification and Theorem Proving

Mechanically-checked verification requires a theorem prover or proof checker. (A
proof checker is simply a theorem prover that requires more human guidance.) It

verified the consistency of the axioms in our specification of ICA using the theory interpretation
mechanism of Ehdm.
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might seem that the more powerful and automatic the theorem prover the better.
This is a view that needs severe qualification however.

First, for the purposes for which we are undertaking verification, we want to
obtain a genuine proof—that is a chain of argument that will convince a human
reviewer—rather than a mere grunt of assent from a mechanical theorem prover.
Many powerful theorem proving techniques (for example, resolution) work in ways
that do not lend themselves to the extraction of a proof.

Second, many of the theorems that we attempt to prove will turn out to be
incorrect—i.e., they will not be theorems. It is precisely because the details of
unverified proofs can be missing or flawed that mechanical verification is of value:
but this means that it is at least as important for the theorem prover to provide
assistance in the discovery of error, as that it should be able to prove true theorems
with aplomb. Highly automatic provers can waste a lot of time in fruitless search
when given non-theorems; furthermore, the user has to figure out whether a failed
proof attempt is due to a non-theorem or inadequate heuristics.

These limitations on the utility of powerful automatic theorem proving in the
large do not apply in the small. Routine manipulations of arithmetic, equalities,
disequalities, and inequalities can, and should, be completely mechanized. This is
so because a human reviewer does not need to examine the argument for elementary
deductions such as x ≥ y ≥ z ⊃ x+1 > z, and because complete decision procedures
are available (at least for the ground case) [31], so that their behavior is predictable.
It is hard to overestimate the contribution of the decision procedures in Ehdm
towards the successful completion of our verification of ICA. Arithmetic reasoning
is fundamental to the analysis of ICA, and it would be enormously time consuming
to undertake its verification with a theorem prover that lacks facility in arithmetic.7

We experienced a small indication of the tedium occasioned by absence of arith-
metic competence when we first tackled the final manipulation required in the veri-
fication of the ICA synchronization condition S1. Here, it is necessary to prove the
lemma:

δ ≥ 2(ε+ ρS) +
2m∆

n−m
+

nρR

n−m
+

nρΣ

n−m
+ ρ∆

⊃ δ ≥ (δ + 2∆)× m

n
+ 2(ε+ ρS +

ρ

2
∆)× n−m

n
+ ρR+ ρΣ

When we first attempted this proof, Ehdm lacked built-in heuristics for nonlinear
multiplication and division8 and it took us a whole day, required 13 intermediate
lemmas, and occupied 5 pages in the listing. Later, when David Cyrluk had provided
effective heuristics for division and nonlinear multiplication, the proof was reduced
to only two intermediate lemmas and less than an hour’s work.

7The Boyer-Moore prover, which has been used to duplicate our verification of ICA [36], has
decision procedures for integer arithmetic, a powerful rational arithmetic package, and was used in
a very controlled, non-automatic mode to duplicate our proof lemma by lemma.

8Nonlinear multiplication is undecidable.
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In our opinion, the key to truly effective theorem proving will be a productive
symbiosis between man and machine: the user should guide the overall strategy and
provide the insights, and the machine should do the straightforward calculations.
The goal should be to maximize the productivity of the human time spent in dialog
with the theorem prover. Our preferred approach requires careful integration of
powerful primitive inference mechanisms within a goal-directed (i.e., subgoaling, or
backwards-chaining) proof search [21].

The outcome of a successful proof attempt should be two proof descriptions (or
possibly one description that serves two purposes): one should be very close to a
proof that can accompany a journal-style presentation of the verification; the other
should be a description that guides the prover to repeat the proof without human
guidance. The latter will be needed to rerun the proof at later stages in the overall
verification, when many surrounding details may have changed slightly.

Ideally, this second proof description should be robust—describing a strategy
rather than a line by line argument—so that unimportant changes to the specifica-
tion of lemmas will not derail it. This rerunning of proofs is essential if we regard the
purpose of mechanically-checked verification as the acquisition of insight rather than
mere certification. As a verification develops, one discovers simplifications, improve-
ments, and generalizations that should be assisted, not discouraged, by investment
in an existing verification. Even those most interested in certification should recog-
nize that a specification is seldom static: a change in external requirements or in
the specification of an assumed service will require reverification.

The dynamic and creative nature of verification development argues strongly
for the ability to perform proofs in any order. Some systems require, or strongly
encourage, a bottom up development in which only previously proven lemmas can
be cited in a new proof. This is not the way real mathematics is performed: one
generally prefers to know whether a proposed lemma is adequate to its intended use
before attempting to prove it. But if proofs can be attempted in any order, then it
is necessary to provide an analysis tool that examines the macroscopic structure of
a complete verification in order to ensure the absence of circularities and unproved
lemmas. An additional benefit of such a tool is a complete enumeration of the
assumptions, definitions, and axioms on which the verification ultimately depends.

6 Conclusions

The benefits that we obtained from our formal verification of ICA can be summarized
as follows.

• Identification of errors in the published analysis and proof.

• A corrected and simplified journal-level proof for the synchronization bounds
maintained by ICA.
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Note that our corrections merely dot the i’s and cross some important t’s
in the original; the substance of all the arguments is due to Lamport and
Melliar-Smith [17].

• A formal specification of the algorithm and a mechanically-checked verification
of its synchronization bounds.

• A complete enumeration of the assumptions and constraints underlying the
analysis of ICA.

• The ability to rapidly and reliably explore the consequences of modifications
to certain assumptions and constraints.

It is the traditional mathematical presentation of our revised proof for the synchro-
nization bounds maintained by ICA that we consider one of the main contributions
of our work; we hope that anyone contemplating using the algorithm will study our
presentation and will convince themselves of the correctness of the algorithm and of
the appropriateness of the assumptions (and of the ability of their implementation
to satisfy those assumptions).

We and our colleagues have derived similar benefits, including the identification
of errors in previous journal-level proofs [29] in other formal verifications that we
have undertaken [25,30]. We do not claim that these benefits can only be obtained
through mechanically-checked formal verification. For example, the flaws in the
published analysis of ICA are readily apparent. The fact remains, however, that
these flaws were not, to our knowledge, identified by the “social process” of peer
review and scrutiny to which Lamport and Melliar-Smith’s paper has been sub-
jected since its publication, but they were detected—and we claim were bound to
be detected—by our formal verification. Contrary to parodies erected by some of
the detractors to formal verification, a mechanical theorem prover does not act as an
oracle that certifies bewildering arguments for inscrutable reasons, but as an impla-
cable skeptic that insists on all assumptions being stated and all claims justified. It
was the demands of formal verification that led us to scrutinize the analysis of ICA
with the care required to identify its shortcomings. Similarly, it was the depth of
understanding of the analysis that we acquired thereby that enabled us to simplify
and improve the journal-level presentation of the analysis. Thus, we regard formal
verification as an instrument of discovery as much as a means of certification [14]:

“The virtue of a logical proof is not that it compels belief but that it
suggests doubts.” [16, page 48]

Formal specification and verification is, at present, an undeniably expensive way
of dispelling ignorance and revealing error. The costs can be reduced by appropriate
choice of specification language and theorem prover, so that effort is brought to bear
on the substance of the problem, and not on incidental difficulties due to complexity
of the notation or inadequacy of the theorem prover. We identified some of the
important issues in these regards in the previous section. The two principal issues
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are the need to reconcile the desire for expressiveness in the specification language
with the ability to provide effective mechanical support, and the requirement for
the theorem prover to be specialized towards the requirements of verification: that
is, it must assist in the rapid identification of the sources of errors in incorrect
theorems as well as in the certification of true theorems, it must produce a proof
suitable for human review, it must have powerful capabilities for low-level reasoning
in standard theories (e.g., arithmetic), and its high-level capabilities must allow
productive interaction with a human user.

No current system for formal specification and verification satisfies all these re-
quirements simultaneously, and we are not persuaded that many are even headed in
the right direction. In our opinion, those that have neglected verification and me-
chanical support to concentrate on specification have not faced up to the hard lan-
guage design problems that come with full mechanization, those that have not done
large, hard verifications underestimate the theorem proving power that is needed,
and those that concentrate on theorem proving have inadequately addressed the
need to extract a genuine proof from the exercise, the need to interact productively
with a human user, and the consequences of the fact that most putative theorems
are false.

Although no current verification system satisfies our requirements, we believe it is
feasible to construct one that will come close to doing so. We have found that one of
the keys to reconciling the desire for expressiveness with that for effective mechanical
support is to exploit the latter to assist the former: by being willing to use theorem
proving during typechecking we have found that we can provide an attractive and
expressive notation without substantial penalty. And we have found it possible to
develop a very attractive and effective proof checker by combining powerful primitive
inferences (including decision procedures) with effective user guidance [21].

Another source of expense in formal verification is the cost of developing the
supporting theories. (In our verification of ICA, for example, more than half the
proofs are concerned with the properties of the supporting theories of summation,
absolute value, induction, and some fragments of arithmetic.) As more verifications
are performed, we expect a library of reusable theories to be developed. The cost of
developing the library will be amortized over many verifications, eventually reducing
overall costs significantly.

Our verification of ICA, and most of the other verifications that we have per-
formed, have been concerned with algorithms, and other abstractions. We have
not proved the “correctness” of specific programs or hardware circuits, although we
are currently in the process of verifying the design of a hardware circuit to sup-
port implementation of ICA. Verification of a physical artifact such as a circuit
or a program is not absolute in the way that verification of an abstraction such as
an algorithm may be. For example, the digital circuits that implement our ICA
circuit may behave differently than we assume, or the specification to which we ver-
ify our circuit may differ from that assumed by the ICA implementation that will
use it. These difficulties attend any use of applied mathematics in engineering: the
underlying model may be incorrect, and the requirements to be satisfied may be mis-
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understood [2]. Formal verification does not make these difficulties any more acute
than informal verification, nor are they solved by avoiding all intellectual scrutiny
of our designs. Formal verification does, however, make explicit the specification
whose satisfaction is verified, and the assumptions on which the verification rests.
It therefore identifies those properties whose satisfaction, or utility, in the physical
world must be established empirically.

Critical systems such as DFCS require the highest degree of human skill and
responsibility in their design, analysis and certification. The stochastic behavior of
ultra-reliable fault-tolerant real-time systems such as DFCS cannot be fully validated
by purely empirical means; intellectual scrutiny and mathematical analysis of the
design are required as well. We hope to have shown that formal verification is a tool
that can provide practical assistance in discharging some of these responsibilities.
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