
Model Checking a Fault-Tolerant Startup Algorithm:
From Design Exploration To Exhaustive Fault Simulation∗

Wilfried Steiner
Real-Time Systems Group,

Technische Universität Wien, Austria
steiner@vmars.tuwien.ac.at

John Rushby
Computer Science Laboratory,

SRI International, USA
rushby@csl.sri.com

Maria Sorea, Holger Pfeifer
Abteilung Künstliche Intelligenz,

Universiät Ulm, Germany
sorea|pfeifer@informatik.uni-ulm.de

Abstract

The increasing performance of modern model-checking
tools offers high potential for the computer-aided design
of fault-tolerant algorithms. Instead of relying on human
imagination to generate taxing failure scenarios to probe
a fault-tolerant algorithm during development, we define
the fault behavior of a faulty process at its interfaces to
the remaining system and use model checking to automati-
cally examine all possible failure scenarios. We call this ap-
proach “exhaustive fault simulation”. In this paper we illus-
trate exhaustive fault simulation using a new startup algo-
rithm for the Time-Triggered Architecture (TTA) and show
that this approach is fast enough to be deployed in the de-
sign loop. We use the SAL toolset from SRI for our exper-
iments and describe an approach to modeling and analyz-
ing fault-tolerant algorithms that exploits the capabilities of
tools such as this.

1. Introduction
Design of fault-tolerant distributed real-time algorithms

is notoriously difficult and error-prone: the combinations of
fault arrivals, interleaving of concurrent events, and vari-
ations in real-time durations lead to a case explosion that
taxes the intellectual capacity of human designers. These
difficulties are compounded when optimizing numerical
parameters—e.g., seeking to determine a minimum safe
timeout, or the time required to stabilize after an upset.

In an idealized world, algorithms are derived by a sys-
tematic process guided by formal correctness arguments
but, in contemporary reality, designers generally have an in-
formal argument in mind and develop the final algorithm
and its parameters by mentally exploring local variations
against that argument and against scenarios that highlight

∗ This work was supported by the European projects NEXT TTA (IST-
2001-32111) and ARTIST (IST-2001-34820), and by NASA Langley
Research Center (contract NAS1-00079).

tricky cases. Exploration against scenarios can be partially
automated using a simulator or rapid prototype and such au-
tomation may increase the number of scenarios that can be
examined and the reliability of the examination.

Automated examination of scenarios can be taken still
further using model checking. In model checking, the
case explosion problem is transformed into one of state
explosion—meaning that the time and space required to run
the model checker grows rapidly and eventually becomes
infeasible as the size of the model grows, so that abstrac-
tion, or consideration of only limited numbers of fault cases
and real-time delays, must be employed.

When using model checking in the design loop, the chal-
lenge is to cover a usefully large number of scenarios in a
very short time (say a few minutes), so that the designers
can perform an interactive exploration of the design space
without losing concentration or patience. As a design be-
comes consolidated, attention shifts from exploration to ver-
ification and the challenge for model checking becomes one
of covering a truly exhaustive set of scenarios for a realisti-
cally accurate model in reasonable time (say, overnight).

Whether model checking is performed for exploration
or verification, a matter of concern is the ease of encod-
ing the algorithm, its fault model, and assumed environment
in the language of the model checker: most of these lan-
guages were originally developed for specifying hardware
circuits or programs and are less than ideal for describing
fault-tolerant algorithms and their fault models at appropri-
ate levels of abstraction.

In this paper, we describe an approach that provides a
“dial” so that a single model can be used in model check-
ing for both rapid exploration and exhaustive verification,
and we illustrate how the model can be used both to check
correctness and to help estimate worst-case performance pa-
rameters. We also demonstrate how the latest generation of
model-checking tools (we use SAL from SRI) meets the
challenges of providing both a convenient modeling lan-

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

guage and the performance to examine trillions of states in
a few hours. We illustrate our approach using a new startup
algorithm for the Time-Triggered Architecture (TTA).

This paper is structured as follows. In Section 2, we
present an overview of the Time-Triggered Architecture
and discuss its startup in an informal manner. In Section
3, we discuss generic modeling issues and introduce a for-
mal model of the startup algorithm in the SAL language.
The desired correctness properties are specified in Section
4 and Section 5 presents and discusses the results of our
model-checking experiments. We conclude in Section 6.

2. The Time-Triggered Architecture
The Time-Triggered Architecture (TTA) supplies a foun-

dation for fault-tolerant safety-critical applications, such as
control functions in cars and aircraft. It provides an ultra-
reliable logical bus connecting the “host” computers that
implement the chosen application, and a set of services
that make it relatively simple to organize the application
in a fault-tolerant manner. Each host computer attaches to
the system through a TTA controller; the combination of
a host and its controller is called a node. Nodes communi-
cate over replicated shared media, called channels. While
initially the channels were physical buses, current realiza-
tions favor a “star” topology with a central guardian at the
hub of each star. The central guardians provide more ro-
bust defense against error propagation than the previous ap-
proach that located simpler guardians at each node [8]. The
node controllers and the central guardians collectively im-
plement the Time-Triggered Protocol TTP/C that guaran-
tees correct operation of the system despite faults in some
of the hosts, controllers, or central guardians.

2.1. Synchronization and Startup
A TTA system or “cluster” with 4 nodes and 2 central

guardians is depicted on the left of Figure 1. During steady-
state operation, the nodes execute a time-division multiple-
access (TMDA) strategy to access the medium; that is, the
access pattern (called the TDMA schedule) is defined a pri-
ori, as depicted on the right of Figure 1.

A.4

A.1

A.3

A.2

… Node … Guardian

Cluster

Time

Cluster Communication

TDMA round n

A.1 A.2 A.3 A.4 A.1 A.2 A.4

Figure 1. TTA cluster and TDMA schedule

Each TTA node has a mapping from its local time to the
slots in the cyclic TDMA schedule; in particular, each node
i knows the local time at which the slot for node k begins—
we can denote this time by si(k). Operation of TTA de-
pends on synchronization of the local clocks, which sim-

ply means that for any two nonfaulty nodes i and j, the in-
stants when i’s local clock reads si(k) and when j’s clock
reads sj(k) must occur very close together in real time.

The synchronization problem is to adjust the values of
si (or, equivalently, the local clocks) so that nodes remain
synchronized despite the drift of their hardware clocks (due
to their oscillators operating at slightly different rates). The
synchronization problem is well understood and many al-
gorithms to solve it have been developed and formally ver-
ified, including the algorithm employed in TTA [10].

The startup problem is to establish values for the func-
tions si (or, equivalently, for the local clocks) as the nodes
first power up so that they quickly become synchronized;
the restart problem is to reestablish synchronization after
transient faults have afflicted the values of si or the local
clocks at one or more (or all) nodes. Here, we are concerned
with algorithms for the startup and restart problems.

2.2. Fault Hypothesis

Since TTA systems are designed for safety-critical appli-
cations, a sufficient degree of fault tolerance must be pro-
vided. The fault hypothesis (i.e., the number, arrival rate,
and kind of faults to be tolerated) of the basic bus-based
TTP/C protocol is discussed in [2]. Fault injection studies
[1] showed that additional mechanisms, such as the cen-
tral guardians of the star topology [3], are necessary to
achieve the demanding requirements for fault tolerance in
the aerospace and automotive industries.

With respect to the protocol execution, each central
guardian has full knowledge of the parameters of its at-
tached nodes, and can therefore judge whether a message
(which is sometimes called a “frame” in TTA) sent by a
node is valid or not (i.e., is sent within its assigned slot
and satisfies certain consistency checks). Guardians relay
valid messages to all the other nodes on their channel, so
that from the nodes’ point of view, the channel looks like
a broadcast bus. A basic TTA system uses two channels,
whose central guardians are connected by a pair of inter-
links that allow each guardian to receive data broadcast on
the other channel. The interlinks are needed in the algorithm
developed here to avoid scenarios in which one clique of
nodes is synchronized to one guardian and another set to the
other, with each clique unaware of the existence of the other.
Each interlink is unidirectional: that is, the central guardian
of channel X receives data from channel X̄ on one inter-
link but cannot transmit on this interlink, and vice versa.

The implementation of a central guardian makes it phys-
ically impossible for it to create a correct frame by itself (it
lacks the hardware to construct the CRC that is part of a
valid frame), or to store a previously sent frame or delay it
for an arbitrarily long duration. Thus, if a central guardian
receives a correct frame over the interlink connection from
the other channel it can be assured that the frame was sent
by a correct sender and the data can be used safely.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

Using central guardians, TTA is claimed to tolerate one
faulty component (the “single failure hypothesis”); this can
be either a faulty node, which is allowed to send arbitrary
signals for arbitrary durations with arbitrary frequency, or a
faulty channel (including its guardian), which is allowed to
show the same behavior as a faulty node with the restriction
that it cannot create correct frames, nor delay frames for an
arbitrary duration.

2.3. Fault-Tolerant Startup
A basic solution to the startup problem is for nodes that

see no traffic for some time to send a “wakeup” message that
carries their own identity. This message provides a com-
mon event that all nodes can use as a baseline for their lo-
cal clocks, and the identity of the sender indicates the posi-
tion in the TDMA schedule to which this time corresponds.

Of course, two nodes may decide to send wakeup mes-
sages at approximately the same time, and these messages
will “collide” on the channel. In a bus-based TTA, the
signals from colliding messages physically overlay on the
medium, but propagation delays cause different nodes to see
the signals at different times so that collision detection can
be unreliable. In a star topology, the central guardians arbi-
trate collisions and select just one message from any that ar-
rive at approximately the same time to forward to the other
nodes. However, each central guardian arbitrates indepen-
dently, so nodes can receive different messages on the two
channels at approximately the same time; resolving these
“logical collisions” is a task of the startup algorithm.

In addition to collisions, the startup algorithm must deal
with faulty nodes that may send “wakeup” messages at in-
appropriate times, masquerade as other nodes, and generally
fail to follow the algorithm. Many of these faults can be de-
tected and masked only with sophisticated guardians; the
central guardians of the star topology are a cost-effective
way to provide this protection. However, this additional
fault tolerance exacts a price: the central guardians must
synchronize with the nodes during startup. Because the
communication system is replicated and there are two cen-
tral guardians, it is particularly crucial that a faulty node
must not be able to initiate or infiltrate a startup sequence to
cause the central guardians to start at different positions in
the TDMA schedule. And, of course, one of the guardians
could itself be faulty.

Fault-tolerant startup of a TTA system clearly requires
rather intricate algorithms in the nodes and guardians. A
suitable “node only” startup algorithm for the bus topology
is implemented in TTP/C [11]. A startup algorithm with
central guardians was designed as part of the star topol-
ogy developed in the NEXT TTA project. Model check-
ing assisted in the design loop of this algorithm and led
to a more resource-efficient solution: whereas the initial
guardian startup algorithm required 1 timer per node, the fi-
nal version uses only a single timer. Model checking also
was used in assurance of the overall algorithm and con-

firmed the need to modify the algorithm used in the nodes
to overcome certain partitioning scenarios (see Section 5.2).
The finished algorithms are outlined below and the model-
checking activity that assisted in their development and as-
surance is the focus of the rest of the paper.

2.3.1. Node Startup The state-machine of the startup al-
gorithm executed in the nodes is depicted in Figure 2(a).
It consists of 4 states: INIT, LISTEN, COLDSTART, and
ACTIVE. Each node i has two unique timeout parameters,
τ listen
i and τcoldstart

i that are defined in the following recur-
sive way (based on the unique value τ startup

i).

Startup Delay: τ startup
i is unique to each node. It is given

by the duration of all TDMA slots from the beginning of
the TDMA round up to the beginning of the slot for node i
(whose duration is τslot

i):

τstartup
i =

{
0 i = 0∑i

j=1 τslot
j−1 i > 0

Listen Timeout: τ listen
i is given by the sum of the node’s

startup delay τstartup
i and 2 TDMA rounds (each of dura-

tion τround): τ listen
i = τstartup

i + 2τround.

Cold-Start Timeout: τ coldstart
i is given by the sum of

the node’s startup delay τstartup
i and 1 TDMA round:

τcoldstart
i = τstartup

i + τround.
When a node is powered-on it either has to integrate to

an already synchronous set, or it must initiate or wait for a
cold-start to be executed. Each newly started (or restarted)
node i, after performing some internal initialization in the
INIT state, transits to LISTEN (Transition 1.1) and lis-
tens for the unique duration τ listen

i to determine whether
there is a synchronous set of nodes communicating on the
medium. During synchronous operation i-frames (this is the
name of a kind of message, it has nothing to do with node
i) are transmitted periodically that carry the current proto-
col state, including position in the TDMA round. If the node
receives such an i-frame, it adjusts its state to the frame
contents and is thus synchronized to the synchronous set
(2.2); if not, the cold-start mechanism is executed. Cold-
start is done in two phases. During the first phase (while
in the LISTEN state), each node listens for a “cold-start”
message (cs-frame) from another node indicating the be-
ginning of the cold-start sequence; cs-frames are similar to
i-frames but carry a protocol state suggested by the sending
node. When a node completes reception of a cs-frame, it en-
ters the second phase COLDSTART (2.1) and resets its lo-
cal clock to δcs (that is the transmission duration of the cs-
frame). Thus, all nodes that received the cs-frame have syn-
chronized local clocks (within system tolerances, including
propagation delay). Each node that receives neither an i-
frame nor a cs-frame during the LISTEN phase will enter
COLDSTART (2.1), resets its local clock to 0 and sends
out a cs-frame by itself. Thus, after the transmission of the
cs-frame (δcs later), the local clock of the sending node will

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

INIT

(1)

LISTEN

(2)

COLD

START

(3)

ACTIVE

(4)

1.1 2.1

2.2

3.1

3.2

(a) Node Startup

INIT

(1)

LISTEN

(2)

1.1

2.1 STARTUP

(3)

Tentative

ROUND

(5)

ACTIVE

(7)

Protected

STARTUP

(6)

2.2

3.2

SILENCE

(4)

3.1

4.1

5.1

5.2

6.1

6.26.3

2.3

(b) Guardian Startup

Figure 2. State-machine of the TTA startup al-
gorithm

also be synchronized to the local clocks of the set of receiv-
ing nodes. This algorithmic choice, not to directly synchro-
nize the receiving nodes on the contents of the first cs-frame
while in the LISTEN state, is called the big-bang mecha-
nism. There is, of course, the possibility that two nodes p
and q send out simultaneous or overlapping cs-frames. The
receiving nodes will see this as a logical collision but take
the same actions as if a single cs-frame was received. Each
node p in COLDSTART state waits for reception of an-
other cs-frame or i-frame until its local clock reaches the
value of its individual cold-start timeout τcoldstart

p . If it re-
ceives such a frame it synchronizes on its contents and en-
ters the ACTIVE state (3.2); if not, it resets its local clock
and again broadcasts a cs-frame (3.1). No further collision
can occur at this point, for the following reasons.

1. Based on the strict order of the unique cold-start time-
outs τcoldstart

i no two nodes that caused a collision can
collide again.

2. Since τ listen
i > τcoldstart

j , for every two nodes i, j, no
newly awoken node i may cause a collision.

The big-bang mechanism ensures better precision, since
the synchronization quality in the second phase is inde-

pendent of the propagation delay: a receiving node knows
the identity of the unique sender of the cs-frame and can
compensate for its known propagation delay. More impor-
tantly, the big-bang mechanism is necessary to mask certain
faults—see Section 5.2.
2.3.2. Guardian Startup A faulty node could masquer-
ade as another during startup, send cs-frames at inappropri-
ate times (or continuously), and generally fail to follow the
algorithm. A central guardian can mask these faults, but to
do so (and to perform its prime function of enforcing the
TDMA schedule during steady-state operation), it must it-
self synchronize with its nodes. The startup algorithm of the
guardians is depicted in the state-machine in Figure 2(b).

A central guardian starts in INIT state where all com-
munication on its channel is blocked. When its initializa-
tion is finished it transits to LISTEN state (1.1) and listens
to the interlink for 2∗τround , that is, it tries to integrate to an
already running system. If an i-frame is received, the cen-
tral guardian transits to ACTIVE state (2.3); if a cs-frame
is received, it transits to Tentative ROUND state (2.2). If
an integration was not possible during LISTEN, the cen-
tral guardian transits to STARTUP state (2.1). All ports are
now opened and the central guardian waits until it receives
a valid frame either on one of its ports or on the interlink.
If more than one port become active at the same time, the
central guardian selects one port non-deterministically. If a
cs-frame is received and no logical collision occurred (that
is the guardian received either two identical cs-frames—
one on one of its stubs and the second on the interlink—
or only one frame), the central guardian transits to Tenta-
tive ROUND state (3.1). If a collision occurred the cen-
tral guardian transits to SILENCE state (3.2). In Tentative
ROUND state the central guardian operates the remaining
TDMA round (the received frame during STARTUP state is
considered the first frame of a TDMA round); if during this
round a valid i-frame is received, the startup initiated by the
cs-frame sender is confirmed and the central guardian pro-
ceeds to ACTIVE state (5.2). If during this TDMA round
no valid i-frame was received the central guardian transits
to Protected STARTUP (5.1). If a central guardian tran-
sits to SILENCE state (because a collision was received)
it blocks all communication for the remaining round and
transits to Protected STARTUP as well (4.1). Protected
STARTUP state differs from STARTUP state in that here
the ports are enabled for one TDMA round according to
the cold-start timeouts of the nodes. Thus, in contrast to
STARTUP state every node is forced to stay to its timeout
pattern. The transitions from Protected STARTUP state to
Tentative ROUND state (6.1) and SILENCE state (6.2)
underly the same rules as in STARTUP state. If no tran-
sition is done for a period of one TDMA round the cen-
tral guardian transits back to STARTUP state (6.3) and the
startup sequence is repeated. Since the central guardian has
full knowledge of the attached nodes’ parameters (which are
specified off-line), it can detect faulty transmissions with re-

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

spect to protocol operation. If a central guardian detects a
faulty node it will block all further attempts of this node
to access the communication channel during the startup se-
quence. Thus, a faulty node cannot influence the startup se-
quence forever.

3. Verification Model
The startup algorithm described in the previous section

is fairly subtle and must cope with many kinds of fault and
timing behaviors. Model checking provides a way to ex-
plore these behaviors in an automatic way, but faces cer-
tain difficulties. First, the algorithm involves time in an es-
sential way and the most realistic formal model for the al-
gorithm will be one in which time is treated as a continu-
ous variable. Timed automata provide a suitable formalism
of this kind, and are mechanized in model checkers such
as Kronos and UPPAAL. Lönn [9] considers startup algo-
rithms for TDMA systems similar to TTA and verifies one
of them using UPPAAL. However, model checking for timed
automata is computationally complex, so that when we add
the case/state explosion caused by considering a large num-
ber of fault scenarios, the model rapidly becomes compu-
tationally infeasible. Our initial experiments did use timed
automata and we were unable to consider more than a very
few simple kinds of faults.

It is essential to the utility of model checking for explo-
ration and verification of fault-tolerant algorithms that we
are able to consider a large number of different kinds of
faults—ideally, we would like the fault model to be exhaus-
tive, meaning that we describe every kind of fault we can
think of, and let the model checker inject these in all pos-
sible ways. Since this is impracticable in a model that uses
continuous time, we looked for an abstraction employing
discrete time.

Nodes executing the startup algorithm measure time by
counting off slots in the TDMA schedule. Although slots
have duration and may be offset at different nodes, we can
think of them as indivisible units: we do not care by how
much the slots at different nodes are offset, just whether
they overlap at all (so that a collision can occur). Thus, we
can use a discrete notion of time and can model the col-
lective behavior of a cluster of nodes as the synchronous
composition of discrete systems. Another way to justify this
modeling approach is to think of it as describing the sys-
tem from the point of view of a central guardian: each dis-
crete instant corresponds to some real time interval at the
guardian and all messages that (start to) arrive in that inter-
val are regarded as simultaneous; the behavior of the nodes
is driven off (i.e., synchronously composed with) the dis-
cretization provided by the central guardian.

Fully exhaustive fault models pose a challenging
prospect, so we developed a modeling “dial” that could in-
ject varying degrees of faults: our idea was to use as high
a degree (i.e., as many kinds) of faults as proved feasible
in practice. In the remainder of this section we first present

our basic model of the startup algorithm and then describe
the modeling concepts for faulty components of varying de-
grees. Due to space limitations we only give representative
parts of the node’s model and refer the interested reader to
[13] where the complete source code of the SAL model and
an extended version of this paper can be found, together
with instructions that will help to recreate the experiments.

3.1. Basic Model
The system model comprises n nodes, each syn-

chronously composed with two central hubs that each con-
tain a central guardian that blocks certain faulty messages.
At each time step, each node examines the input messages
received from the hubs, consults its private state variables,
and possibly generates an output message that it sends to
the hubs. Each hub examines the messages received from
the nodes and the other hub and constructs the single mes-
sage that will comprise the consistent input presented to the
nodes at the next time step.

We specify this discrete, synchronous model in the lan-
guage of SAL as follows. We begin by defining the types
over which the state variables will range.

startup: CONTEXT =
BEGIN
n: NATURAL = 4;
index: TYPE = [0..n-1];
maxchannels: NATURAL = 2;
channels: TYPE = [0..maxchannels-1];
maxcount: NATURAL = 20*n;
counts: TYPE = [0..maxcount];

Here, n is the number of nodes (here assigned the value
4, but we also examine models with 3, 5, and 6 nodes),
which are identified by elements of the type index. Anal-
ogously, maxchannels is the number of channels, which
are identified by elements of the type channels. The
largest timeout considered is maxcount and the values of
a timeout counter are given by the type counts.

states: TYPE = {init, listen, start, active, faulty,
faulty_lock0, faulty_lock1, faulty_lock01};

hub_states: TYPE = {hub_init, hub_listen, hub_startup,
hub_tentative, hub_silence, hub_protected,
hub_active, hub_faulty};

msgs: TYPE = {quiet,noise,cs_frame,i_frame};

The enumerated types states, hub states, and
msgs specify, respectively, the states of the algorithm at
a node, the states of the algorithm at a hub, and the kind of
messages that can be exchanged with a hub. The states cor-
respond to those in the state-machines of Section 2, plus
additional faulty states that are used in the simulation of
faulty components. Each node may output messages with
values quiet (meaning no message), noise (meaning
a syntactically invalid signal), cs frame (a cs-frame), or
i frame (an i-frame); the hub will return a message type
based on the inputs of the attached nodes.

LT_TO:ARRAY index OF NATURAL = [[j:index] 2*n+j];
CS_TO:ARRAY index OF NATURAL = [[j:index] n+j];

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

The unique timeouts for each node are specified as LT TO
(listen timeout) and CS TO (cold-start timeout), as defined
in Section 2.

We specify the input and output variables of an individ-
ual node as follows.

node[id:index]: MODULE = BEGIN INPUT
msg_in: ARRAY channels OF msgs,
time_in: ARRAY channels OF index,
lock_in: ARRAY channels OF BOOLEAN

OUTPUT
msg_out: ARRAY channels OF msgs,
time_out: ARRAY channels OF index,
state: states,
counter: counts,
errorflag: BOOLEAN

The msg in represents the kind of message that the
node receives from the hubs; if it is a normal message,
then time in indicates the slot position transmitted in the
sender’s frame, which equals the current time measured rel-
ative to the start of the TDMA round if the sender sends a
correct value. We can think of this information as being in-
cluded in the message, but it is easier to model it as a sepa-
rate variable. The input variable lock in is used to make
the model more compact and is discussed in Section 3.2.

The output variables msg out, time out, state,
and counter represent, respectively, the message that this
node will output to the hub, its estimate of the identity of
the node associated with the current slot (i.e., its estimate
of time relative to the start of the TDMA round), its state
within the algorithm, and the value of its timeout counter.
The output variable errorflag is used for diagnosis of
the model and has no influence on the protocol execution.

LOCAL
startupdelay: counts,
big_bang: BOOLEAN

Each node has a local variable startupdelay that in-
dicates the maximum duration a node is allowed to stay
in init state (simulating the different power-on times of
the different nodes). Initially set to TRUE, the local variable
big bang is set FALSE if a big bang has been received.

The algorithm is specified by a series of guarded com-
mands. We describe in detail those that apply to a node in
the init state, and one transition of a node in listen
state, as representative illustrations.

[% Transition: 1.1
state = init

--> state’ = IF NOT faulty_node[id] THEN listen
ELSE faulty ENDIF;

counter’ = 1;
msg_out’ = msg_out;
time_out’ = time_out;

[] % Let time advance
state = init AND counter < startupdelay

--> state’ = state;
counter’ = counter+1;
msg_out’ = msg_out;
time_out’ = time_out;

Here, the [character introduces a set of guarded com-
mands, which are separated by the [] symbol; the % charac-
ter introduces a comment. A SAL guarded command is el-
igible for execution in the current state if its guard (i.e., the
part before the --> arrow) is true. The SAL model checker
nondeterministically selects one of the enabled commands
for execution at each step; if no commands are eligible, the
system is deadlocked. State variables are unprimed before
execution of a command and primed in the new state, that
is, after the execution of a command.

Provide the counter is less than startupdelay, both
the above commands are eligible for execution; thus, the
node can nondeterministically choose to stay in the init
state (incrementing its counter by 1) or to transit to the
listen state. If the counter reaches startupdelay, the
node must transit either to listen or faulty state, de-
pending whether the node simulates a correct node or a
faulty one. Hence, the two guarded commands above allow
the node to “wake up” and transit to the listen state at
any point during the specified period of startupdelay;
on entering the listen (or faulty) state, its counter is
reset to 1.

We next describe a class of transitions for a node from
listen to (cold) start state.

[] % Transition 2.1
([] (k: channels):
state = listen AND big_bang AND msg_in[k] = cs_frame
AND (NOT (EXISTS (j:channels): j/=k AND

(msg_in[j] = cs_frame OR msg_in[j] = i_frame) AND
(time_in[k]/=time_in[j] OR msg_in[k]/=msg_in[j])))

--> state’ = start; counter’ = 2;
msg_out’=[[j:channels] quiet];
time_out’=[[j:channels] 0];
big_bang’ = FALSE;)

This guarded command is a short hand for a set of transi-
tions. It represents one transition for each k, with k = 0, 1.
The precondition is satisfied, if the node is in listen state,
a big bang has not been received yet by this node, the in-
coming message on channel k is a cs-frame, and there does
not exist a channel different from k (in a dual-channel sys-
tem, there is only one other channel) where a cs-frame or i-
frame is received that has another time in value than that
on channel k. The output and local variables will be set to
the appropriate values. The subtly differentiated cases in the
precondition were helpful in testing different algorithm de-
signs.

3.2. Failure Modeling
Faults vastly increase the statespace that must be ex-

plored in model checking, and they do so in two different
ways. The first way is by introducing genuinely different
behaviors; we provide a fault degree “dial” to parameterize
this as described in the following section. The second way
is to introduce “clutter” in the form of states that differ in ir-
relevant ways: for example, a faulty node can end up in one
of many different states, but once the correct components
have excluded this node from further consideration, its state

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

q
u

ie
t

cs
_

fr
am

e

 (
g

o
o

d
)

i_
fr

am
e

 (
g

o
o

d
)

n
o

is
e

cs
_

fr
am

e

(b
ad

)

i_
fr

am
e

 (
b

ad
)

quiet 1 4

cs_frame (good) 2 4

i_frame (good) 3 4

noise 4 4

cs_frame (bad) 5 5

i_frame (bad) 6 6

5

6

6

6

6

6

6

6

5

5

5

5

5

6

3

3

3

4

5

6

2

2

3

4

chB

chA

Figure 3. Fault degree

has no effect on system behavior. However, a model checker
distinguishes all the different states of the faulty component
and this needlessly complicates its task. A valuable “trick”
in modeling fault-tolerant algorithms is to set the states of
faulty components to fixed values once they can no longer
affect the behavior of the system. We implement this by a
mechanism we call feedback.

3.2.1. Node Failures The model simulates time in dis-
crete slot granularity and a faulty node is simulated as one
that can send arbitrary messages in each slot. We classify
the possible outputs of such a faulty node into the six fault
degrees depicted by the (6 × 6) matrix in Figure 3. For ex-
ample, a fault degree of 1 allows a faulty node only to fail
silent, while fault degree 6 allows a node to send an arbi-
trary combination of cs-frames and i-frames with correct or
incorrect semantics, noise, or nothing on each channel.

Each of these 36 combinations was explicitly described
by guarded commands in the SAL model.

[] state = faulty AND degree >= 2
-->
msg_out’=[[j:channels] IF j = 0

THEN cs_frame ELSE quiet ENDIF];
time_out’ = [[j:channels] IF j = 0

THEN faulty_ID ELSE 0 ENDIF];
state’ = IF lock_in[0] AND lock_in[1] AND feedback

THEN faulty_lock01
ELSIF lock_in[0] AND feedback THEN faulty_lock0
ELSIF lock_in[1] AND feedback THEN faulty_lock1
ELSE state ENDIF;

Here, one guarded command of a faulty node with fault de-
gree 2 or greater is depicted: such a faulty node is allowed
to broadcast a cs-frame on channel 0 and does not send on
the second channel. Furthermore, to reduce the statespace,
we use “feedback”: the lock in[i] input variables are
set by the hub i (corresponding to its lock output vari-
ables) if it discovers that the node is faulty (by judging on
the node’s output behavior). A faulty node will then trans-
mit only quiet on channel i, since the hub will block all
messages of the faulty node anyway. To judge its effect, this
feedback routine can be turned on and off by setting the
feedback parameter to TRUE or FALSE respectively.

3.2.2. Hub Failures Analogous to a faulty node, a faulty
hub is simulated by assigning its output variables to arbi-

trary values, within its fault hypothesis (a faulty hub cannot
create correct messages) in each slot.

[] ([] (i: index):
state=hub_faulty AND msg_in’[i] /= quiet
-->
msg_out’ = [[j:index] IF partitioning[j]

THEN msg_in’[i]
ELSE IF send_noise[j] THEN noise ELSE quiet ENDIF
ENDIF];

time_out’ =[[j:index] time_in’[i]];
interlink_msg_out’ = msg_in’[i];
interlink_time_out’ = time_in’[i];)

This example of a transition by a faulty hub is activated
if an attached node sends a message other than quiet to
the hub. The faulty hub then is free to select a subset of
nodes to which the message is forwarded. The local vari-
able partitioning, an array of boolean variables, cre-
ates such a partitioning of the nodes. By specifying no ini-
tial value for this variable, the model checker is forced to
test every assignment. The faulty hub is allowed to send ei-
ther noise or quiet to the other nodes, using the simi-
larly uninitialized boolean array send noise. We call this
method implicit failure modeling (in the sense, that it is not
necessary to model transitions for each subset explicitly).

4. Correctness Properties
In the following we describe some correctness proper-

ties of the algorithms and their formulation as “lemmas” in
SAL notation. Here, G denotes the always or � modality
of linear temporal logic (LTL), and F denotes the eventu-
ally or ♦ modality. SAL allows a modular model descrip-
tion. To compose the modules, the input and output vari-
ables have to be mapped to global (unique) variables, local
variables may be mapped for better readability of the prop-
erties under test. lstates and hstates correspond to
the state variable in node and hub, respectively.

Lemma 1 Safety: Whenever any two nodes are in the AC-
TIVE state, these nodes will agree on the slot time.

safety: LEMMA system |- G(FORALL (i,j:index):
(lstates[i] = active AND lstates[j] = active) =>
(node_time_out[i] = node_time_out[j]));

Lemma 2 Liveness: All correct nodes will eventually reach
the ACTIVE state.

liveness: LEMMA system |- F((FORALL (i:index):
lstates[i] = active OR faulty_node[i]));

Lemma 3 Timeliness: All correct nodes will reach the AC-
TIVE state within a bounded time (see 5.3).

timeliness: LEMMA system |-
G(startup_time <= @par_startuptime);

Lemma 4 Safety 2: Whenever a node reaches the ACTIVE
state, a correct hub has also reached either the Tentative
ROUND or ACTIVE states.

safety_2: LEMMA system |-
G ((EXISTS (i:index): lstates[i] = active) =>
(hstates[1]=hub_active OR hstates[1]=hub_tentative));

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

Within our model-checking study additional lemmas
were examined to gain confidence in our model. Those lem-
mas can be found in the source code of the SAL model.

5. Experimental Results and Discussion
In this section we present results from our experiment

using model checking in development of the new startup al-
gorithm. Our experiments were performed on an Intel(R)
Xeon(TM) with a CPU speed of 2.80GHz and 2GByte
memory. We used the Linux distribution of SAL 2.0 [5].

5.1. Effectiveness of Statespace Reduction
Our decision to use a discrete model for time was crit-

ical to our ability to perform these experiments at all. Al-
though we cannot yet prove the soundness of this abstrac-
tion, we gained confidence in it by selectively removing
mechanisms from the SAL model of the algorithm and ob-
serving that the model checker always detected the expected
system failures.

In exploring algorithmic variations, it was crucial for the
model checker to deliver results within the human attention
span of a few minutes. Our principal “dials” for trading time
required against thoroughness of the exploration performed
by the model checker were the number of nodes considered
(typically from 3 to 6), and the fault degree. The parame-
ter δfault selects the fault modes that a faulty node may ex-
hibit. Figure 4 illustrates the verification times in seconds
for three lemmas in a 4-node model with δfault = 1, 3, 5.
The results clearly show the increase in verification times
with fault degree. A fault degree of 1 is suitable for quick
investigation in the inner design loop, while degrees 3 and
5 invite a coffee break.

δfault safety liveness timeliness

1 44.11 196.05 77.14
3 166.34 892.15 615.03
5 251.12 1324.54 921.92

Figure 4. Effect of Increasing Fault Degree on
Model-Checking Performance

The feedback mechanism (i.e., forcing failed compo-
nents to a standard state to reduce the statespace) was inef-
fective or counterproductive in practice for medium to large
models, but for very large models it proved essential. For
example, one property was successfully model checked in
a 6-node model in 30,352 seconds (about 8.5 hours) with
feedback on, but had not terminated after 51 hours with
it off. In future research, we intend to investigate in more
detail the influence of the feedback mechanism on model
checker performance.

5.2. Design Exploration: Big-Bang Mechanism
One area where we performed extensive design explo-

ration was to determine the necessity and effectiveness

of the big-bang mechanism. A crucial requirement of the
startup algorithm is that it should not establish synchronous
operation of a subset of nodes on a faulty hub while the
second, correct, channel is available but unsynchronized. In
such a case it would be possible for the faulty hub to for-
ward messages only to the synchronous subset but not to the
other nodes and hub; other nodes that are not yet synchro-
nized would perform the startup algorithm (since the traf-
fic of the synchronous set is hidden by the faulty hub) and
start up independently of the other, already synchronized,
nodes thereby establishing a classical clique scenario [12],
in which two subsets of nodes are communicating within
each subset but not as one coordinated whole. The big-bang
mechanism (Section 2) is used to prevent such scenarios.

Our model-checking experiments verified the necessity
of the big-bang mechanism by producing the following
counterexample in its absence for a cluster of 4 nodes:

1. node n2 and n3 start up with one slot difference;
2. after the listen timeouts expire, n2 and n3 send their

cs-frames, resulting in a collision;
3. the correct hub forwards the winning node, say n2, on

its channel to all nodes and the second channel;
4. the faulty hub forwards the winning node on its chan-

nel, n3, only to the correct hub;
5. nodes n1 and n4 receive only one cs-frame (from n2)

and synchronize on it, thus reaching ACTIVE state;
6. the correct hub sees a collision, since the faulty hub

forwards the other cs-frame to it, and thus will not syn-
chronize to the active set of nodes.

The big-bang mechanism discards the first cs-frame a node
receives, since this cs-frame could be part of a collision of
two nodes. The model-checking studies showed the neces-
sity and correctness of this mechanism.

There is a class of scenarios similar to the one above
that is not directly addressed by the algorithm: this is where
nodes start up on a single faulty guardian (believing the
other guardian to be unavailable), and only a subset of
them achieve synchronous operation. These scenarios are
excluded in practice by arranging the power-on sequence
so that the guardians are running before the nodes: the al-
gorithm is able to deal with a faulty guardian provided the
other guardian is available at the start of its operation.

SAL 2.0 provides both bounded and symbolic model
checkers. Bounded model checkers, which are based on
propositional satisfiability (SAT) solvers, are specialized
for detecting bugs: they explore models only to a speci-
fied, bounded depth and can be faster than symbolic model
checkers (which effectively explore the entire statespace)
when bugs are present that can be detected within the
bound. Bounded model checking provides algorithm devel-
opers with another analytical “dial”: they can explore to in-
creasing depths with a bounded model checker and switch
to the “unbounded” depth of a symbolic model checker
only when all the “shallow” bugs have been detected and

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

eliminated. In our big-bang experiments, the SAL bounded
model checker was sometimes more efficient than the sym-
bolic one at exposing the failing scenarios. For example, it
found a violation to the Safety 2 property in a 5-node
system at depth 13 in 93 seconds (solving a SAT problem
with 405,398 nodes), whereas the symbolic model checker
required 127 seconds (for a model with 682 BDD variables).

5.3. Worst-Case Startup Scenarios
We define the worst-case startup time, τwcsup

(startup time in the model), as the maximum du-
ration between 2 or more non-faulty nodes entering the
LISTEN or COLDSTART states and 1 or more non-faulty
nodes reaching the ACTIVE state.

We explored worst-case startup times by model check-
ing the timeliness property for different values of
@par startuptime, setting it first to some small ex-
plicit value (e.g., 12) and increasing it by small steps (e.g.,
1) until counterexamples were no longer produced. By ex-
ploring different cases and different cluster sizes, we were
able to develop an understanding of the worst-case scenar-
ios.

The deduced formula for worst-case startup time τwcsup

(which occurs when there is a faulty node) is given in the
following equations.

τwcsup = τ listen
max−1 + 2 ∗ τcoldstart

max−1 + τ slot

= 3 ∗ τ round − 2 ∗ τ slot

+2 ∗ (2 ∗ τround − 2 ∗ τ slot) + τ slot

= 7 ∗ τ round − 5 ∗ τ slot .

5.4. Automated Verification and Exhaustive Fault
Simulation

During exploration of the algorithm we were content to
consider modest cluster sizes and fault degrees, but for ver-
ification we wanted to examine larger clusters and “exhaus-
tive” modeling of faults. The term exhaustive fault simula-
tion was chosen in analogy to fault injection and with re-
spect to the nomenclature given in [7]. While fault injec-
tion means actually to insert faults into physical systems,
fault simulation is concerned with modeling faulty behav-
ior in a mathematically model. Exhaustive fault simulation
means that all hypothesized fault modes are modeled and
all their possible scenarios are examined. In our case, this
means model checking our model of the startup algorithm
with the fault degree set to 6. A desirable goal is to be able
to check all properties for a reasonable-sized cluster (say 5
nodes) overnight (say 12 hours, or 43,200 seconds). In this
section we give formulas to estimate the number of scenar-
ios under test for exhaustive fault simulation and report the
performance achieved.

Different startup delays: Given a system of n nodes and 2
guardians, where each of the nodes and one of the guardians
was allowed to startup at an instant during a period of δinit ,
the number of scenarios, |Ssup |, based on these different
startup times is given by |Ssup | = (δinit)n+1 .

Worst-case startup scenarios with a faulty node: Given the
worst-case startup time of the system τwcsup and the fault
degree of a faulty node δfault , the number of scenarios for
one particular startup pattern of nodes and hubs, |Sf .n.|, is
given by |Sf .n.| = ((δfault)2)τwcsup

. Numerical estimates
for these parameters are given in Figure 5 (δfault = 6).

nodes δinit |Ssup | τwcsup |Sf .n.|
(slots) (slots)

3 24 3.3 ∗ 105 16 8 ∗ 1024

4 32 3.3 ∗ 107 23 6 ∗ 1035

5 40 4.1 ∗ 109 30 4.9 ∗ 1046

Figure 5. Number of Scenarios for Different
Fault Degrees

The SAL symbolic model checker is able to count
the number of reachable states in a model. For the
model used in the big-bang tests, these numbers were
1,084,122,880 states for 3 nodes, 508,573,786,112 for 4,
and 259,220,300,300,290 for 5; these are approximately
227, 235, and 243 states, respectively, in reasonable agree-
ment with Figure 5.

Figures 6(a), 6(b), and 6(c) present the model checker
performance for Lemmas 1, 2, and 3 in presence of a
faulty node with fault degree δfault = 6 and startup-delay
δinit = 8 ∗ τround . The feedback column indicates whether
the feedback optimization was turned on or off. Figure 6(d)
presents the results for Lemma 4 in presence of a faulty hub
with startup-delay δinit = 8 ∗ τround . Results are shown
for models with 3, 4, and 5 nodes. The eval column indi-
cates if the respective lemma is satisfied.

The cpu time column gives the execution time of the
corresponding model-checking run, while the BDD column
gives the number of BDD variables for the model (this is
equivalent to the number of state bits after eliminating those
that are simple combinations of others). 300 or so state bits
is usually considered the realm of “industrial” model check-
ing, where skilled tinkering may be needed to obtain a re-
sult in reasonable time. Yet all these results were obtained
with no special efforts beyond those described.

6. Conclusion
We have presented the verification model and results of

a model-checking study for a new startup algorithm for the
TTA. The startup algorithm guarantees a safe and timely
system startup in the presence of one faulty component. Our
model-checking experiments showed the robustness of the
algorithm in the presence of a faulty node or a faulty hub.

We described modeling concepts for abstracting the
problem to discrete time, and for exhaustive fault simula-
tion. The resulting models have billions or even trillions of
reachable states, yet the symbolic model checker of SAL is

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

nodes feedback eval. cpu time BDD
(sec)

3 on true 62.45 248
4 on true 259.53 316
5 on true 920.74 422

(a) Results for Lemma safety

nodes feedback eval. cpu time BDD
(sec)

3 on true 228.03 250
4 on true 1242.73 318
5 on true 41264.08 424

(b) Results for Lemma liveness

nodes feedback wcsup eval. cpu time BDD
(slots) (sec)

3 on 16 true 47.81 268
4 on 23 true 907.61 336
5 on 30 true 4480.90 442

(c) Results for Lemma timeliness

nodes eval. cpu time BDD
(sec)

3 true 56.65 272
4 true 82.95 348
5 true 4289.77 462
(d) Results for Lemma safety 2

Figure 6. Performance Results for Model
Checking the Lemmas

able to examine these in a few tens of minutes (for billions
of states) or hours (for trillions). This combination of an ef-
fective modeling approach and an efficient tool allowed us
to use model checking over an exhaustive fault model in the
design loop for the algorithm, and also helped us establish
the worst-case startup times. Thus, this approach extends
previous experiments in model-checking fault-tolerant al-
gorithms such as [14] and [4] by vastly increasing the num-
ber of scenarios considered, while achieving performance
that allows the method to be used in design exploration as
well as for verification.

Ongoing design work is concerned with a shift of com-
plexity from the guardian algorithms to the node algorithms
to make the interlink connections unnecessary. In ongoing
formal methods studies, we are exploring the use of the
infinite-bounded model checker of SAL (which combines
a SAT solver with decision procedures for theories includ-
ing real arithmetic) to develop and analyze models that use
continuous time [6], while still allowing rich fault models.
We are also using the PVS theorem prover to formally ver-
ify the algorithm and its fault hypothesis in their most gen-
eral forms.

References

[1] A. Ademaj, G. Bauer, H. Sivencrona, and J. Torin. Evalu-
ation of fault handling of the Time-Triggered Architecture
with bus and star topology. In Proc. of International Con-
ference on Dependable Systems and Networks (DSN 2003),
San Francisco, Jun. 2003.

[2] G. Bauer, H. Kopetz, and P. Puschner. Assumption Coverage
under Different Failure Modes in the Time-Triggered Archi-
tecture. In Proc. of International Conference on Emerging
Technologies and Factory Automation, pages 333–341, Oct.
2001.

[3] G. Bauer, H. Kopetz, and W. Steiner. The central guardian
approach to enforce fault isolation in a time-triggered sys-
tem. In Proc. of 6th International Symposium on Au-
tonomous Decentralized Systems (ISADS 2003), pages 37 –
44, Pisa, Italy, Apr. 2003.

[4] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model check-
ing fault tolerant systems. Software Testing, Verification and
Reliability, 12:251–275, Dec. 2002.

[5] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. To be presented at CAV
2004, July 2004. Available at http://www.csl.sri.
com/˜rushby/abstracts/sal-tool.

[6] B. Dutertre and M. Sorea. Timed systems in SAL. Techni-
cal report, Computer Science Laboratory, SRI International,
Menlo Park, CA, 2004. In preparation.

[7] J.C.Laprie. Dependability: Basic Concepts and Terminol-
ogy. Springer-Verlag, 1992.

[8] H. Kopetz. Fault containment and error detection in the
Time-Triggered Architecture. In Proc. of The 6th Inter-
national Symposium on Autonomous Decentralized Systems
(ISADS 2003), pages 139–146, Pisa, Italy, Apr. 2003.

[9] H. Lönn and P. Pettersson. Formal verification of a TDMA
protocol start-up mechanism. In Pacific Rim Interna-
tional Symposium on Fault-Tolerant Systems, pages 235–
242, Taipei, Taiwan, Dec. 1997. IEEE Computer Society.

[10] H. Pfeifer, D. Schwier, and F. W. von Henke. Formal verifica-
tion for time-triggered clock synchronization. In C. B. We-
instock and J. Rushby, editors, Dependable Computing for
Critical Applications—7, volume 12 of Dependable Com-
puting and Fault Tolerant Systems, pages 207–226, San Jose,
CA, Jan. 1999. IEEE Computer Society.

[11] W. Steiner and M. Paulitsch. The transition from asyn-
chronous to synchronous system operation: An approach for
distributed fault-tolerant systems. In The 22nd International
Conference on Distributed Computing Systems, pages 329–
336, Vienna, Austria, July 2002. IEEE Computer Society.

[12] W. Steiner, M. Paulitsch, and H. Kopetz. Multiple fail-
ure correction in the Time-Triggered Architecture. Proc. of
9th Workshop on Object-oriented Real-time Dependable Sys-
tems (WORDS 2003f), Oct. 2003.

[13] W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. SAL model
of a TTA startup algorithm. Research Report 52/2003, Tech-
nische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2003.

[14] T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic veri-
fication of fault tolerance using model checking. In Proc. of
2001 Pacific Rim International Symposium on Dependable
Computing, page 95, Seoul, Korea, Dec. 2001.

Proceedings of the 2004 International Conference on Dependable Systems and Networks (DSN’04)
0-7695-2052-9/04 $ 20.00 © 2004 IEEE

