
CSL Technical Report • January 2002

Formal Verification of Marzullo’s Sensor Fusion Interval

John Rushby
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

This research was supported by NASA Langley Research Center under contract
NAS1-20334 and Cooperative Agreement NCC-1-377 with Honeywell Tucson, and
by the DARPA MoBIES program under contract F33615-00-C-1700 with US Air
Force Research Laboratory.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

We examine the problem of selecting a best value from a collection of sensor readings,
and diagnosing faulty readings in such a collection. We focus on sensor interfaces that re-
turn arangeof values and describe the “fusion functions”

⋂
f,n(S) of Marzullo andFfn (S)

of Schmid and Schossmaier. We use PVS formally to prove the soundness of
⋂
f,n(S) (i.e.,

it always contains the correct value), from which soundness ofFfn (S) also follows.Ffn (S)
is generally to be preferred to

⋂
f,n(S) because it satisfies a “Lipschitz Condition” (small

changes in sensor readings produce small changes in its output), and is optimal among all
such functions.

i

ii

Contents

Contents iii

List of Figures v

1 Introduction 1

2 Formalization of Sensor Fusion Functions 5
2.1 Formal Specification and Verification in PVS. 9

3 Conclusion 17

Bibliography 19

iii

iv

List of Figures

1.1 Sensor Fusion Problem. 2
1.2 Resulting Fusion Interval. 3
1.3 Sensor Fusion Problem with Unclear Diagnosis. 4
1.4 Precision Sacrificed to Preserve Soundness. 4

2.1 FTI Fusion Interval. 8
2.2 Marzullo’s Fusion Interval with Diagnosis. 9

v

vi

Chapter 1

Introduction

We are interested in application-independent fault tolerance for embedded systems and,
in particular, in methods for sensor validation and fusion. We can consider the problem of
sensorvalidationto be concerned with deciding whether the reading returned by a particular
sensor is trustworthy or not, and the problem of sensorfusion to be that of inferring a
“best” value for the sampled variable from readings returned by multiple sensors. Validation
can be performed on each sensor reading in isolation (e.g., using diagnostic information
returned by the sensor itself), or by comparing the reading of each sensor against those of
others, or both these methods can be used in combination. Modern “smart” sensors have
their own processors and do perform validation locally. However, we also want the local
validation process to return information that is useful for validation by comparison, and for
the fusion process. One particularly useful and application-independent way in which this
can be accomplished is for sensors to return apair of values (representing lower and upper
bounds) rather than a single value: sensors that locally diagnose difficulties will return a
large range, while those that are confident of their performance will return a tight one. A
refinement, consistent with thetemporal firewallproposal of Kopetz [KN97], is to return
a pair of parameters representing the upper and lower bounds asfunctionsof time rather
than constants: the bounds will then move further apart as the delay increases between
reading and use of the sensor value. The sensor fusion task now becomes one of combining
the ranges returned by individual sensors to achieve the best “consensus” value. Even smart
sensors can fail, however, so the fusion task must be resilient to some number of completely
erroneous readings.

The abstract sensor fusion problem is portrayed in Figure1.1: readings from four sen-
sors are shown as lines representing the intervals between their upper and lower bounds,
and the problem is to extract a new interval that represents a good estimate of the true value
of the sampled variable, that is resistant to faulty readings, and that has other desirable
properties.

If we assume that a property of nonfaulty sensors is that the true value of the sampled
variable must lie within the interval that they return, then the intervals returned by nonfaulty

1

S(2)

S(3)

S(4)

S(1)

Figure 1.1: Sensor Fusion Problem

sensors must overlap. In Figure1.1, it is therefore clear that one or both ofS(3) andS(4)
must be faulty, and similarly forS(1) andS(4). If we further assume that only one fault may
arise at a time, then we may conclude thatS(4) must be faulty and that the best estimate
of the sampled variable is the interval of mutual overlap betweenS(1), S(2), andS(3)
indicated by the vertical dashed lines shown in Figure1.2.

But now suppose that the interval forS(4) shifted a little to the left as shown in Figure
1.3. It is still clear that (under a single-fault hypothesis) one ofS(1) andS(4) must be faulty
(because their intervals do not overlap), but the information available provides no basis for
preferring one over the other. IfS(4) is faulty, then the appropriate “fusion” interval is the
one between the two dashed lines on the left, whereas ifS(1) is faulty, the fusion interval
should be the one between the two dashed lines on the right. But since we have no basis for
choosing one over the other, the only safe choice is for the fusion interval to embrace both,
and to extend from the leftmost dashed line to the rightmost as shown in Figure1.4.

This example illustrates that precise diagnosis of sensor faults is not always possible
when performing fusion, and that it may be necessary to sacrifice precision (i.e., to choose
a wider interval) in order to maintain soundness (the property that the actual value is con-
tained in the selected interval). The example also illustrates a second issue: if we imagine
the interval forS(4) gradually shifting left from its position in Figure1.2 to its position in
Figure1.4, we see that the fusion interval will change abruptly from that indicated by the
dashed lines in the first of these figures to that shown in the last. This abrupt change could
cause a ‘thump” to be passed through the control laws to the actuators, with consequent
adverse effects on the behavior, or even the safety, of the controlled plant.

2

S(2)

S(3)

S(4)

S(1)

Figure 1.2: Resulting Fusion Interval

In the next chapter, we will consider two fusion functions that guarantee soundness of
their fusion intervals, and will then examine the extent to which they satisfy a “Lipschitz
Condition” and avoid the abrupt change illustrated in the example above.

3

S(2)

S(3)

S(1)

S(4)

Figure 1.3: Sensor Fusion Problem with Unclear Diagnosis

S(2)

S(3)

S(1)

S(4)

Figure 1.4: Precision Sacrificed to Preserve Soundness

4

Chapter 2

Formalization of Sensor Fusion
Functions

We assume a collectionS of n sensor readings that are intended to sample some physical
variableV at a timet. The reading of thej’th sensor is given byS(j) and consists of a pair
representing an interval; the lower bound of the interval is denotedS(j)lo and the upper by
S(j)hi. Some sensors may befaulty; the maximum number of faulty sensors is denotedf
(wheref < n). Nonfaulty sensors satisfy the following property.

Definition 1 (Accuracy) If j is a nonfaulty sensor, thenS(j)lo ≤ V ≤ S(j)hi.

Marzullo [Mar90] introduces the sensor fusion interval
⋂
f,n(S) as the smallest interval

that is guaranteed to contain the correct valueV . It is defined as follows.

Definition 2 (Marzullo fusion interval) Let l be the smallest value contained in at least
n−f of the intervalsS(j), j = 1, . . . , n, and leth be the largest value contained in at least
n− f such intervals. Then

⋂
f,n(S) is the interval[l . . . h].

Marzullo’s interval can be computed as follows. First we sort the lower and upper
bounds of all the sensor readings into ascending order (this takesO(n log n) time). Then
we scan the sorted list from smallest to largest, maintaining an intersection count (initially
zero): this increments by one for every lower bound and decrements by one for every upper
bound; the lower boundl of the fusion interval is the first value where the count reaches
n− f . The upper boundh is similarly foundmutatis mutandis, by scanning in the opposite
direction.

If we taken = 4 andf = 1, then Marzullo’s interval for the example shown in Figure
1.1 is the interval between the dashed lines in Figure1.2. When the interval corresponding
to the sensorS(4) shifts a little to the left, Marzullo’s interval becomes that shown in Figure
1.4.

5

There are two essential properties of any fusion interval: it must always bedefined, and
it must besound: that is, the actual value must be contained in the fusion interval. We prove
these properties for Marzullo’s function (Marzullo’s paper [Mar90] does not make these
results explicit).

Theorem 1 (Marzullo’s interval is always defined) For any collection of sensorsS, the
interval

⋂
f,n(S) is well defined provided the number of faulty sensors does not exceedf .

Proof: By the assumption of accuracy, the correct valueV lies within the interval of each
nonfaulty sensor. Since there are at leastn − f nonfaulty sensors, there is certainlysome
l ≤ v andh ≥ v that lie in the intersection ofn − f intervals, and the construction of⋂
f,n(S), which simply selects the least suchl and greatest suchh is well-defined.2

Theorem 2 (Marzullo’s interval is sound) For any collection of sensorsS, the interval⋂
f,n(S) contains the true valueV , provided the number of faulty sensors does not exceed

f .

Proof: By the assumption of accuracy, the correct valueV lies within the interval of each
nonfaulty sensor. Since there are at leastn − f nonfaulty sensors, the construction of⋂
f,n(S) must includeV 2

Observe that
⋂

0,n(S) is the “intersection” of all the readings inS,
⋂
n−1,n(S) is their

“union,” and
⋂
f,n(S) is contained in

⋂
f ′,n(S) whenf < f ′.

We denote the accuracy of a sensor readingS(j) by |S(j)| def= S(j)hi − S(j)lo; the
accuracy of the fusion interval

⋂
f,n(S) = [l . . . h] is similarly defined as the difference

h− l.
The accuracy of the fusion interval is clearly related to the accuracy of the readings

provided by nonfaulty sensors, and to the number and kind of faulty readings. The following
results are proved in [Mar90].

When there are many faults, we cannot expect great accuracy of the fusion interval,
Specifically, if at least half the sensors are faulty, the fusion interval may be less accurate
than any sensor reading, and cannot be more accurate than the most accurate reading.

When fewer than half the sensors are faulty, however, the fusion interval may be more
accurate than any sensor, and is at least as accurate as some sensor.

Theorem 3 (Theorem 1 of [Mar90]) If fewer than half the sensors are faulty (i.e.,n ≥
2f + 1), then |

⋂
f,n(S)| ≤ min2f+1{|S(j)|}, whereminr denotes ther-smallest (i.e.,

n− r-biggest) interval inS.

Thus, when fewer than half the sensors are faulty, the accuracy of the fusion interval
is at least as good as that of some sensor. However, that sensor (i.e.,S(i) where|S(I)| =

6

min2f+1{|S(j)|}) could be faulty and therefore arbitrarily inaccurate, so the result is not
particularly helpful. When fewer than a third of the sensors are faulty, however, the accuracy
of the fusion interval is bounded by that of some good sensor.

Theorem 4 (Theorem 2 of [Mar90]) If fewer than a third of the sensors are faulty, then
|
⋂
f,n(S)| ≤ minf+1{|C(j)|}, whereC is the collection of nonfaulty sensors.

The results above concern arbitrary failures: those where the sensor returns bad readings
that are not indicated or detectable as such. Faulty sensors that are diagnosed by their local
validation mechanisms can indicate this fact to the fusion algorithm, thereby making their
failures detectable. In addition, sensors whose readings do not intersect

⋂
f,n(S) cannot be

correct and may thereby be detected as faulty by the fusion algorithm. When the failure of
a sensor is detectable, it can be removed from the collection of sensors, thereby reducing
the values of bothn andf by one and improving the ratio ofn to f .

As noted earlier, for the example shown in Figure1.1,
⋂

1,4(S) is the interval between
the dashed lines shown in Figure1.2. When the interval corresponding to the sensorS(4)
shifts a little to the left,

⋂
1,4(S) jumps to the interval shown in Figure1.4as soon asS(4)

overlapsS(3). Lamport [Lam87] noted this undesirable property and suggested that a good
fusion function should satisfy aLipschitz Condition,1 meaning that small changes in the
readings of individual sensors should change the fusion interval by a correspondingly small
amount. Lamport considered some plausible modifications to

⋂
1,4(S) but the solutions that

he found operate on point, rather than interval, sensor readings, and therefore do not make
full use of the available information (an example is the fault-tolerant midpoint used in some
clock synchronization algorithms [WL88]).

An interval-based fusion method that does satisfy the Lipschitz Condition has recently
been introduced by Schmid and Schossmaier [SS01]. Their Fault-Tolerant Interval (FTI)
fusion functionFfn (S) is defined as follows.

Definition 3 (FTI fusion interval) Let l = maxf+1{S(j)lo} be thef + 1’st largest of the
lower bounds on the collection of sensor readingsS and leth = minf+1{S(j)hi} be the
f + 1’st smallest upper bound. ThenFfn (S) is the interval[l . . . h].

If we taken = 4 andf = 1, then the FTI interval for the example shown in Figure
1.1 is the interval between the dashed lines in Figure2.1; this should be compared to the
corresponding interval for

⋂
1,4(S) shown in Figure1.2. When the interval corresponding

to the sensorS(4) shifts a little to the left, the FTI interval is unchanged, whereas
⋂

1,4(S)
jumps to that shown in Figure1.4.

1The classical Lipschitz Condition is an inequality that guarantees a unique solution to the differential
equationy′ = f(x, y). In the context considered here, it refers to the requirement that small changes in the
arguments should result in small changes to its value, for a suitably defined metric.

7

S(2)

S(3)

S(4)

S(1)

Figure 2.1: FTI Fusion Interval

Relationships between
⋂
f,n(S) andFfn (S) are established in the following theorem.

Theorem 5 (Lemma 2 of [SS01])

1. Ffn (S) ⊇
⋂
f,n(S)

2. Ffn (S) =
⋂
f,n(S) if there is noS(j) disjoint from

⋂
f,n(S)

3. Fn−1
n (S) =

⋂
f−1,n(S)

4. F0
n(S) =

⋂
0,n(S)

Notice that Result 2 in the list above does not mean that Marzullo’s method plus diag-
nosis and exclusion of anyS(j) disjoint from

⋂
f,n(S) produces the same result asFfn (S).

Certainly, as noted on Page7, anyS(j) disjoint from
⋂
f,n(S) must be faulty: in the case of

Figure1.1, this means we could discardS(4) and calculate
⋂

1,3(S\{S(4)}). But the result
would be that shown in Figure2.2, which is not the same asF1

4 (S) of Figure2.1. (It is the
same asF1

3 (S\{S(4)}), as required by the theorem.)
Result 1 in the list above serves to establish soundness of the FTI construction.

Theorem 6 (The FTI interval is sound) For any collection of sensorsS, the interval
Ffn (S) contains the true valueV , provided the number of faulty sensors does not exceedf .

Proof: This follows from the soundness of
⋂
f,n(S) and the inclusion established in result

1 of the previous Theorem.2

8

S(2)

S(1)

S(3)

Figure 2.2: Marzullo’s Fusion Interval with Diagnosis

Schmid and Schossmaier [SS01] establish that their functionFfn (S) does satisfy the
Lipschitz Condition, and that it is optimal (i.e., the intervals produced by any fusion func-
tion that satisfies the Lipschitz Condition must includeFfn (S)).

Schmid and Schossmaier also establish bounds on the accuracy ofFfn (S); they show
that it has exactly the same worst-case behavior as

⋂
f,n(S), but may produce slightly less

accurate results in non-worst-case scenarios.

2.1 Formal Specification and Verification in PVS

We present a formal specification and verification for some of the concepts introduced
above. The formalization uses PVS [ORSvH95].

To begin, we define a theory parameterized by the constantsn andf , where the former
is required to be a positive natural number, and the latter is a natural number strictly less
thann (notice this exploits PVS’s support fordependent typing). We then define theindex
type that will identify sensors as the numeric range1, ..., n

9

sensors [n: posnat, f:below(n)]: THEORY
BEGIN

index: TYPE = subrange(1,n)

IMPORTING finite_sets@finite_sets_below,
finite_sets@finite_sets_minmax,
finite_sets@finite_sets

index_finite: LEMMA is_finite_type[index]

Next we import various theories from the standardfinite sets library, and state the
lemma thatindex is a finite type. This requires us to exhibit an injection fromindex to
some finite initial segment of the naturals: following the initial proof command(EXPAND
"is finite type") , PVS presents the following sequent.

Rule? (EXPAND "is_finite_type")
Expanding the definition of is_finite_type,
this simplifies to:
index_finite :

|-------
{1} (EXISTS N, (g: [index -> below[N]]): injective?(g))

A suitable injection is supplied by the command(INST + "n" "lambda
(i:index):i-1") and PVS then finishes off the proof after the additional com-
mand(EXPAND "injective?") .

Next, we specify the lemmaindex sets finite , which establishes that any set
defined over theindex type is finite. This lemma is needed to discharge numerous TCCs
that arise during the development.

index_sets_finite: LEMMA forall (x:setof[index]): is_finite(x)

The proof of this result simply applies the following prelude lemma as a rewrite using
the command(REWRITE "finite type set[index]")

finite_type_set: LEMMA is_finite_type IMPLIES is_finite(S)

and then applies the previous lemma with the command(USE "index finite")) .
The reason we need finite sets is to be able to use the cardinality functioncard . The

first lemma using this function establishes that the cardinality of the full set ofindex is n.

card_index_fullset: LEMMA card(fullset[index]) = n

The proof of this result establishes a bijection to the firstn natural numbers. The previ-
ous lemma is used to discharge the TCC generated by PVS to ensure that the construction
yields a finite set.

10

(REWRITE "card_bij[index]")
(("1" (INST + "lambda (i:index):i-1")

(("1" (GRIND)) ("2" (GRIND))))
("2" (REWRITE "index_sets_finite")))

Next, we define a sensorsample as a record consisting of a pair of real numbers with
field identifierslo andhi , respectively, where the latter is required to be no less than the
former (dependent typing again). TheCONTAININGannotation enables PVS to discharge
the TCC to show this type is nonempty.

i,j: VAR index

sample: TYPE = [# lo: real, hi: { x:real | x>=lo } #]
CONTAINING (# lo:=1, hi:=1 #)

sensor(i): sample

actual: real

We then define the collection of sensors as an arraysensors of type sample (so that
S(i)lo of the informal mathematical presentation corresponds toS(i)‘lo in PVS), and
introduce the actual value of the sampled physical quantity as the real constantactual
(cf. V in the informal presentation).

Then we define thefaulty sensors as some uninterpreted set ofindex , andok as its
complement (the set of nonfaulty sensors).

faulty: finite_set[index]

ok: finite_set[index] = { i | NOT faulty(i) }

We specify axiomatically the assumptions that the readings of nonfaulty sensors contain
the actual value, and that there are no more thanf faulty sensors.

good_sensor: AXIOM ok(i) IMPLIES
(sensor(i)‘lo <= actual AND sensor(i)‘hi >= actual)

max_faults: AXIOM card(faulty) <= f

min_good: LEMMA card(ok) >= n-f

We state the lemma that the number of nonfaulty sensors must be at leastn-
f . The proof uses thecard diff lemma from thefinite sets library, and the
card index fullset lemma introduced above.

11

(EXPAND "ok")
(LEMMA "card_diff_subset[index]")
(INST - "faulty" "fullset[index]")
(("1"

(GROUND)
(("1"

(CASE-REPLACE
"difference(fullset[index], faulty)

= { i | NOT faulty(i) }" :HIDE? T)
(("1" (USE "max_faults")

(REWRITE "card_index_fullset")
(ASSERT))

("2" (HIDE -1 2) (GRIND) (APPLY-EXTENSIONALITY :HIDE? T))))
("2" (GRIND))))

("2" (REWRITE "index_sets_finite")))

For an arbitrary real valuev , we defineintersect(v) to be the set of sensors whose
interval containsv .

v: VAR real
intersect(v): finite_set[index] =

{ i |sensor(i)‘lo <= v AND sensor(i)‘hi >= v }

Now we are able to state the first important result: theactual value is in the intersec-
tion of at leastn-f intervals.

actual_intersect: THEOREM card(intersect(actual)) >= n-f

The proof is fairly straightforward: we split the intervals containing theactual value into
those that are faulty and those that are nonfaulty; we usemin good to establish that there
are leastn-k of the latter, and we are done.

(AUTO-REWRITE "index_sets_finite")
(EXPAND "intersect")
(CASE-REPLACE

" {i | sensor(i)‘lo <= actual AND sensor(i)‘hi >= actual } =
union(ok,
{i | faulty(i) AND sensor(i)‘lo <= actual

AND sensor(i)‘hi >= actual })" :HIDE? T)
(("1"

(REWRITE "card_disj_union")
(("1" (USE "min_good") (ASSERT)) ("2" (HIDE 2) (GRIND))))

("2"
(HIDE 2)
(APPLY-EXTENSIONALITY :HIDE? T)
(EXPAND* "union" "member")
(REWRITE "good_sensor")
(("1" (GRIND)) ("2" (GRIND)))))

12

A corollary to this result provides a basis for fault detection: any value that is not in the
intersection of at leastn-f intervals cannot be the correct value.

detection: COROLLARY card(intersect(v)) < n-f => v /= actual

This is proved straightforwardly from the previous theorem.

(SKOSIMP) (USE "actual_intersect") (ASSERT)

Now we need to establish that the interval specified by
⋂
f,n(S) is well defined and

contains theactual value. We begin by defininglo vals as the set oflo values that lie
to the left of theactual value.

lo_vals: finite_set[real] =
{ v | EXISTS i: sensor(i)‘lo = v AND v <= actual }

lo_vals_nonempty: LEMMA nonempty?(lo_vals)

We then state a lemma that asserts this set is nonempty. Its proof is a straightforward
consequence of the fact that any nonfaulty sensor must contain theactual value (so its
lo end must be to the left ofactual).

(LEMMA "min_good")
(USE "nonempty_card[index]")
(ASSERT)
(EXPAND "nonempty?")
(EXPAND "empty?")
(SKOSIMP)
(EXPAND "member")
(USE "good_sensor")
(GRIND)

Next we refinelo vals to yield lo cands (the candidates for the left end of the
fusion interval); these are thoselo values that lie within the intersection of at leastn-k
sensor intervals.

lo_cands: finite_set[real] =
intersection(lo_vals, { v | card(intersect(v)) >= n-f })

We will need to establish that this set is nonempty; we exhibit the rightmost (largest) value
in lo vals for this purpose.

rightmost_lo: real = max[real, <=](lo_vals)

lo_cands_nonempty: LEMMA nonempty?(lo_cands)

The proof of this nonemptiness lemma is quite difficult.

13

(EXPAND "nonempty?")
(EXPAND "empty?")
(REWRITE "forall_not")
(EXPAND "member")
(INST + "rightmost_lo")
(EXPAND "lo_cands")
(EXPAND "intersection")
(SPLIT)
(("1" (GRIND))

("2"
(EXPAND "member")
(LEMMA "rightmost_lo")
(USE "max_lem[real,<=]")
(("1"

(GROUND)
(USE "actual_intersect")
(CASE "subset?(intersect(actual),intersect(rightmost_lo))")
(("1" (USE "card_subset[index]") (ASSERT))

("2"
(HIDE -1 -2 -5 2)
(EXPAND "subset?")
(SKOSIMP)
(EXPAND "member")
(EXPAND "intersect")
(EXPAND "lo_vals")
(SKOSIMP)
(ASSERT)
(INST - "sensor(x!1)‘lo")
(EXPAND "lo_vals")
(INST + "x!1"))))

("2" (USE "lo_vals_nonempty") (EXPAND "nonempty?") (PROPAX))
("3" (USE "total_le")))))

Given thatlo cands is nonempty, we can now define theleftedge of the fusion
interval as its minimum value.

leftedge: real = min[real, <=](lo_cands)

left_soundness: THEOREM leftedge <= actual

We then prove the “left half” of the soundness theorem: theleftedge lies to the left
of theactual value. The proof is straightforward given properties of themin function.

14

(LEMMA "min_lem[real,<=]")
(("1"

(INST - "lo_cands" "leftedge")
(("1" (GRIND))

("2" (LEMMA "lo_cands_nonempty") (EXPAND "nonempty?") (PROPAX))))
("2" (LEMMA "total_le") (PROPAX)))

The construction for the “rightedge” of the fusion interval is exactly the dual of that for
leftedge and is omitted.

15

16

Chapter 3

Conclusion

Modern smart sensors provide diagnostic information on their own performance and an
estimate of the error in their sampled value. To allow higher-level sensor validation and
fusion to be performed in an application-independent manner, it is convenient to integrate
these items of information into a sensor reading that represents arangeof values (given by
the lower and upper bounds of the range). The sensor fusion problem is then to combine
several such readings from different sensors into a best consensus value and, optionally,
to perform higher-level validation by comparing the reading from one sensor against those
from others.

We described the “fusion functions”
⋂
f,n(S) of Marzullo [Mar90] and Ffn (S) of

Schmid and Schossmaier [SS01] and presented some of their properties.Ffn (S) is gener-
ally to be preferred to

⋂
f,n(S) because it satisfies a “Lipschitz Condition” (small changes

in sensor readings produce small changes in its output), and is optimal among all such
functions.

We used PVS formally to prove the well-definedness and soundness of
⋂
f,n(S) (i.e., it

always contains the correct value), from which soundness ofFfn (S) also follows.

17

18

Bibliography

[KN97] Herman Kopetz and R. Nossal. Temporal firewalls in large distributed real-
time systems. In6th IEEE Workshop on Future Trends in Distributed Comput-
ing, pages 310–315, Tunis, Tunisia, October 1997. IEEE Computer Society.
1

[Lam87] Leslie Lamport. Synchronizing time servers. Technical Report 18, DEC Sys-
tems Research Center, Palo Alto, CA, June 1987.7

[Mar90] Keith Marzullo. Tolerating failures of continuous-valued sensors.ACM Trans-
actions on Computer Systems, 8(4):284–304, November 1990.5, 6, 7, 17

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. For-
mal verification for fault-tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering, 21(2):107–125, February
1995. 9

[SS01] Ulrich Schmid and Klaus Schossmaier. How to reconcile fault-tolerant in-
terval intersection with the Lipschitz condition.Distributed Computing,
14(2):101–111, May 2001.7, 8, 9, 17

[WL88] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock
synchronization.Information and Computation, 77(1):1–36, April 1988.7

19

	Contents
	List of Figures
	Introduction
	Formalization of Sensor Fusion Functions
	Formal Specification and Verification in PVS

	Conclusion
	Bibliography

