
Presented at the 7th IEEE International Conference on Software Engineering and Formal Methods (SEFM), Hanoi, Vietnam,
November 2009. Appears in the SEFM proceedings pp. 3–10c©IEEE Computer Society.

Software Verification and System Assurance
(Invited Paper)

John Rushby
Computer Science Laboratory

SRI International
Menlo Park California USA
Rushby@csl.sri.com

Abstract—Littlewood [1] introduced the idea that software may
be possibly perfectand that we can contemplate its probability of
(im)perfection. We review this idea and show how it provides a
bridge between correctness, which is the goal of software verifi-
cation (and especially formal verification), and the probabilistic
properties such as reliability that are the targets for system-
level assurance. We enumerate the hazards to formal verification,
consider how each of these may be countered, and propose
relative weightings that an assessor may employ in assigning
a probability of perfection.

Keywords-formal verification, assurance, reliability, probabilis-
tic assessment, possible perfection

I. I NTRODUCTION

Using formal methods to find errors in designs or programs
provides immediate satisfaction and measurable payoff. The
same is true for some other applications of mechanized formal
methods such as generating test cases, and synthesizing moni-
tors. But what about formal verification? This was the original
application for formal methods, and the motivation for much
early research in the field, but proving the absence of errors
seems now to attract less interest than revealing their presence.
Part of the reason is surely that the claim to “prove the absence
of errors” is overly broad and must be circumscribed with
numerous caveats concerning the fidelity of models, validity
of assumptions, soundness of deduction, and so on.

Another part of the reason may be that the claims we want
to make at the system level are usually probabilistic (e.g., no
more than so much downtime per year, no more than so many
failures of a certain severity in the lifetime of the system, and
so on) and it is not obvious how the absolute claims of formal
verification can be used to support these.

This paper examines these topics and considers the claims
supported by formal verification and their relation to system-
level assurance, particularly for critical systems. In Section
2, drawing on the background to the results reported in [2],
we describe probabilistic assessments of software, including
the traditional notions of reliability and the novel idea of
“possible perfection.” We then describe aleatory and epistemic
probabilities of perfection, and their utility in system-level
assurance arguments. Section 3 considers the assessment of
epistemic probabilities of perfection and the contribution of
formal verification to this endeavor. We examine the issues that
an assessor might face when employing evidence from formal

verification to assign a probability of perfection. Section 4
concludes and offers suggestions for further research.

II. SOFTWARE PROBABILITIES AND THE IDEA OF

POSSIBLEPERFECTION

Physical components of a complex system can wear out
or break, possibly causing the system to fail. Failures can
be graded according to the severity of their worst outcome,
and it is usually required that there should be an inverse
relationship between that severity and the likelihood of the
failure. (This is to controlrisk, which is the product of the
severity of an outcome and its likelihood.) In commercial
aircraft, for example,catastrophicfailures are “those which
would prevent continued safe flight and landing” [3, paragraph
6.h(3)] and these are required to be “extremely improbable”
[3, paragraph 7.d], which is defined as being “so unlikely that
they are not anticipated to occur during the entire operational
life of all airplanes of one type” [3, paragraph 9.e(3)]. If we
consider the example of an airplane type with 100 members,
each flying 3,000 hours per year over an operational life of
33 years, then we have a total exposure of about107 flight
hours. If hazard analysis reveals ten potentially catastrophic
failures in each of ten subsystems, then the “budget” for each,
if none are expected to occur in the life of the fleet, is a failure
probability of about10−9 per hour [4, page 37]. This serves
to explain the well-known10−9 requirement, which is stated
as follows: “when using quantitative analyses. . . numerical
probabilities. . . on the order of10−9 per flight-hour. . . based
on a flight of mean duration for the airplane type may be
used. . . as aids to engineering judgment. . . to. . . help determine
compliance” (with the requirement for extremely improbable
failure conditions) [3, paragraph 10.b].

Software is a substantial component of many systems whose
top-level safety requirements are stated probabilistically, as
in the case of aircraft systems as described above. But soft-
ware does not age or wear out, so how do its properties
factor into a probabilistic assessment? Software contributes to
system failures through faults in its requirements, design, or
implementation, and these, in the language of safety analysis,
produce “systematic failures,” meaning they are not random
but arecertain to occur whenever circumstances activate the
fault concerned. But although the failure is certain, given
circumstances that activate the fault, those circumstances have
a probability of occurrence: some faults are activated by

1



almost any input, others require very specific, and unusual
combinations of inputs. Hence, failure probabilities can be
associated with software (and may be stated in terms of a
failure rate, or a probability of failure on demand) and are
determined by the likelihood of encountering circumstances
that activate its faults.

For modest values, say down to about10−4, it is feasible
to measure software failure rates by statistically valid random
testing [5], [6]. Here, “statistically valid” means that the test
case selection probabilities are exactly the same as those that
are encountered in real operation. This kind of testing has
been used to assess the reliability of a protection system for
a nuclear reactor [7].

But as we saw earlier, aircraft and some other systems have
requirements that go to10−9 and beyond, and it is infeasible to
measure these tiny rates by statistically valid random testing:
Butler and Finelli demonstrate that a suitable test campaign
could require 114,000 years [6]. One proposal for evading
this problem is “N -version software,” whereN independently
developed and deliberately “diverse” software components
operate in parallel and their outputs are voted. Assuming
that failures of the different versions are independent, a naı̈ve
analysis suggests this could improve matters exponentially: a
combination ofN systems, each with probability of failure
p, could yield a combined failure rate ofpN . Thus, the
combination of three10−3 versions could achieve10−9. This
analysis is näıve in that it ignores the possibility of correlated
failures, and both empirical [8], [9] and theoretical [10],
[11] studies show that these simply cannot be ignored. If
independent failures cannot be assumed, the probability of
dependent failures must be measured—which is infeasible if
it is small enough to be useful. For this and other reasons, the
näıve idea ofN -version software has largely been abandoned,
but the use of deliberately simple software to “monitor” or
“backup” a more complex software system is widely practiced;
the reliability of these arrangements is a topic we will return
to.

Because assessment by direct measurement of the very
small failure rates required for critical systems is infeasible
for software, standards and guidelines for such software es-
sentially focus on processes and methods that are intended to
ensure that the software iscorrect, rather than reliable. Thus,
while the upper levels of aircraft system design and analysis
are concerned with hazard analysis, failure modes and effects
analysis, and probabilistic assessment [12], [13], the main
focus of the DO-178B guidelines for airborne software [14]
is on methods for ensuring that the software correctly imple-
ments its requirements. In common with most other software
certification standards and guidelines, DO-178B identifies a
hierarchy of “Design Assurance Levels” from E (lowest)
to A (highest) and prescribes additional assurance activities
at the higher levels: for example, there are 28 assurance
“objectives” at Level D, 57 at Level C, 65 at Level B, and
66 at Level A. The difference between the Level B and Level
A assurance objectives, as prescribed by DO-178B, is that
Level A must be subjected to requirements-based testing that

achieves a structural code coverage criterion called Modified
Condition/Decision Coverage (MC/DC) [15], whereas testing
for Level B is required merely to achieve Decision Coverage
(DC).

It seems reasonable that increasing the number of assurance
objectives should increase confidence in the correctness of
software,1 but it is not clear how this relates to its reliability—
yet the different design assurance levels are associated with
probabilistic system-level assessments. Level A is considered
appropriate for software that could lead to catastrophic failure
conditions, while Levels B and C are appropriate forhaz-
ardous, andmajor failure conditions, respectively [13]. Major
failure conditions are required to be “improbable,” which may
be quantified as10−5 [3, paragraph 10.b] and, by interpolation,
we may associate hazardous failure conditions with failure
rates of the order10−7. But what is it about the eight additional
assurance objectives that Level B adds to those for Level C
that reduce the assessed probability of failure from10−5 to
10−7, and how does the addition of MC/DC testing reduce this
further to10−9? The last point seems particularly problematic,
since testing to MC/DC coverage is a completely different kind
of testing from the statistically valid testing used to assess
reliability.

An insightful and original solution to this conundrum was
introduced nearly a decade ago by Littlewood [1]. The idea
is that the top-level claim made for critical software is not
that it is reliable, but that it isperfect. Perfection means that
the software will never suffer a failure no matter how much
operational exposure it receives; it differs from correctness
in that correctness is assessed relative to requirements, while
perfection includes a judgment that the requirements are the
right requirements (i.e., the detection of a failure is more
primitive than noncompliance with requirements).

Now, perfection is a strong claim and we may refuse to
accept that software that has been assured to DO-178B Level A
is perfect—but we may be willing to concede that it ispossibly
perfect. And we may further be persuaded that its possibility
of perfection is greater than software that has been assured
only to Level B. This suggests we could attach a probability
to the possibility of perfection. We will refine this notion later,
but one way to interpret it follows the spirit of [10], [11] and
invites us to think of all the software thatmight have been
developed by comparable engineering processes to solve the
same design problem as the software at hand; the probability of
perfection is then the probability that any software randomly
selected from this class is perfect. This probability will be
partly dependent on the nature of the problem being solved—
for a “hard” problem it might be expected that the probability
is smaller than for an “easier” problem—and partly on the
quality of the software engineering and assurance methods
employed.

Probability of perfection is attractive because it relates more
naturally than reliability to the correctness-based assurance

1Some would disagree with this general assertion [16], and some standards
do impose assurance objectives that have scant evidence for their effectiveness.

2



processes used for software. But probability of perfection can
also be used to estimate reliability, as we will now show.

For simplicity, we assume a demand-based system, and will
consider probability of failure rather than reliability. Then, by
the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails| s/w perfect)× P (s/w perfect)
+ P (s/w fails| s/w imperfect)× P (s/w imperfect).

The first term in this sum is zero, because the software does not
fail if it is perfect. We can then, very conservatively, assume
that the software always fails if it imperfect, so that the first
factor in the second term becomes 1. Hence,

P (software fails) < P (software imperfect). (2)

In calculations such as this, it is generally the probability
of imperfection that is most useful. We often write of a
probability of (im)perfection to refer ambiguously to both.

Another attractive attribute of possible perfection arises in
two-channel systems, such as those used in aircraft or, in
different form, for nuclear shutdown. In aircraft, it is common
to have a highly complex “operational” channel, which is a
system that actually provides the function concerned (e.g., fuel
management, autopilot etc.), and a much simpler “monitor”
channel that looks for safety violations and triggers higher-
level fault recovery when necessary. As explained earlier, in
the context ofN -version software, we cannot simply multiply
the failure rates of the separate channels together to obtain the
failure rate of the combined system because we cannot assume
the failures of the two channels are independent. In contrast,
it is established in [2] that failure of the operational channel
and imperfection of the monitor channelare conditionally
independent, and their probabilities can be multiplied together
to yield a probability of failure for the combined system.
We believe this analysis can be used to provide a rigorous
underpinning for some of the architectures recommended in
the ARP 4754 guidelines for complex aircraft systems [13,
Table 5–2] where, for example, it is suggested that a Level
A system can be achieved by a Level C operational channel
and a Level A monitor (with any coordination mechanism also
required to be Level A).

The treatment of probabilities used above, both for failures
and perfection, is deliberately informal and omits many im-
portant topics in probabilistic modeling. Technical details can
be found in [2]. Our focus here is the application of these
ideas to formal verification, and to do this it is necessary
to introduce a little more of the background to probabilistic
modeling: specifically, the distinction between aleatory and
epistemic uncertainty [17].

Aleatory uncertainty, or “uncertaintyin the world,” can be
thought of as “natural” uncertainty that is irreducible. For
example, if we were to toss a coin we would not be able
to predict with certainty whether it would fall as “heads”
or as “tails.” This uncertainty cannot be eliminated, and
any predictions about future tosses of the coin can only be

expressed as probabilities. This is true even when we know
the probability of heads for a single toss of the coin, which
we may denotepH ; when the coin is “fair,”pH = 0.5. Real
coins, of course, may not be fair, so there will be uncertainty
about the value of the parameterpH .

This second uncertainty isepistemicuncertainty, or “un-
certaintyabout the world.” This uncertainty is reducible: we
may not know whether a given coin is fair, so we can toss it
very many times and observe the frequency of heads in this
sequence of tosses. That frequency is an estimate ofpH and
the estimate gets closer to the true value ofpH as the number
of observed tosses increases, so the uncertainty reduces.

In much scientific modeling, the aleatory uncertainty is
captured conditionally in a model with unknown parameters,
and the epistemic uncertainty centers upon the values of these
parameters—as in the simple example of coin tossing. The
analysis performed in (1) is an aleatory one, and is more
properly presented as a model parameterized by the probability
that the software is imperfect, which we denotepnp and the
probability that it fails, if it is imperfect, which we denote
pfnp. The conclusion to (1) is that the probability of system
failure is given bypfnp × pnp. To apply this result, we need
to assess actual values for these parameters in the particular
system concerned. This constitutes the second, orepistemic
stage of the analysis.

Probabilities in the aleatory analysis can be given a classical
frequentist interpretation (by the technique, described earlier,
of considering the software to be a sample drawn from the
population of software that might have been developed), but
the epistemic analysis most naturally employs the subjective
interpretation, where probabilities reflect degrees of belief. The
person or organization responsible for assessing the accept-
ability of the system concerned must formulate beliefs about
the values ofpfnp and pnp. Most likely these beliefs will
not be independent (for example, beliefs about the probability
of failure if imperfect may depend on the nature of the
imperfection), so they will be represented by some joint
distributionF (pfnp, pnp) and the probability of system failure
will then be given by the Riemann-Stieltjes integral∫

0≤pfnp≤1
0≤pnp≤1

pfnp × pnp dF (pfnp, pnp). (3)

Elicitation of experts’ subjective probabilities is an active
research area in Bayesian statistics, and there have been con-
siderable advances in recent years in techniques and tools [18].
However, it is likely to be considerably easier to elicit beliefs
about single rather than joint distribution functions and so we
generally seek arguments that could allow assessors to separate
their beliefs. If this can be done, thenF (pfnp, pnp) factorizes
as F (pfnp) × F (pnp) and (3) becomesPfnp × Pnp where
Pfnp and Pnp are the means of the posterior distributions
representing the assessor’s beliefs about the two parameters.

Arguments that can allow an assessor to separate his be-
liefs include conservative assumptions (e.g., the assumption

3



used earlier that, if imperfect, the system will fail onev-
ery demand—effectively settingPfnp = 1), and locating a
probability massC at the(1, 1) point (representing common
factors that can affect both parameters) [2] (see also [19],
which introduces the ACARP principle: “As Confident As
Reasonably Practicable”).

The salient point, which we hope is clear even in this
simplified presentation, is that possible perfection provides
a bridge between the verification activities used to ensure
correctness of software and the probabilistic estimates required
for failure at the system level. Aleatory uncertainty is cap-
tured in a probabilistic model for the system, and epistemic
uncertainty concerns the values of the parameters employed
in the model. Through conservative assumptions and other
modeling techniques, it is generally possible to eliminate
dependencies between epistemic assessments of the various
parameters. One of the independent parameters will be the
probability of imperfection for the software concerned, which
represents the assessor’s beliefs about the (im)perfection of
the software. In the next section, we consider how evidence
of formal verification can be used in formulating these beliefs.

III. F ORMAL VERIFICATION AND ASSESSMENT OF THE

PROBABILITY OF PERFECTION

We are interested in the extent to which formal methods,
and formal verification in particular, can contribute to an
evaluator’s assignment of a probability of (im)perfection to a
body of software. The assignment will take place in the larger
context of an overall assessment of the system concerned,
which, nowadays, is generally grounded in an argument-
based safety or assurance case (see, for example [20]–[24]).
Such a case begins withclaims that enumerate the undesired
loss events and the tolerable failure rate or risk associated
with them (e.g., “as low as reasonably practicable” (ALARP)
[25], or “so unlikely that they are not anticipated to occur
during the entire operational life of all airplanes of one type”
[3, paragraph 9.e(3)]).Evidenceabout the system and its
processes of construction are developed, and anargumentis
constructed to justify satisfaction of the claims, based on the
evidence. This process may recurse through subsystems, with
substantiated claims about a subsystem being used as evidence
in a parent case.

Elsewhere [26], [27], we begin to develop a case that
techniques from formal verification can be used to provide
mechanized support for the arguments in an assurance case,
but here our focus is on use of formal verification to establish
claims about a body of software; those claims are assumed to
be used as evidence within the larger assurance case.

By formal verification, we mean construction of formal
statements for the claims made about the software, formal
specification of the software itself, and a proof that the latter
achieves the former. The proof is generated or checked by
tools that use the techniques of automated deduction, such
as theorem proving, including SAT and SMT solving, model
checking, and so on [28]. The verification tools may require
interactive human guidance, or may be fully automated (e.g.,

using automated abstraction and invariant discovery), but it is
the tools that guarantee the proof.

The formal specifications that are subjected to verification
may describe the abstract design of the software and its algo-
rithms, or detailed models taken from a model-based design
framework, or the executable code, or all of these. In addition,
there may be formalizations of the non-software elements that
are part of the system in which the software operates—for
example, its sensors and actuators and the physical processes
that they monitor and control, the external environment that
may interact with the system (e.g., by injecting faults), and any
human operators and their mental models [29] and cognitive
states. The claims verified may range from simple absence of
runtime anomalies, such as those guaranteed by static anal-
ysis, to full functional correctness with respect to a detailed
requirements specification.

We are interested in the subjective probability of perfection
that might be assigned to software that has been formally
verified in this way. The assignment will obviously consider
the strengths of the guarantees delivered by formal verification
and so it is important to examine the main hazards to the
soundness of these guarantees.

The first hazard is that the basic requirements or as-
sumptions for the system may have been misunderstood or
established incorrectly. This seems to be the dominant source
of failure in safety-critical systems: the software is built to
the wrong requirements (see, e.g., recent aircraft incident and
accident reports [30]–[34]). We anticipate that software that is
subjected to formal verification, and which is used in a context
for which a probability of perfection is required, will be
relatively small and simple and will be for safety monitoring
and backup purposes (essentially, to guard against failures
of this very type in the mainline operational software). The
requirements for software such as this are taken directly from
the safety case, so any errors here reflect flaws in the safety
case and invalidate far more than the software: they call the
entire system and its certification into question. Consequently,
we regard this hazard as falling outside the purview of formal
verification.

The second hazard definitely is within that purview: it is that
the requirements, assumptions, or design may be formalized
incorrectly or incompletely. There are three subcases to this
concern.

1) Elements of the specification may be inconsistent: this
renders the specification meaningless and it becomes
possible to prove anything.

Constructive specifications in a suitable specifica-
tion framework (e.g., one that requires, among other
things, demonstration that all recursive functions are
well-founded) areconservative extensionsof their logic
and are therefore always consistent (if the base logic
is) [35]. ACL2 [36], Coq [37], HOL [38], and Isabelle
[39] are examples of verification systems (i.e., theorem
provers for logics that are suitable for system speci-
fication and verification tasks) that favor constructive
specifications. However, constructive specifications are

4



not always appropriate; for example, when specifying
assumptions, it is generally more appropriate to express
them as axioms (we wish to state the assumptions, not
implement them). In this case, consistency of the axioms
may be ensured by showing that they have a model that
is conservative (e.g., defined constructively). The PVS
verification system [40], for example, supports this kind
of demonstration through theory interpretations [41].

2) Elements of the specification may be just plain wrong:
although logically consistent, they do not correctly for-
malize the requirements, design, or assumptions.

This is generally the dominant hazard in formal spec-
ification and analysis. Formal specifications that have not
been subject to some form of mechanized analysis are no
more likely to be correct than programs that have never
been run (in fact, less so, since nonspecialists generally
have better intuition about programs than they do about
formal specifications). When a number of unmechanized
specifications in the Z language (including some of
industrial significance) were subjected to mechanized
analysis, most were found to contain flaws [42].

The most effective ways to ensure that formal speci-
fications capture their intent are to “challenge” them by
attempting to prove putative theorems (i.e., “if I’ve got it
right, this ought to follow, but that ought to yield a coun-
terexample”), or to explore the behavior of executable
interpretations of the specification: some constructive
logics are directly executable, and a large fragment even
of PVS’s higher order logic with quantifiers can be
evaluated efficiently (i.e., at speeds comparable to those
of a functional programming language) [43].

Some verification systems, such as PVS, identify
all the axioms and definitions on which a formally
verified conclusion depends: if these are correct, then
logical validity of the verified conclusion follows by
soundness of the verification system. Such identifica-
tion allows particular scrutiny to be applied to these
elements. The axioms and definitions that underpin a
verification are generally of two kinds: those that are
directly concerned with the subject matter of the system
(its requirements, design, assumptions, and so on), and
those used in developing the various theories that are
required to express this subject matter (e.g., the theories
of clocks, synchronous systems, ordinal numbers, and
so on). Many of the latter theories will be widely used
in other formal developments, so the burden of ensuring
their correctness is supported by a broadly shared social
process.

Even if a theory or specification is formalized in-
correctly, it does not necessarily invalidate all theorems
that use it: only if the verification actually exploits the
incorrectness will the validity of the theorem be in doubt
(and even then, it could still be true, but unproven).
The author has performed many formal verifications and
flaws in some of his specifications have been identified

by others [44], but in no case did these flaws invalidate
the theorems claimed.

3) The formal specification and verification may be discon-
tinuous or incomplete.

Discontinuities can arise when several analysis tools
are applied in the same software development (e.g.,
a theorem prover, a model checker, a source code
static analyzer, and formally-based security and timing
analyzers). Concerns are that different tools may ascribe
different semantics to the same specification, translations
between notations may introduce flaws, and there may
be unintended gaps that allow some aspect to escape
analysis. There is no simple resolution to these concerns:
combinations of specialized analysis tools are outstrip-
ping the capabilities and performance of monolithic
tools and seem to represent the future of the field.
Integrating frameworks such as an “Evidential Tool Bus”
[28] suggest one way forward.

The most significant incompleteness is generally the
gap between the most detailed level of specification
that is formally analyzed (e.g., algorithms expressed in
a functional programming notation, or a model-based
design using state machines) and the input (e.g., C
code and “make” files) to the software development
environment that generates executable code. Manual
translation between these notations may introduce faults,
and assumptions in the formal development (e.g., inter-
pretation of mathematical functions such assqrt) may
be violated by the execution environment (e.g., due to
finite precision).

In an ideal world, the execution environment would
itself be provided with a formal specification and strong
evidence for correctness, such as that delivered by for-
mal verification. Research projects have accomplished
impressive feats in formally verifying such “stacks”
of software and hardware [45], but most applications
today must rely on informal evidence from extensive and
widespread use of their execution platforms, buttressed
by testing of their specific configurations.

A plausible compromise would make formal analysis
as comprehensive as reasonably practicable, but also em-
ploy comprehensive testing on the execution platform.
Automated generation of test cases is a popular appli-
cation of formal methods [46], [47] and tests generated
from the lowest level formal specification (which also
serves as the test oracle) can provide evidence that the
execution behavior matches this specification.

Even when formal verification is employed compre-
hensively, safety-critical software should be thoroughly
tested, as this provides an independent “leg” to the
assurance case [48] and also probes the assumptions
under which the verification was performed. (The “pen-
etration testing” performed on secure systems explicitly
targets assumptions used in formal verification, as these
are considered the most attractive points of attack.)
Automatically-generated tests, derived from a formal

5



specification, can target specific coverage criteria such as
MC/DC (Modified Condition/Decision Coverage) [49],
which is required for safety critical software in commer-
cial aircraft (i.e., DO-178B Level A [14]). Any failure
discovered in final testing (as opposed to exploratory
testing undertaken earlier in development) calls the
whole system assurance into question.

The third and final hazard we consider is that a theorem
prover, model checker, or other mechanized formal analysis
tool employed in the verification may be unsound.

The concern here is that it may prove a false theorem, not
that it may fail to prove a true one (that is completeness). The-
orem provers are complex programs (often far more complex
and sophisticated than the specifications and programs that
they verify), and concern about their soundness is generally
the dominant concern for nonspecialists (“who will guard the
guardians”?).

There are several ways to mechanize theorem proving in
support of verification. In one way, a search is performed to
find a rule of inference that will move things forward from the
current proof state. The search may be massive, but soundness
depends only on correct application of the selected inference
rule (which includes checking that itis applicable). Some
theorem provers (generally referred to as “LCF-style” [50])
are deliberately designed to have a very small core set of
fairly primitive rules; larger sets of more powerful rules can be
defined in terms of these, but soundness depends only on the
kernel code that implements the core rules. The hope is that
a small kernel has a high probability of attaining perfection,
and may even be proved correct. Indeed, the kernel of HOL
Light, which is about 400 lines of OCAML, has been proven
sound by a stronger version of itself [51] (by Gödel’s second
incompleteness theorem, a sound theorem prover cannot prove
its own soundness, so strengthening is needed).

An objection to the LCF-style approach is that it is ineffi-
cient: the overhead (which can be exponential) of reducing
a big proof step down to invocations of many core rules
is always present, even when the prover is being used for
the purpose of “exploration” in the early stages of proof
development, rather than for final assurance. An alternative
approach is for an untrusted theorem prover to generate “proof
logs” that can be certified by an independent trusted checker;
the overhead of log generation and checking can be turned
off when not required. There is a tension between the size
of the proof log and the complexity of the trusted checker:
traditionally, the checker has been very simple, and the log
correspondingly huge and expensive to generate. Recent work
suggests the feasibility of more powerful checkers (in effect,
small theorem provers), which are themselves formally verified
[52]. These checkers can use much more succinct logs (little
more than hints), and confidence in their own verification can
be based on one-time use of more primitive checkers or on a
diversity of checkers or verifiers. Diverse verifiers are available
for certain standard classes of verification problems such as
those that can be reduced to SAT and SMT solving.

We have enumerated three major hazards to the trustwor-
thiness of the guarantees provided by formal verification.
The first of these (incorrect requirements) is not specific to
formal approaches (in fact, formal analysis could help reduce
this hazard by “challenging” the requirements against putative
theorems), and can therefore be removed from this calculation.
The second hazard (incorrect or incomplete formalization) has
three subcases and the first of these (inconsistency) can be
eliminated by suitable technical methods (exhibiting construc-
tive models). The remaining, active, hazards are incorrect and
incomplete formalizations (the second and third subcases of
the second hazard), and flaws in the verification system itself
(the third hazard).

We cannot suggest specific contributions from each of these
active hazards to an assessed probability of imperfection, but
we can suggest their likely relative significance. Based on
personal experience, errors in formalization should be the
dominant concern: the verification can be sound and complete
but may not mean what we think it means. As described earlier,
formalizations should be “challenged” in various ways, such
as by proving putative theorems, checking counterexamples to
nontheorems, and direct execution. Incompleteness should be
the next level of concern. Some formal verification activities
are deliberately very incomplete (e.g., static code analysis)
and these may be unable to contribute very much at all
to a probability of imperfection. But for those verifications
that are reasonably comprehensive, it is important to consider
what might have “fallen through the cracks” and to weigh
the guarantee of formal verification accordingly. Finally, the
possibility of flaws in the verification system itself is the
least of the three concerns: although all the major verification
systems have had some flaws, no false claim has “escaped”
and been used in a larger context, to my knowledge.

IV. CONCLUSIONS

We reviewed Bev Littlewood’s idea that software may be
“possibly perfect” and that its probability of (im)perfection
may be assessed. Possible perfection is a more plausible
claim than either absolute correctness or reliability for the
assurance delivered by most software verification and valida-
tion activities. Furthermore, the probability of (im)perfection
provides a bridge from these correctness-based activities to the
probabilistic claims generally employed at the system level.

In [2], we show that the possible imperfection of one
channel is conditionally independent of the failures of another
and that the overall failure rate of suitable two-channel systems
is the product of the separate probabilities of these events. This
approach can be applied to primary/backup systems for nuclear
safety, and operational/monitor systems for aircraft.

We considered use of evidence from formal verification
in assessing a probability of imperfection. We enumerated
hazards to the soundness of the guarantees provided by formal
verification and concluded that incorrect formalization (of
software requirements and specifications, and of assumptions)
and incomplete formalization and analysis (so that issues
may “fall through the cracks”) are the dominant concerns,

6



with soundness of the verification system a distant third. We
suggested ways to reduce each of these hazards.

The hazards we identified are very similar to the concerns
raised more than 20 years ago by Fetzer [53] in his jeremiad
against formal verification. Most of those working in formal
verification were, and remain, unmoved by Fetzer’s alarums
because they are well aware of these hazards. However, we
believe the treatment given here, where apprehension of the
hazards influences the assessed probability of imperfection, is
the first that supports a measured response: we do not need
heroic efforts to eliminate the hazards, nor should we shrug
our shoulders; instead we can attempt to reduce the hazards to
a level commensurate with the level of risk accepted for the
system.

To make these proposals concrete, we may consider a dual-
channel system for which an assessor can substantiate a claim
of 10−4 for probability of failure of the reliable channel. A
balanced case suggests we should require similar probability of
imperfection for the possibly perfect channel (thereby achiev-
ing an overall probability of failure of10−8). We suggest
that the bulk of this “budget” should be divided between the
concerns of incorrect formalization and incompleteness of the
formal analysis, with a small fraction, say10−5, allocated to
unsoundness of the verification system.

We believe that through sufficiently careful and compre-
hensive formal challenges, it is indeed feasible and plausible
that an assessor can assign a subjective posterior probability
of imperfection on the order of10−4 to the formal statements
on which a formal verification depends. Through testing and
other scrutiny, we believe a similar figure can be assigned
to the probability of imperfection due to discontinuities and
incompleteness in the formal analysis. And, by use of a
verification system with a trusted or verified kernel, or trusted,
verified, or diverse checkers, we believe an assessor can assign
a posterior probability of10−5 or smaller to the concern that
the theorem prover and other components of the mechanized
formal verification system may have incorrectly verified the
theorems that attest to perfection.

Dual-channel systems are subject to two kinds of failure:
the first is whereboth channels fail to operate safely; the
second is where one channel activates a safety action (e.g.,
shuts down a reactor or signals failure of an avionics system)
unnecessarily. Probabilities of imperfection on the order of
10−3 or 10−4 seem adequate for the verified channel in the
first case (because its imperfection is conditionally indepen-
dent of failure of the other channel). The safety consequences
of the second kind of failure are generally less severe than
the first, so probabilities of imperfection in the range10−3 to
10−4 may be adequate here, too. However, other cases may
require smaller probabilities of imperfection, such as10−6 or
even less (these could also be required some single-channel
systems), and it is a topic for investigation and discussion
whether such assessments should be considered feasible and
credible.

Other topics for further investigation include dialog with
assessors and certifiers on application of these ideas in real

systems assessments. Concrete attempts to assign specific
probabilities of imperfection to real systems will reveal areas
of difficulty and doubt, and future research should explore
technical means to alleviate these. Formal verification will
generally be employed as one leg of a “multi-legged” assur-
ance case and research is needed to see how best an assessed
probability of perfection can be combined with evidence from
other legs, possibly using Bayesian Belief Nets (BBNs) as
examined by Littlewood and Wright [54].

ACKNOWLEDGMENT

This paper is based on joint work with Bev Littlewood
of City University. My research was supported by NASA
cooperative agreements NNX08AC64A and NNX08AY53A,
and by National Science Foundation grant CNS-0720908.

REFERENCES

[1] B. Littlewood, “The use of proof in diversity arguments,”IEEE Trans-
actions on Software Engineering, vol. 26, no. 10, pp. 1022–1023, Oct.
2000.

[2] B. Littlewood and J. Rushby,Reasoning about the Reliability of Fault-
Tolerant Systems in Which One Component is “Possibly Perfect”, City
University UK and SRI International USA, 2009, in preparation.

[3] System Design and Analysis, Federal Aviation Administration, Jun. 21,
1988, advisory Circular 25.1309-1A.

[4] E. Lloyd and W. Tye,Systematic Safety: Safety Assessment of Aircraft
Systems. London, England: Civil Aviation Authority, 1982, reprinted
1992.

[5] B. Littlewood and L. Strigini, “Validation of ultrahigh dependability for
software-based systems,”Communications of the ACM, pp. 69–80, Nov.
1993.

[6] R. W. Butler and G. B. Finelli, “The infeasibility of experimental
quantification of life-critical software reliability,”IEEE Transactions on
Software Engineering, vol. 19, no. 1, pp. 3–12, Jan. 1993.

[7] J. May, G. Hughes, and A. D. Lunn, “Reliability estimation from
appropriate testing of plant protection software,”IEE/BCS Software
Engineering Journal, vol. 10, no. 6, pp. 206–218, Nov. 1995.

[8] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F.
McAllister, M. A. Vouk, and J. P. J. Kelly, “An experimental evaluation
of software redundancy as a strategy for improving reliability,”IEEE
Transactions on Software Engineering, vol. 17, no. 7, pp. 692–702, Jul.
1991.

[9] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,”IEEE
Transactions on Software Engineering, vol. SE-12, no. 1, pp. 96–109,
Jan. 1986.

[10] D. E. Eckhardt, Jr. and L. D. Lee, “A theoretical basis for the analysis of
multiversion software subject to coincident errors,”IEEE Transactions
on Software Engineering, vol. SE-11, no. 12, pp. 1511–1517, Dec. 1985.

[11] B. Littlewood and D. R. Miller, “Conceptual modeling of coincident
failures in multiversion software,”IEEE Transactions on Software En-
gineering, vol. 15, no. 12, pp. 1596–1614, Dec. 1989.

[12] Aerospace Recommended Practice (ARP) 4761: Guidelines and Methods
for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, Society of Automotive Engineers, Dec. 1996.

[13] Aerospace Recommended Practice (ARP) 4754: Certification Consider-
ations for Highly-Integrated or Complex Aircraft Systems, Society of
Automotive Engineers, Nov. 1996, also issued as EUROCAE ED-79.

[14] DO-178B: Software Considerations in Airborne Systems and Equipment
Certification, Requirements and Technical Concepts for Aviation, Wash-
ington, DC, Dec. 1992, this document is known as EUROCAE ED-12B
in Europe.

[15] J. J. Chilenski and S. P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Issued for information under
FAA memorandum ANM-106N:93-20, Aug. 1993.

[16] N. E. Fenton and M. Neil, “A strategy for improving safety related
software engineering standards,”IEEE Transactions on Software Engi-
neering, vol. 24, no. 11, pp. 1002–1013, Nov. 1998.

7



[17] W. L. Oberkampf and J. C. Helton, “Alternative representations of epis-
temic uncertainty,”Reliability Engineering and System Safety, vol. 85,
no. 1–3, pp. 1–10, 2004.

[18] A. O’Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite,
D. J. Jenkinson, J. E. Oakley, and T. Rakow,Uncertain Judgements:
Eliciting Experts’ Probabilities. Wiley, 2006.

[19] R. E. Bloomfield, B. Littlewood, and D. Wright, “Confidence: Its role
in dependability cases for risk assessment,” inThe International Con-
ference on Dependable Systems and Networks. Edinburgh, Scotland:
IEEE Computer Society, Jun. 2007, pp. 338–346.

[20] Safety Assessment Principles for Nuclear Facilities, 2006th ed., UK
Health and Safety Executive, Bootle, UK, available at http://www.hse.
gov.uk/nuclear/saps/saps2006.pdf.

[21] Licensing of Safety Critical Software for Nuclear Reactors: Com-
mon Position of Seven European Nuclear Regulators and Authorised
Technical Support Organizations, AVN Belgium, BfS Germany, CSN
Spain, ISTec Germany, NII United Kingdom, SKI Sweden, STUK
Finland, 2007, available at http://www.bfs.de/de/kerntechnik/sicherheit/
Licensing safety critical software.pdf.

[22] Air Traffic Services Safety Requirements, CAP 670, Safety Regulation
Group, UK Civil Aviation Authority, Jun. 2008, see Part B, Section 3,
Systems Engineering SW01: Regulatory Objectives for Software Safety
Assurance in ATS Equipment; Available at http://www.caa.co.uk/docs/
33/cap670.pdf.

[23] Defence Standard 00-56, Issue 4: Safety Management Requirements for
Defence Systems. Part 1: Requirements, UK Ministry of Defence, Jun.
2007, available at http://www.dstan.mod.uk/data/00/056/01000400.pdf.

[24] Engineering Safety Management (The Yellow Book), Volumes 1 and 2,
Fundamentals and Guidance, Issue 4, Rail Safety and Standards Board,
London, UK, 2007, available from http://www.yellowbook-rail.org.uk/
site/the yellow book/the yellow book.html.

[25] Health and Safety at Work etc. Act, UK Health and Safety Executive,
1974, available at http://www.hse.gov.uk/legislation/hswa.htm; guidance
suite at http://www.hse.gov.uk/risk/theory/alarp.htm.

[26] J. Rushby, “A safety-case approach for certifying adaptive systems,” in
AIAA Infotech@Aerospace Conference. Seattle WA: American Institute
of Aeronautics and Astronautics, Apr. 2009, aIAA paper 2009-1992;
available at http://www.csl.sri.com/users/rushby/abstracts/aiaa09.

[27] ——, “Runtime certification,” inEighth Workshop on Runtime Verifica-
tion: RV08, ser. Lecture Notes in Computer Science, M. Leucker, Ed.,
vol. 5289. Budapest, Hungary: Springer-Verlag, Apr. 2008, pp. 21–35.

[28] ——, “Harnessing disruptive innovation in formal verification,” in
Fourth International Conference on Software Engineering and Formal
Methods (SEFM), D. V. Hung and P. Pandya, Eds. Pune, India: IEEE
Computer Society, Sep. 2006, pp. 21–28.

[29] ——, “Using model checking to help discover mode confusions and
other automation surprises,”Reliability Engineering and System Safety,
vol. 75, no. 2, pp. 167–177, Feb. 2002, available at http://www.csl.sri.
com/users/rushby/abstracts/ress02.

[30] Safety Recommendations A-07-65 though -69, National Transportation
Safety Board, Washington, DC, Oct. 2007, available at http://www.ntsb.
gov/recs/letters/2007/A0765 69.pdf.

[31] Safety Recommendation A-07-70 though -86, National Transportation
Safety Board, Washington, DC, Oct. 2007, available at http://www.ntsb.
gov/Recs/letters/2007/A0770 86.pdf.

[32] In-Flight Upset Event, 154 km West of Learmonth, WA, 7 October
2008, VH-QPA Airbus A330-303, Australian Transport Safety Bureau,
Mar. 2009, reference number AO-2008-070 Interim Factual, avail-
able at http://www.atsb.gov.au/publications/investigationreports/2008/
AAIR/pdf/AO2008070 interim.pdf.

[33] In-Flight Upset Event, 240 km North-West of Perth, WA, Boeing Com-
pany 777-200, 9M-MRG, 1 August 2005, Australian Transport Safety
Bureau, Mar. 2007, reference number Mar2007/DOTARS 50165, avail-
able at http://www.atsb.gov.au/publications/investigationreports/2005/
AAIR/aair200503722.aspx.

[34] Report on the incident to Airbus A340-642, registration G-VATL en-
route from Hong Kong to London Heathrow on 8 February 2005, UK
Air Investigations Branch, 2007, available at http://www.aaib.gov.uk/
publications/formalreports/42007 g vatl.cfm.

[35] J. R. Shoenfield,Mathematical Logic. Reading, MA: Addison-Wesley,
1967.

[36] M. Kaufmann and J. S. Moore, “An industrial strength theorem prover
for a logic based on Common Lisp,”IEEE Transactions on Software

Engineering, vol. 23, no. 4, pp. 203–213, Apr. 1997, aCL2 home page:
http://www.cs.utexas.edu/users/moore/acl2/.

[37] C. Cornes, J. Courant, J. Filliâtre, G. Huet, P. Manoury, C. Paulin-
Mohring, C. Mũnoz, C. Murthy, C. Parent, A. Saibi, and B. Werner, “The
Coq proof assistant reference manual, version 5.10,” INRIA, Rocquen-
court, France, Tech. Rep., Feb. 1995, coq home page: http:///coq.inria.fr.

[38] M. J. C. Gordon and T. F. Melham, Eds.,Introduction to HOL: A
Theorem Proving Environment for Higher-Order Logic. Cambridge,
UK: Cambridge University Press, 1993, hOL home page: http://www.
cl.cam.ac.uk/Research/HVG/HOL/.

[39] L. C. Paulson,Isabelle: A Generic Theorem Prover, ser. Lecture Notes
in Computer Science. Springer-Verlag, 1994, vol. 828, isabelle home
page: http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[40] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS,”IEEE
Transactions on Software Engineering, vol. 21, no. 2, pp. 107–125, Feb.
1995, pVS home page: http://pvs.csl.sri.com.

[41] S. Owre and N. Shankar, “Theory interpretations in PVS,” Computer
Science Laboratory, SRI International, Menlo Park, CA, Tech. Rep. SRI-
CSL-01-01, Apr. 2001.

[42] M. Saaltink, “Domain checking Z specifications,” inLFM’ 97: Fourth
NASA Langley Formal Methods Workshop, ser. NASA Conference
Publication 3356, C. M. Holloway and K. J. Hayhurst, Eds. Hampton,
VA: NASA Langley Research Center, Sep. 1997, pp. 185–192, available
at http://atb-www.larc.nasa.gov/Lfm97/proceedings/.

[43] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert,
“Evaluating, testing, and animating PVS specifications,” Computer
Science Laboratory, SRI International, Menlo Park, CA, Tech. Rep.,
Mar. 2001, available from http://www.csl.sri.com/users/rushby/abstracts/
attachments.

[44] L. Pike, “A note on inconsistent axioms in Rushby’s “Systematic
formal verification for fault-tolerant time-triggered algorithms”,”IEEE
Transactions on Software Engineering, vol. 32, no. 5, pp. 347–348, May
2006.

[45] J. S. Moore, “A grand challenge proposal for formal methods: A
verified stack,” inFormal Methods at the Crossroads: From Panacea
to Foundational Support, ser. Lecture Notes in Computer Science, vol.
2757. Lisbon, Portugal: Springer-Verlag, 2003, pp. 161–172, 10th
Anniversary Colloquium of UNU/IIST the International Institute for
Software Technology of The United Nations University.

[46] G. Hamon, L. de Moura, and J. Rushby, “Automated test generation
with SAL,” Computer Science Laboratory, SRI International, Menlo
Park, CA, Technical Note, Sep. 2005, available at http://www.csl.sri.
com/users/rushby/abstracts/sal-atg.

[47] M. Utting and B. Legeard,Practical Model-Based Testing. Morgan
Kaufmann, 2006.

[48] R. Bloomfield and B. Littlewood, “Multi-legged arguments: The im-
pact of diversity upon confidence in dependability arguments,” inThe
International Conference on Dependable Systems and Networks. San
Francisco, CA: IEEE Computer Society, Jun. 2003, pp. 25–34.

[49] S. Rayadurgam and M. Heimdahl, “Coverage based test-case genera-
tion using model checkers,” inEighth International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS).
Washington DC: IEEE Computer Society, Apr. 2001, pp. 83–91.

[50] M. Gordon, R. Milner, and C. Wadsworth,Edinburgh LCF: A Mecha-
nized Logic of Computation, ser. Lecture Notes in Computer Science.
Springer-Verlag, 1979, vol. 78.

[51] J. Harrison, “Towards self-verification of HOL Light,” inAutomated
Reasoning, Third International Joint Conference, IJCAR 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, ser. Lecture
Notes in Computer Science, U. Furbach and N. Shankar, Eds.,
vol. 4130. Springer, 2006, pp. 177–191. [Online]. Available:
http://dx.doi.org/10.1007/1181477117

[52] N. Shankar, “Trust and automation in verification tools,” in6th In-
ternational Symposium on Automated Technology for Verification and
Analysis (ATVA), ser. Lecture Notes in Computer Science, S. S. Cha, J.-
Y. Choi, M. Kim, I. Lee, and M. Viswanathan, Eds., vol. 5311. Springer-
Verlag, Oct. 2008, pp. 4–17.

[53] J. H. Fetzer, “Program verification: The very idea,”Communications of
the ACM, vol. 31, no. 9, pp. 1048–1063, Sep. 1988.

[54] B. Littlewood and D. Wright, “The use of multi-legged arguments to
increase confidence in safety claims for software-based systems: a study
based on a BBN analysis of an idealised example,”IEEE Transactions
on Software Engineering, vol. 33, no. 5, pp. 347–365, May 2007.

8


