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Abstract

We describesal-atg , a tool for automated test generation that will be distributed as
part of the next release of SAL. Given a SAL specification augmented with Booleantrap
variablesrepresenting test goals,sal-atg generates an efficient set of tests to drive the
trap variables toTRUE; SAL specifications are typically instrumented with trap variables
representing structural coverage criteria during automatic translation from a higher-level
source notation, such as RSML−e or Stateflow.

We describe extensions to the method of test generation that useconjunctionsof trap
variables; we show how these can be used to provide boundary coverage and to encodetest
purposes. We also describe how the output of the tool can be customized to the require-
ments of the test harness concerned. We describe experiments withsal-atg on realistic
examples and preparations for evaluating the quality of tests generated using the experi-
mental framework of Heimdahl, George and Weber [HGW04].
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1 Introduction

We describe the prototype version ofsal-atg , a new member of the SAL tool suite
[dMOR+04b] that performs automated generation of efficient test sets using the method
described in [HdMR04]. The prototype is available for beta testing now fromhttp:
//sal.csl.sri.com/pre-release ; following some planned refinements and feed-
back from users, it will be released as a standard part of the SAL tool suite.

In this introductory section, we illustrate straightforward use ofsal-atg ; in Section
2 we describe its operation in more detail and present some examples; in Section 3, we
describe extensions that allow a test engineer to specify more complex tests, including
conjunctions of goals and “test purposes,” and in Section 4 we describe how the output of
sal-atg can be customized to suit the requirements of the test environment in which it is
to be used.

1.1 Basic Test Generation withsal-atg

The idea of automated test generation is to construct a sequence of inputs that will cause
the system under test (SUT) to exhibit some behaviors of interest, called thetest goals. The
test goals may be derived from requirements, from the domains of input variables (e.g., just
inside or just outside the boundary of acceptable values), from the structure of the SUT or its
specification (e.g., branch coverage in the specification), or from other considerations. The
sal-atg tool has no set of test goals built in, but instead generates test sequences from a
SAL specification for the SUT that has been augmented withtrap variablesthat encode the
chosen test goals. Trap variables are Boolean state variables that are initiallyFALSEand
are setTRUEwhen some test goal is satisfied. For example, if the test goals are to achieve
state and transition coverage, then each state and transition in the specification will have a
trap variable associated with it, and these will be setTRUEwhenever their associated state
or transition is encountered or taken. Trap variables may belatchingor nonlatching: in the
former case, they remainTRUEonce their associated test goal has been satisfied, while in
the latter they remainTRUEonly as long as the current state satisfies the goal. For example,
if a test goal requires a certain control state to be visited, a latching trap variable will be set
and remainTRUEonce that control state is encountered, whereas a nonlatching trap variable
will be setTRUEwhen that control state is encountered, but will return toFALSEwhen the
control state takes another value. It is sometimes easier to program latching trap variables,
and the test generator can check for them more efficiently (it only need look in the final
state of a putative test sequence), but when conjunctions of trap variables are employed (see
Section3) they should generally be nonlatching.

As SAL is an intermediate language, we expect that generation and manipulation of
trap variables will be part of the automated translation to SAL from the source notation.
For example, our prototype translator from Stateflow to SAL [HR04] can automatically
insert trap variables for state and transition coverage in the Stateflow specification.
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[sec==60] {
  sec=0;
  min=min+1;
}

[cent==100] {
  cent=0;
  sec=sec+1;
}

TIC {
  cent=cent+1;
}LAP {

  cent=0; sec=0; min=0;
  disp_cent=0; disp_sec=0;  
  disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Figure 1: A simple stopwatch in Stateflow

As an illustration, Figure1 shows the Stateflow specification for a stopwatch with lap
time measurement; state coverage corresponds to visiting each of the states (i.e., boxes) and
each of the junctions (i.e., small circles), and transition coverage corresponds to taking each
of the arcs. To generate test cases usingsal-atg , we first translate this example into the
SAL language. We use the simplified hand-translated specification shown in Figures2 and
3, rather than the specification generated by our Stateflow translator. This hand-translated
SAL specification does not preserve the hierarchical states of the original Stateflow, and is
therefore an unfaithful translation, but it is correspondingly much simpler and better suited
for exposition here than the faithful mechanical translations.

The first part of the SAL translation, shown in Figure2, begins by introducing the types
needed for the specification. The stopwatch itself is specified in theclock module; this has
three local variables (min , sec , andcent ) that record the state of its counter, and one (pc )
that records the currently active state. The stopwatch is driven byevents at itsev input
variable (where the valuesTIC , START, andLAP respectively represent occurrence of a
timer tick, or pressing the start or lap button), while the output of the module is given by
the three variables (disp min , disp sec , anddisp cent ) that represent its display.
The Boolean variabless1, s2, s3, t0, ...t10 are trap variables added for test
generation purposes. Notice that these declarations and other SAL code added for test
generation are shown in blue.

The behavior of theclock module is specified by the transition relation specified in
Figure3 by means of a series of guarded commands. For example, in thereset state, a
LAPevent sets the display variables to zero, while aSTARTevent causes the state to change
to running . The six following guarded commands similarly enumerate the behavior of
the stopwatch for each combination of theLAP andSTARTevents in its other three states.

2



stopwatch: CONTEXT =
BEGIN

ncount: NATURAL = 99;
nsec: NATURAL = 59;
counts: TYPE = [0..ncount];
secs: TYPE = [0..nsec];
states: TYPE = {running, lap, reset, lap_stop };
event: TYPE = {TIC, LAP, START };

clock: MODULE =
BEGIN
INPUT

ev: event
LOCAL

cent, min: counts,
sec: secs,
pc: states,
s1, s2, s3: BOOLEAN,
t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10: BOOLEAN

OUTPUT
disp_cent, disp_min: counts,
disp_sec: secs

INITIALIZATION
cent = 0;
sec = 0;
min = 0;
disp_cent = 0;
disp_sec = 0;
disp_min = 0;
pc = reset;
s1 = FALSE; s2 = FALSE; s3 = FALSE;

t0 = FALSE; t1 = FALSE; t2 = FALSE; t3 = FALSE; t4 = FALSE;
t5 = FALSE; t6 = FALSE; t7 = FALSE; t8 = FALSE; t9 = FALSE;
t10 = FALSE;

...continued

Figure 2: First part of SAL translation of the stopwatch
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TRANSITION
[

pc = reset AND ev = LAP -->
disp_cent’ = 0; disp_sec’ = 0; disp_min’ = 0;
pc’ = pc; t0’ = TRUE;

[]
pc = reset AND ev = START -->

pc’ = running; s1’ = TRUE; t1’ = TRUE;
[]

pc = running AND ev = LAP -->
pc’ = lap; s2’ = TRUE; t2’ = TRUE;

[]
pc = running AND ev = START -->

pc’ = reset; t3’ = TRUE;
[]

pc = lap AND ev = LAP -->
pc’ = running; s1’ = TRUE; t4’ = TRUE;

[]
pc = lap AND ev = START -->

pc’ = lap_stop; s3’ = TRUE; t5’ = TRUE;
[]

pc = lap_stop AND ev = LAP -->
pc’ = reset; t6’ = TRUE;

[]
pc = lap_stop AND ev = START -->

pc’ = lap; s2’ = TRUE; t7’ = TRUE;
[]

ev = TIC AND (pc = running OR pc = lap) -->
cent’ = IF cent /= ncount THEN cent+1 ELSE 0 ENDIF;
t8’ = IF cent’ /= cent THEN TRUE ELSE t8 ENDIF;
sec’ = IF cent /= ncount THEN sec

ELSIF sec /= nsec THEN sec+1 ELSE 0 ENDIF;
t9’ = IF sec’ /= sec THEN TRUE ELSE t9 ENDIF;
min’ = IF cent /= ncount OR sec /= nsec THEN min

ELSIF min /= ncount THEN min+1 ELSE 0 ENDIF;
t10’ = IF min’ /= min THEN TRUE ELSE t10 ENDIF;
disp_cent’ = IF pc = running THEN cent’ ELSE disp_cent ENDIF;
disp_sec’ = IF pc = running THEN sec’ ELSE disp_sec ENDIF;
disp_min’ = IF pc = running THEN min’ ELSE disp_min ENDIF;

[]
ELSE -->
]
END;

END

Figure 3: Final part of SAL translation of the stopwatch
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The final guarded command specifies the behavior of the variables representing the counter
in response toTIC events (corresponding to the flowchart at the right of Figure1).

The Boolean variabless1 , s2 , ands3 are latching trap variables for state coverage
and are setTRUEwhen execution reaches therunning , lap , andlap stop states, re-
spectively. The variablest0 . . .t10 are likewise latching trap variables for the various
transitions in the program. Trap variables obviously increase the size of the representations
manipulated by the model checkers (requiring additional BDD or SAT variables), but they
add no real complexity to the transition relation and their impact on overall performance
seems negligible.

We can generate tests for this specification using the following command.1

sal-atg stopwatch clock stopwatch_goals.scm -ed 5 --incremental

Herestopwatch is the name of the SAL context concerned,clock is the name of the
module, and the test goals (i.e., trap variables) are specified in the Scheme source file2

stopwatch goals.scm whose contents are as follows.3

(define goal-list ’(
"s1" "s2" "s3"
"t0" "t1" "t2" "t3" "t4" "t5" "t6" "t7" "t8" "t9" ; "t10"
))

The items in black define a list in the Scheme language, while the items in blue enumerate
the trap variables for the test goals concerned. Note that a semicolon introduces comments
in Scheme, so the trap variablet10 is actually excluded from this list. The argument
-ed 5 instructs the tool to use a maximum search depth of 5 when seeking to extend a test
to reach a new goal, while the flag--incremental instructs it to undertake the search
incrementally (i.e., first to depth 1, then 2, and so on).

The inputs described produce the 17-step test case shown in Figure4 in under 5 seconds
(without the--incremental parameter, the test case is 19 steps long). In this case,
sal-atg fails to generate a test to satisfy the test goal represented by the trap variablet9 .
This goal corresponds to the middle junction in the flowchart to the right of Figure1 and
it requires a test containing 100TIC inputs to satisfy it. The parameters supplied tosal-
atg do not allow a search to this depth. If, instead, we supply the following parameters,
then all goals are satisfied.

sal-atg stopwatch clock stopwatch_goals.scm -ed 5 -id 101 --latching

Here, the parameter -id 101 allowssal-atg to search to a depth of 101 in seeking
the initial segment to a path. With this modification, a test set comprising two tests is

1A platform-independent GUI will soon be available for all SAL tools.
2Scheme is the implementation language for the SAL toolkit; the reference for this language is [KCe98].
3In a forthcoming release of SAL, we will extend the SAL language to allow specification of test goals, but

for the present, these must be supplied in a Scheme file in the manner shown here.
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1 tests generated; total length 17
1 unreached test goals:(t9)
========================
Path
========================
Step 0:

ev = LAP
Step 1:

ev = TIC
Step 2:

ev = START
Step 3:

ev = TIC
Step 4:

ev = LAP
Step 5:

ev = LAP
Step 6:

ev = LAP
Step 7:

ev = START
Step 8:

ev = LAP
Step 9:

ev = TIC
Step 10:

ev = START
Step 11:

ev = START
Step 12:

ev = LAP
Step 13:

ev = START
Step 14:

ev = LAP
Step 15:

ev = START
Step 16:

ev = START
Step 17:

ev = TIC

Figure 4: Test inputs produced for the stopwatch
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generated (in less than 10 seconds); the first is a test of length 19 similar to that of Figure
4, and the second is sequence of length 101 that dischargest9 . Notice that we have added
the --latching parameter, which allowssal-atg to apply a minor optimization for
latching trap variables, but have dropped the--incremental parameter: this option is
expensive when large search depths are involved.4

In the next section, we describe these and other options tosal-atg , and illustrateatics
of their use.

2 Usingsal-atg

Test generation using model checkers is well-known; the traditional method generates a
separate test for each test goal and results in inefficient test sets having much redundancy
and many short tests. Not only are short tests inefficient, there is some evidence that they
are poor at revealing bugs [HUZ99, HGW04]. The method ofsal-atg uses the SAL
model checkers, but in a novel way [HdMR04] that generates test sets that are efficient, and
that we hope will also be more revealing.

The technique used to generate test cases insal-atg is illustrated in Figure5. Here,
the large oval represents the statespace of the SUT, while the smaller ovals represent test
goals or, more concretely, regions of the statespace where the corresponding trap variables
becomeTRUE. Test cases are sequences of inputs that drive the SUT along paths, repre-
sented by the colored lines, that visit the test goals.

The method of operation ofsal-atg is to start at an initial state (indicated byi),
then use model checking to construct aninitial test segmentto any unvisited test goal:
for example, that represented by the dashed green line toa. From there, it uses further
model checking to construct anextension test segmentto any other unreached goal: for
example, that represented by the first part of the solid green line froma to b. This extension
process is repeated until the model checker is unable to reach any further goals; the sequence
of inputs that drives the system along the path (i.e., concatenation of segments) is a test
case. For example, the input sequence that drives the SUT along the path represented by
concatenation of the dashed and solid green lines is a test case that discharges the test goals
a, b, c, m, d, ande. Notice that a single segment may discharge multiple goals if it happens
to reach a state that is in their intersection (e.g.,c andm here).

Next,sal-atg returns to some earlier state and attempts to construct additional paths
to visit any remaining test goals. There is a tension between returning to a recent state (e.g.,
that associated with discharging the test goald), from which it might be feasible to reach a
nearby goal (e.g.,n), and the desire to avoid redundancy in the tests (e.g., a segment from
d to n would come at the expense of repeating the part of the test that drives the SUT along
the path fromi througha, b, andc, tod). Currently,sal-atg offers two options when it is
no longer able to extend the current path. By default, it returns to a start state and attempts

4We could use the--incrext option, which restricts incremental construction to extension segments.
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j
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m

i n

Figure 5: Operation ofsal-atg

to construct a new initial segment (e.g., that represented by the dashed blue line tof ), and
then attempts to extend that (represented by the blue line tog). However, if the--branch
option is enabled, it first returns to the end of the current initial segment and attempts to
find new extensions from there (represented by the red line toj andk, and the yellow line
to h).

The idea behind the branching option is that considerable resources may be expended
constructing an initial segment (e.g., using symbolic model checking or a large search
depth) to some remote part of the state space, and this hard-won access should then be
“mined” for as many test goals as possible. The argument against using this option is that
returning to a starting state might produce shorter or less redundant tests. In the future we
may explore using the branching option only as a last resort. Although none of the exam-
ples we have seen so far require more sophisticated path search strategies, we may in the
future also consider using arbitrary known paths as initial segments in attempts to reach
otherwise unattainable test goals: for example, once all the other goals have been removed
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from consideration, reaching goaln from an initial state may be beyond the capacity of the
model checker, whereas it might be within range from the path tob.

The following parameters are used to control the search performed bysal-atg

--branch : when it is no longer possible to extend the current path,sal-atg returns by
default to an initial state and attempts to construct a new initial segment; this option
instructs it instead to return to the current initial segment and attempt to extend that.

--smcinit : by default,sal-atg uses bounded model checking to construct the initial
segments; this option instructs it to use symbolic model checking instead. Bounded
model checking is generally faster for specifications with large state spaces, but sym-
bolic can often search deeper in smaller specifications.

-id n: the search for an initial segment is limited to depthn (default 8). When
--smcinit is specified, the special value-id 0 indicates unlimited search depth.

-ed n: the search for extension segments is limited to depthn (default 8). Extensions
always use bounded model checking;-ed 0 means that no extensions will be gen-
erated (so each test is generated as an initial segment—this is how test generation
with model checkers is conventionally performed).

-md n: the search for extension segments always considers extensions of depth at least
n (default 0). This option can be used to force longer tests (though some goals may
then become unreachable because the test is forced to extend beyond the state that
gives access to them).

--incremental : this option causes bounded model checking to operate incrementally:
it divides the initial and extension depths by 10 and steps the corresponding search
depth by those amounts. This option generally generates shorter tests and is often
able to reach more test goals. It may reduce generation time (if many tests are found
at small depths) or increase it (if many unsuccessful searches are performed at large
intermediate depths).

--incrext : this is similar to the--incremental option but applies only to extension
segments.

--incrinit : this is similar to the--incremental option but applies only to initial
segments.

--noprune : a segment may happen to reach a state that discharges several test goals si-
multaneously (e.g.,c andm in Figure5). By default,sal-atg removes all such
goals from further consideration; this option will remove only one. This option can
therefore be used to increase the number, or the length, of tests generated. The mini-
mum search depth (-md n) should be nonzero when this option is used—otherwise,
the model checker will find extensions of length zero and vitiate its purpose.
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--latching : by default, trap variables are assumed to be nonlatching and sosal-atg
must scan the whole of the most recently added segment to check for any trap vari-
ables that have becomeTRUE. This option informssal-atg that trap variables are
latching, so that it need inspect only the final state of each segment. This is a minor
optimization.

--noslice : by default,sal-atg slices the specification each time it starts a new initial
segment; this option disables this behavior. Slicing reduces the size of the specifica-
tion and can speed the search.

--innerslice : this option causessal-atg to slice the specification each time it con-
structs an extension.

-s solver : by defaultsal-atg uses ICS as its SAT solver. This option allows use
of other solvers; thesiegesolver (seehttp://www.cs.sfu.ca/˜loryan/
personal/ ) is often particularly fast.

--fullpath : by default,sal-atg prints the values of only the input variables that
drive the tests; this option causessal-atg to print the full state at each step. Note
that slicing causes variables that are irrelevant to the generation of the tests to re-
ceive arbitrary values, so it is necessary to specify--noslice if the values of these
variables are of interest.

--testpurpose : this is described in Section9 on page29.

--fullpath : by default,sal-atg prints the

-v n: sets the verbosity level ton. This controls the level of output from many SAL
functions;sal-atg provides a running commentary on its operations whenn ≥ 1.

In addition to the parameters listed above, which are specific to test generation,sal-
atg also takes other parameters, such as those concerning variable ordering in symbolic
model checking; the commandsal-atg --help will provide a list.

Next, we describe three examples that illustrate some of the parameters tosal-atg
and give an indication of its performance.

2.1 Stopwatch

In the introduction, we saw thatsal-atg can generate test cases for all test goals (with
t10 excluded) for the stopwatch using the parameters-id 101 -ed 5 . By default,
sal-atg uses bounded model checking to construct both the initial segment and the ex-
tensions. We can instruct it to use symbolic model checking for the initial segments by
adding the parameter--smcinit as follows.

sal-atg stopwatch clock stopwatch_goals.scm -ed 5 -id 101 --smcinit

10
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With these parameters, a test set comprising two tests is generated in less than 5 seconds;
the first is a test of length 17 similar to that of Figure4, and the second is test of length 101
that dischargest9 . Symbolic model checking is naturally incremental (i.e., it constructs the
shortest counterexample) and is unaffected by the--incremental parameter; however,
if this parameter is restored (recall, it was removed when we increased the initial depth to
101 while using bounded model checking) it will affect the way extensions are produced
(these are always generated by bounded model checking) and the length of the first test case
is thereby reduced from 17 to 16.

Observant readers may wonder why, if the incremental flag was used, this and the test
case of Figure4 contain superfluousTIC events, which cannot contribute to satisfaction of
the test goals in the Statechart on the left of Figure1. The explanation is that the guarded
commands in the transition relation of Figure1 use thecurrent inputs to determine thenext
values of local and output values. Thus, in constructing a segment in which a certain trap
variable becomesTRUEin its last step, the model checker must exhibitsomeinput value
for that last step. This input value is chosen arbitrarily and may fortuitously start the next
segment on a good or a bad path, or it may be irrelevant (e.g., a TIC). SAL allows specifi-
cations in which thenextvalues of input variables are used (i.e., the primed forms of input
variables appear in guards and on the right hand side of assignments). This capability must
be used with great caution and understanding of its consequences (we have seen many spec-
ifications rendered meaningless in this way), but it does eliminate the need for an arbitrary
input at the end of each segment. If this example is changed to useev’ in the guards, then
incremental search will generate a test case for the statechart of length only 12

When symbolic model checking is used, it is not necessary to set a bound on the initial
search depth (other than to limit the resources that may be used). The special value-id
0 is used to indicate this. Thus, the following command achieves the same result as the
previous one.

sal-atg stopwatch clock stopwatch_goals.scm -ed 5 -id 0 --incremental --smcinit

If the comment that excludest10 from the list instopwatch goals.scm is now re-
moved, then this same invocation ofsal-atg will discharge that goal also (in a total time
of 106 seconds), adding a third test of length 6,001 to the existing two.

If the extension depth, as opposed to the initial depth, is set to zero, then this has the
effect of disabling extensions. For example, the following command generates 9 tests, with
total length 37, that discharge all goals exceptt9 andt10 .

sal-atg stopwatch clock stopwatch_goals.scm -ed 0 --incremental
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2.2 Shift Scheduler

Our next example is a shift scheduler for a four-speed automatic transmission that was made
available by Ford as part of the DARPA MoBIES project.5 The example was provided as a
model in Matlab Simulink/Stateflow; the Stateflow component is shown in Figure6: it has
23 states and 25 transitions.

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
        to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
         to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
         to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
         to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
         to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
         to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

Figure 6: Stateflow model for four-speed shift scheduler

We converted the Stateflow component of the Matlab.mdl file for this example into
a SAL file trans ga.sal using a prototype translator based on the Stateflow semantics
presented in [HR04]. Several of the inputs to this example are real numbers; we redefined

5Seevehicle.me.berkeley.edu/mobies/ .
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the REAL type to a small integer range for the purpose of test generation by adding the
following declaration to the SAL file.

REAL: TYPE = [-10..100];

The Stateflow component of the Matlab model is not really self-contained in this exam-
ple: it has several open inputs that are constrained by the surrounding Simulink blocks. In
particular, theshift speed ij inputs that determine when a shift from geari to j should
be scheduled are driven from a singletorque input and therefore cannot change indepen-
dently in the actual context of use. As we do not have a translator from Simulink to SAL, we
wrote theconstraints module shown below by hand and composed it synchronously
with the modulemain that was produced by the Stateflow translator to yield asystem
module. The composition simply drives all theshift speed ij inputs from a common
torque input, which is constrained to be positive; the gear input is also constrained to take
only values1..4 .

constraints: MODULE =
BEGIN
OUTPUT

shift_speed_21_54 : REAL,
shift_speed_34_59 : REAL,
V_52 : REAL,
shift_speed_23_57 : REAL,
shift_speed_12_53 : REAL,
gear_51 : [-128..127],
shift_speed_43_60 : REAL,
shift_speed_32_58 : REAL

INPUT
torque: [0..127],
velocity: [0..127],
gear: [1..4]

TRANSITION
shift_speed_21_54’ = torque;
shift_speed_34_59’ = torque;
V_52’ = velocity;
shift_speed_23_57’ = torque;
shift_speed_12_53’ = torque;
gear_51’ = gear;
shift_speed_43_60’ = torque;
shift_speed_32_58’ = torque;

END;

system: MODULE = main || constraints;

Our Stateflow translator optionally adds trap variables for state and transition cov-
erage to the SAL module that it generates, and also provides the content for the file
trans ga goals.scm , which is shown below, that communicates these tosal-atg .
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(define goal-list ’(
"latch_shifting_24" "latch_shifting_23" "latch_shifting_22"
"latch_shift_pending_21" "latch_shift_pending_20"
"latch_shift_pending_19" "latch_transition21_18"
"latch_transition32_17" "latch_transition43_16"
"latch_second_gear_15" "latch_fourth_gear_14" "latch_shifting3_13"
"latch_shifting2_12" "latch_shifting_11" "latch_shift_pending3_10"
"latch_shift_pending2_9" "latch_shift_pending_8"
"latch_transition34_7" "latch_transition23_6" "latch_transition12_5"
"latch_first_gear_4" "latch_third_gear_3"
"latch_trans_v1_1_trans_slow_trans_slow_torques_shift_scheduler_shift_schedule_2"
"latch_transition_30" "latch_transition_29" "latch_transition_28"
"latch_transition_27" "latch_transition_26" "latch_transition_25"
"latch_transition_49" "latch_transition_48" "latch_transition_47"
"latch_transition_46" "latch_transition_45" "latch_transition_44"
"latch_transition_43" "latch_transition_42" "latch_transition_41"
"latch_transition_40" "latch_transition_39" "latch_transition_38"
"latch_transition_37" "latch_transition_36" "latch_transition_35"
"latch_transition_34" "latch_transition_33" "latch_transition_32"
"latch_transition_31"

))

There are 48 test goals identified in this file. Using the default settings for its parameters,
sal-atg generates a single test of length 29 that leaves 11 of these goals undischarged. If
we increase either the initial depth or the extension depth to 15 then all goals are discharged.
For example, the following command line generates two tests of total length 47 that achieve
full coverage.

sal-atg trans_ga system trans_ga_goals.scm -id 15 --incremental

Using the parameter-ed 15 instead of-id 15 , full coverage is achieved with a single
test of length 47. The generation time in both cases is 38 seconds on a 2 GHz Pentium
(there are 311 state bits in the representation sent to the model checker).

2.3 Flight Guidance System

Our third example is a model of an aircraft flight guidance system developed by Rock-
well Collins under contract to NASA to support experiments such as this [HRV+03]. This
example has previously been used in experiments in test generation at the University of
Minnesota [HRV+03,HGW04,HD04] and we were able to build on that work.

The model was originally developed in RSML−e, with test generation performed using
nuSMV. We used a SAL version of the specification kindly provided by Jimin Gao of
the University of Minnesota who is developing an RSML−e to SAL translator. There is
actually a collection of increasingly complex models, but we used only the final and most
complex model, whose SAL specification,FGS05, has more than 490 state variables. For

14



test goals we worked from the nuSMV input files provided by the University of Minnesota.
The test goals for this example target notions of state and transition coverage that differ
from the usual control flow interpretation. In this example, a state is interpreted as a specific
value assignment to a specific state variable (e.g.,ROLL = Selected ), and a transition is
interpreted as a specific guard in one of the tables that constitutes an RSML−e specification
taking a specific truth value. There are 246 state coverage goals and 344 transition coverage
goals of this kind; in the University of Minnesota experiments, they are represented by CTL
formulas in nuSMV syntax such as the following (the first is a state coverage goal, the
second a transition coverage goal).

G(!(ALTSEL_Selected = Active))

G(((X((!Is_This_Side_Active)))) ->
X(!ALTSEL_Active = Offside_ALT SEL_Active))

To usesal-atg , we need to convert CTL formulas such as these into manipulation
of trap variables. For state coverage goals, this translation is fairly simple. A CTL for-
mula such as the first one shown above is intended to generate a test for the negation of the
property within theGoperator; that is, in this case, one in which the state variableALT-
SEL Selected takes the valueActive . In SAL, we need to introduce a trap variable
that goesTRUEwhen this assignment occurs. We call this trap variablestate5 (because
this happens to be the fifth in the list of state coverage goals), initialize it toFALSE, and
add the following to theTRANSITION section of the SAL specification.

state5’ = state5 OR ALTSEL_Selected = Active;

Note that this is added to theTRANSITION sectionbeforethe guarded commands; assign-
ments appearing here are executed on every state transition. Hence,state5 will be set
to TRUEin the state following the first one in whichALTSEL Selected takes the value
Active ; the disjunction with the previous value ofstate5 then causes this value to be
latched (i.e., once setTRUE, it staysTRUE). A minor complication to this encoding is that
the SAL and nuSMV translations of the original RSML−e specification are not in straight-
forward correspondence: they sometimes use different names for the same RSML−e vari-
able or constant. In this case, the SAL value that corresponds toActive in the nuSMV
translation isSelected State Active , and so the correct form for this trap variable
assignment is the following.

state5’ = state5 OR ALTSEL_Selected = Selected_State_Active;

We have written an awk script (reproduced in the Appendix) that reads the nuSMV
formulas for the state coverage goals and produces SAL text defining the corresponding
trap variables, their initialization and assignment, and the Scheme file encoding the goal
list needed bysal-atg . The fragments of SAL text produced by this script are inserted
at appropriate points in the fileFGS05.sal that contains the translation of the RSML−e

15



model, and the goal list is saved in the filestategoals.scm . The following command
then invokessal-atg on these inputs.

sal-atg FGS05 main stategoals.scm -ed 5 -id 5 --incremental

In 61 seconds, this command generates a single test case of length 45 that dis-
charges all but 50 of the 246 state coverage goals. Of the 50 unreached
goals, 48 have names ending inUndefined and seem to be present for er-
ror detection and are not intended to become activated. The two remain-
ing unreached goals areWhen Selected Nav Frequency Changed = TRUE and
When Selected Nav Source Changed = TRUE, and the University of Minnesota
researchers confirm that these are unreachable in the original model also.

There are, therefore, 196 reachable state goals in this example—but a single test of
length 45 covers them all. Obviously, many test segments are discharging multiple goals.
We can modify thesal-atg command so that a separate segment is used for each goal as
follows.

sal-atg FGS05 main stategoals.scm -ed 5 -id 5 --incremental --noprune -md 1

This yields a single test of length 217 in 334 seconds. Of course, each segment may still
discharge multiple goals, but only one is removed from the list each time: this provides a
simple way to force longer (and possibly more effective) tests.

Another variant is the following, which prevents use of extension segments (by setting
the extension depth to zero), and corresponds to the conventional use of model checking to
generate test cases.

sal-atg FGS05 main stategoals.scm -ed 0 -id 5 --incremental

This yields 48 tests of total length 65 in 99 seconds that discharge all 196 reachable goals.
Of these tests, 17 are of length 2 and the remaining 31 are of length 1. The very short
length of these tests raises doubts about their likely effectiveness (i.e., their ability to detect
bugs in an implementation). Heimdahl, George, and Weber at the University of Minnesota
found these doubts to be justified [HGW04]: short test cases generated in this way had less
ability to detect mutants than randomly generated tests. They suggested three possible ex-
planations for this distressing result: short tests, the structure of the model, and inadequate
coverage criteria. Our method (unless hobbled by setting the extension depth to zero) gen-
erates long tests, and we hope this leads it into deeper parts of the statespace and provides
superior bug detection (there is some prior evidence that long tests are more effective than
short [HUZ99]). To investigate this hope, we are collaborating with the researchers at the
University of Minnesota to run our tests through their simulator for FGS. This requires
modifying the output ofsal-atg to match the requirements of their simulator and its test
harness, and the method for doing this is described in Section4. The concerns about model
structure and inadequate coverage criteria are considered in Section3.
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For the transition coverage goals, the translation from the CTL properties used with
nuSMV to the trap variables used in SAL is a little more complicated. A transition goal
needs to refer to values in both the current state and the next, and the CTLX (next) operator
is used for this purpose in nuSMV, as illustrated by the following example where, as before,
the overall formula is intended to generate a test case for the negation of the expression
within theGoperator.

G(X(!Is_This_Side_Active) ->
X(!ALTSEL_Active = Offside_ALT SEL_Active))

It is easy to represent this as a SAL property (although the native language of most of
the SAL model checkers is LTL, they automatically translate the fragment of CTL that is
common to LTL), but we need to encode it in the SAL specification language (as operations
on a trap variable), not the property language. A natural way to reflect the intent of the
X operator within a specification is by reference to primed variables, and this suggests the
following definition for the trap variabletrans1 associated with this test goal.

trans1’ = trans1 OR NOT ((NOT Is_This_Side_Active’)
=> (NOT ALTSEL_Active’ = Offside_ALTSEL_Active’));

Automation of this translation is a little tricky and we use the combination of an awk
script followed by a sed script to accomplish it. These scripts are shown in the Appendix.
The resultinggoal-list is placed in the filetransgoals.scm . The following com-
mand then invokessal-atg on these inputs.

sal-atg FGS05 main transgoals.scm -ed 5 -id 5 --incremental

In 98 seconds,6 this command generates a single test case of length 55 that discharges all but
31 of the 344 transition coverage goals. All of the undischarged goals are of the following
form and are plainly unreachable.

trans94’ = trans94 OR NOT (NOT (TRUE)
=> (Is_AP_Engaged’ = (AP’ = AP_State_Engaged)));

As before, we can increase the length of the test using the--noprune option.

sal-atg FGS05 main transgoals.scm -ed 5 -id 5 --incremental --noprune -md 1

In 857 seconds this generated a single test of length 318 that discharged the same 313 goals
as before.

And we can set the extension depth to zero so thatsal-atg operates like an ordinary
model checker.

6These experiments were performed on a SAL specification that also included the trap variables for state
coverage, making for 1,167 state variables in all. Slicing removed 302 variables (presumably including all the
trap variables for state coverage since these were not selected as goals) right away.
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sal-atg FGS05 main transgoals.scm -ed 0 -id 5 --incremental

In 212 seconds, this generated 73 tests having a total length of 84 (63 of length 1, 9 of
length 2, and 1 of length 3) that discharge the same 313 goals as before.

3 Test Engineering and Automation

In current practice, test cases are developed by test engineers: they use experience, cover-
age monitors, and some theory to help them write effective tests. With an automated test
generator such assal-atg , the task of the test engineer changes from writing tests to writ-
ing specificationsfor tests: the test generator then produces the actual tests. Forsal-atg ,
tests are specified through trap variables, and in this section we illustrate ways in which trap
variables can be used to specify more searching tests, and we describe howconjunctionsof
trap variables can be used to specify very potent tests.

3.1 Boundary Coverage and Meaningful Impact Tests

The examples we have seen so far use test goals derived from structural coverage criteria.
However, simple structural criteria such as state or transition coverage can produce unre-
vealing tests. Consider, for example, a simple arithmetic comparison such as the following.

IF x <= 6 THEN ... ELSE ... ENDIF

Transition coverage requires only that we generate one test that takes theTHENbranch and
another that takes theELSEbranch, and a test generator that targets this requirement might
propose the test setx = 0 andx = 8 (assuming the type ofx includes these values).
A human tester, on the other hand, might be concerned that the implementation of this
specification could mistakenly substitute< for <= and would therefore propose the test setx
= 6 andx = 7 to discriminate between the correct implementation and the hypothesized
faulty one. Notice that both test sets satisfy transition coverage, but only the second will
reveal the hypothesized fault.

There is an extensive literature on methods for generating tests that are likely, or in some
cases guaranteed, to detect various kinds of hypothesized faults, but rather few of these
methods have been automated. One that has is the “boundary coverage” method [KLPU04],
which is implemented in the BZ-Testing-Tool suite and its commercial derivative (seewww.
leirios.com ). The boundary coverage method collects the various constraints implied
by postconditions, preconditions, and guards, then calculates their “boundary” and selects
some test points from (just) inside the boundary, and some from (just) outside. The method
of www.t-vec.com is similar, although it apparently calculates just the test “vectors”
(the input/output cases for each transition), and not the full (“preamble”) sequence of inputs
needed to bring the system to the point where the vectors are applied. There is evidence
that tests generated by boundary coverage are quite revealing.
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Now sal-atg operates by driving trap variables toTRUEand it is used in conjunction
with a translator or preprocessor that inserts those trap variables and their associated code
into the SAL specification concerned. We will speak generically of the component that
inserts the trap variables as thepreprocessor(while recognizing that it may actually be a
translator from some other notation rather than a true SAL-to-SAL preprocessor). We are
interested in generating more revealing tests, such as those for boundary coverage, so here
we examine whether this can be accomplished by augmenting the preprocessor to set trap
variables appropriately, or whether additional capabilities are needed insal-atg itself.
We note that it is certainly feasible to augmentsal-atg to explore the boundaries of
arithmetic constraints by substituting the infinite bounded model checker of SAL [dMRS02]
for the (ordinary) bounded model checker that is currently employed. The infinite bounded
model checker uses the ICS decision procedures [dMOR+04a], whose arithmetic solver has
the latent ability to maximize an expression subject to arbitrary constraints.

The motivation for the boundary coverage method is the hypothesis that implementation
faults often arise at such boundaries. Boundaries are constructed by predicates appearing
in the specification (such as thex <= 6 example above), so a plausible way to generate
tests for a boundary fault hypothesis might be to probe the predicates at branch points
and in guards. Suppose we have a branch guarded by a predicateΨ, and we have a fault
hypothesis that this might incorrectly be implemented as the predicateΦ. We want a test
that will discriminate these two cases: that is, an assignment to the state variables ofΨ
satisfying the formulaΨ 6= Φ. We can causesal-atg to generate a suitable test by
simply inserting a trap variable that is setTRUEif Ψ 6= Φ at the point where the guard is
evaluated. Disequality on the Boolean type is the same as theXORoperator, and we will
use this notation henceforth (in the literature on testing this is often written as⊕). In the
example above,Ψ is x <= 6 andΦ is x < 6 , so our variable will trap the expression
x <= 6 XOR x < 6; this simplifies tox = 6 and hence this is the test that will be
generated by this trap variable.

There are two ways in which asal-atg preprocessor might automate the generation
of trap variables for boundary cases using the ideas presented above. The first method
directly automates the approach as presented: for each guardΨ in the specification, apply
some heuristic or table to generate a hypothesized faulty implementationΦ, then generate
a variable to trap satisfaction ofΨ XOR Φ (we may add this to the tests for transition
coverage rather than have a separate test: in this case we would trapΨ ∧ (Ψ XOR Φ) and
¬Ψ ∧ (Ψ XOR Φ), which simplify toΨ ∧ ¬Φ and¬Ψ ∧ Φ).

The second method expandsΨ into some Boolean combination of more primitive cases,
hypothesizes simple faults (e.g., “stuck-at” faults) in each of these, and then generates trap
variables whose tests will expose these simple faults. For example,x <= 6 can, as sug-
gested in [DF93], be expanded tox < 6 OR x = 6 and we may then set trap variables
whose tests will show if either of these disjuncts has an implementation that is invariantly
TRUEor FALSE. Such tests will work by setting things up so that changing the value of
one of the disjuncts, while holding the others constant, changes the value of the whole ex-
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pression (if the implementation has a “stuck at” fault, then the value of the expression will
not change, thereby revealing the fault).

The idea that a good testing strategy should check that the subexpressions of complex
Boolean expressions independently can affect the outcome is a popular one: it underlies the
coverage criterion called MC/DC (Modified Condition/Decision Coverage) [CM94] that the
FAA requires for “Level A” airborne software [RTCA92], and it is the basis for the influ-
ential “meaningful impact” class of test generation strategies [WGS94]. Let p be an atomic
formula (i.e., a Boolean variable or a simple predicate such asx < y) that appears in the
Boolean expressionΦ, thenΦp

e denotes the modified expression in whiche (an arbitrary ex-
pression) replacesp in Φ. A testt (i.e., an assignment of truth values to the atomic formulas
of Φ) manifests themeaningful impactof p in Φ if the test caset′ formed by changing the
valuation ofp (but not of any other atomic formula) int, also changes the valuation ofΦ.
This will be so for anyt that satisfiesΦ XOR Φp

¬p. Since one ofp or¬p must beTRUEin Φ
and vice-versa inΦp

¬p, this is equivalent to saying thatt satisfiesΦp
TRUE XOR Φp

FALSE;

this expression is called theBoolean derivative(of Φ with respect top) and is denotedddpΦ.
To generate meaningful impact tests forΦ, we set pairs of variables that trap satisfaction
of p ∧ d

dpΦ and¬p ∧ d
dpΦ for each of the atomic formulasp in Φ (we follow [Kuh99]

and [OBY04] in using Boolean derivatives to describe these methods).
Returning to our exampleΦ = x < 6 OR x = 6, the derivative with respect to

the first atomic formula is the negation of the second, and vice-versa. Hence, we require
variables that trap each of the following four cases.

• x < 6 AND NOT x = 6(this simplifies tox < 6 )

• NOT x < 6 AND NOT x = 6(this simplifies tox > 6 )

• x = 6 AND NOT x < 6(this simplifies tox = 6 )

• NOT x = 6 AND NOT x < 6(this simplifies to the redundant casex > 6 )

Notice that this second method for testing boundary cases is really comprised of two
separate submethods: one that expands predicates into interesting cases, and another that
generates trap variables to test for meaningful impact of these cases. The latter mechanism
is independently useful, since it will generate trap variables for meaningful impact tests
of any compound Boolean expression, not just those formed by expanding expressions to
expose boundary conditions.

To summarize this discussion: we believe that it is feasible to generate effective tests
for boundary coverage by exploring the predicates appearing in guards and conditions, and
we consider this approach more attractive than constraint solving because of its wider ap-
plicability (it should work for any predicates, not just arithmetic ones). A preprocessor can
set trap variables to explore predicates with respect to explicit fault hypotheses, or it can ex-
pand predicates into more primitive combinations and generate tests for meaningful impact
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in those. We favor the second approach because it seems to have wider utility. Empirical
investigation is required to validate these beliefs.

Note, however, that the test sets that will be generated by applyingsal-atg to a
specification with trap variables for meaningful impact differ from those suggested in the
literature on this topic. The proposals for testing strategies derived from [WGS94] (e.g.,
[KTK01]) are concerned with heuristics for making “good” choices among the possibly
many ways to satisfyddpΦ or, more particularly, among the many satisfying instances to the

set{ d
dpΦ | p is an atomic formula ofΦ} of all the derivatives ofΦ: the ideas are that “good”

choices may generate larger, or more varied, or more effective sets of tests. In contrast, the
trap variables of our approach latchanyassignments of state variables that satisfyp ∧ d

dpΦ
and¬p ∧ d

dpΦ for each atomic formulap. Empirical investigation is needed to determine
whether our indifference to the precise satisfying assignment produces test sets of reduced
effectiveness. Since our approach is underpinned by the counterexample generation of
standard model checking methods, it is not practical to constrain the choice of satisfying
assignments; instead, the process is controlled by the selection of the expressions that are
monitored by trap variables, and we suspect that the selection heuristics of the meaningful
impact strategies can be reproduced, if necessary, by simply trapping more expressions, or
by specifying those expressions more precisely.

Observe also that the meaningful impact strategies are ways togeneratetests, whereas
the similarly motivated MC/DC notion is a way tomeasurethe coverage of tests. In cer-
tification of airborne software, the idea is that tests should be generated by consideration
of requirementsandspecifications(perhaps using meaningful impact strategies), and their
thoroughness is evaluated by monitoring MC/DC coverage on thecode[HVCR01]. A po-
tential difficulty in our approach to automated test generation for meaningful impact is that
our trap variables separately latchp ∧ d

dpΦ and¬p ∧ d
dpΦ and could therefore usedifferent

assignments to the variables inddpΦ, whereas some interpretations of MC/DC require the
sameassignment for each test of the pair [AOH03]. If empirical investigation reveals that
it is necessary to force the same assignment to the variables ofd

dpΦ for each test of the pair,
thensal-atg can be modified to accomplish this.

3.2 Conjunctions of Trap Variables: A Process Scheduler Example

The intuitive interpretation of the “boundaries” in boundary testing is clear for state vari-
ables of numeric types, but what about variables of other types? Legeard, Peureux and
Utting [LPU02] suggest applying the method to some numeric function of the variables
concerned: for example, if a variable is of a set type, then the boundary method could be
applied to the cardinality of the set. They illustrate this approach on a scheduler for a set of
processes that was originally introduced by Dick and Faivre [DF93]. The scheduler main-
tains sets ofready , waiting , andactive processes, and provides three operations:
new, which introduces a new process into thewaiting set;makeready , which moves a
process fromwaiting to active if the system is idle (i.e., no process is currentlyac-
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sched: CONTEXT =
BEGIN

n: NATURAL = 4;
pid: TYPE = [1..n];
ops: TYPE = {new, makeready, swap };

pidset: CONTEXT = sets {pid };

scheduler: MODULE =
BEGIN
INPUT

op: ops,
id: pid

OUTPUT
active, ready, waiting: pidset!set

INITIALIZATION
active = pidset!emptyset;
ready = pidset!emptyset;
waiting = pidset!emptyset;

TRANSITION
[

op = new AND NOT active(id) AND NOT ready(id) AND NOT waiting(id) -->
waiting’ = pidset!insert(waiting, id);

[]
op = makeready AND waiting(id) -->

waiting’ = pidset!remove(waiting, id);
active’ = IF pidset!empty?(active)

THEN pidset!singleton(id)
ELSE active ENDIF;

ready’ = IF pidset!empty?(active)
THEN ready
ELSE pidset!insert(ready, id) ENDIF;

[]
([] (q:pid): op = swap AND ready(q)-->

waiting’ = pidset!union(waiting, active);
active’ = pidset!singleton(q);
ready’ = pidset!remove(ready, q);

)
[]
op = swap AND pidset!empty?(ready) -->

waiting’ = pidset!union(waiting, active);
active’ = pidset!emptyset;

[]
ELSE -->
]
END;
END

Figure 7: The Scheduler Example
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set_states: TYPE = {empty, single, partfull, full };

set_monitor: MODULE =
BEGIN
INPUT

mset: pidset!set
LOCAL

traps: ARRAY set_states OF BOOLEAN
INITIALIZATION

traps = [[x: set_states] FALSE];
TRANSITION
[

pidset!empty?(mset) --> traps’ = [[x: set_states] x = empty]
[]

pidset!single?(mset) --> traps’ = [[x: set_states] x = single]
[]

pidset!partfull?(mset) --> traps’ = [[x: set_states] x = partfull]
[]

pidset!full?(mset) --> traps’ = [[x: set_states] x = full]
[]

ELSE -->
]
END;

Figure 8: The Set Monitor Module

tive ), or toready otherwise; andswap, which exchanges the currentlyactive process
for a ready one, or leaves the system idle if none wereready . A SAL rendition of the
example is shown in Figure7. Processes are identified by small integers of the typepid
(“process id”), and sets of these (the typepidset ) are defined by importing the generic
sets context instantiated for the typepid .

To generate thorough tests from this specification, intuition suggests that we should
explore not only its local control structure (i.e., transition coverage), but also the special
cases for each of the sets that it maintains: for example, the cases where they are empty,
contain a single element, are full, or none of these. Legeard, Peureux and Utting [LPU02]
approach this through boundary testing on the sum of the cardinalities of the sets, while
Dick and Faivre [DF93] expand guards and conditions to distinguish empty from nonempty
sets and then probe the compound expressions in a manner related to meaningful impact
tests. We could, as suggested in the previous section, imagine a preprocessor that inserts
trap variables to automate the second approach.

But given a technology based on model checking, we also have an opportunity to do
something quite different: we can add a “monitor” module that observes the state of the
various sets and traps the interesting special cases. A suitable module is shown in Figure8;
unlike previous examples, we use here an array of trap variables, rather than a collection of
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separate variables and, for reasons that will be explained later, these variables are nonlatch-
ing (e.g.,traps[empty] is setTRUEin a state in which themset is empty, but it will
becomeFALSE in any subsequent state in which the set is nonempty).

The original scheduler module may then be composed with three instances of the
set monitor module as shown below; each instance monitors one of the sets in the
specification.

mon_sched: MODULE =
(RENAME traps TO atraps, mset TO active IN set_monitor) ||
(RENAME traps TO rtraps, mset TO ready IN set_monitor) ||
(RENAME traps TO wtraps, mset TO waiting IN set_monitor) ||
scheduler;

We then define thegoal-list in the file schedgoals.scm as follows.7

The trap variablesatraps[sched!partfull] , atraps[sched!full] , and
rtraps[sched!full] are absent from thegoal-list because they are unreachable
(it is easy to confirm by model checking that there is at most one active process, and the
system will not be idle if there is a ready process).

(define goal-list ’(
"atraps[sched!empty]" "atraps[sched!single]"
"rtraps[sched!empty]" "rtraps[sched!single]" "rtraps[sched!partfull]"
"wtraps[sched!empty]" "wtraps[sched!single]" "wtraps[sched!partfull]"
"wtraps[sched!full]"))

The following command generates a single test of length 17 that discharges all nine test
goals defined by these trap variables.

sal-atg sched.sal mon_sched -v 3 --incremental schedgoals.scm

Although it targets interesting cases only in the states of the three set variables, this test also
achieves transition coverage on thescheduler module.8 In contrast, the test (of length
10) that is generated by targeting simple transition coverage in thescheduler module
fails to drive any of the sets beyond theempty andsingleton states. The method of
Dick and Faivre [DF93] does drive the sets into more interesting states, but Dick and Faivre
generated their test (of length 19) by hand.

The boundary coverage method of Legeard, Peureux and Utting generates many more
tests than any of these methods because “its aim is to testeachtransition with both mini-
mum and maximum boundary values” [LPU02, page 35, emphasis ours], and this suggests

7Note that if we did not rename thetraps variables, then the variableatraps would be referred to
as traps.1.1 , rtraps would betraps.1.2 , andwtraps would betraps.2 . This is because syn-
chronous compositions are represented internally as nested 2-tuples.

8To see the coverage achieved on the traps for transition coverage, add the arguments--fullpath and-
-noslice ; the former allows the values of the trap variables to be inspected in the trace output bysal-atg ,
while the latter prevents these from being sliced away.
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an interesting combination of the two approaches used insal-atg : instead of targeting
structural coverage in thescheduler , or “state coverage” in its set variables, we could
target both. We do not mean “both” in the sense of simply taking the union of the two sets
of trap variables, but in the sense of taking theirproduct: that is, for each structural target in
thescheduler , we seek tests in which the three sets are taken through their full range of
states. This is easily done, because the elements in thegoal-list targeted bysal-atg
may either be the names of trap variables (which is the only case we have seen so far), or
a list of such names, which is interpreted as a goal requiring theconjunctionof the trap
variables appearing in the list.

Figure9 presents a preprocessed version of thescheduler module (the preprocessing
was done by hand and the module is calledischeduler for i nstrumentedscheduler )
in which theIF...THEN...ELSE expressions have been “lifted” into the guards, and an
array of (nonlatching) trap variables for structural coverage has been added.

The test case of length 10 for transition coverage that was previously mentioned was
generated by the following command

sal-atg sched.sal ischeduler --incremental ischedgoals.scm

whereischedgoals.scm contains the following definition forgoal-list (the goal
s[6] is absent because the transition that it traps is, correctly, unreachable).

(define goal-list ’(
"s[1]" "s[2]" "s[3]" "s[4]" "s[5]" "s[7]" "s[8]"))

To generate tests from the product of the transition and set coverage goals, we place the
following definitions in the fileprodgoals.scm (goal-product is a function defined
by sal-atg that constructs a list of lists in which each of the inner lists contains one
member of the list specified as its first argument, and one member of the list specified as its
second argument).

(define goal-list1 ’(
"s[1]" "s[2]" "s[3]" "s[4]" "s[5]" "s[7]" "s[8]"))

(define goal-list2 ’(
"atraps[sched!empty]" "atraps[sched!single]"
"rtraps[sched!empty]" "rtraps[sched!single]" "rtraps[sched!partfull]"
"wtraps[sched!empty]" "wtraps[sched!single]" "wtraps[sched!partfull]"
"wtraps[sched!full]"))

(define goal-list (goal-product goal-list1 goal-list2))

Then, withmon isched defined follows

mon_isched: MODULE =
(RENAME traps TO atraps, mset TO active IN set_monitor) ||
(RENAME traps TO rtraps, mset TO ready IN set_monitor) ||
(RENAME traps TO wtraps, mset TO waiting IN set_monitor) ||
ischeduler;
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ischeduler: MODULE =
BEGIN
INPUT

op: ops, id: pid
OUTPUT

active, ready, waiting: pidset!set
LOCAL

s: ARRAY [1..8] OF BOOLEAN
INITIALIZATION

active = pidset!emptyset; ready = pidset!emptyset;
waiting = pidset!emptyset; s = [[x: [1..8]] FALSE];

TRANSITION
[

op = new AND NOT active(id) AND NOT ready(id) AND NOT waiting(id) -->
waiting’ = pidset!insert(waiting, id);
s’ = [[x: [1..8]] x = 1];

[]
op = new AND (active(id) OR ready(id) OR waiting(id)) -->

s’ = [[x: [1..8]] x = 7];
[]

op = makeready AND waiting(id) AND pidset!empty?(active) -->
waiting’ = pidset!remove(waiting, id);
active’ = pidset!singleton(id);
s’ = [[x: [1..8]] x = 2];

[]
op = makeready AND waiting(id) AND NOT pidset!empty?(active) -->

waiting’ = pidset!remove(waiting, id);
ready’ = pidset!insert(ready, id);
s’ = [[x: [1..8]] x = 3];

[]
op = makeready AND NOT waiting(id) -->

s’ = [[x: [1..8]] x = 8];
[]
([] (q:pid): op = swap AND ready(q)-->

waiting’ = pidset!union(waiting, active);
active’ = pidset!singleton(q);
ready’ = pidset!remove(ready, q);
s’ = [[x: [1..8]] x = 4];

)
[]
op = swap AND pidset!empty?(ready) -->

waiting’ = pidset!union(waiting, active);
active’ = pidset!emptyset;
s’ = [[x: [1..8]] x = 5];

[]
ELSE -->

s’ = [[x: [1..8]] x = 6];
]
END;

Figure 9: The Scheduler Example Augmented with Trap Variables
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we generate tests for the “product” case with the following command.

sal-atg sched.sal mon_isched --incremental -ed 4 prodgoals.scm

In 39 seconds, this generates two tests of length 10 and 39 that discharge 49 of the7×9 = 63
test goals. The 14 undischarged goals are genuinely unreachable (one way to confirm this
is to add--smcinit -id 0 to thesal-atg command).

It should now be apparent why the trap variables are nonlatching in this example: latch-
ing is an optimization that is useful when each trap variable is required to participate in
only a single test, but in the product construction, each trap variable participates in multiple
tests and we need to know that the conditions trapped by conjoined trap variables areTRUE
simultaneously.

Conjunctions of test goals allow rather powerful testing strategies to be specified in a
succinct way. The “product” construction that it supports is particularly effective. It can be
used, as in the scheduler example, to generate tests for two different notions of coverage
used in combination. It is also useful in distributed systems, where it allows structural
coverage of two different components to be explored in combination. Another potential
application is to derive tests from a model in combination with its requirements or properties
(expressed as monitors).

Yet another use for conjunctive goals is to support a form of “test purpose.” This tech-
nique is so useful thatsal-atg provides specific support for it, and this is described in
the following section.

3.3 Test Purposes

Test goals specify what the generated tests should accomplish in terms of visiting certain
states, transitions, and combinations of these, but they do not otherwise constrain the tests
that are generated. In particular, when powerful technology such as model checking is
employed for test generation, it will invariably find theshortesttest to satisfy any given
goal. The shortest tests may exploit some special cases and can satisfy the test goals while
leaving much of the behavior of the system unexplored. The flight guidance system, for
example, is intended to be one of a pair, one of which is active while the other, inactive,
one operates as a hot spare. An active system exhibits interesting behavior: for example,
there are some complex rules that determine when it should enterROLLmode. An inactive
system, on the other hand, just follows inputs it receives from its active counterpart: so
all it needs to enterROLL mode is an input commanding it to do so. A model checker
will discover this and will satisfy a test goal to put the system inROLLmode in just two
steps: by first making the system inactive, then commanding it to enterROLLmode. This
is what Heimdahl, George, and Weber mean when they say thatmodel structuremay allow
generation of unrevealing tests [HGW04]. In the case of the flight guidance system, we
might hope to generate better tests by closing the “loophole” described above and requiring
that tests should keep the system in the active state. This is an example of what is sometimes
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called atest purpose: a test purpose augments the test goals by describing whatkindof tests
we want to generate.

If we want to restrict the search for tests to those satisfying a particular purpose, it may
seem natural to write a module that generates inputs satisfying that purpose: for example,
we could write a module that generates arbitrary inputs to the flight guidance system,except
those that would make it inactive. The composition of the flight guidance system and its
generator will then be a closed system (i.e., one that has no free inputs—the inputs of the
flight guidance system are closed by linking them to the outputs of the generator). This
is standard practice in model checking; for example, in analyzing the OM(1) fault tolerant
algorithm described in the SAL tutorial [Rus04], we have acontroller module that
injects faults into other components, while taking care not to inject more faults than we
know the algorithm can handle. This is reasonable because the model checker will close
the system anyway (i.e., it will synthesize an environment to drive any open inputs in a
totally nondeterministic manner), and the distinction between those inputs that are closed
by our generator and those that are closed by the synthesized environment is not important
in traditional model checking, where the objective is simply to drive the modeled system
through all its behaviors of interest while checking satisfaction of given properties.

In test generation, however, we do care which inputs are left open and which are closed,
because test cases are the sequences of values supplied to just the open inputs, and these
need to comprise exactly those needed to drive the real SUT. Thus, it is not feasible to im-
plement test purposes by writing generator modules that close off some of the inputs.9 In-
stead, we implement test purposes by writingrecognizermodules (sometimes called “syn-
chronous observers”). A recognizer module is one that takes (some of) the same inputs as
the modeled SUT (and, if necessary, observes some of its internal variables) and produces a
Boolean output that remainsTRUEas long as the input seen so far satisfies the test purpose
concerned; then we modify the test generation process so that it considers only those paths
on which the test purpose output remains true.

In environments where the specification is translated to SAL from some other source
language (e.g., Stateflow), the monitors can be written in the source language also and
translated in the same way. Observe that it is often easier to write monitors to check that a
test purpose is being satisfied than it is to construct a generator for that purpose: in effect,
the model checker performs constraint satisfaction and automates construction of a suitable
generator.

The automation is accomplished by restricting tests to those paths that satisfy the test
purpose, and insal-atg this is easily done using conjunctive goals: we simply conjoin the
Boolean variable that defines the test purpose with each of the trap variables that define the
test goals. This can be specified in Scheme using thegoal-product function introduced
in the previous section, but the construction is so useful that it is supported directly by

9Although one could modify the operation of the underlying model checker by telling it that certain local
variables should be treated as if they are inputs when constructing counterexamples.
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sal-atg , where it is invoked by the--testpurpose parameter, whose operation is
described as follows.

--testpurpose : tests are constrained to those paths on which the conjunction of goals
defined in the Scheme variablepurpose-list is TRUE.

We illustrate simple use of a test purposes by revisiting the Flight Guidance System
example. Later, we describe more ambitious test purposes using the shift scheduler.

Recall, from the introduction to this section, that Heimdahl, George, and Weber pro-
posed that better test cases can be obtained for the flight guidance system by requiring
it to remain in theactive state [HGW04]. To formulate this as a test purpose, we
need to introduce a variable that isTRUEas long as the FGS has beenactive through-
out the test seen so far. The state variable that records whether the FGS is active is
Is This Side Active ; this is a local variable and is not visible outside the module.
There are two ways to proceed: we could change this variable to an output, or we could
introduce a new output variable that tracks its value. Here, we use the second option and
introduce a new Boolean output variable calledReport Is This Side Active , and
then add the following equation to theDEFINITION section.

Report_Is_This_Side_Active = Is_This_Side_Active;

We then specify amonitor module that takes this variable as an input and produces an
output variableok that remainsTRUEas long as the input isTRUE. (Obviously, we could
have addedok and its associated transition to themain module, but we do it this way to
illustrate the general method.)

monitor: MODULE =
BEGIN
INPUT

Report_Is_This_Side_Active: BOOLEAN
OUTPUT

ok: BOOLEAN
INITIALIZATION

ok = Report_Is_This_Side_Active
TRANSITION

ok’ = ok AND Report_Is_This_Side_Active
END;

system: MODULE = main || monitor;

We synchronously composemonitor with the originalmain module, and add the
following definition forpurpose-list to the filestategoals.scm .

(define purpose-list ’("
ok"

))
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We then invokesal-atg as before, but adding the--testpurpose parameter.

sal-atg FGS05 system stategoals.scm -ed 5 -id 5 --incremental --testpurpose

In 65 seconds, we obtain a single test case of length 46 (compared with 45 previously) that
discharges the same test goals as before (minus the one to driveIs This Side Active
to FALSE). If we disable extensions, then we see a slightly bigger change.

sal-atg FGS05 system stategoals.scm -ed 0 -id 5 --incremental --testpurpose

In 114 seconds, this generates 49 tests with total length 72 (31 of length 1, 14 of length 2, 3
of length 3, 1 and of length 4); this compares with 48 tests with total length 65 when the test
purpose was not used. Similar results are obtained when we substitutetransgoals.scm
for stategoals.scm .

The test purpose illustrated by this example is very simple and has only a modest effect.
Test engineers who have a good understanding of the SUT can construct more elaborate test
purposes, as we illustrate in the following section.

3.4 Test Purposes: Shift Scheduler Example

We first illustrate use of test purposes on the shift scheduler example. The inputs to the
shift scheduler aretorque , velocity , andgear : the first of these indicates the current
power output of the engine, the second gives the road speed, and the third indicates the
gear currently selected by the gearbox; the shift scheduler drives actuators that change
clutch pressures and thereby influence the gearbox to select a different gear. The test cases
generated by the commands in Section2.2have many “discontinuities” in thegear input:
that is, the currently selected gear may go from 2 to 4 to 1 in successive inputs. We might
suppose that a more realistic test sequence would not have these discontinuities, and might
therefore propose a test purpose in which thegear input changes by at most one at each
step. We can implement this purpose by adding the following to the SAL specification of
the shift scheduler.
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monitor: MODULE =
BEGIN
INPUT

gear: [1..4]
OUTPUT

continuous: BOOLEAN
INITIALIZATION

continuous = (gear=1);
TRANSITION

continuous’ = continuous AND (gear - gear’ <= 1)
AND (gear’ - gear <= 1);

END;

monitored_system: MODULE = system || monitor;

Here, themonitor module takesgear as input and produces the Boolean output
continuous : this output remainsTRUEas long as the sequence of inputs changes by at
most 1 at each step (and starts at 1). Themonitor is then synchronously composed with
the previoussystem to yield themonitored system . We specify thatcontinuous
is a test purpose by adding the following to thetrans ga goals.scm file.

(define purpose-list ’(
"continuous"

))

Then we perform test generation with this purpose by the following command.

sal-atg trans_ga monitored_system trans_ga_goals.scm -ed 15 --incremental --testpurpose

In 45 seconds, this generates a single test of length 49 that discharges all coverage goals.
Inspection of the test confirms that thegear input changes by at most 1 at each step.

We observe that this test holds thegear input constant for long periods (e.g., the first
ten inputs are 1, 1, 1, 1, 1, 1, 2, 3, 3, 3) and we might also be interested in a test purpose
that requires thegear input always to change value from one step to the next. We can
add a Boolean outputmoving , initially TRUE, to themonitor module, and then add the
following to theTRANSITION section.

moving’ = moving AND (gear /= gear’);

We addmoving to the purpose list

(define purpose-list ’(
"continuous"
"moving"

))
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and then invokesal-atg as before.
In 46 seconds, we obtain a single test of length 51 that discharges all the goals. Inspec-

tion of the test confirms that it satisfies both our test purposes (the first tengear inputs are
1, 2, 3, 2, 3, 2, 3, 2, 3, 2). When multiple test purposes are specified,sal-atg conjoins
them. Additional purposes that can be conjoined in this example include those that force
the torque and velocity inputs to be nonzero. If a disjunction is required, simply
introduce a new Boolean variable and specify it as the disjunction of existing variables in
theDEFINITION section of the monitor module, and name only that new variable in the
purpose-list .

The two test purposes we have seen so far are invariants; suppose, now, that we want a
test in which thegear input takes the value 4 at least 13 times. We can easily encode this
test purpose by adding the Boolean outputenough to themonitor module and expanding
the body of the module as follows.

n4: NATURAL = 13;

monitor: MODULE =
BEGIN
INPUT

gear: [1..4]
OUTPUT

continuous, moving, enough: BOOLEAN
LOCAL

fours: [0..n4]
INITIALIZATION

continuous = (gear=1);
moving = TRUE;
fours = 0;
enough = FALSE;

TRANSITION
continuous’ = continuous AND (gear - gear’ < 2)

AND (gear’ - gear < 2);
moving’ = moving AND (gear /= gear’);
enough’ = (fours >= n4);

[
gear = 4 AND fours < n4 --> fours’ = fours +1;

[]
ELSE -->

]
END;

If we add the variableenough to thepurpose-list , thensal-atg has to con-
struct an initial test segment in which thegear input takes the value 4 at least 13 times
before any of its structural coverage goals are eligible for consideration. In 57 seconds, the
following command succeeds in constructing a single test of length 85 that discharges all
the goals and purposes (and in whichgear takes the value 4 exactly 23 times).
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sal-atg trans_ga monitored_system trans_ga_goals.scm -id 30 -ed 15 --testpurpose --incrext

An alternative is to add the variableenough to the goal-list (rather than the
purpose-list ). This is a less demanding test specification and the invocation used
earlier causessal-atg to generate in 76 seconds a single test case of length 65 that dis-
charges all the goals (and in whichgear takes the value 4 exactly 14 times).

4 Producing Tests in the Form Required by a Test Harness

By default,sal-atg prints test cases in the form shown in Figure4 on page6; this is
useful for evaluating the operation of the tool, but the real need is for test cases in the form
needed to drive the test harness for the SUT. Customizing the presentation of test cases
is accomplished by reprogramming thesal-atg output routines. We illustrate this using
the “Intermediate Trace Representation” (ITR) format used by the University of Minnesota
[ITR]; an example test case in ITR format is shown in Figure10.

There actually are two issues in generating output fromsal-atg that can drive the
University of Minnesota test harness: the first is generating ITR format, the second is to
deal with variable renamings and changed data representations. The second of these arises
because the SAL specification and the simulator in the test harness are separately generated
by translation from an RSML−e source specification, and the two translations use slightly
different naming conventions and data representations. For example, the SAL specification
usesSwitch OFFwhere the test harness requires simplyOFF, and SAL usesTRUEand
FALSEas the Boolean constants, whereas the test harness uses 1 and 0.10 Also, the SAL
trap variables are an artifact of test generation and should be excluded from the test cases
sent to the test harness. We need to decide which of the second set of issues should be
handled in the translation to ITR, and which are best left to postprocessing by an awk script
or other text processor. In this example, we postpone all issues from the second set to
postprocessing, including deletion of the trap variables: although it is easy to identify trap
variables as those named ingoal-list , it is possible that some of the trap variables are
absent fromgoal-list (as when we wish to generate only a partial set of tests) or that in
other applications some of the trap variables are also genuine state variables, so we prefer
to leave their deletion to the postprocessing stage. Our ITR output script also omits the ITR
DECLARATIONsection: this is easily constructed by cut-and-paste or text processing from
the SAL specification.

The Scheme function that prints test cases is calledtest-path/pp and it takes two
arguments: the SALpath that encodes the test case concerned, and an integer giving the
sequence number of this test case. A Scheme function to print the path as an ITR test
case is shown here. The individual steps of the test case will be produced by the function

10The translation from the CTL representation of the test goals into SAL trap variables faced these issues in
reverse.
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DECLARATION
This_Input:BOOLEAN;
AltPreRefChanged:BOOLEAN;

TESTCASE 1
STEP 1

INPUT
INTERFACE Other_Input: READER

AltSel = 0;
AltselAct = 0;

ENDINTERFACE
INTERFACE This_Input: READER

AltPreRefChanged = 0;
AltselCaptureCondMet = 0;

ENDINTERFACE
ENDINPUT
OUTPUT

INTERFACE This_Output: SENDER
AltLamp=OFF;
AltSel=0;

ENDINTERFACE
ENDOUTPUT
STATE

This_Output=1;
FD_Switch=OFF;

ENDSTATE
ENDSTEP 1
STEP 2

INPUT
INTERFACE Other_Input: READER

AltSel = 0;
AltselAct = 0;

ENDINTERFACE
INTERFACE This_Input: READER

AltPreRefChanged = 0;
AltselCaptureCondMet = 1;

ENDINTERFACE
ENDINPUT
OUTPUT

INTERFACE This_Output: SENDER
AltselAct=1;
FdOn=1;

ENDINTERFACE
ENDOUTPUT
STATE

Is_ALTSEL_Capture_Cond_Met=1;
ENDSTATE

ENDSTEP 2
ENDTESTCASE 1

Figure 10: Example of a test case in ITR format
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display-step that is developed below. The other functions that appear here are part of
the standard API to SAL.

(define (test-path/pp path n)
;; Assuming it is not a cyclic path
(let* ((flat-module (slot-value path :flat-module))

(state-vars (slot-value flat-module :state-vars))
(step-list (slot-value path :step-info-list)))

(print "TESTCASE " n)
(let loop ((step-list step-list)

(i 1))
(unless (null? step-list)

(let* ((step (car step-list))
(assignment-table (slot-value step :assignment-table)))

(display-step i state-vars assignment-table 4))
(print "")
(loop (cdr step-list) (+ i 1))))

(print "ENDTESTCASE " n)))

In the let* , we first extract theflat-module from thepath , and then use this to
extract thestate-vars ; we also extract thestep-list . We then print the enclosing
text for this test case and in between we loop through the individual steps of the test case
and calldisplay-step on each. The namedlet construction used here is one of the
most convenient ways to program a loop in Scheme: the loop variables are initialized in the
heading of thelet and the loop is reentered by using its name (here, this isloop ) as a
function call whose arguments are the updated values of the loop variables. The first argu-
ment todisplay-step is the index of this step within the test case, and the last (here, 4)
is the amount by which the output text should be indented. The second and third arguments
are the state variables and the table giving the values assigned to them, respectively. The
call toprint with an empty string produces a blank line.
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(define (display-step idx state-vars assignment-table n)
(indent n) (print "STEP " idx)
(let ((n (+ n 4))) ;; indent the body of the step

(indent n) (print "/* Input Variables */")
(indent n) (print "INPUT")
(display-input-variable-values state-vars assignment-table (+ n 4))
(indent n) (print "ENDINPUT")
(print "")
(indent n) (print "/* Output Variables */")
(indent n) (print "OUTPUT")
(display-output-variable-values state-vars assignment-table (+ n 4))
(indent n) (print "ENDOUTPUT"))
(indent n) (print "/* State Variables */")
(indent n) (print "STATE")
(display-local-variable-values state-vars assignment-table (+ n 4))
(indent n) (print "ENDSTATE")
(print "")

(indent n) (print "End Step " idx))

The functiondisplay-step prints the input, output, and (local) state variables in
that order; it does so by calling the appropriate function from the familydisplay-xxx-
variable-values . These take the samestate-vars andassignment-table
arguments asdisplay-step itself, and the indent is increased by 4.

(define (display-input-variable-values state-vars assignment-table n)
(display-variable-values state-vars assignment-table n

(lambda (var) (and (instance-of? var <sal-input-state-var-decl>)
(not (instance-of? var <sal-choice-input-state-var-decl>)))) "READER"))

(define (display-output-variable-values state-vars assignment-table n)
(display-variable-values state-vars assignment-table n

(lambda (var) (instance-of? var <sal-output-state-var-decl>)) "SENDER"))

(define (display-local-variable-values state-vars assignment-table n)
(display-variable-values state-vars assignment-table n

(lambda (var) (instance-of? var <sal-local-state-var-decl>)) "LOCAL"))

Thedisplay-xxx-variable-values functions invoke the functiondisplay-
variable-values whose first three arguments are the samestate-vars
assignment-table and indentn arguments as were passed in, and whose fifth argu-
ment is a string that will be printed to describe the kind of ITR “interface” concerned. The
fourth argument is a predicate that takes a state variable as its single argument and returns
whether this variable’s value should be printed in this list; these predicates check whether
the variable is of the kind required for the function concerned; additionally, in the case of
input variables, it checks that this variable is not one of the “choice” variables that SAL uses
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to keep track of which guarded commands were executed so that it can provide additional
information in detailed counterexamples.

(define (display-variable-values state-vars assignment-table n pred? if-string)
(for-each (lambda (state-var)

(when (pred? state-var)
(display-variable-value state-var assignment-table n if-string)))

state-vars))

The functiondisplay-variable-values simply steps down the list ofstate-
vars and checks the predicate to see if this variable should be printed; if so, it calls the
functiondisplay-variable-value to do the work
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(define (display-variable-value state-var assignment-table n if-string)
(let* ((lhs

(make-ast-instance <sal-name-expr> state-var :decl state-var))
(value (cond

((eq-hash-table/get assignment-table state-var) => cdr)
(else #f)))

(assignments (make-queue))
(rname #f))

(when value
(sal-value->assignments-core value #f lhs assignments))

(for-each (lambda (assignment)
(indent n)
(if (instance-of? (sal-binary-application/arg1 assignment)

<sal-record-selection>)
(begin

(unless
(eq? rname (sal-selection/target

(sal-binary-application/arg1 assignment)))
(set! rname (sal-selection/target

(sal-binary-application/arg1 assignment)))
(display "INTERFACE ") (sal-value/pp rname)
(print ": " if-string) (indent n))

(indent 4)
(sal-value/pp

(make-sal-equality
(sal-selection/idx (sal-binary-application/arg1 assignment))
(sal-binary-application/arg2 assignment)))

(print ";"))
(if rname

(begin
(set! rname #f)
(print "END INTERFACE")
(sal-value/pp assignment))

(begin
(sal-value/pp assignment)
(print ";")))))

(queue->list assignments))
(when rname (indent n) (print "END INTERFACE"))))

The functiondisplay-variable-value prints the value of the state variable sup-
plied as its first argument according to theassignment-table given in its second ar-
gument. It begins by settinglhs to the name of the state variable concerned andvalue
to its value. Now that value could be structured (e.g., a record or a tuple) and we want
to separately display the value of each component; the variableassignments is used to
record these component assignments and it is initialized to an empty queue. The function
sal-value->assignments-core breaks the structured value down into separate as-
signments to its components, which are stored inassignments (unstructured values store
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a single value in this queue). We then iterate through theassignments and print each
one.

Now, the translator from RSML−e to SAL actually uses only one kind of structured
object, and for a special purpose:recordsare used to group input and output variables
into interfaces. Thus, we first check if the assignment is to a record field and, if it is, we
check whether this is to the same record as that whose name is saved inrname . If not,
we must be starting to print the values of a new record, so we output the ITRINTERFACE
text containing the record name; theif-string argument will provide the additional
stringREADERor SENDERas appropriate. Otherwise (if we are in a record) we construct
a new SAL assignment consisting of the field name and its value and call the basicsal-
value/pp function to print that. Otherwise (if we are not in a record) we check whether
we need to end the previousINTERFACEand then print the assignment.

All the Scheme functions described above are placed (in reverse order) in a file
itr.scm and we then invokesal-atg as before, but withitr.scm added to the com-
mand line, as in the following example (we have dropped the--testpurpose parameter
to make it fit on one line).

sal-atg FGS05 system stategoals.scm -ed 5 -id 5 --incremental itr.scm

This produces the test cases in ITR format on standard output. Some postprocessing
is then necessary to add theDECLARATIONtext, to remove assignments to trap variables,
and to rename variables and values to the forms required by the test harness. Scripts to
perform this are described in the appendix.

5 Conclusion

We have described use of thesal-atg test case generator, and reported some experiments
using it. We believe that its ability to satisfy test goals with relatively few, relatively long
tests is not only efficient (both in generating the tests and in executing them), but is likely
to be more revealing: that is, its tests will expose more bugs than the large numbers of short
tests generated by traditional methods for test generation using model checkers. Its ability
to use conjunctions of test goals and to augment test goals with test purposes (and to set
minimum as well as maximum lengths for test segments) should improve the quality of tests
still further.

Our most urgent task is to validate these claims, and we hope to do so using the example
of the flight guidance system with the help of researchers at the University of Minnesota.
We used the example of the input format to their simulator to illustrate how the output of
sal-atg can be customized to suit the needs of a give test harness.

Test goals are communicated tosal-atg through trap variables and we described how
a preprocessor can set these to explore boundary values and to demonstrate the “meaningful
impact” of subexpressions within Boolean decisions. We plan to augment our translator
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from Stateflow to SAL so that it generates trap variables for these kinds of tests. We showed
how conjunctions of test goals and test purposes allow a test engineer to specify rather
complex sets of tests and we plan to validate the effectiveness of these tests on suitable
examples.

Currently, test goals are specified by listing the corresponding trap variables in Scheme
files, but we are developing a notation to allow these to be specified directly in SAL; we
hope to do so in a way that gives a logical status to tests and their goals, so that these can
contribute to larger analyses managed by a SAL “tool bus.”

The next release of SAL will provide a high-performance explicit state model checker
and we plan to allowSAL-ATG to make use of it; we will consider use of ATPG techniques
in the bounded model checker. We will also explore different strategies when a test cannot
be extended: currentlySAL-ATG returns to the start states, or to the end of the initial
segment, but it might be preferable to return to some state nearer the end of the current test.
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Minnesota

We are in the process of connectingsal-atg to the tool chain developed at the University
of Minnesota; our goal is to evaluate the quality of the tests generated bysal-atg using
the mutant implementations they have developed for the Flight Guidance System example
[HGW04]. Here we document the awk and sed scripts that we use to translate between the
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The SAL specification we employ was provided by Jimin Gao of the University of
Minnesota who is developing an RSML−e to SAL translator. He also provided lists of CTL
properties for nuSMV that generate tests for state and transition coverage. The transla-
tion from RSML−e to nuSMV uses slightly different variable and constant names than the
translation to SAL, so the following scripts not only have to transform CTL properties into
assignments to SAL trap variables, but must do some renaming as well.

The following awk script,states2sal , takes a file of CTL properties for state cov-
erage and generates output containing assignments to the trap variables, their declarations,
their initialization, and the Scheme definition for thegoal-list .
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#!/bin/awk -f
#
# Translate UMN state coverage properties to SAL
#

/add_property/
gsub("add_property -l "̈, "");
gsub("G \\(! \\(", "");
gsub(" \\) \\) \"", "");
gsub("= Cleared", "= Base_State_Cleared");
gsub("= Selected", "= Base_State_Selected");
gsub("= Armed", "= Selected_State_Armed");
gsub("= Active", "= Selected_State_Active");
gsub("= Capture", "= Active_State_Capture");
gsub("= Track", "= Active_State_Track");
gsub(" = Un_defined", "_Undefined");
gsub("Lamp = OFF", "Lamp = Lamp_OFF");
gsub("Lamp = ON", "Lamp = Lamp_ON");
gsub("= Disengaged", "= AP_State_Disengaged");
gsub("= Engaged", "= AP_State_Engaged");
gsub("= On", "= On_Off_On");
gsub("= Off", "= On_Off_Off");
gsub("= LEFT", "= Side_LEFT");
gsub("= RIGHT", "= Side_RIGHT");
gsub("= 0", "= FALSE");
gsub("= 1", "= TRUE");
gsub("&", "AND");
gsub("->", "=>");

# print "state" NR ": LEMMA main |- " $0 ";"
print "state" NR "’ = state" NR " OR " $0 ";";
decl = decl ", state" NR;
init = init "state" NR " = FALSE; \n";
gl = gl " \"state" NR " \" ";

END
print decl ": BOOLEAN";
print init;
print "(define goal-list ’(" gl "))";

Given a fileexample-states.ctl with the following contents

add_property -l "G(!(ALTSEL_Active = Capture))"
add_property -l "G(!(When_Selected_Nav_Source_Changed = 1))"

the command

./states2sal example-states.ctl

generates the following output
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state1’ = state1 OR ALTSEL_Active = Active_State_Capture;
state2’ = state2 OR When_Selected_Nav_Source_Changed = TRUE;

, state1, state2: BOOLEAN

state1 = FALSE;
state2 = FALSE;

(define goal-list ’("state1" "state2" ))

The following awk script,trans2sal , similarly takes a file of CTL properties for
transition coverage and generates intermediate output containing assignments to the trap
variables, their declarations, their initialization, and the Scheme definition for thegoal-
list . The translation for the nestedX properties is a little difficult, and this is completed
by the sed scripttrans2sal.sed that further transforms the intermediate output and
which is shown following the awk script.
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#!/bin/awk -f
#
# Translate UMN transition coverage properties to SAL
#

/add_property/
gsub("add_property -l \"", "");
gsub("!", "NOT ");
gsub(" \"", "");
gsub("= Cleared", "= Base_State_Cleared");
gsub("= Selected", "= Base_State_Selected");
gsub("= Armed", "= Selected_State_Armed");
gsub("= Active", "= Selected_State_Active");
gsub("= Capture", "= Active_State_Capture");
gsub("= Track", "= Active_State_Track");
gsub(" = Un_defined", "_Undefined");
gsub("Lamp = OFF", "Lamp = Lamp_OFF");
gsub("Lamp = ON", "Lamp = Lamp_ON");
gsub("= Disengaged", "= AP_State_Disengaged");
gsub("= Engaged", "= AP_State_Engaged");
gsub("= On ", "= On_Off_On ");
gsub("= Off ", "= On_Off_Off ");
gsub("= On)", "= On_Off_On)");
gsub("= Off)", "= On_Off_Off)");
gsub("= LEFT", "= Side_LEFT");
gsub("= RIGHT", "= Side_RIGHT");
gsub("= 0", "= FALSE");
gsub("= 1", "= TRUE");
gsub("0 & ", "FALSE AND ");
gsub("1 & ", "");
gsub("(1)", "TRUE");
gsub("&", "AND");
gsub(" \\| ", " OR ");
gsub("->", "=>");

# print "trans" NR ": LEMMA main |- " $0 ";"
print "trans" NR "’ = trans" NR " OR " $0 ";";
decl = decl ", trans" NR;
init = init "trans" NR " = FALSE; \n";
gl = gl " \"trans" NR " \" ";

END
print decl ": BOOLEAN,";
print init;
print "(define goal-list ’(" gl "))";
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/G(/s//NOT (/g
/ \.result/s///g
/((/s/(( \([ˆ(]* \)))/( \1)/g
/X/s/X( \([ˆ=)]* \))/( \1’)/g
/X/s/X( \([ˆ= )]* \) = \([ˆ=)]* \))/( \1’ = \2’)/g
/X/s/X(NOT \([ˆ= )]* \) = \([ˆ=)]* \))/(NOT \1’ = \2’)/g
/X/s/X( \([A-Za-z0-9_]* \) = ( \([A-Za-z0-9_]* \) = \([A-Za-z0-9_]* \)))/

( \1’ = ( \2’ = \3’))/g
/X/s/X(NOT \([A-Za-z0-9_]* \) = ( \([A-Za-z0-9_]* \) = \([A-Za-z0-9_]* \)))/

(NOT \1’ = ( \2’ = \3’))/g
/Active_State_Capture’/s//Active_State_Capture/g
/Selected_State_Armed’/s//Selected_State_Armed/g
/Lamp_ON’/s//Lamp_ON/g
/Lamp_OFF’/s//Lamp_OFF/g
/Selected_State_Active’/s//Selected_State_Active/g
/Active_State_Track’/s//Active_State_Track/g
/Base_State_Cleared’/s//Base_State_Cleared/g
/Base_State_Selected’/s//Base_State_Selected/g
/AP_State_Engaged’/s//AP_State_Engaged/g
/THIS_SIDE’/s//THIS_SIDE/g
/On_Off_On’/s//On_Off_On/g
/On_Off_Off’/s//On_Off_Off/g
/TRUE’/s//TRUE/g
/FALSE’/s//FALSE/g
/AP_State_Disengaged’/s//AP_State_Disengaged/g
/AP_State_Engaged’/s//AP_State_Engaged/g
/Side_RIGHT’/s//Side_RIGHT/g
/Side_LEFT’/s//Side_LEFT/g

Given a fileexample-transitions.ctl with the following contents (actually,
the properties must each be on a single line)

add_property -l "G(((X((!Is_This_Side_Active))))
-> X(!ALTSEL_Active = Offside_ALTSEL_Active))"

add_property -l "G(!((X(m_Deselect_VS.result)
& X(Is_This_Side_Active) & (VS = Selected)))

-> X(VS = Cleared))"

the command

./trans2sal example-transitions.ctl | sed -f trans2sal.sed

generates the following output
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trans1’ = trans1 OR NOT ((((NOT Is_This_Side_Active’)))
=> (NOT ALTSEL_Active’ = Offside_ALTSEL_Active’));

trans2’ = trans2 OR NOT (NOT (((m_Deselect_VS’)
AND (Is_This_Side_Active’) AND (VS = Base_State_Selected)))

=> (VS’ = Base_State_Cleared));

, trans1, trans2: BOOLEAN,

trans1 = FALSE;
trans2 = FALSE;

(define goal-list ’("trans1" "trans2" ))

The following sed scriptsal2itr.sed is applied to the ITR output described in
Section 4 to perform variable renaming and deletion of irrelevant states variables.

/state[0-9]/d
/trans[0-9]/d
/NimbusSystemClockReceiver_Receive/d
/Report_Is_This_Side_Active/d
/_Undefined/d
/_Random/d
/false/s//0/
/true/s//1/
/Input_Msg/s//Input/
/Switch_OFF/s//OFF/
/Switch_ON/s//ON/
/Output_Msg/s//Output/
/Lamp_OFF/s//OFF/
/Lamp_ON/s//ON/
/Side_LEFT/s//LEFT/
/Side_RIGHT/s//RIGHT/
/Base_State_Cleared/s//Cleared/
/Base_State_Selected/s//Selected/
/Selected_State_Armed/s//Armed/
/Selected_State_Active/s//Active/
/Active_State_Capture/s//Capture/
/Active_State_Track/s//Track/
/AP_State_Engaged/s//Engaged/
/AP_State_Disengaged/s//Disengaged/
/On_Off_On/s//On/
/On_Off_Off/s//Off/

A typical command is the following.

sed -f sal2itr.sed FGS05.tests

The following sed scriptdeclarations.sed is used to extract the declarations
needed at the start of an ITR file from the SAL specification concerned.
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1i \
DECLARATION
/ˆ \(.* \)_Msg_Type.* \[ \#/s// \1: BOOLEAN;\
/
/ \#\];/s//;/
/, /s//; \
/g
$a\
ENDDECLARATIONS

A typical command using this file is the following.

sed -n ’/#/p’ FGS05.sal | sed -f declarations.sed
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