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Abstract. Human operators use mental models to guide their interaction with
automated systems. We can “model the human” by constructing explicit descrip-
tions of plausible mental models. Using mechanized formal methods, we can then
calculate divergences between the actual system behavior and that suggested by
the mental model. These divergences indicate possible automation surprises and
other human factors problems and suggest places where the design should be
improved.

1 Introduction

Human error is implicated in many accidents and incidents involving computerized
systems, with problems and design flaws in the human-computer interface often cited
as a contributory factor. These issues are particularly well-documented in the cockpits
of advanced commercial aircraft, where several fatal crashes and other incidents are
attributed to problems in the “flightcrew-automation interface” [8, Appendix D].

There is much work, and voluminous literature, on topics related to these issues,
including mode confusions [22] and other “automation surprises” [23], human error
[18], human cognition [16], and human-centered design [1].

The human-centered approach to automation design explicitly recognizes the inter-
action between human and computer in complex systems, and the need for each side of
the interaction to have a model of the other’s current state and possible future behavior.

“To command effectively, the human operator must be involved and informed.
Automated systems need to be predictable and capable of being monitored
by human operators. Each element of the system must have knowledge of the
other’s intent” [ 1, Chapter 3].

Computer scientists might recognize in this description something akin to the inter-
action of concurrent processes, and might then speculate that the combined behavior of
human and computer could be analyzed and understood in ways that are similar to those
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used to reason about interacting processes. In the “assume-guarantee” approach [13],
for example, each process records what it assumes about the other and specifies, in re-
turn, what it will guarantee if those assumptions are met. Now, the computer side of
this interaction is, or can naturally be modeled as, a process in some formal system for
reasoning about computational artifacts. But what about the human side: is it reasonable
to model the human as a computational system?

It turns out that modern cognitive science holds the view that the mind is, precisely,
a computational system (or, at least, an information processor) of some kind [15]. Thus,
we can imagine constructing a computational model of some aspects of human cogni-
tion and behavior, confronting this with a similar model of the computerized system
with which it is to interact, and using formal calculation to derive observations or con-
clusions about their joint behavior.

Explicit models of human performance have long been used in computer interface
design: for example, GOMS (Goals, Operators, Methods, and Selections) analysis dates
back to 1983 [3] and has spawned many variants that are used today [11]. More re-
cently, cognitive models have been used to simulate human capabilities in systems for
developing and evaluating user interfaces [19]. Deeper models such as ICS (Interacting
Cognitive Subsystems) allow examination of the cognitive resources required to oper-
ate a particular interface [2,6]. These approaches are useful in identifying error-prone
features in interfaces to safety-critical systems (e.g., the complex process that must be
followed to enter a new flight plan into a flight management system), but they do not
seem to address the most worrying kinds of problems: those associated with mode con-
fusions and other kinds of automation surprise.

Automation surprises occur when an automated system does not behave as its op-
erator expects. Modern cognitive psychology has established the importance ofmental
modelsin guiding humans’ interaction with the world [12]; in particular, operators and
users of automated systems develop such models of their system’s behavior and use
these to guide their interaction [14,17]. Seen from this perspective, an automation sur-
prise occurs when the actual behavior of a system departs from that predicted by its
operator’s mental model.

Mental models of physical systems are three-dimensional kinematic structures that
correspond to the structure of what they represent. They are akin to architects’ models
of buildings and to chemists’ models of complex molecules. For logical systems, it is
uncertain whether a mental model is a state transition system, or a more goal-oriented
representation (e.g., chains of actions for satisfying specific goals). There is some ex-
perimental support for the latter view [7], but this may depend on how well the operator
understands the real system (with deeper understanding corresponding to a more state-
centered view). In any case, a mental model is an approximate representation of the
real system—an analogy or imitation—that permits trial and evaluation of alternative
courses of action, and prediction of outcomes. Being approximate, it is bound to break
down occasionally by “showing properties not found in the process it imitates, or by not
possessing properties of the process it imitates” [4]. In principle, we could attempt (by
observations, questionnaires, or experiments) to discover the mental model of a partic-
ular computerized system held by a particular operator, and could then examine how
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it differs from the real system and thereby predict where automation surprises might
occur for that combination of system and operator.

It is, of course, difficult and expensive to extract the individual mental models
needed to perform this comparison. Fortunately, it is not necessary (although it might
be interesting for experiment and demonstration): most automation surprises reported
in the literature are not the result of an errant operator holding a specific and inaccurate
mental model but are instead due to the design of the automation being so poor that
noplausible mental model can represent it accurately. Quite generic mental models are
adequate for the purpose of detecting such flawed designs. In the next section, I propose
methods for constructing such mental models and for using them to guide development
of systems that are less likely to provoke automation surprises.

2 Proposed Approach

Generic mental models can be constructed as state machines whose states and inputs are
derived from information available to the operator (e.g., the position of certain switches
and dials, the illumination of certain lamps, or the contents of certain displays), informa-
tion in the operators’ manual, and the expectation that there should be some reasonably
simple and regular structure to the transitions. If a mental model is an accurate repre-
sentation of the real system, there should be a simulation relationship between its state
machine and that which describes the real system. Proposed simulation relations can
be checked automatically using model checking or reachability analysis: these explore
all possible behaviors by a brute force search and will report scenarios that cause the
simulation relation to fail.

Colleagues and I have used this kind of analysis to explore automation surprises
in the autopilots of the MD-88 [20], A320 [5], and 737 [21]. In each case, a plausible
mental model exposed exactly the scenarios that have led to reported surprises and con-
sequent “altitude busts,” and pinpointed elements in the behavior of the actual system
that preclude construction of an accurate mental model (because the behavior of the
actual system depends on state transitions that are invisible at the user interface).

These experiments have convinced me of the basic efficacy of the approach, but the
exciting opportunity is to move beyond detection of known flaws in existing systems to
the development of a method that can be used to predict and eliminate such flaws during
design. For this purpose, we need a systematic and repeatable method for constructing
generic—yet credible—mental models. Work by Javaux suggests the general “shape”
of such models and a process to create that shape [9].

Javaux proposes that training initially equips operators with fairly detailed and pre-
cise mental models. Experience then simplifies these initial models through two pro-
cesses. The process offrequential simplificationcauses rarely taken transitions, or rarely
encountered guards on transitions, to be forgotten. The process ofinferential simplifica-
tion causes transition rules that are “similar” to one another to be merged into a single
prototypical rule that blurs their differences. We can imagine a computer program that
applies these simplifications to turn the representation of an initial mental model into
one for a more realistic “mature” one.
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Given such a program that mechanizes Javaux’ simplifications, I propose the fol-
lowing approach to development of automated systems.

– Construct a representation (i.e., a formal model, a simulation, or running code) of
the actual automation design.

– Construct an initial mental model.
This could be based on the instruction manual for the proposed design, or con-

structed by a process similar to that used to develop an instruction manual, or it
could even be a taken directly from the actual system design.

– Check the initial mental model against the actual design.
Using model checking techniques similar to those described previously [20, 5,

21], check whether the initial mental model is an adequate description of the actual
system. If so, proceed to the next step, otherwise modify the design and its initial
mental model and iterate this and the previous steps (there is no point in proceeding
until we havesomedescription that accurately reflects the actual system).

– Construct a simplified mental model.
Use a mechanization of Javaux’ two processes to simplify the initial mental

model into a more realistic one.
– Check the simplified mental model against the actual design.

Using model checking techniques, check whether the simplified mental model is
an adequate description of the actual system. Terminate if it is, otherwise modify
the design and iterate this and the previous steps.

The outcome of this process should be a system design whose visible behavior is
sufficiently simple and regular that an operator, guided only by externally visible infor-
mation, can accurately predict its behavior and thereby interact with it in an informed
and safe manner. Furthermore, the simplified mental model produced in the process can
provide the basis for an accurate and effective training manual.

It is important to note that the point of this process is not to construct a mental model
that is claimed to be faithful to that of any particular operator, but to use what is known
about the characteristics of mental models to coerce the design of the actual automation
into a form that is capable of supporting an accurate mental model.

3 Conclusion

To predict the joint behavior of two interacting systems, we can construct formal models
for each of them and calculate properties of their combination. If one of the systems
concerned is a human, then we can extend this approach by modeling computational
aspects of human cognitive functions. For the case of human operators of automated
systems, it is known that they use simplified representations of the system as a mental
model to guide their interaction with it.

The mode confusions and other automation surprises that are a source of concern
in operator’s interactions with many automated systems can be attributed to appallingly
bad designs that admit no plausibly simple, yet accurate, mental models. By “modeling
the human”—that is by explicitly constructing generic mental models, and by mech-
anizing plausible processes that simplify them in ways characteristic of real mental
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models—we can construct a touchstone that highlights cognitively complex aspects of
proposed designs and guides their reformulation in ways that promotes simplicity and
regularity and hence—it is hoped—reduces the number and severity of human factors
problems that they provoke.

This approach suggests a number of interesting possibilities for modeling and
analysis in addition to those already illustrated.

– We can examine the consequences of a faulty operator: simply endow the mental
model with selected faulty behaviors and observe their consequences. The effec-
tiveness of remedies such as lockins and lockouts, or improved displays, can be
evaluated similarly.

– We can examine the cognitive load placed on an operator: if the simplest mental
model that can adequately track the actual system requires many states, or a moder-
ately complicated data structure such as a stack, then we may consider the system
too complex for reliable human operation. We can use the same method to eval-
uate any improvement achieved by additional or modified output displays, or by
redesigning the system behavior. This could provide a formal way to evaluate the
methods proposed by Vakil and Hansman for mitigating the complexity of inter-
faces [24].

– We could take a mental model from one system (e.g., an A320) and check it against
a different actual system (e.g., an A340). Discrepancies could highlight areas that
should be given special attention in training programs to convert operators from
one system to the other.

– We could extend the approach to multi-operator systems: for example, the air traffic
control system, where the controller and the pilot may act according to different
mental models of the same situation.
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