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Abstract. Software often must be certified for safety, security, or other
critical properties. Traditional approaches to certification require the
software, its systems context, and all their associated assurance arti-
facts to be available for scrutiny in their final, completed forms. But
modern development practices often postpone the determination of final
system configuration from design time to integration time, load time, or
even runtime. Adaptive systems go beyond this and modify or synthesize
functions at runtime.
Developments such as these require an overhaul to the basic framework
for certification, so that some of its responsibilities also may be dis-
charged at integration-, load- or runtime.
We outline a suitable framework, in which the basis for certification is
changed from compliance with standards to the construction of explicit
goals, evidence, and arguments (generally called an “assurance case”).
We describe how runtime verification can be used within this framework,
thereby allowing certification partially to be performed at runtime or,
more provocatively, enabling “runtime certification.”

1 Introduction

Runtime verification, whose technology provides for automated construction of
monitors for formally specified properties [1], can be considered from two view-
points: one sees it as a form of testing, performed as part of pre-deployment
verification activities, while the other sees it as a form of post-deployment moni-
toring. From the latter viewpoint, the ability to generate monitors that guarantee
certain properties can be seen as valuable evidence that might be considered in
certification.

Traditional approaches to certification are based on adherence to standards or
guidelines and do not readily embrace new technologies, such as runtime verifica-
tion. But other trends, such as the use of adaptive systems for greater resilience,
create situations where runtime verification and monitoring could be particu-
larly valuable. Hence, there is increasing interest in alternative approaches to
certification that can better exploit new technical opportunities, as well as ac-
commodate new hazards. Within suitable new frameworks, some of the evidence
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required for certification can be achieved by runtime monitoring—by analogy
with runtime verification, this approach can, somewhat provocatively, be named
“runtime certification.”

We do not argue that runtime methods should replace traditional, pre-
deployment methods of assurance and certification. Rather, the argument is that
traditional methods have become sufficiently effective that accidents seldom oc-
cur within the anticipated operating envelope of the system concerned, so that
attention has turned to attempting to maintain safe control in unanticipated
circumstances, such as those involving major structural damage. Software that
attempts to maintain control in these circumstances is necessarily adaptive, and
possibly heuristic. The role of runtime verification in these circumstances is first,
through assumption monitoring and anomaly detection to contribute to the de-
tection of novel circumstances and, second, to check that any attempted recovery
or adaptive control does not violate essential safety properties. It is also possible
that technology related to runtime verification can extend its contribution from
analysis toward synthesis of safe methods for adaptive control.

More controversially, runtime verification can contribute to detection and re-
covery from software failure. This is controversial because certified software in a
critical system should not fail, and methods for “software fault tolerance” such
as n-version programming have not been particularly successful and have fallen
into disfavor. However, serious software-induced incidents have been observed in
certified critical systems (we describe some involving commercial airplanes later
in the paper) and there is concern that these may become more significant as
systems become more complex and evolve into systems-of-systems. An example
is Next-Generation Air Traffic Control, where the software of different airplanes
will interact to operate as a distributed system for maintaining separation with-
out the ground-based supervision employed today. Experience suggests that the
primary source of software failure will be violations of assumptions under which
it was constructed and certified. Some of these violated assumptions may be due
to oversights, some to unanticipated circumstances, and some to “software ag-
ing,” where software remains constant while the environment in which it operates
undergoes change [2].

This paper is organized as follows. The next section outlines an emerging
new framework for certification, which we refer to as an “assurance case.” The
three sections that follow suggest how the framework of an assurance case can
guide runtime monitoring for assumptions, anomalies, and safety, respectively.
Section 6 considers diagnosis and recovery from failures detected by monitoring,
and the final section provides a summary and conclusion.

2 Assurance Cases

Certification is a judgement that deploying a given system in a given context will
not pose unacceptable risks of adverse consequences. The intellectual foundation
for certification rests on three elements: claims, evidence, and argument. The
claims identify the adverse consequences to be considered and the degree of risk
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considered acceptable; evidence comprises the results of analyses, reviews, and
tests; the argument makes the case, based on the evidence, that the claims are
satisfied.

The traditional approach to certification may be called “standards based”
and largely requires (or strongly recommends) that system development follows
prescribed processes (e.g., DO-178B [3] for airborne software) and generates spec-
ified evidence (e.g., MC/DC tests [4]). The standards-based approach focuses on
evidence: the claims and the argument are largely implicit. Thus, it is not imme-
diately clear whether the evidence from MC/DC testing is intended to support
an argument for adequate testing, or one for high-quality requirements, or one
for absence of unintended function. Standards-based certification can be very ef-
fective in fields where change is relatively slow, so that extensive experience can
support the efficacy of the recommended processes and evidence. However, it is
less appropriate when rapid innovation leads to systems that are very different
to those anticipated in the standard, and it can inhibit the introduction of new
assurance methods that provide novel kinds of evidence.

An emerging alternative to standards-based certification is known as a “safety
case” [5]. In a safety case, the claims, evidence, and argument for assurance are
presented explicitly and are evaluated by the certifying authority or some dele-
gated third party. The exact form of the assurance case is a matter for negotiation
by the parties involved, but must generally conform to a given outline (e.g., [6,7]).
The advantage of the safety-case approach is that it focuses on the specifics of
the system under consideration, and hence can tailor the methods of assurance
appropriately (for this reason, it is sometimes referred to as a goal-based ap-
proach to assurance). The idea that certification should be based on explicit
goal-based argumentation began in the UK (following inquiries into several dis-
asters in the petro-chemical industry), and is becoming widely accepted—for
example, it is a principal recommendation of a recent report of the National
Research Council [8]—and it is now being generalized from safety, so that one
hears of “dependability cases,” “security cases,” and general “assurance cases,”
which is the term we will use.

Assurance cases are attractive to runtime verification because they not only
provide a flexible framework in which we may construct arguments to be dis-
charged by evidence from runtime verification, but the assurance argument can
be a source of properties to be monitored at runtime. We explore these topics in
the following sections.

3 Runtime Assumption Monitoring

Certification is ultimately a human judgement that might not—or perhaps
should not—be reduced to a completely formal or mechanized process. For this
reason, some proponents of goal-based assurance look to Toulmin [9] rather
than classical logic in framing assurance cases [10]; Toulmin stresses justifica-
tion rather than inference. Toulmin’s model of argument has the following six
elements (from [11]), which are also portrayed in Figure 1.
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Claim: This is the expressed opinion or conclusion that the arguer wants ac-
cepted by the audience.

Grounds: This is the evidence or data for the claim.
Qualifier: An adverbial phrase indicating the strength of the claim (e.g., cer-

tainly, presumably, probably, possibly, etc.).
Warrant: The reasoning or argument (e.g., rules or principles) for connecting

the grounds to the claim.
Backing: Further facts or reasoning used to support or legitimate the warrant.
Rebuttal: Circumstances or conditions that cast doubt on the argument; it

represents any reservations or “exceptions to the rule” that undermine the
reasoning expressed in the warrant or the backing for it.

(Argument)

(Evidence)

Backing

Grounds
Qualifier Claim

Rebuttal
Warrant

Fig. 1. Toulmin’s Model of Argument

The claim, grounds, and warrant of Toulmin’s approach correspond to the
claim, evidence, and argument of an assurance case. The overall structure will
often be hierarchical, with the (sub)claim at one level providing the grounds
(evidence) at a higher level. Toulmin’s qualifier, backing, and rebuttal find no
direct correspondence in an assurance case and, in fact, represent elements in
Toulmin’s rejection of formal logic.

The case that Toulmin advances against formal logic has some appeal when
the topics of discourse are ethics, or aesthetics, say, but it is less persuasive for
the topic of certification. There may certainly be areas of doubt in an assurance
case, and human judgement and experience may be the appropriate recourse, but
these doubts concern our ignorance of the true state of affairs (i.e., facts), rather
than genuine judgements (where differences—on aesthetics, for example—cannot
be resolved by facts, and reasonable people may come to different conclusions),
so the presence of uncertainty need not lead us to reject formal logic.1 Further-
more, Toulmin’s use of adverbial qualifiers (“presumably,” “possibly” and so on)

1 Although even within formal logic there are controversies about the treatment of
probabilistic uncertainty in evidential reasoning [12,13].
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rather than the “proves” (`) or “models” (|=) of classical logic precludes use of
automated tools such as theorem provers and model checkers.

An alternative to expressing doubts and partial knowledge in the qualifier
is to express these as explicit assumptions in the hypotheses to a theorem (i.e.,
using qualifier “proves”). Thus, the elements of an assurance case could be (me-
chanically analyzed) theorems of the form

A1, . . . , An, S ` R

where A1, . . . , An are the assumptions under which the system or design S satis-
fies requirements or claim R. Toulmin’s backing and rebuttal and can likewise be
represented by further assumptions and by additional case analysis, respectively.

Once we have made assumptions explicit, we can subject them to analysis
in the same way as other claims: we can ask whether they can be substantiated
by subsidiary arguments and evidence, in what circumstances might they be
invalidated (cf. fault-tree analysis), and what might be the consequences if they
are false (cf. failure modes and effects analysis). And, of course, we can some-
times check them at runtime. We do not describe here how to generate suitable
monitors for runtime assumption verification—we suggest use of existing lan-
guages and frameworks for runtime verification, such as Eagle or RuleR [14]
and Monitoring-Oriented Programming (MOP) [15]—but we note that one of
the strengths of runtime verification is that it provides technology to synthesize
monitors automatically from their formal descriptions.

Our central point is that construction of formal arguments in support of
assurance cases helps make assumptions explicit—and in a form that makes
them available for runtime verification. Runtime detection of an assumption
violation is not necessarily a harbinger of imminent system failure or safety
violation, for the assumption might not be required for the specific execution
scenario in progress (but then the assurance case could have been refined by
a sharper analysis). Suitable responses to an assumption violation could range
from merely logging it and waiting for a more definite indication of trouble, to
proactively initiating some repair or fault recovery activity. We consider these
in Sections 5 and 6, respectively, but first we consider other kinds of runtime
“early warning” or anomaly detection.

4 Runtime Anomaly Detection

Not all assumptions can be verified at runtime. For example, one of the most
serious in-flight incidents due to software occurred to a Boeing 777, registration
9M-MRG, near Perth, Australia, on 1 August 2005 [16]. The air data inertial
reference unit (ADIRU) performed a restart in circumstances where two of its
accelerometers were faulty—whereas the restart algorithm assumed at most one
accelerometer would be faulty. The outcome was a series of wild excursions as
the autopilot responded to essentially random inputs from its ADIRU. It is not
always feasible to detect faulty components (if it were, fault tolerance would be
easy), so direct assumption monitoring would not have been feasible in this case.
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An alternative to monitoring assumptions and properties that are explicit in
the requirements or in the assurance case is to monitor for properties learned by
“experience”: that is, we check that the system is behaving “as usual.” This idea
has its roots in methods for intrusion detection in computer security [17], which
were subsequently refined to detect infections by computer viruses. An activated
virus causes a program to change its behavior—as does an activated fault or
violated assumption; hence, it is plausible that methods for detecting anomalies
caused by viruses may also detect manifestations of a developing problem.

Most modern methods for anomaly detection work by constructing a model
of the normal behavior of the software, in terms, for example, of the invariants
that it maintains, or the execution paths that it follows. A program’s execution
paths can be represented as a context-free grammar or, more crudely, as a set of
digraphs on monitored control points (i.e., the set of all pairs of monitored control
points—which are often system calls—that are encountered consecutively). The
program is monitored in execution and an anomaly alarm is raised whenever
execution departs from the recorded model. Following the lead of Wagner and
Dean [18], models are often generated by automated formal analysis: for example,
an overapproximation to the set of expected execution paths can be constructed
using static analysis, and invariants also can be generated in this way.

However, our context for anomaly detection is rather different than that of
computer security, and this makes models constructed by static analysis less
useful. In computer security, the context is a program that has been changed
by activation of a virus, whereas our context is an unchanged program whose
behavior has been changed by violation of an assumption (which we can think of
as a bug if the assumption is unrecorded). Thus, in our context, static analysis
will generate its models from a program in which the bug or faulty assumption is
already present, and monitoring will therefore be ineffective. We need, instead,
to generate models from bug-free representations of the program.

One way to do this is to generate models from the behavior of the program
during test. Critical software is subjected to very thorough testing (e.g., MC/DC
coverage in the case of DO-178B Level A) so that models generated from tests
should be very accurate, but they will not include faulty behaviors due to ac-
tivated bugs or violated assumptions—for if those were to arise in test, they
would be detected and fixed. The dynamic analyzer Daikon [19] can synthe-
size invariants from behavior observed in test, and digraphs or other compact
representations of observed control flow can be constructed by monitoring test
executions. By these means, we can build models that allow runtime monitoring
to detect when software behavior departs from that observed during test. Mon-
itoring execution against control flows encountered during test is related to the
“vital coded processor” used in railway signaling [20] and is also suggested in
the IEC 61508 standard [21, Part 7, page 159].

Violation of an invariant or control flow derived from tests may indicate a
genuine error, or simply an untested scenario. If the latter is considered the more
likely, then logging the anomaly, rather than initiating repair or fault recovery,
may be the most suitable response. Logs of detected anomalies then provide a
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way to identify inadequately tested or poorly documented cases, and also provide
information for post-deployment testing and cooperative bug isolation [22].

5 Runtime Safety Monitoring

Runtime monitoring for assumptions and anomalies can give early warning that
things may be going wrong, but monitoring requirements and safety properties
should provide more definitive indications of trouble or, dually, more assurance
that the system is operating safely. However, this expectation must be tempered
by consideration of the sources of the monitored properties.

Obvious sources for properties to monitor are the requirements for the soft-
ware concerned. The problem with this choice is that critical software is devel-
oped and assured to exacting standards that provide rather effective guarantees
that requirements—particularly low-level requirements—will be satisfied. For
example, flight-critical software is generally developed and assured according to
the guidelines DO-178B Level A [3]. These demand construction of high- and
low-level software requirements and rigorous testing of the code against these
requirements; in particular, tests generated from the low-level software require-
ments must achieve MC/DC coverage on the code [4]. These development and
assurance processes seem very effective in producing software that is correct
with respect to its requirements. Furthermore, these requirements are generally
at the unit level and the correctness of the software is often robust at this level;
that is to say, there may be problems present at the system level, but individ-
ual software units will still be operating correctly according to their unit-level
requirements.

Thus, there is unlikely to be much benefit in monitoring requirements at or
below the unit level: not only is critical software generally correct with respect
to this level of specification, but larger problems may not be manifested at this
level. Instead, we need to monitor properties that more directly relate to the
safe functioning of the system, and that are more likely to be violated when
problems are present—and this invites the question of how might we obtain
such properties.

Certification guidelines such as DO-178B offer rather little support in this
enterprise because the goal of assurance for the software development process
is to establish that the delivered software exactly matches (i.e., is correct with
respect to) its requirements, rather than that it is safe. Thus Conmy [23] and
Amey and Hilton [24] argue that DO-178B is about software correctness, not
system safety (“there is no relation of the software to the system hazards, the
developer can only state that the whole box has been tested to level A”) and
Ankrum and Kromholz [25] find no clear link between desired system properties
and many of the evidence artifacts required by DO-178B.

However, the system-level arguments and certification evidence for airplane
safety are based on various kinds of system and safety analysis such as hazard
analysis, failure modes and effects analysis, and fault tree analysis (e.g., [26,27]),
and these penetrate down into subsystems and the top-level requirements for
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the software. Thus, although it is not couched in these terms, the upper levels of
assurance for airplane safety, and possibly other classes of systems, too, already
have much in common with the notion of a safety or assurance case, as introduced
in Section 2.

Thus, we envisage that with modest amendments to current practices for
system development and assurance, it will be feasible to introduce elements of
a formal assurance case, and that this will yield explicit safety claims that can
be subjected to runtime monitoring. Runtime monitoring for critical properties
is not new: the idea of a “reference monitor” for security was introduced in
1972 [28]. Later, Rushby analyzed the general class of properties that can be
guaranteed by monitoring [29], and this analysis was developed further by Wika
and Knight [30] and, for the case of security properties, by Schneider [31]. Re-
duced to essentials, these analyses demonstrate that only safety (as opposed to
liveness [32]) properties can be ensured by monitoring.

In this regard, it is worth recalling another serious in-flight incident due to
software. An Airbus A340-642, registration G-VATL, suffered a fuel emergency
on 8 February 2005 [33]. The plane was over Europe on a flight from Hong
Kong to London when two engines flamed out. The crew found that the tanks
supplying those engines were empty and those for the other two engines were very
low. They declared an emergency and landed at Amsterdam. The subsequent
investigation reported that two Fuel Control Monitoring Computers (FCMCs)
are responsible for pumping fuel between the tanks on this type of airplane. The
two FCMCs cross-compare and the “healthiest” one drives the outputs to the
data bus. In this case, both FCMCs had known faults (but complied with the
minimum capabilities required for flight); unfortunately, one of the faults in the
one judged healthiest was the inability to drive the data bus. Thus, although it
gave correct commands to the fuel pumps (there was plenty of fuel distributed
in other tanks), these were never received. Backup systems were not invoked
because the FCMCs indicated that not both were failed.

Monitoring low-level requirements for the FCMCs would not detect this prob-
lem, since faulty requirements were the root of the problem. At the top level, the
failure was a loss of function, so that the high-level requirement most directly
violated was a liveness property: one that says “something good”—i.e., pumping
fuel—eventually happens. As noted above, monitoring is effective only for safety
properties: ones that say “something bad” does not occur, so it might seem that
monitoring would not be effective for this example.

This conundrum is easily solved: most critical systems perform some kind
of real-time control function, and a liveness property constrained by a deadline
becomes a safety property. For example, “the fuel pumps should activate at least
once per hour” is a safety property that can be monitored. In all likelihood, there
are many other safety properties suitable for monitoring in this system (e.g.,
those concerning the acceptable distribution of fuel among the different tanks,
or minimum levels in the tanks feeding the engines).

The other classes of major system faults—that is, malfunction and unin-
tended function—are safety properties and should be suitable for runtime safety
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monitoring. Other properties that seem suitable for monitoring are interfaces
and invariants for distributed algorithms (in the spirit of interface automata [34])
and cooperatively maintained data structures (in the spirit of robust data struc-
tures [35]). Although these may be below the level of properties cited in an
assurance case, they do relate to component interactions, and so assurance of
their health is a valuable benefit.

6 Diagnosis, Recovery, and Mitigation

Runtime verification for assumptions, anomalies, and safety properties can de-
liver strong evidence for an assurance case and, ultimately, for certification. As
we noted in the introduction, a principal driver for adoption of these techniques
is the desire to maintain safe control in the presence of unanticipated events. The
idea is that control will be maintained by various “adaptive” methods, and that
runtime verification will provide some assurance that these are operating safely.
However, runtime verification derives from formal methods, and closely related
techniques from this field could provide assured mechanization for some of the
“adaptive” tasks—such as diagnosis, and recovery or mitigation of unplanned
events—that currently often use ad-hoc methods.

The component whose monitor raises an alarm may not be the source of
the fault. Given some symptoms in the form of alarms from software health
monitors, fault diagnosis is the problem of identifying the source and nature
of the fault. Early approaches to fault diagnosis in physical systems used rule-
based “expert systems” but these proved fragile and modern methods are based
on model-based reasoning “from first principles” [36].

The idea of model-based diagnosis is to perturb a model of the system until
the modeled behavior matches that observed. The diagnosis is then derived from
the perturbation. Models can range from simple graphs representing connectiv-
ity among components to interacting state machines. Models are perturbed by
replacing the standard model of a component by one that is faulty; each compo-
nent is generally provided with a set of fault models (or a single model that can
manifest different faults under control of a set of Boolean “switches”), that may
range from very specific kinds of fault to a generic “something’s wrong,” which
may be represented by a fully nondeterministic state machine, or communica-
tion of a distinguished “bad” data value. The preferred diagnosis is generally
one that accounts for the observed symptoms with the smallest number of pos-
tulated faults. Calculation of a diagnosis is performed using methods related to
model checking, which effectively reduce the problem to one that can be solved
using techniques from automated deduction such as SAT or SMT solving. More
elaborate diagnostic methods can take probabilities into account, and the under-
lying methods of deduction then involve Markov decision processes, which can
be solved by Monte Carlo methods or by model counting [37].

Much of the research in diagnosis is concerned with the challenge of making
exactly the correct identification of the underlying fault. However, although there
may be many possible faults, the number of possible reconfigurations or other
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mitigating actions may be rather few. For the case of jet engines, which were
the target of NASA’s pioneering Faultfinder system [38], there are just four
possible actions: do nothing, reduce power, shut the engine down, or discharge
its fire extinguisher. There is no point in performing diagnosis to greater precision
than that required to identify the appropriate mitigation. Thus, we propose that
diagnosis should be performed in tandem with the search for an appropriate
mitigation. Some mitigations (e.g., reconfigurations) can be found through an
extension to model-based diagnosis ( [39] was the first to propose this), while
others require methods akin to AI planning, or program synthesis.

Local mitigations for faults that are attributed to software include retrying a
computation, reverting to a checkpointed state, or performing a reset or reboot
[40]. Sometimes it will be preferable to adjust input data rather than the system
state (cf. data diversity [41]): for example, if a sensor sample provokes overflow
or division by zero, then we can perturb it slightly, or substitute a previous value
(e.g., from a prior iteration in a cyclic control loop). Alternatively, we may be
able to reconfigure the system so that a faulty software component is replaced
by a diverse alternate. Recovery blocks [42] provide a systematic framework for
such reconfigurations; alternates may perform graceful degradation rather than
exactly reproduce the behavior of the failed primary, and a final alternate may
be verified to guarantee some safe minimal functionality (this is provably safe
programming [43]; a similar idea appears in monitoring-oriented programming
and in the work of Sha [44]).

Local mitigations such as those described above require additional implemen-
tation mechanism, add complication, and are of uncertain effectiveness. In some
cases, the mitigation may be more hazardous than the fault. For example, on 12
May 1997, hard-coded anomaly detection and mitigation caused the display sys-
tem (EFIS) of American Airlines Flight 903 (an Airbus A300) to go blank: the
indicated roll rate of more than 40 degrees/second was considered implausible,
and so a bus reset was performed. In fact, the pilots were attempting recovery
from a major upset and the roll rate was real; the loss of all instruments at this
critical time jeopardized the recovery.

Just as we believe that runtime monitoring will be performed most effectively
against properties derived from a system-level assurance case, so we suspect
that diagnosis and mitigation will best be performed at the system level also.
Safety critical systems such as airplanes already contain massive, well-designed
redundancy to protect against anticipated hardware faults, and it will often be
possible to invoke this so that safe operation may continue in the presence of
unanticipated events or software faults. For example, in the case of the 777
ADIRU problem, we could switch the autopilot to a different source of air data.
Even when redundant components have identical designs and are running iden-
tical software, their internal state and sensor inputs are likely to differ slightly.
Hence, the circumstances that provoke failure in one component (e.g., two faulty
accelerometers) may not be present in another, and the same assumptions and
the same software that has failed in one component may continue to operate
perfectly well in the other.
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Diagnosis at the system level may involve a number of steps (e.g., to see
if the symptoms persist when various components are reset or shut down) and
mitigation may also require several steps rather than a simple reconfiguration.
In these cases, we need to synthesize a multi-step program of action and the
appropriate framework for doing this is supervisory controller synthesis, intro-
duced by Ramadge and Wonham [45]. Controller synthesis can be formulated as
a game between the controller and its environment: the controller seeks a strat-
egy to maintain or achieve a given property no matter how the environment
behaves. Simple instances, such as certain kinds of AI planning, can be reduced
to SAT solving—for example, when the system is deterministic with respect to
the inputs and the task is to find a sequence of inputs that places the system
in some specific state. In more complicated cases, the controller must really be
a strategy that reacts to the environment rather than a simple sequence or a
schedule. In this situation, the controller synthesis problem can be solved using
techniques derived from model checking [46].

The advantage of a formal, model-based approach to mitigation is that it
can consider multiple possible diagnoses and calculate the best overall response.
The model can also be cognizant of system-level safety properties, so that we
can be sure that an action that seems reasonable at the local level does not
have adverse consequences at a higher level (as in the case of American Flight
903). Above all, correctness of the formally synthesized approach is guaranteed,
relative to the model. Thus, assurance and certification can focus on the models
employed, unlike more heuristic methods whose behavior must be determined
experimentally.

It is likely that mitigations undertaken at the system level will require par-
ticipation by human operators (e.g., to power-cycle a subsystem or to switch
to a backup system). In these cases it will be important that the recovery and
mitigation procedures communicate effectively with the operators so that they
understand the possible states of the system, the available courses of action, and
the reasons behind those recommended. One way to do this is to include an
explicit representation of the information available to the operators as part of
the model that drives the search for diagnosis and mitigations. The feasibility of
doing this is supported by [47], which shows how pilots’ mental models can be
represented and used in formal analysis to help avoid mode confusion and other
forms of automation surprise, and to guide selection of information presented to
the pilots

7 Summary and Conclusion

There is extensive prior work on runtime monitoring for assurance and for error
detection and recovery (e.g., [48,49]). The main novelty in the approach proposed
here is use of an assurance case as the source of monitored properties.

Runtime monitoring of safety properties related to an assurance case can
provide potent evidence to support the case. Such runtime evidence is most use-
ful in adaptive systems that attempt to maintain safe control in unanticipated
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circumstances that are beyond those considered in the standard design and pre-
deployment certification of the system. Assurance delivered by runtime monitor-
ing can therefore contribute to certification of systems that follow a “never give
up” strategy, in the spirit of autonomic and resilient systems [50].

Unanticipated circumstances and violation of assumptions may cause even
certified software to fail. Monitoring for assumptions—also derived from an as-
surance case—and for anomalies—which may be regarded as departures from be-
haviors encountered in test—can give early warning that problems are at hand,
while monitoring for safety properties can give assurance that those problems
are being contained or, dually, that they are not and that recovery should be at-
tempted. Formal methods related to runtime verification can provide automated
techniques for diagnosis, mitigation, and recovery. These methods for monitor-
ing, analysis, and synthesis are driven by formal models, so their assurance can
focus on the models. This may be contrasted with ad-hoc methods, where as-
surance must often be obtained experimentally.

Complex modern systems, such as airplanes, increasingly incorporate sophis-
ticated functions for sensing, monitoring, and managing the “health” of the
system; in airplanes these functions are called Integrated Vehicle Health Man-
agement (IVHM). We hope the techniques proposed here will contribute to the
effectiveness and to the assurance and certification of IVHM systems, and to the
emerging field of software health management.
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