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ABSTRACT

A method of syntactic analysis is developed which
. .

is believed to surpass all known competitors in all major
respects.

I

The method is based upon that associated with the
LR(k) grammars but is faster because it bypasses all
reduction steps concerned with 'chain' productions. These
are freely selected productions which are considered
semantically irrelevant and whose right parts consist of
just a single symbol. The parses produced by the method
are 'sparse' in that they contain no references to chain
productions - they are termed 'chain-free' parses.

The CFLR(k) grammars are introduced as the largest
class which can be Chain-Free parsed from Left to Right- - --while looking ~ symbols ahead of the current point of the
parse. The properties of these grammars are examined in
detail and their relationship to the conventional LR(k)
grammars is explored. Techniques are presented for testing
grammars for the CFLR(k) property and for constructing
chain-free parsers for those grammars possessing the
property. Methods are also presented for. converting
ordinary LR(k) parsers into chain-free parsers.

CFLR(k) parsers are more widely applicable than
their LR(k) counterparts, are faster 'and provide the same
excellent detection of syntactic errors. Unfortunately they
also tend to be rather larger. A 'simple optimization is
presented which completely'overcomes this single dis-
advantage without sacrificing any of the advantages of the
method.

These theoretical techniques are adapted to provide
truly practical chain-free parsers based on the conven-
tional SLR and,LALR parsing methods. Detailed consideration
is given to use of 'default reductions' and related
techniques for achd.evfng compact representations of these
parsers. The resulting chain-free parsers are not only
faster than their ordinary counterparts, but probably
smaller too. We believe their advantages are such that they
should substantially replace other parsing methods currently
used in programming language compilers.
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CHAPTER 1.
INTRODUCTION

At the heart of every modern compiler there lies a
parser. The performance and quality of the parser
strongly influence those of the compiler as a whole.
Therefore the parser needs to be good; in particular it
should be small, fast, and able to detect syntactic
errors as soon as possible. Nowadays, parsers are not
constructed by ad-hoc manual methods, but are produced
by (automated) parser construction algorithms. In the
attempt to produce good parsers, these algorithms usually
sacrifice generality and restrict the class of grammars
to Which they may be applied. ~~en evaluating such
algorithms it is necessary to consider the extent of
their applicability as well as the quality of the parsers
which they produce. Also important are the time and
space consumed by the algorithm and by any ancillary
algorithms which may be used to test whether a given
grammar is acceptable to the main parser construction
algorithm.

Prominent among parser construction algorithms is
that associated with the LR(k) grammars of Knuth (1965) •

.(The LR(k) grammars are those which can be parsed from
Left to Right while looking k symbols ahead, where k is- - -
a natural number Which parameterises the method). This
method is of great theoretical interest because of its
elegance and power but founders in practice because its
parsers are too large. However, modifications of the



2

LR{k) method have been developed which mitigate this
problem while retaining most of the advantages of the
basic technique. The most important of these are the
SLR and LALR methods of DeRemer (1969,1971) and Ander-
son (1972). They are among the best methods currently
available for ~oducing ~arsers for programming languages;
while other methods can produce parsers of comparable
speed and size, few can match their error detection or
their generality, and no other method competes with
their excellence on all four ot these counts simultane-
ously. (See, for example, the theoretical and empirical
comparisons by Anderson (1972) and the empirical study
by Lalonde (1971).)

Not all the steps ot a parse are significant to the
process of translation; parsers would go faster if they
could ignore parse steps associated with productions
lacking such 'semantic'significance. Much attention has
been focused on the problem of modifying LR{k)-type
parsers so that they do just that in the important special
case where the productions to be ignored are of the form
A -- X where X is a Single symbol. Productions of this
type are called 'single' or 'unit' or, as we shall prefer,
'chain' productions.

Among those who have proposed techniques for
eliminating chain productions from LR{k)-type parsers are
Anderson (1972), (see also Anderson et al, (1973» Aho and
Ullman (1973b), Pager (1974), Demers (1975), Backhouse (1976),
Lalonde (1976) and Soisalon-Soininen (1977). The methods
ot these authors have limited aesthetic or theoretical
appeal and sutfer from a variety of difficulties in
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practice. Their deticiencies are discussed in detail in
Chapter 7. These methods are not without merit or
utility however: measurements by Anderson (1972) and
Joliat (1973) have shown that bypassing chain productions
can double the speed ot an SLR parser tor a conventional
programming language and increase the speed ot its
compiler as a whole by about 15%.

This thesis continues the investigation ot the
problem ot eliminating chain productions trom LR(k)-type
parsers but unlike previous authors we do not take the
basic LR(k) parsers as given, nor do we seek, at least
initially, to modity them directly. Instead, we look at
the problem atresh a~d consider the issue ot producing
parses from which all chain productions have been
eliminated as an independent topic in its own right.
These parses are a special case ot the 'sparse parses'
ot Gray and Harrison (1972); we call them 'chain free'
parses. By analogy with the LR(k) grammars, we introduce
·the CFLR(k) grammars as the largest class of grammars
which can be Chain Free parsed from Lett to Right while- - --
looking k symbols ahead. Techniques are presented tor-testing grammars tor the CFLR(k) property and tor
constructing chain tree parsers tor those grammars
possessing the property. The relationship between the
LR(k) and CFLR(k) grammars is explored and methods are
derived tor converting LR(k) parsers into chain tree
parsers. An optimisa~ion is introduced Which substant-
ially reduces the number of states in a CFLR(k) chain
tree parser. The etfectiveness ot this ~ptimisation is
such that our chain free parsers are not only much taster
than their LR(k) counterparts, but usually smaller too.
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These CFLR(k} techniques are then subjected to
moditications in the spirit of the SLR and LALR
methods, thereby producing techniques which we term
the CFSLR and CFLALR methods. It is shown that
standard methods tor reducing the space required to
represent SLR and LALR parsers can, with a little care,

be appl1ed successfully to CFSLR and CFLALR chain
free parsers. In th1s way chain free'parsers can be
produced which are suitable for practical exploitation.

We claim several advantages tor our material over
previous work in this field. Our methods have the virtue
of complete generality and are tounded upon a sound and,
we submit, elegant theoretical basis which others lack.
At the same time they retain all the benefits of earlier
methods and shirk none of the difficulties that may
arise in practice.

In summary, while LR(k)-type methods may fairly
be said to be among the very best for producing conven-
tional parsers for programming languages, we believe
that our CFLR(k) techniques otter worthwhile improvements
and should substantially replace them and other methods
used in current practice.

Brietly, the structure ot this thesis is 8S tollows.
The rest of this first Chapter is concerned with basic
definitions and an exposition of the ordinary bottom-up
parsing strategy. This is followed, in Chapter 2, by a
detailed account of the standard LR(k) theory. None of
this material is original; it is included because no
existing work structures the material in the manner we
require to support our subsequent developments. Chapter 3
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introduces the notion of chain tree parsing and detines
the CFLR(k) property. Theorems are presented which
relate this property to the conventional LR{k) property.
Methods are given for testing for the CFLR(k) property
and for constructing chain free parsers·for gr-ammar-e-
possessing this property. The performance of these chain
free parsers is examined theoretically. Chapter 4 is
concerned with the problem of converting ordinary LR(k)
parsers into chain tree parsers. It is shown that the
conversion process may generate chain free parsers which
are different (and interior) to those produced by the
method of Chapter 3. In Chapter 5 the presence of
redundancy within CFLR{k) chain tree parsers is revealed
and an optimisation is presented which exploits this
redundancy in order to reduce the size of CFLR(k) chain
tree parsers. Chapter 6 extends our CFLR{k) techniques
to the SLR and LALR methods and explores some issues of
practical concern. Our cone lusions and comjarison with
previous work are given in Chapter 7. Each chapter,
except this and the tinel one, ends with a summary. The,

reader may tind it helptul to examine these sumnaries,
together with Chapter 7, before reading the thesis as
a whole.

Finally, a word of encouragement to the reader:
although this thesis contains a substantial amount of
rather severe formalism, much of its length is due to

<? the presence 01' examples and informal explanations which
are intended to sweeten the bitter pill of an unrelieved
technical development.
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1.1. Sets! Relstions, Functions and Sequences.

We assume fam1l1arity \uth the conventional
term1nology and notation of elementary set theory,but
in order to preclude misunderstanding we briefly
review the torm in which the notation will be employed
here.

Braces ({ and }) are used exclusively for sets.
Set membership is indicated by the symbol e and the
empty set is denoted by ¢. The cardinality of a set A

is written as IA I while the powerset of A is wr1tten 2A.

When A andB are sets we denote their union, 1ntersection,
set d1fference, and cartesian product by A vB, A ("\ B,

A \ Band AxB respect1vely. Set inclusion (of A w1th1n
B) is written as A & B or, when the 1nclusion is strict,
as A c B.

Any subset ofAxB is called a relat10n between
A and B; when 9 is such a relat10n we usually prefer to
write aSb 1nstead of (a,b) e 9. The 1nverse of e is
denoted by 9-1 and is defined as the relation between
B' and A g1ven by

9-1 = {(b,a) I (a,b) e e} •

When S , AxB and 'f' , BxC are relat10ns, the1r
composition is written e~ and is defined to be the
relation between A and C given by

et = f (a,c) I aab and bt e for some b e BJ.
When e , AxA we say that e is a relation on A and the-
operations of compos1tion and union ere used to define
turther relations on A as tollows :
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{a}
{b}

{cl

{d}

eO. f{a,a} 1 a e Al,
en+l • e~ tor each natural number n,

e+ = U en, andn>o

The relation e+ is called the transitive closure ot 9. 'while 9 is called the reflexive transitive closure of e.
Note that eO is equal to the identity relation on A while
91 is equal to 9 itselt.

We assume tamiliarity with certain elementary
properties of relations and in particular with the way
in which an equivalence relation imposes a partition on
its domain. We also make use of directed graphs as a
means ot representing relations.

Functions are considered as single-valued relations;
mappings are functions which are total.When f is a
function from A to B we express the fact by writing.
f:A -. B. When f is a partial function and a e A is
not in the domain of f~it will usually be convenient to
suppose that f (a) has the special value tp

'undefined'} •
(read as

We also need some notation for sequences, which are
defined as ordered lists ot objects taken from a set. We
write sequences in angle brackets thus: < al' a2' ••• ,8m > •
The same sequence may also be written more concisely as

We sometimes need sequences in which the
Bubscripts are arranged in descending order: we
abbreviate the sequence <a, a ,m m-1 ••• , a1) by
writing <s1> 1

i.m • Concatenation of sequences is
indicated by the operator'" • Thus <8 a

w l' 2'

denotes the sequence <8 , 8 , 8 , 84,8).123 5
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The length ot a sequence 1s s1mply the number of objects
1t conta1ns; the sequence ot zero length 1s called the
null sequence.
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1.2. Alphabets, Strings and Languages.

An alphabet is a fin1te, non-empty set of objeots
oalled symbols. A atring over an alphabet A is a tinite
list of zero or more symbols taken trom A (written without
any int~rvening punotuation marks) where eaoh symbol is
permitted to ooour many times. The string oonsisting ot

zero symbols is called the empty string and is always
denoted byA • The length of a string ~ is denoted by
len (~) and is defined as the number of symbols in ~ ,
where each symbol ~ counted as many times as it occurs.
For example, ~ " a, ab, and aba are all strings over
the alphabet
len (a) = 1,

~a,bl and we have len(A) = 0,
len (ab) = 2 and len (aba) = 3.

~ben~ and p are strings, their concatenation,
written as ~p. is the string oomposed ot the symbols of
~ followed by the symbols of p • For example, if
0( = aba and I' = ab then OifJ = abaab ,We say that a
string « is a substring of'another string F if there
exist two further strings l and ~ such that fJ = 'tour.

It l = It then 0< is called a pref'ix of' f3 ,while if'
o = J. we say that Cl( is a suffix of f3 • When et is a
string and n is a natural number we use the follOwing

.notation to permit the convenient naming ot: certain
frequently used substrings of' ~ ••
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(1) n:ol denotes that prefix of 0( wlth length .
min (n, len (ex »,

(11) o<.:n denotes that sufflx of 0( with length .
min (n, len (<< », and

(lii) n /0< denotes that sufflx of 0( with length
. max (0, len.(~)-n).

Informally, n:« and ec rn _ respectively denote the
first n symbols and the la st n symbols of cl while n/ot
is the string that remains when the first n symbols of
~ are deleted.

The set of all strings over an alphabet A is denoted
'"by A • '"Subsets of A are called languages over A.

Languages which do not have ~ as a member are said to be
.A - free. The Jt - tree language A+ is defined by :

A+ = A·' iA}

~~en n ls a natural number, two trequently used
languages over A are detined by :
(1) An = { 0{ E A· len (Cl ) = n} and
(il) ·n i A'" len (0< ) ~ n I,A :: 0( c

That ls, An contains ell strings over A which have
length n, • •wh11e A n conta1ns all strings with length at
most n. Care is sometimes needed 1n order to distinguish
languages such 8S AO which consist of just the empty
string trom the empty language ¢.

Slnce languages are sets, the set operat1ons ot
on

union, intersect10n and sQ/may be applied to languages.
The operat1on of concatenation can be applied to languages
as well as to str1ngs: it Ll and L2 are.languages then
their concatenation, denoted by L1L2, is the language
detined by L1L2 :: \0(,6 10< e L1 ,p e L2 ).
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The positive closure L+ and the simple closure L*
of a language L are defined as follows :
(1) LO = i .Al,
(ii) Ln+1 = LnL for each natural number n,
(iii) L+ = U Ln , andn)o
(iv) L* U n= n~o L

That is, L+ is the language composed of the concatenation
of arbitrary members of L , while L*" + !}=L v Jr.

, l.Note that the alphabet A and the language A denote
the same set. Thus each alphabet is also a language ove~
itselt.,Ourd efin1tiona ensure thet the interpretations

'" + n 'of A ,A and A are consistent, independently ot whether
A is regarded as an alphabet or 8S a language. For this
reason it is unnecessary to distinguish between the alphabet
A and the language Al. Similarly, we do not usually
distinguish between the symbol a and the alphabet {al.

, * +Thus we may speak, for example, ot the language a b -
this is understood to denote the language {a} * i b J+~

We sometimes need to reter to the language tormed by
taking all pretixes of length n trom the strings of some
other language. We provide tor this by extending our
existing notation as tollows : lt L is a language and n is
a natural number, then n:L.ls the language detined by
n:L • ,{ n: 0< I 0( e L 1.
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1.3. Grammars.

Since languages may be infinite, we are interested
in finite techniques tor specifying them. For our
purposes the notion of s grammar, and in particular of

a context free grammar is especially important in this
regard. A context free grammar is a 4 - tuple :
G = (VN' VT, P,S) ~here VN and VT are diSjoint alphabets
and S is a distinguished member of VN• Symbols in VN end
VT.are called nonterminals and terminals respectively
while S is called the goal symbol. The union VN uVT is
called the vocabulary of G and is conventionally denoted

*by V. P is a finite relation between VN and V and members
of P are called the productions of'G. When (A,a) is a
production, we call A its left part and 9 its right part.
The degree of a production q is denoted deg (q) and is
defined as the length of the right part of q. Productions
of degree zero are called~.rules; grammars containing
no ..A -rules are said to be ..}.,-free.

In tuture, the simple term grammar should always
be understood to mean a context tree grammar and if we
say only that G is a grammar, without specifying it further.
then it is to be understood that G has the form
G= (VN,VT,P,s) and that V will be used to denote VN vVT •
Furthermore, in order to avoid excessive qualification
we adopt a strict convention regarding the naming of
strings and symbols related to such a grammar. Our
convention is the following :
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(1) A,B,C, ••• denote members of VN,
(11) a,b,c, ••• denote members of VT"
(111) Z,Y ,X, ••• denote members of V,
(lv) 11&

0<,(1, ~, •• • " denote members ot V , and
(v) ..

z,y,x, ••• , denote members ot VT •

Also, p and q wlll usually denote members ot P whlle
k,m and n will denote natural numbers. These conventions
should always be assumed to hold except where it is
explicitly stated otherwise.

Before descrlbing how a grammar is used to detine a
language we need one more detinition. When G is a grammar
and 0< , P G

..
V , we say that 0( directly derives p

(with respect to G) and write 0< ~ P it and only 1f.
there exists a production (A,e) e P and a pair ot

strings *e V such that
andp = 'te,.01 = lAd

We write rather than when the'identity
ot G is clear. The interpretation of Cl( ... f is that ,/1

can be constructed trom 0< by replacing in 0{ an

occurrence ot the lett part ot some production by its
corresponding right part. Clearly _" is a relation on V·

and we note in passing that PS'" , so that a
production (A,e) may also be written a8 A .. e. This latter
form will be preferred in future. The closures -.+
and of ....are pronounced tt strictly derives"
and"derives" respectively.
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We are now able to define L(G), the language generated
*by the grammar G as: L (G) = f x e VT S +.. x!.

Members of L (G) are called the sentences of G. Languages
which can be generated by context free gram~ars are
called context free languages. Not all'languages are
context tree.

When G is a grammar, it is usually convenient to
require that no members of V, nor of P, are redundant
tor the purpose ot generating sentences. Grammars which
satisfy this requirement are said to be reduced. Formally,
a grammar is reduced if end only if tor each X e V

4t 1FT-there exist strings o<,p e V and x e y, such
that S .. 'lA oc Xp and X _"." x • There is a
straighttorward algorithm (see Hopcroft and Ullmen (1969)

Theorems 4.2 and 4.3) to determine whether a given
grammar is reduced or not. Furthermore, a grammar which
is not reduced can be easily mod1f1ed so that it becomes
ao, without changing the language which 1t generates
(provided the language is not empty).

~ben we wish to specify a particular grammar for the
purpose ot illustration,we will do so by listing just its
set ot productions. The nonterminal and terminal
vocahularies of a grammar specified in this way are
1mplic1t in the list of productions. By convention, the
goal symbol of the grammar is assumed to be the lett part
of the tirst production appearing in the list. We
abbreviate sets ot productions which share the same left
part by use ot the metasymbol "I" (read as "or"). For
example, A ...... xl s I z is a shorthand tor the three
productions A -- x , ,

A ..... Y and A - a,
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We will use. the tollowing grammar,.tor demonstration

purposes throughout the rest ot this chapter :

s ~ AB
A _. Aa

J,

B -a. Bb
b

It can be seen. that this grammar generates the language
~b+a •

',- -.
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1.4. Derivations.

When two stri~~gs. 0<', ~ 6 Viti are related by ~ ~~ f5 ,

we can always find (not necessarily uniquely) a sequence
ottof strings in V such that

= • • ...... UI
T'ft-I

Such a sequence is called a derivation of p from 0(.

If mention of ~ is omitted, so that we speak of simply
"a derivation of f3 ", then a derivation of f3 from S, the
goal symbol ot the grammar, is to be understood. In many
applications the sentences of 8 grammar are considered
to convey some "meaning" and our interest in derivations
is due to the tact that the meaning ot a sentence is
usually defined 8S a tunction· ot its derivation (e) :from the

goal symbol. In general a sentence will possess more
than one derivation and this can complicate the determin-
ation of its meaning. In our example grammar, tor
instance, the sentence ab has the following three distinct
derivations ••

(i)

(ii)

(iii)

< s,
<s,
<s,

AB, Ab, Aab, aliJ),

AB, AaB, Aab ., ab ')
AB, AaB, aB, ab ').

, and

However, all three of these derivations correspond to
the following "parse tree" (a concept which we do not
define tormally).
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./s~
A, B

->.A . a b

,.In order to avoid ditticulty caused by the existence ot

several derivations which all correspond to the same parse
tree (and which are theretore considered to difter from
one another only trivally) it is usual to introduce a
oanonical torm tor derivations. We shall be concerned with
"right-canonical" derivations which, along with two other
restricted types ot derivation, we now proceed to define.

Recall that when cl. ~ fl e v* satisty 0{ -- f3
then, by detini tion, there exist s'trings )f J ~ e v* and
a production A ....e in P such that 0( = ~Ad and

We say that 0( directly right-ce,nonicall;z.
derives p and write Cl( ~ P in the special case that

III
0' E VT; and we say that· 0( directly em:ety-free-first
oerives p and write of _..,. (J in just the case that ',,,
'1e ;I Jv. Thus a right-canonical derivation step
difters from an ordinary one in that it must be the
right-most nonterminal in 0( thst is replac.eo to form p ;

an empty-free-first oerivation step is one which precluoes
the application of an ~-rule to the leading symbol ot~.
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In the case that both ot these oonditions obtain
simultaneously, we say that ~ directly risht- canonically
and empty-1:'ree-1:'irstderives 1:,1 and we write 0( _". f1 •

- - ,- If.li"~

Thus ~ = -,,_,.. •
• ,,~ ,A .. "

For convenience we use the hyphenated prefix It r- "
'to stand for "right canonically" or "right ea nonical" as
the context demands. Thus the closures and _.,.;
are pronounced "str1ctly r....derives" and "r-derives"
respectively~ Similarly we use the prefixes "eft-" and
Ifreft_1fto ,stand tor "empty-free-first" and "right-
ea nonically and empty-t'ree7,"first".

We illustrate these relations using our example
grammar. Given below (Figure 1.1) are four pairs of
strings and we indicate tbe relations which hold between
each pair by a tick (relation dOes hold) or a cross
(relation does not hold).- __.,.

Ittl"

(i) ABA, BA I x )I )(

(i1) Ab, b ./ ./ )( x
(i11) ABA, AbA .I )( v' )(

(1v) ABA, AB .I ,/ ./ I

Figure 1.1. Some Pairs at Strings from the Example Grammar
and the Relatiopawhich hold between. them.

When o<.p ~V' are related by
must be some sequenoe at strings
necessarily unique) suoh that

there
(again, not

........
It
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Such a sequence is called an r-derivation ot p trom 0<.

It is easy to prove that it x e VT tic and 0( e V*

satisfy 01..,.. x , then they also satisfy
Theretore every sentence ot G possesses

anr~derivation and in general each r-derivation will
correspond to several ordinary derivations. For
instance, we earlier exhibited three derivations ot the
string ab with respect to the example grammar. Only
one ot these derivations, namely < S, AB, Ab, Aab , ab>
is an r-derivation. We may define eft-derivations and
rett-derivations in a similar manner but note that not
all sentences ot a grammar need possess eft or reft-
derivations. (For instance, the sentence ab has no
ett-derivation - and therefore no.rett-derivation,with
respeot to our example grammar).

We close this section with the detinition ot two
functions which will be needed subsequently. When Gis .

• and k is a natural number, we detine •a grammar, 0( 6 V •

FIRST~ (C>(") • f k:x .'I V • '" xlx e T and 0( ...

and
EFF~ {«J { k:x * and 0( -+ x ]= x e VT 6"

We will omit the superscript G and /:or the subscript k
trom the names ot these functions when their identities
are olear. It can be seen that FIRST ~(o< ) contains the
prefixes ot length k to all terminal strings whioh can

Gbe derived trom oc; while EFF k (0() captures all those
Gmembers ot FIRST k (o<) having derivations Which do not

involve applying an A-rule to the leading symbol of a
string.
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1.5. Ambiguitl.

We have seen that the number ot distinct derivations
possessed bya sentence may be reduced by considering
only those which are r-derivations. Even so.certain
grammars possess sentences with more than one r-derivation.
Such grammars are usually considered unsuitable tor the
purpose ot specifying the syntax of programming languages
(although we will weaken this assertion later) and are
said to be ambiguous. A grammar is unambigpous it it is
not ambiguous; that is it each of its sentences has
exactly one r-derivation. Note that it a grammar is both
unambiguous and reduced, then it is not just its sentences
which have unique r-derivations; the r-der1vation of f

IIIfrom 0< will be unique for BnZ o(,~ 6 V such that
It should also be noted that some (and•. c< ... "It •

tor our purposes, pathological) languages can be
generated by ambiguous grammars but not by unambiguous
ones. These languages are called inherently ambiguous and
we shall not consider them turther.

.. \
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1.6. Further Notation Concerning Derivations.

When two strings are related by 0( ~ tB we
otten wish to be able to indicate explicitly the produc-
tion which is involved in the transformation of oL into
p and also the position at which it .te applied. We
provide tor this as tollows. SUppose that 0< = ~A S

and p = '690 and that A_.9 E. P. Let the production.
A ... e be called q and let m = len (~e ). Then we say
that " ex directly derives p by ap21yin~ 2roduction q

at position mU and we write ex -{q,m}- p • Similarly,
we may write
(i) -(q,mr: p m/~ '"e><. it e VT,

(i1) ,0( -(q,m>;t," it m) o. and
{iii} -(q,mn::.,.. it both m/fJ '"01 e VT and m') O.

Using our example grammar we .have, tor instance,

ABA ·-(A-..}y, 0)--. BA,
Ab --<A..."..,, o~ b ,
ABA -(B ....b, .2 r;;" AbA , and
ABA '-(A"'h, 2 ) ,.,IF,. AB •

When q ~ P and m is a natural number we call the pair
(q,m) a derivation steR (or more usually, simply a step)
in G. It may be seen that tor each step (q,m) in G,

'"is a relation on V and in tact
V -(q,m)+

(q,m) 1s a
step 1n G

Analogous results hold tor the relations

=

and.

--.fl.'" •
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If we have a derivation Q =< '/I.", ),'""..
there must be 8 sequence of derivation steps
R = «q, ,~",f""" ... such that

II /t«,

.in G

We say thst the sequence R is an explicit derivation
ot '¥n trom 0/. snd,in order to distinguish it trom
R,we will hencetorth call Q an implicit der1vation.
Explicit and implicit 1'- , eff - and reff-derivations
are defined in an exactly similar manner. Note that 1n
general the correspondence between explicit and implicit
derivations is many to one. However, in the case ot

explicit and implicit r-derivations the correspondence is
one to one. ,It'urthermore,when c< -(q,m)-.;afJ , the
values ot m end p can be deduced uniquely g1ven only·
the values er q and 0<. • This is because in r-derivations
there is only one place at which a production may be
app11ed. It foLLOWS that the component steps of an explicit
r-deri vation R = « q,•m,' ) ),"" ot '-V, from· ,.'e., .,.. Y.

can be deduced uniquely given only the 1dentity ot the
string~ and the sequence ot productions RI = <q~>,"

&. ••

This sequence R' is cslled a parse ot ~yt from 0/••

We have now seen that the explicit and implicit
r-der1vations and also the parses in G are in one to one
correspondence; they are really just alternative notations
tor the same concept. None is redundant though; eaoh has
its particular uses. \Then Q is a parse (or one ot the
equivalent notions) of'f3 from 0< , we may indicate this
tect by writing 0( -{Q~ ~.
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To 1llustrate these 1deas we use our example
grammar and the sentence aab~. This sentence has the
following implicit r-derivation.

< s, AB, ABb, Abb, Aabb, Aaabb , aabb >,
the follow1ng explicit r-derivation

< (S ~ AB,2 ) , (B"~ Bb,3), (B .... b, 2 ), (A .. Aa,2),

(A -+ Aa,2 ), (A -.A, 0) ,),

and the following parse.

<S ~ AB, B ~ Bb, B"b, A _..,.Aa, A _. Aa, A-A>.
Given any one of these sequences we can reconstruct the
other two.
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1.7~ Parsing.

Given a grammar G and a string x *e VT ' the
problem ot deciding whether x is a sentence of G is
called a recognition problem for G. An algorithm which
solves all recognition problems for G is called a
recognizer for G. The problem ot deciding not only
whether x is a sentence of G but also (im.the case that
it is indeed a sentence) of specitying each ot its
parses is called a parsing problem tor G. An algorithm
which solves all parsing problems tor G is called a
parser for G.

Parsers and methods for constructing them are
interesting objects of study in their own right and are
of practical concern because of their application in
the construction of compilers for programming languages.
Most modern comp1-lers are of the "syntax directed"
variety. This means that the process of compilation
(or more generally, of translation) is largely controlle,d
by the structure (that is to say, the parse) imposed
upon the source program by the grammar which defines the
syntax ot the language concerned. Typically, each
production ot the grammar has certain "semantic actions"
'associated with it and the total compilation process is
effected by composing these actions in 8 manner determined
by the parse of program being compiled. A parser there-
fore lies at the heart of every modern compiler and the
properties and quality of this parser will strongly
influence those of the complete compiler. For this reason,
algorithms for constructing parsers have received
considerable attention and many such algorithms have been
proposed.
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From among the many questions which may be asked
about a parser construction algorithm we select the
following as being particularly important :

(i)

(ii)
(iii)

(iv)
(v)

(vi)
(vii)
(viii)

I

To what class of grammars can the algorithm beapp11ed?
To what clsss of languages can it be applied?
How long does it take to test whether a grammar

is in the required class?
How long does it take to generate a parser?
How complicated is the algorithm - is it feasible
. to construct the parsers by hand?

How tast are the parsers produced by the algorithm?
How big are they?
What quality ot error detection do they provide?

Ot course the 1mportance attached to each question will
depend upon the intended application. We shall be concerned
with the "LR(k) parsing algorithm" which is a parsing
method applicable to the class ot grammars possessing the
so-called LR(k) property. The LR(k) parsers pertorm so
excellently in certain respects (notsbly in their generality,
their speed, and the quality of their error detection)
that they serve as a yardstick by which other methods may
be judged.

Precise discussion ot the LR(k) parsers and grammars
necessitates the use of considerable tormalism. ~~ile this
provides tor exactitude it also tends to obscure the
basic ideas and motivations. For this reason we now
introduce the tundamental ideas behind the LR(k) parsing
algorithm in a dit.terent and somewhat more. leisurely
fashion to that which is usual. It is hoped that this
extended discussion will enable the ,cquisition ot sufficient
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intuitive insight to support the rather,severe formalism
of the later chapters.

The LR(k) parsing algorithm is a particular example
of a general class of algorithms known collectively as
"bottom up" parsing methods. The concept of a "handle"
is fundamentaL to algorithms of this type. A derivation
step (q,m) is said to be a handle ot a string f3 whenever
there exists a second string 0( suoh that cl -(q,m)-: p
Next we define an r-sentential form (abbreviated rst)
of a grammar to be a member of the set {e( e V* I s -i 0( 1.
The ambiguity of a grammar is related to the uniqueness,
of the handles of its raf's as the tollowing theorem shows.

THEOREM 1.1

Let G = (VN, VTr, P, S) be a reduced grammar in ,which
S _.. S· does not oocur. Then G is unambiguous if and
only if each rsf of G has but a single handle, except
S which has none. 0
This result may be proved by elementary means and allows
us to speak of the handle ot each rst of an unambiguous
grammar. We now introduce some additional terminology
conoerned with handles,

If (q,m) is the handle (which we suppose to be
unique) of p , then q is called the handle production,
m is called the handle Rosition,and the strings m:~
and m/p are respectively calle d the left and right
contexts of the handle. It production q i~ A _. e then
p can be written in the form p = lex where len(~e)=m.

, This occurrence ot e withinp is called the
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handle phrase ot p. The act ot replacing the handle
phrase ot a string by the lett part ot its handle
production is known as reducing the string (by its
handle ~. Reducing a string p by its handle (q,m) will
yield the unique string 0( which satisfies 0( -{ q,m >-: (s.

If, ~ith respect to some unambiguous reduced
grammar we have :

I
I

then (qr' ml" ) is clearly.the handle ot the sentence x.:
Knowing this fact we can reduce x and thereby obtain
the string '/',._. • The handle of ~_I is (qr.,,mr., )
and so reducing 'f'.,.• in turn yields. the string 0/,..,.
If we continue in this way we will eventually arrive at
the goal symbol S and the sequence of handles found.
during this process will be <{q i , m t ».' - which is" .\'"
just the explicit r-derivation of x in reverse order.
This is the basic strategy underlying the bottom up
parsing method. The following algorithm describes this
method more exactly.
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ALGORITHM 1.2

Bottom up parsing algorithm

Input •• An unambiguous grammar G and a sentence
x e L(G) which is to be parsed.

The explicit r-derivation (in reverse order)
of x with respect to G.

Output :

Method :
1. Set· p = x,

2. Repeat steps 3 and 4 until p. = S~
3. Determine, the handle of p and output it.
4. Reducep by its handle and let the result

replace p.. 0

Notice that we give no indication of how the handle
might actually be determined in step 3 of this algo~ithm
- this is because we are presently concerned only with
the overall form of the strategy employed. Notice also
that the algorithm is not a true parser since it assumes
that its input x is known beforehand to be a sentence
of the grammar concerned. These issues will be resolved
later. Observe that the algorithm must terminate atter
execut1ng a finite number of steps s1nce each execution
ot step 3 outputs a ditferent step of the r-derivation of
x, and every r-derivat1on 1n an unambiguous grammar is
finite. (A sentenoe oan possess an r-derivstion ot infinite
length only it it possesses an infin1ty ot r-derivationa,)

It we imagine a parse tree tor the input sentence
drawn in the conventional manner with the goal symbol at
the top, then Algorithm 1.2 essentially enumerates the
nodes ot this tree torm the bottom to the top. This
1s the origin ot the name "bottom up" used to describe'.
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the algorithm.
I

IAs it stands Algorithm 1.2 is not well suited to
computer implementation. Even if some method were pres-
cribed for finding the handle in step 3, the manipulation
required in Step 4 would remain decidedly inconvenient.
It is possible, however, to modify the basic bottom up
approach so that the reduction of strings may be pertormed
more economically. In this modified torm the method is
known as the "shift-reduce" bottom.up parsing algorithm.
The idea behind this new method is to work through the
input sentence, one symbol at a time, removing symbols
from the input and placing them onto a stack (usually
called the "parse stack"). This process continues until
the handle phrase lies wholly on top ot the stack. At
this point the input string must be reduced and this is
easily accomplished by first "popping" .the handle phrase
off the stack and then "pushing" the left part of the
handle production onto it. It is an elementary, though
to this algorithm crucial,property of r-d~rivationsthat
after this has been done the string formed by the
concatenation of the new stack contents and the 80 far
unconsumed input is such that its handle position is
either at, or to the right of, the point of concatenation.
This means that the entire process can be performed
repeatedly until the psrse is complete. It can be seen
that this method is composed of two primitive operations;
at each step we either'move a symbol from the input string
to the stack (we say that a symbol is "shifted" onto the
stack and so this operat10n 1s called a shift move) or we............... -
replace a handle phrase lying on top ot the stack by the
'lett part of the handle production. This latter operation
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is called a reduce move. It is trom these two types of-----"move" that the shitt-reduce bottom up parsers get their
name.

The decision as to which is the appropriate type
of move at each step is determined by a parsing action
function. It~ denotes the contents of the stack and
z the unconsumed input at some particular point, then
the parsing action function f (0< , z) yields the value
"SHIFT" it'a shitt move is correct or the value "REWCE

q" it a reduce move involv1ng production q is required.
Th1s last means that deg (q) ,symbolsare to be
discarded trom the top ot the stack and the lett part
of production q is then to be pushed onto it, We now
give a precise description ot th1s algorithm.

. ., \
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ALGORITHM 1.3

Shift - reduce bottom up parsing algorithm.

In'Put : An unambiguous grammar G and a sentence x e L(G)
which is to be parsed.

Output·: The parse ot x with respect to G (in reverse order).

Method: We use z to represent the unconsumed input and
~ to represent the parse stack. The top of the
stack is assumed to be to the right.

1• (Io1 tialise) Set c)( =./1, and z = x ,

2. Repeat step 3 until ocz = S.

Evaluate f(<< ,z) and execute whichever of
sub-steps (a) or ·(b) is appropriate.
(a) If f(o< ,z) = SHIFT then remove the first
symbol from z and push it onto the parse stack.

(b) If. f(o< ,z) = REDUCE q then output q, pop
deg (q) symbols off the parse stack and then

push the left part of production q onto it.D

The precise bebaviour of Algorithm 1.3 clearly depends upon
that of its action function and in order to establish the
correctness of tbe algorithm it is therefore necessary to
specify this tunction more completely. Now we have seen
from the discussion preceding its introduction that Algorithm,

1.3 is intended simply as a more convenient formulation of
the basic bottom up parsing method given in Algorithm 1.2.
We can indicate this correspondence more exactly as tollows.
Let ~f, denote the contents of the variable p 1"nAlgorithm
1.2 immeidately before the i'th execution ot step 3; also
let 0<;. and Z L denote the contents of the variables cC and
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z in Algorithm 1.3 immediately before the 1'th
execution 01' sub-step 3 (b) in that algorithm. Then
the intention is to maintain p. equal to the
concatenation C{. z· and this implies that the action

c. '"

function 01' Algorithm 1.3 must satisty the following
condition.~Vhenever O(z is an raf of G whose handle
(q.m) satisties m ~ len (0< ) we must have ••

f (0< ,z) = REDUCE q if m = len (0< ), and
f (0( ,z) = SHIFT if m > len (0( ) •

Given that this condition is satisfied, it is easy to
see that the correctness and finite termination 01'

Algorithm 1.3 tollow directly trom those of Algorithm 1.2.

Notice that we are only concerned about the value
of the action function in the case m ~ len (0<). This
is because Algorithm 1.3 always maintains its parse stack
~ so that its ·contents are a prefix to the lett context
of the handle of o<z • We say that the parse stack always
contains a "viable pretix" 01' the grammar. More precisely
a string 0( is a viable prefix of G if and only if there
is some string p such that 0</1 is an rsf'of'G with a
handle (q,m) satisfying m .) len (0<). The set of all
viable prefixes of G is denoted vpG• PlainlY the domain
of the action function in Algorithm 1.3 is contained within

G *the cartesian product VP x VT •

If we wish to construct practical parsing methods
based upon Algorithm 1.3 then ~e must propose methods for
determining the correct values of the action function. One
possible approach is to relinquish the generality 01' this
parsi~g method and to seek special classes of'grammars whose
action functions have a particularly Simple torm. This
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might be done by requiring, for example, that the value
of f(o<, z) be uniquely determined by just the last
few symbols of ~ and the first tew symbols ot z.
Several practical parsing methods are essentially of
this type. A generalisation ot this idea is to partition
the domains of each ot the arguments to the action
function into a finite number of equivalence classes
and.to require that all members of each equivalence class
yield the same function value. The previously mentioned
technique of considering just a tew symbols from each of
the arguments is merely a particularly simple way of
imposing these partitions.

No matter how this partitioning is pertormed,it
ettectively reduces the domain of the action tunction to
the cartesian product 'ot the two fini te sets of
equivalence classes. It we redetine the action function
so that it operates on the equivalence classes ot strings,
rather than on the strings themselves, then the domain
of the action function becomes tinite and so its values
may, in principle, be tabulated. By doing so we can reduce
the determination ot the correct move at each step ot

Algorithm 1.3 to a straightforward (and potentially very
tast) table look-up operation. Observe that in order to
look up the value .ot the function f (oc , z) it 1s first
necessary to determine the equivalence classes m which
the arguments 0( and z belong. When the equivalence
classes are constructed on the bas1s of consider1ng only
a rew symbols from each argument this determination is,
of course, trivial. In fact, v1rtual!y all.parsing methods
of this general type do treat the second argument, that is
the unconsumed input, 1n this s1mple fashion. Typically
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they Will consider just its first k symbols, where k
is a fixed natural number whioh parameterises the
method. These methods are said to employ a k symbol
"lookahead". Howeve~, certain methods (and the LR(k)
parsers are among them) while employing a k symbol
lookahead in order to partition the second argument
to the action function, do not partition the first
argument (that is the set vpG) on the same Simple basis
but are rather more subtle. With these methods it
becomes non-trivial to discover the equivalence class
to which a given viable prefix belongs.

'This dift'ioulty can be circumvented by imposing
Gadditional constraints upon the way in which VP is

partitioned. Let Q be the set ot' equivalence classes
into which vpG is partitioned (these classes are called
states ) and let EQUIV : GVP -. Q be the f'unction which,
maps viable prefixes into their corresponding equivalence
classes. If 0( and /J are viable prefixes of'G such
that EQUIV (0( ) = EQUIV (p) and if' X e V is
such that both ()(Xand p X are also viable prefixes,
then we shall require that EQUIV (O(X) = EQUIV (px).
Not all partitions will satisf'y both this constraint and
·that attendant upon the correct behaviour of'the action
function; some grammsrs may fail to possess any satis-
factory partitions at all. However, when the condition
above is- satisfied we may construct a parsing goto
tunction g: Q x V .... Q as tollows. Whenever ex 6 V·

and X e V are such that both 0<, and o(X are viable
pretixes, we detine

,(EQUIV{oc ), X) • EQUIV (o(.X). ,
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The oondition given above is simply that .neoessary to
ensure that g is truly a funotion (that is it is single-
valued). Note that g is a partial funotion, when ~ is
a viable prefix but oeX is not,the value given to
g(EQUIV(o<}, X} is unimportant. Since its domain is
tinite, the values of the goto funotion may be tabulated,
just like those of the aotion funotion •

.The goto funotion Is employed in a moditied version
of Algorithm 1.3 in the following manner. Another stack,
oalled the state staok is maintained in parallel with
the parse staok. Eaoh position in this seoond staok
reoords the state (that is to say, the equivalence class)
to which belongs the string lying below the borresponding
position in the parse staok. ~lhenever symbols are popped
oft.the parse staok the same number of states are dis-
carded trom the top 01" the state stack. V.'hena new symbol,

,
say X, is to be pushed onto the parse staok, the top
element otthe state staok is.first inspeoted. This state,
say s, wi!! be the equivalenoe olass to whioh the ourrent
parse staok oontents, say 0< , belong. (That is to say,
s = EQUIV (O().) The goto function is then applied to s
and X in order to yield g(s,X) -whioh is the equivalenoe
olass to whioh the new parse staok oontents oeX will belong.
The symbol X i8 then pushed onto the parse stack and
g(s,x) is pushed onto the state stack, thereby maintaining
the required oorrespondence between the contents ot the
two stacks.

In this way we arrive at a "table-driven shift-reduce
bottom up pars1ng method us1ng k symbol lookahead" ( we
will say Simply a "table dl'iven pal'ser" in tutul'e). The



prec1se behav10ur ofaparser of th1s type is determined
by the value of k (that 1s the amount of lookahead )
employed, the way in which the viable prefixes of the
grammar are partitioned into states, and the values
wh1ch are g1ven to pars1ng act10n and goto functions.
In order to start the parser off we w1ll also need to
know the state to which the initie.l parse stack.
contents (that is the empty string ,A) belong. We may'
collect all this information together and say that it
comprises the "tables" which "dr1ve" the parser.

Spec1fically, we will define a set of parsing
tables (using k symbcl lookahead) as a 4-tuple '
T=(Q,so,g,f) where:

(i) , Q is a f1nite non-empty set of pars1ng states
(these are the equivalence classes into which
vpG is partit1oned),

(i1) s. 1s a d1stinguished in1tial state,
(iii) g: Q x V- Q is the parsing goto funct1on, and i

(iv) f: QX VT*k ACTIONS G is the parsing
action function where ACTIONSG, which is the set
of all poss1ble parsing actions for the grammar G,
is defined by :
ACTIONSG = tERROR.,SHIFT 1 v [REDUCE q , q e pl..

Notice that,1n order to provide for error detection,we
have now enlarged the range of the action function to ,
include an ERROR action. However, this provision may be
insufficient to ensure that all errors are detected (it
depends upon the particular tables and value of k
employed). For this reason the detailed specification of
the table driven parsing method given below includes



additional error detection facilities. Full discussion
of the detection of invalid inputs is postponed until
later.

ALGORITHM 1.4
. .Table driven parsing algorithm using k symbol lookahead.

Input • A set T = ( Q, so, g, f) , of parsing tables tor• lieG and the string x e vT 'which is to be
parsed.

Output .. It x e L{G} then the parse of x (in.. reverse order), otherwise an error indication.

Method ••

1• (Initialise) Empty the parse and state stacks
and then push s. onto the state stack. Set
z = x.

2. Repeat step 3 until either acceptance or
rejection occurs. (In the latter case the
algorithm halts with an error indication).

. ,

Determine the current lookahead string u = k:Z
and set s equal to the state currently on top
of the state stack. Look up f(sl u) and
execute whichever of sub-steps (a), (b) or
(c) is appropriate.,

(a) If f(s,u) = SHIFT do the following:
{i) it z =.A then reject the input x and

halt, otherwise
(11)remove the tirst symbol, say a, from z ;
(111) look up g (s, a) ;
(1v) If gCs, a} is undetined then reject

the 1nput x and halt, otherwise
(v) push a o~to the parse stack and g(s,a)

onto the state stack.
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(b) If f (s, u) = REDUCE q then output q
and do the following :
(i) It the parse stack contains tewer

than deg (q) symbols then reject the
input x and halt, otherwise.

(i1) 'remove deg (q) symbols trom the
parse stack and the same number 01'
statesf'rom the state stack (note that
the state stack is always one longer
than the parse stack) :

(111) set A equal to the left part of'
production q;

..(lv) it the state stack now contains
just the single state So and A = S
and z = J.., then accept the input x
and halt, otherwise :

(v) set r equal to the state currently on'
top ot the state stack ;

(vi)
(Vii)

look up g(r,A);

it g (r, A) is undefined then reject
the input x and halt, otherwise

(viii) push A onto the parse stack and
g ( r, A) onto the state stack.

(c) If f (e, u) = ERROR then reject the input x
and halt. 0

Observe that in order to execute parts (i), (il) and
. ... .

(~11) otstep 3 (b), Algorithm 1.4 requires to know the
degree and left part ot each production. In practice this
1nformation is provided by a pair 01' additional tables
which augment the parsing tables proper.

Notice also that the contents of the parse stack are
never consulted by Jagorithm 1.4; only the state stack is
really necessary. However, tor both theoretical and practical
reasons lt is otten useful to retaln the parse stack.
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On its own, Algorithm 1.4 is not a complete parsing
algorithm since its precise behaviour is determined by

I f

the particular set of parsing tables used to drive it.For
this reason we do not usually consider the properties of
Algorithm 1.4 independently ot a particular method tor
constructing its tables. We will examine the conditions
necessary to ensure the correctness of the algorithm
shortly, but first we will consider an example of a
parsing method of this type.

We will use'the familiar example grammar which has
been used throughout this chapter. For use within parsing
tables it is oonvenient to give each production ot the

,grammar a number. We reproduoe the example grammar below
with numbers written alongside the productions to which
they reter.

1.' .s ~U

2. ,A .... Aal

3 .A
4. El .... Bb I
5. b

A set of parsing tables for this grammar using 1 symbol
. . , .
lookahead are shown in FigUre 1.2. We will not indicate
how these tables might have been constructedithis topic
1s considered in Chapter 2.
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STATES ACTION FUNCTION GOTO FUNCTION

oh a b a b A B S
I 1 • 3 3 2

2. sh sh 3 4 5
3. 2 2

4. 5 5
5. 1 sh 6

6. 4 4

Figure 1.2. Parsing Tables tor the Example Grammar

In Figure 1.2. the parsing states are represented by
integers. By convention, the initial state is always
supposed to be state 1. The entries in the action function'
portion ot the table are to be interpreted as tollows :
sh means SHIFT, a number. means REDUCE q where q is the
production with that number (e.g. 4 means REDUCE B -. Bb)
and a blank means ERROR. In the goto tunction portion ot

the table a blank means "undetined". Now consider the
behaviour ot Algorithm 1.4 when driven by the tables ot

Figure 1.2 and presented with the input string abbe
Initially the parse stack will be empty and the state
stack will contain just the initial state 1. The first
lookahead string to be determined is a (remember we are
using 1 symbol lookahead) and so f(l, a) is inspected.
This yields the value 3 which means REDUCE A"~ •
Since the degree of this product10n 1s ze~o, no symbols
are popped ott the stacks and so 1 remains the current
state. The lett part ot the production, that 1s A, now
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needs to be pushed onto the parse stack and so the
value ot g(Ll,A) is inspected in order to yield the
identity ot the corresponding state. We tind that
g(\l,A) = 2 and so 2 is pushed onto the state stack
while A is pushed onto the parse stack. The parser
then inspects f(2,a) and obtains the value SHIFT.
This means that the symbol a is removed from the input
string and pushed onto the parse stack while 3 (the
value ot g(:2,a» is pushed onto the state stack.
Continuing in this tashion,the parser will trace out
the sequence ot moves summarised in Figure 1.3.
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SYMBOL STACK '.'STATE STACK UNCONSUMED ACTION
CONTENTS CONTENTS .INPUT

A 1 REDUCE A ...Jv Iabb
A 1,2 abb SHIFT
Aa

\ 1,2,3 bb REDUCE A - Aa
,.

A 1,2 bb SHIFT
Ab 1,2,4 b REDUCE B .......b
AB 1,2,5 b SHIFT

"

IvABb 1,2,5,6 REDUCE B---Bb
AB Jv

,
1,2,5 REDUCE S - AB

.... andACCEPT

•

Figgre 1.3. The behaviour of Algorithm 1.4. while parsing
the string ebb using the tables of Figure 1.2,

It can be seen from figure 1.3. that the string abb is accepted
by the parser and that the sequence ot production~ output
during the reduce moves is (A _"',A ,A .....Aa, B _.. b,
B _,. Bb, S ... AB) which is indeed the correct parse
(in reverae order ) tor the given input.

We will now examine the conditions which the parsing ..
tables T = (Qt 80 , It t) must satisfy it they are to drive
Algorithm 1.4.correctly.We have already mentioned some of
these conditions but we collect them all together here for
convenience. First recall that the states in .Q are intended
to be the equivalence classes into which the viable prefixes
I

of G are partitioned. In order that every viable prefix may
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belong to some state and that no state be redundant we
must require that the function EQUIV: vpG _.. Q

which takes viable pretixes into their corresponding
states be a surjective .mapping. In order that the goto
function fulfills its role correctly it must satisty
g (EQUIV (c< ), X) = EQUIV (o<X) whenever 0( E vpG and
X E V are such that· 0( X € vpG• And in order to ensure
that the gato function is truly a function we must
require that whenever 0('(1 ~ vpG and X e V ar-e such
that

(1) EQUIV (0<) = EQUIV «(1) and
(ii) «x, /iJ X E vpG

then EQUIV (0< X) = EQUIV ( P X).

These conditions are all straightforward consequences of'
the purposes for which the gato function is used. Notice
that the function EQUIV which features prominently in
the statements of these conditions is not itselt included
in the parsing table. This is because, in practice, it
is never construoted explioitly; it is merely a oonvenient

, theoretiosl devioe.

Finally we need to examine the oonditions whioh the
aotion function must satisty. Observe that the basio moves
of Algorithm 1.4 sre essentially the same as those of
Algorithm 1.3 and that the present actlon function differs
from the earlier one·only in that its arguments are
equivalence olasses of strings rather than the strings
themselves. Consequently the conditions whioh ensure the
oorreotness ot Algorithm 1.3 immediately yield the follow-
ing oonditions for the action tunction ot Algorithm 1.4.
Whenever c<z is in rst of G whose handle (q,m) satisfies
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m ~ len( 0( ) we must have :

f(EQUIV(<< ),k:z) = REDUCE q if m = len(<< ), and
f(EQUIV(o< ),k:z) = SHIFT if m > len(o<).

The conditions above are those which are necessary
and sufficient to cause the parsing tables T = (Q,so,g,f)
to drive Algorithm 1.4 correctly when its input string is
a valid aentence of the grammar. But if the algorithm is
to be a true parser, it must not only parse sentences
correctly, it must also reject all inputs which are not
valid sentences. However, we will not provide conditions
upon the parsing tables which guarantee this detec-
tion of. invalid. inputs. since conditions ot this sort
depend crUcially upon how early during the processing ot

invalid inputs we wish rejection to occur. Instead,
whenever a method tor constructing parsing tables is
proposed, we will expe~t an argument to be provided which
demonstrates that al! invalid inputs wil! be rejected.

We have now reached the end of this rather long
section and have barely mentioned the supposed subject
matter of this thesis - the LR(k) grammars and parsers.
These are diScussed at length in Chapter 2 but their
importance will become apparent when we state that the
LR(k) grammars are the largest class ot grammars which
can be parsed by the table-driven method ot Algorithm 1.4
using k symbol lookahead. Furthermore, a set of parsing
tables of the type we have described can be mechanically
constructed tor any LR(k) grammar.



45

1.8 Classes ot Languages and their Reo0sn!zers.

In the previous seotion we indioated that in the
interests ot ettioiency and simplioity we are willlns
to oonsider parsing methods whioh are applioable to only
a subset ot the oontext tree grammars. It is natural to
suppose that suoh restrioted olasses ot grammars may be
oapable ot generating only a subset ot the oontext tree
languages. Later on we shall be conoerned to characterize
these classes ot languages and will seek to do so in
terms ot the olasses ot "determin1stic" and "striot
determin1stio"'languages which we shall detine shortly.
We shall also need to use the properties ot "regular"
languages and ot "tinite automata". Our treatment ot

these topics will be rather terse. For a tull discussion
ot most ot this material see the book by Hoporott and
Ullman (1969).

When A la an alphabet, the regular languages (also
,called the regular seta or regular events) over A are
detined recursively as tollows :

(i) ~ ls a regular language over A,
(11) LAJ is a regular language over A,
(111) {a] ls a regular language over A,tor all a , A, and
(iv) It'P and Q are regular languages over .A, then so are

(a) P v Q,
(b) PQ, and
(0) p.

•
(v) Nothlng ls a regular language over A unless it is

so by vlrtue ot (1) to (lv) 8bove~
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It can be shown that the regular languages are
prec1sely those which can be generated by context free.
grammars when certain restrictions are placed on the
form of productions which may be used. Thus the regular
languages are a subset of the context tree languages
and can, in tact, be shown to be a proper subset.

The regular languages may also be character1sed
as the class of languages which can be recognized by
tin1te automata. Formally, a tinite automaton is a
system M = (Q, qo,l',I, & ) where Q is 8 tinite
non-empty set ot states, qo e Q is a distinguished
initial state, F , Q 1s a set ot tinal states, I 1s
the input alphabet and &: Q x I ....Q is the transition
function. A tinite automaton may be pictured as a
control unit equipped with a reading head which can
read symbols trom a linear input tape in a sequential,
left to right manner. The symbols on the input tape are
chosen trom the alphabet I. At any instant the control
unit may assume one ot the states of Q; initially it is
in state q. and the read head is positioned over the
lett most symbol on the input tape. The interpretation
ot cS(q, a) = p tor p,q , Q and a 'C I is that It,

currently in state q and scanning the symbol a, moves
its read head one symbol to the right and goes into
state p.

The type ot automata defined sbove are actually
known as the determlp1stlg t1nite automata (DFA tor Short)
A related class ot automata are known as the nondetermip-
1stio tinite automata (NFA tor short) and these are
d1stinguished trom the deterministic variety by their
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ability.to assume several states simultaneously. The
formal·detinition ot an NFA ditters trom that ot a
DFA only in that the value ot J(q,a) is allowed to be
a (possibly empty) set ot states rather than just a
Single state. This means that in an NFA,6 : Q x I .... 2Q.

We shall in tact be mainly concerned with extended
NFA's (ENFA tor short) which are NFA's augmented with
the additional capability to change states without
consuming input. In an ENJ'A, (,: Q x (I v {J,}) .. 2Q.

Since DFA's and NFA's are special cases ot ENFA's, we
shall now concentrate on ENFA's.

In order to detine the behaviour ot ENFA's we .
introduce the notion ot an instantaneous description
(abbreviated to ID). An ID is a pair (q,O() where q
is (one ot) the current states ot the control unit and

*I is a string ot symbols wr1tten on the input
starting in the position currently under the readtape

head and extending to the right. A move ot an ENFA is
denoted by the relation ~ on ID's. For p,q,r , Q,
a el, and «,(J e I* .we define (q, &0( ) ,_ (p, cc )

if. p e &(q,a), and (q, ~) ,_ (r,~)

if r e .Hq, It. ). We are principally interested in the
retlexive transitive closure' ,_* ot f- • The interpre-
tation ot *(q,O() t- (p, A ) is that, starting
trom state q wi th input C( , the ENFA will be in state
p (among possibly several others) atter reading all the
symbols ot ex • We uae •.I- to extend the domain ot

to •Q x I by the detinition :
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6 (q, 0< ) • .. {p £ Q I (q, QC ) . f- * (p, -A ) J .
Thus ~ (q, o() is the set ot all states which the ENFA
can reach by starting trom state q and reading the string
0< • A atring 0{ , I* is accepted by the ENFA it

. S(q.f 0{ ) "F ., ~ ,that is it the automaton
can reach a tinal state when started trom the initial
state with input 0( • The language recognized by an ENFA
M is denoted by T (M) and is detined as the set ot all
strings accepted by M.

Despite seeming to be more powerful devices, ENFA's
and NFA's recognize exactl1 the same classot languages
as tbeir deterministio counterpar1B, that is the regular
sets. The concept ot nondetermin1sm is an important one,
however, and we shall make use ot ENFAts is some ot our
later constructions. We will otten represent particular
ENFA' s pictorially by means ot "transition diagrams".
These are Simply directed graphs in which nodes represent
states and an arc labelled a is drawn trom node q
to node p it p e S(q,a).

Earlier we detined the oontext tree languages as
those which can be generated by context tree grammars.
They may also be characterized 8S the class ot languages
which can be recognized by nondeterministic pushdown
automata (NPDAtor Short). An NPDA is basically an NFA
augmented by a second tape which can be both read and
written by the device and which is used as a pushdown
store or stack. Unlike the case with tinite automata,
the deterministic variety ot push down automata are les8

,

powertul than their nondeterministic counterparts. The
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class ot languages which can be recognized by a determ-
inisticpu.shd.Own automaton ( a DPDA tor short) is

-.called the deterministic languages. These are a proper
subset ot the context tree languages but are probably
more interesting and important theoretically and better
suited as models ot programming languages than the
larger class. One reason tor this is that the determin-

•istic languages can all be recognized in·linear time
by conventional (i.e. deterministic) models ot computation.
Although it is not known tor certain that the recognition
problem tor general context tree languages is ot non-linear
complexity, the best algorithm known so tar runs in
deterministic time proportional to n1oS&7 where n is
the length ot the input string. (See Valiant (1975».

The tinal class ot languages which we need to
introduce are the strict determ1n1s~'9 languages. These
are the languages which can be recognized by "empty store"
on a ~PDA. They may also be detined as the class ot

pretix-tree deterministic languages. (A language L i8
pretix-tree it both 01 .and O<fJ in L implies (J • A. )

This class ot languages has been extensively studied by
Harrison and Havel (1973,1974) and we shall tind it
useful tor the purpose ot characterizing turther classes
ot languages.

\
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CHAPl'ER 2 ~.

THE. LR(k) PROPERTY

In this chapter we introduce the LR(k) grammars
and languages and discuss their properties together
with those ot the associated parsing algorithm. Our

main concern is to present a thorough yet straight-
forward development ot these topics, thereby laying a
secure toundation upon which to base the extensions
and moditications Which are the subject matter of
later chapters.

In the next chapter we will construct a theory
which is a true generalization ot the one to be
discussed here. Much ot the development in that
chapter will parallel that in this one - in this way
we hope to make clear the relationship which exists
between our new theory and the established theory from
which it is derived. The rather conSiderable length ot

the present chapter is due to the need to introduce and
state carefully all results which have counterparts in
the generalized theory. This is necessary not only tor
the purposes at comparison and analogy, but also because
many proots in the next chapter depend upon these

.'results trom the standard theory.

Our treatment ot the standard tRek) theory
tollows approximately thst to be tound in the original
paper by Knuth (1965) and the standard work ot Aho and
Ullman (1972a) although slight changes in both treat-
ment and notation are necessary in order.to support our
subsequent extensions. We also include material from
other sources, notably Geller and Harrison (1973),
Harrison and Havel (1973,1974) and Hunt,Szymanski and

_____' Ullman_ (1974,1975) • .. _
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Because we are pr1mar111 1nterested here 1n the
general flow of tbe development, ratber tban 1ts
deta1ls, most results are stated w1thout proof but
are prov1ded w1tb expl1c1t references to sources in
tbe l1terature wbere proots may be tound. However,some
results are proved here 1n full even though s1m1lar
proofs are ava1lable elsewhere. The reason for th1s is
that modIfied vers10ns of tbese proofs w1l1 be used to
estab11sh more general results 1n tbe next chapter.
Tbe proofs g1ven 1n th1s present chapter are structured
so tbat these later mod1f1cat1ons are supported most
naturall1 and eas111.

We beg1n by cone1der1ag a def1n1tIon ot tbe LR(k)
grammars and br1efly discu •• It. relat10nship to
alternative def1nit1ons.

. .
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2.1. The La(k) Grammars and Languages.

Knuth (1965) introduced the La(k) property in
order to characterize those languages wh1ch are
"translatable from Lett to Rigbt with bound k".- - -That is the classot languages with the property
that "it we read the characters ot a string from
left to right, and look a g1ven fin1te number (i.e.
k) of characters ahead, we are able to parse tbe
given string without ever backing up to reconsider
a previous decision" (oV.cit., page 607). In othel!"
words, the LR(k) property attempts to characterize
the languages Which can be parsed deterministically
using k s7ll1bollookabead. Of course, a given language
may be generated by several difterent grammars, and
the difficulty ot parsing its strings will usually
depend critically upon the particuler grammer with
respect to wbich the parse is required. Por this
reeson, the La(k) property is defined as a property ot

grammars, and not of languages directly.

As a tirst attempt et the tormalisation ot this
notion, we may take the tollowing detinition w~1ch is
paraphrased from Knuth (op.cit., pege 610) : 'a
grammer is LR(k) it end only it eny handle is always
uniquely determined by its lett context end the tirst k
symbols ot 1ta rigbt context'. Now when ~ is en rst with
a handle (p,.), the string whicb comprises 'its left
context and the t1rst k symbols ot 1ts right context' is
given by (m+k) to( • Using this fact, the previous
detinit10n may be re-expressed more tormaily as tollows :
a grammar is LR(k) it and only it whenever 0(. and fare
rst's with handles (p,m) and (q,n) respectively such
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that (m+1t):o<. (m+k)'p, then (p,m) • (q,n). Th1s
1s the bas1s ot the tollow1ng prec1se tormal
det1n1t10n, due to Harr1son and Havel (1974).

DDINITION 2.1

Let G • (VH' VT' P, S) be a grammar and k a natural
number. Then G 1s m(lt) 1t and onll" it tbe tollow1ng
cond1t10ns are sat1stied.
(1) G 1s reduced and S .... S· does not occur 1n G, and.
(11) wheneveroe and fJ are rst'. ot G having handles

(p,m) and (q,n) respect1vely, such that
mill ~ V'; and (m+k), 0(. (m+k):fJ ,then
necessar1ly (p,m).(q,n)

A language 1s sa1d to be LR(k) 1t it 1s generated
by some LR(lt) grammar. 0

Betore d1scuss1ng the deta11s and 1mp11cat10ns
ot th1. def1n1t10n we w11l exam1ne two 1llustrat1ve
examples.
Consider f1rst the grammar whose product1ons are ,

S' - &Ao
A - bAb I

b
(Grammar Gi)

•

.This grammar generatea the language {ab2n+1c I n ~ oj
and is not LR(k) tor any It. This is because, tor

each It ~ 0, we can construct the pair ot derivations :
S ~ abkAbko (A - b, k+2h ab2k+1c ,
S -iabk+1Abk+1c --(A ...b, k+3h ab2k+ 30 •

It 1s easilY seen t.hat ttlehandles ot the ret's ab2k+1c
and alfk+30 v10late cond1t1on (11) ot Definition 2.1.

From the pOint ot view ot pars1ng, tbe problem with
th1s grammar 1s that baving read the partial string abm,



54

no detinite 1nformat10n sbout replacing the last b
1s provided by the next k symbols; we must wa1t
unt1l the symbol c is encountered. On the other hand,
the grammar :

S aAc
A Abbl

b
(Gremmar G2)

wh1cb generates exactly the same language as Gi, 1s
LR(O). These exemples clearly show that LR(k) is a
property or the grammar, not of the languege aLone.

Three pOints concerning Det1n1tion 2.1. deserve
mention. FirstLY, the requirement that the grammar
be reduced is made simpLy ror mathematicaL convenience.
Th1s restr1ct1on should cause no practical diff1cult1es
since any grammar may eas11y be amended 80 that it
becomes reduced without changing its essential structure,

_______ nor the language. wh1ch it generates. Secondly, exclusion..:-
of derivations of the form S"":5 is necessary because
certain ambiguous grammars would otherwise be
admitted - the grammar

S ......S I a

woUld be an ambiguous LR(O) grammar tor example. Geller
and Harrison (1973) report that Salomaa (1973) tirst"
noted that the production S • S should not be aLlowed
in LR(k) grammars, while they attribute the exclusion
ot all derivations ot the torm S..: S to S. Graham.

OUr detin1tion ot the LR(k) property admits no
ambiguous grammara. Thia tact 1s estab11ahed 1n the
tollowing theorem.
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THEOREM 2,2 ,

I~ G is an LR(lt) grammar, then it is unambiguous.
PROOF. Because we stipulate that S -.·S cannot occur
in any LR(k) grammar,S can have no handle. O?viously
every other rst o~ G possesses at least one handle,
but because G is LR(lt), it is immediate trom part (ii)
o~ Detin,ition 2.1. that no rs~ can have more than one
handle. Thus every rsf ot G has exactly one handle,
except S, which has none. The conclusion ot the theorem
then ~ollows directly trom Theorem 1.•1. 0

The third point we wish to make about our
detinition ot the LR(k) property concerns the condition
m/p e VI which appears in part (ii) ot Detin1tion 2.1.

As noted by Harrison and Havel (1974), this condition
1s absent trom certain rival detinitions (tor example
that ot Salomaa (1973»and can be shown to make no
ditterence to the cla8s ot grammars de~ined in the case
k> O. When It • 0, however, omitting this condl tlon.
causes the unnecessary exclusion o~ all grammars
containing J., -rules. For example, contrary to our
natural intuition, the grammar

s.. Sal A
,would tail to be LR(O) even though it can be parsed
without lookahead. As well as reduoing the cla88 ot
grammars detined in the case It • 0, omitt1ng the
cond1tion m/~ E V~ also causes mathemat1cal
ditt1cult1es when k • O.

Since we have argued tor the retent10n ot the
cond! tion mill , V+ 1n Detin! tion 2.1, it may be
wondered why we do not also 1nclude the s1m118r cond1tion
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*n/~ e .VT.The reason is that this new condition i~
·not independent of the athers and m8J, in fact, be
deduced from them., For technical purposes this result
is useful in its own right and provides the following
lemma.

LEMMA 2.3
Let G be a grammar and let 0( andp be rsft s ·of G with
handles (:p,m)and (q,n) respectively such that

*,m:O( = m:fJ • Then n/e<. e VT.

PROOF. Because (p,m) is a handle for 0< , we have
* .m/~ e VT. Similarly, the fact that (q,n) is a handle

*for p provides nil' e VT • Clearly, if n ) m then the
conclusion of the lemma is satisfie~immediately.
Suppose, on the other hand, that n < m. Certainly 0(

contains no nonterminals to the right of the m'th
position. But also, bee_use m:~ • m:p

neither can it contain any nonterminals between the
n+l'st and m'th positions. Thus n/~ e V* and the lemma

T
is proved. 0



57

Altbough tbe LR(k) grammars bave been extensively
studied, several ditterent detinitions have been
employed. Not allot these detin1tions are equivalent
to ours (we have already seen that this ia so in the
case of Salomaa's detin1tion) and so we brietly mention
two ot the major alternatives. Detinition 2.1. ditters
trom the formal detin1tion used by Knuth (1965,page 610)

in that it does not use enamarkers. EssentiallY, Knuth's
definition requ1res that the grammar be augmented by the
addi tion ot a production S' _... S..l where S' is a new
goal symbol and l.is a special endmarker symbol. Geller
and Harrison (1973) show that this detinition is
equi valent to ours when k> 0 but that it reduces the
class ot grammars (though not the class ot languages)'
cons1dered in the case k=O. Aho and Ullman (1972a) detine
the LR(k) grammarsditterently aga1n. They augment the
grammar with a production S' + S·where st is again a
new goal symbol. Geller ana Harrison (1973) also show
'that tbis detin1tion too is equivalent to ours when
k > 0 but that it reduces not only the class ot grammars
but also the class ot languages considered 1n the case
bO.

In summary, trom among the several rival detinitions
ot,the LR(k) property, we have chosen in Detinition 2.1.
the one whicb yields the largest class ot unambiguous
grammars.

Now that we have agreed upon a detinition for the
LR(k) grammars, we may proceed to explore their properties.
First we will examine the generative power ot these
grammars. That is to say, given a value tor k, we will
ask how extensive is the class ot LR(k) languages. We
begin with the following result.
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THEORn 2.4
..

If G is an LR(k) grammar, then L(G) is a determin1stio
language. 0

This theorem is due to Knuth (1965). Its proot depends
upon the existenoe ot a parsing algor1thm tor the
LR(t.)grammars (wh1eh we present later - see Section
2.5) wh10h can be 1mplemented on a DPDA. Thus we see
that not every context tree language is an LR(k)
language; rather, the LR(k) languages are some subset
ot the deterministio lsnguages. S1nce 1t 1s clear trom
Det1n1t10n 2.1 that every LR(t) grammar is an
LR(t. + 1) grammar, 1t tollows that every LR(k) language
1s also an .LR(k+ 1) language. We would theretore like
to know exactly how closely the extent ot'the LR(t)
languages approaches that ot the LR(k + 1) languages,
and also how closely 1t approaches that ot the
determin1stic languages. These ~est10ns are largely
resolved 1n tbe tollow1ng theorem •

.THEOREM 2.5
Every determinist1c language 1s generated by some
LR( 1) grammar. 0

This result ls also trom Knuth (1965) but that source
does not present a rigorous proot. The tirst complete
and reasonably direct proot was g1ven by Harrison and
Havel (1974).

Tbeorem 2.5 tellS us that the ela88 ot LR(t)
languages is not enlarged by taking values ot k great-
er that 1. In comb1nat10n with Theorem 2~4 1t also tells
us that wben It~1 the LR(t) languages are co-extensive
with the deterministio languages. Theorem 2.5 cannot
be sharpened trom LR(1) to LR(O) because the LR(O)
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languages are known to be a proper subset ot the
deterministic languages. The LR(O) languages may
be characterized, however, in terms ot the strict
deterministic languages as the tollowing theorem
(which is due to Geller and Harrison (1973» shows.

THEOREM 2.6
L ls an LR(O) language it and only lt there exists
a pair ot strict deterministic languages ~ -,and L2

*such that L .L1L2·• 0

In conclusion, these resUlts show that the
LR(k) languages are closely related to the
.deterministic languages. In particular, when k ~ 1,
the two classes are equivolent. This is encouraging
trom a practical point ot view because it indicates
that the tR{k) grammars have sutticient power to
describe the syntax ot programming languages. It ls
also one or the reasons· why the LR(k) grammars are
so interesting trom a theoretical viewpoint tor, to
quote Knuth (1965) again, it suggests that "the La(k)

condition is a natural analogue, tor grammars, ot the
deterministic condition, tor languages."

In the tollowing sections we will examine
methods ot testlng grammars tor· the LR(k) property,
and of parsing the LR{k) grammars.
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2.2. Testi~ tor the La(k) Property -Part 1.

The concept or"an LR(k) grammar is ot little
practical use unless we can tind an algorithm to test
whether or not 8 given grammar possesses the LR(k)
property. It is by no means obvious that such an
algorithm should exist, tor the detinition ot the"
LR(k) property given in Detin1tion 2.1 involves
quantitication over the (possibly infin1te) set or
all rst's or the given grammar. OUr first result is
somewhat disheartening.

THEOREM 2.1
The problem or deciding, tor a given grammar G,
whether or not there exists a k such that G is LR(k),
is recursively unsolvable. 0

The proof at this theorem involves a reduction to a
moditied torm or Post's Correspondenoe Problem, and
is due to Knuth (1965).

" .This result is not, at course, the disaster it
may seem, tor in practioe we are not concerned with
whether or not a grammar is LR(k) tor some k, but
rather with whether it is LR(k) tor a particular,
predetermined, value at k. When stated in this torm,
the problem beoomes solvable.
THEOREM 2.8
Given a grammar G and a natural number k, there is an
algorithm to determine whether or not G i8 LR(k).Cl

In tact, there are three distinct algorithms tor
solving this probem. Two ot the methods are tram Knuth
(1965), while the third is due to Hunt, Szymanski and
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Ullman (1974,1975). !he three methods are d1stinct,
yet related, and each has its own particular merits.
S1nce there is an obv1ous algor1thm to determine
whether a grammar sat1sties condltlon (1) ot Defln1tion
2.1, we w111 only concern ourselves wlth methods tor
testlng condltlon (1i) ot that detln1tlon. Accordlngly,
we wl11 assume tor the rema1nder ot this seotion, and
throughout the next two, that G=(VN, VT,p,S) 1s a

. +reduced grammar in whlch S~ S does not occur, and
that k is a tlxed natural number.

The tirst method whloh we present is one et those
due to Knuth. Its chlet v1rtue lies in tbe tact that
it provides a proot ot Theorem 2.8 with a m1n1mum ot

additional technical apparatus. Per th1s reason it is
the method most oommonly quoted wben 1t is required to
demonstrate the dec1dabl1ity ot the LR(k) property tor
purely theoret1cal purposes. (See, tor exemple, the
books ot Salomaa (1973) and Hoporott and Ullman (1969).)
OUr oonstruction is a varlation upon those employed in
;·thesereterences and since the pract1cal detailS are ot

little interest we om1t them~ We require one add1tlonal
detin1 tion.
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....D_EF'_IN........IT........IO....N........2_._9 ,'.

Let .L be a symbol not in Y. (This symbol will be used
as an lendmarkerl and will be reserved tor this
purpose tor the rest ot this section.) For each
production q € P we detine the set ot strings ~ (q),
called the ta(k} contexts ot q, as tollows :

a; (q). { (m+k) :pJ.k Ip 18 an rst ot G with
a handle (q,m) J. 0

That is, tor each rst fJ ot G Which has a handle involving
production'q, we include in -~(q) that pretix ot p
.extending 8S tar as the kltb symbol of the r1ght context
of the handle. It the right context should be less than
k symbols long,tben it is first augmented by the
addit10n ot a suitable number of endmarkers. Th1s use
of endmarkers 1s essential to the argument used in the
proof of the next result, which expresses the LR(k)
property in terms of the sets -R~(q).

LEMJlA 2.10

G is LR(k) it and only it, for all1'p,q« P, cl € Y·J.-
and u ~ V;.t" J 0< E R;(p) and ecu , R~(~) imply paq
,and u • J.,.
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PROOP.Weprove the result tirst in the 'it' direction.

SUppose that9 and~are rst's of G with handles (p,m)

and (q,n) respectively, such tbat

v..
T (1)

and (m+k): 9 • (m+lt):¥' (2)

. and assume that 0( e R:(p) and eeu E R:(q) imply paq and

u.~ • Wemust sbow that these imply (p,m).(q,n). Define

0(. (m+k):8.L' andp • (n+k):'I'.L" • Tben to( 6 .R~(P)

and is , R:(q). We now distinguish two cases according

to the relative magnitudes of m and n.

Qase 1 : m' n, In this case (1) and (2) imply that fl. o<U

tor some u E V; 1" and so the hypothesis prov:!:des pDq and

\1= v'\ • But n-m = len( u) and so u=Jv implies that n=m and

we conclude (p,m) == (q,n) as required.

Qase 2 : m) n, From (2) and Lemma2.3 we obtain n/o< 6 VT'"

and this result, taken together with (2) and the condition

m)n, implies that oi == f3 U for some u .I: V~.t" • Again the

hypotheSis provides pDq and u-A and the conclusion (p,m).

(q,n) fol!ows a8 betore and comp!etes the proof in tbe

'it' direction.

Wenow turn to the 'onlY' 1f' direction. Suppose that

G 1s LR(k) and that tor some p,q E P, 0( E V·.L~ and u 6 V:.L*
6 . &we have 0< E R,,(p) and eeu E RH(q). Weneed to prove that

paq and u.A • Now0(, R: (p) implies there is some rst (]

ot G with a handle (p,.) satisfying (m+k): Slit == 0<.

Similarly, O<U ~ R: (q) imp11es tbat there is an ret ""

ot G with a bandle (q,n) satisfying (n+k): o/J}' == O(.U. It

follows trom these obs~rvat10ns that m/'II 6 V:' and

(m+k):6 = (m+k):~ and therefore; s1nce G 1s LR(k), that
(p,m) = (q,n). Hence p == q and (s1noe len(u) == n-m) .

u • A .and the lemma 1s proved. 0
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The reader who doubts the necesalty of uaing end-
markers in Det1n1t1on 2.9 shoUld conslder the tollow-
1ng grammar :

g ~ Sa (Grammar GS)
·a· ~ a

and

and 1t 1s .ea8117seen that
Rep (S' Sa). f Sal. ,SaaJ
RGS (13 a) • {aI, aa]1

Take lD=1

and hence, by Lemma 2.10, that G5 18 LR (1). If the
endmarker.:were absent, however, we should have

RG5 '(S'" Sa). f Sa,Saa 1
1

and then in Lemma 2.10 we could take p.qa S ..Sa,
0( • Sa and U=a and thereby conclude, 1ncorrect17,
that GS is not LR(1).

It may aeem that the retormulat1on ot the LR(k)
property wh1ch 1s pro~d.d by Lemma 2.10 does not
const1tute much ot an advance; 1t still involves
propertiea ot potentiallY infinite sets. The cruc1al
result 1n this development 1~ prov1ded by the next
lemma.

Lemma 2.11

It q is a produotion 1n p. then R;(q) 1s a regular
set.
iROOP. The proot ot this result depends upon the

Gconstru~t1on ot a right linear grammar Qk(q).
(Vil"VT ' pt, S.t)s'UChthat L{Q;(q» = R;(q).TO sey

Gthat Q k(q) 1s right linear means that the r1ght parts
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ot all the productions in p' are constrained to be
strings in V~~ v V~ * V: • Right linear grammars ere
well known to generate only regular sets. (See, tor
example, Salomaa (1973), Chapter II Theorem 5.3).

Recall the convention tba t J. represents the end-
marker symbol and that 1 i8 assumed not to be a member

G .of V. The grammar Q k (q) i8 defined as tollows :

(i) VN • frA,w] I A € VN' W e' k:V; _tel J .

(ii) V ~. V N v V T v {1. J)
(iii) pt ,. Pi v P2 where Pl_ and P2 are dis~oint

sets ot productions -given by :
Pl. f[A,w] -. ~ [B,v] I A ~.1rBcS 1s a pro~-

uotion in: P and v • FIRST~(&w) t:
P2• (re,. ] ... Sw I C-.. 9 is produotion q1,

s' • [S',.e l.

It i. olear that Q ;(q) 1s right linear and hence
GL (Qk(q) ) 18 a regular set. It remains to prove that

L (Q ~ (q» • R~(q). To do this is sufficient to show
that Q~q) contains the derivation

[S,£ ] -4 't [B,v]

if and only if G contains the derivation
S ~ 't Bx

tor aome x E V; .atist7ing v • ltt It lie • Th1s result
may be established by straightforward induotions upon the
lengths of the der1vations involved. We om1t the details. 0

GNote that, in general, the grammar Q k<q) will not be
reduced. However, this does not sttect the utility of the
oonstruction in aQY W8Y. Note too that it is only the set
ot productions P2 wbicb ohanges as q ranges over the
productions ot G.
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Armed with Lemmas 2.10 and 2.1~we m~ now prove
Theorem 2.8

PROOF OF-THEOREM 2.8 - FIRST METHOD
By virtue of Lemma 2.10 we need to prescribe a

method whereby we can determine :
(a) for each productionq in P, whether or not there

* 16 and u e V: I" _J Aexist Cl( e VI ",..L with u r » such
that both 0( e -R;(q) and cCU e R~(q).

(b) for each (ordered) pair of distinct productions
V*I"'"p and q in P, whether or not there exist ~ e -L

and u e V;j_; such that 0( e R~(p) and eeu e R~(q).

Now, .1f Ll and L2 are languages, the quotient of Ll with
.' .

respect to L2 is written L1JL2 and 1s defined by :

Ll/L2 = '{x I there exists y e.L2 such that xy e Lll.

(In reading the formulae that follow, assume that the
quotient operator has higher precedence than intersection.)
Using this notion, test (a) above may be restated as the
problem of deciding, for each q in.P, whether the language
S~(q) defined b~

S~ (q) = R~( q) / (V; 1* v V; J.~) 1'\ R~( q )

is empty or not. Similarly, test (b) reduces to the
problem of deciding, for each pair of distinct productions
p and q in P, whether the language 'l~(P,q) defined by :

G G * * GTk(p,q) = Rk(q) / V'll. "Rk(p)
is empty or not.
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Now all the seta appear1ng 1n the det1nit10ns ot

S~q) and T~(p,q) are regular. (Recall. !lemma 2.11.)
Furthermore, the regular aets are closed under the
operat10ns ot union and 1ntersection (see Hopcrott and
Ullman (1969), Theorem 3.6) and quot1ent (op.c1t.Theorem
9.13). Hence, the sets ~(q) and T~{P,q) are regular,
and because the proot ot Lemma 2.11 1s construct1ve, as
are the proots ot the other results c1ted above, 1t is
in principle poss1ble to construct f1nite automata wh1ch
recognise these sets. Sinoe there is a well known algorithm
(op.o1t.,Theorem 3~11) to determine whether the language
recognized by a tinite automaton is empty or not, we may
oonolude the theorem. a

We end this sect10n w1th an example which illustrates
some ot the ideas that have been 1ntroduced here. We will
use the Grammar Gl which, 1t may be remembered, has
product10ns :

S - aAc
A --. bAb I

b

We take k • 1 and oonstruct the gE-ammar Q?1 '(A ......b) .Let
Qg1 (A - b) • (VN, VT,P',S') • Then

VN• [[s,l], [S,a], [S,b], [S,c], [A,!], [A,a], [A,b], [A,Cn,
S' = [s,l],

vT• fS,A,a,b,e,l}, and

p' • P v P2 where1
P1 = ([s,1] - aeA, c]

[A, cJ - b [A,bJ
[A,bJ - b [A, bJ 1

P2 • [[A, bJ -bb,
[A,cJ -be J

+ some useless productions,

+ some useless productions.
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It is easily seen that this grammar contains the
derivations :
[s, JJ _a [A,c] - ab [A, b]- abbb, and
[S,Ll .. a [A,cl _ ab [At b] - abb [At b] - abbbb
and so abbb and abbbb are both members of R~l (A ~ b).
Hence, by taking 0( == abbb and u=b in Lemma 2.10, we
discover that Gl is not LR(l).

The algorithm for testing for the LR(k) property
which is indicated in the proof of Theorem 2.8 is not
we.ll suited to practical use. In the next section we
will derive a practical algorithm for testing grammars
for this property.

'.
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2.3. Testini tor the -LROe) Property - Part 2.

We have seen one method ot testing tor the LR{k}
property; now we present another. This method is also
due to Knuth and is ot interest because, in the case ot

grammars which ~ LR{k), the construction may be
extended to provide a parser tor the grammar concerned.
Betore describing the method, we need several new
defin1tions which are tundamental to this and subsequent
developments.

D~INITION 2.12

An !.R{k) item tor G is a pair t [B .....1".,82' v l ,where
B "'p,p,_. P and v e V;k • The set ot all LR{k)
items tor G is denoted I~. 0

That is, an LR{k) item consists ot a production trom P

with a dot placed somewhere in its right part (we assume
that the dot is not in V) and a terminal string up to k
symbols long. Items 1n which the dot appears at the extreme
lett of the r1ght part of the product1on {1.e. those ~n
Which (3, • A )are called initial items; those in which
the dot appears at the extreme right {i.e. {Jl. A) are
called tinal 1tems while those 1tems which are neither'
1nitial nor t1nal are called 1ntermediate, Note that any
non-1n1tial LR(k) 1tem ean be written in the form

----·--[B---f3,X.P2-' v] where --x- cV. The symbol X which
precedes the dot is called the associated symbol of
the item.
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DEFINITION 2.1'
A pair ot distinct La(k) 1tems tor G are said to be in
confliot (on looka'head u) it they have the torm
[A - eX .,u] .. r~pectivet1 and
satisty u e EFFk(,s2V). 0

Observe that one ot the items 1n a conf11ot1ng pa1r must
be a tinal item. It the other item is tinal also (i.e.
it 1n Detinition 2.',13. we have (3a. ~ ) then we say
that we have a "reduoe/reduoe" oontlict; otherwise we
have a "sh1tt/reducet• oonfliot. The reason tor this
term1nology w1ll become apparent when we come to
describe the LR(k) pars1ng algorithm. We note that an
obvious algor1thmexists to test whether or not a given
pair ot items are in CQnt11ct.

It is the id ea ot a "valid" LR (t) 1tem wh10h 1s
particularly 1mportant.

DEFINITION 2.14:
When 9 € V·, the LR(k) 1tem [B"P"P~tV] 1s sa1d to
be v s11d tor B (with respeot to G and It) 1t and only
it there 1s a der1vation

S --: ~Bx ~ 't"flax
1n G with 9 • 'tft , and v • lux. Cl

Observe that it there 1s an Li(k) item whioh 1s va11d
tor 9, then (} must be a viable pretix ot G, Conversely
every viable pretix possesses at least one valid LR(k)
item. Observe too that it there 1s a non-init1al LR(k)
item which 1s valid tor 6 ,then 8 p ~ and the
associated symbol ot that item must be equal to the last

\ .
symbol ot 9 • Thus all non-1nitial LR{k) items whioh are
valid tor a given viable pretix share the same associated
symbol.
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DEPINITION 2.15
When e e v·, the set ot all Li(k} items which are valid
tor e 1s called the LRCk} state for e and is denoted by
GVK (a). We usually drop the sub and superscripts and write.

simply ·v(a) when no ambiguity is likely. The set
consisting of the La(k} states ot all the viable
pretixes of G is called the LR (k) stateset for Gand is
denoted by s~. Note that V (e) is non-empty if and only
if e is a viable pref1x of G. Hence

S~. { veal ~ ~ lee V* J • 0
We now define the "adequacy' of LR(k) states and state-
sets. This notion is the key to the algorithm we are
seeking.
DEFINITION 2.16
An LR(k) state (or indeed any set of LR(k) items for G)
is adequate it and on1y it it oontains no pair ot

conflicting items. The LR(k) stateset for G is adequate
it and only it each ot its component tRek) states is
adequate. States and statesets which are not adequate
are said to be inadequate. 0

The LR(k) property is closely related to the adequacy
ot LR(k) statesets. ~etore we can prove this tact, we
need another lemma.

Lemma 2.17

Let cxf3be an rat Of G With a handle (q,n) satistying
n ) len (0<.). Then there is a non-final LR(k) 1tem
[e ... ~,. ~~, v ] wh10h 1s valid tor 0( with'
EFF k (p) s EFF k (~a v ~•
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PROOF. Since ~p is an rst ot Gwith a handle (q,n),

there must be en explicit r-derivation D= «q. , n»'"
, ... I

ot 0<13 trom S with (qr,nr ) - (q,n). Let <~ ~:. be the

corresponding implicit derivation. Clearly there exists

t in the range 1 ~ t c» such that nt' - deg (qf:) ~ len (o().

(Take tal tor example, sincei'.- S we must have n,- deg(Q..)

= o. ) Nowchoose the largest such t. Wewill show

that len (~) < ut. This relation is certainly true when

tar (because len {~} < n by b7pothesis) so assume that

t.< r and suppose, tor the sake ot deriving a contra-

diction, that len (0<) ~ nt• Because D is an r-deri vation

we have ~+l - deg {q1+1> ~ Dot tor all 1 1n the range

1 ( 1 < rand 80 it t < r and len (o() ~ nt this gives

ftt+l - deg (qt+l) < len Co( )

which contradicts the choice that t be the largest 1nteger

with the prescribed propert1es. Hence we conclude

D.t - deg (qt; ) ~ left (0() < ~ • (1) .

Wenow have the derivation

S --...: 'Yt-l -(qt' 11t~ "\It ..; O<fJ . (2)

and the choice ot t ensures that ft1 - deg (qi) > len (0{ )

tor all 1 in the range t < 1~ r and so it tollows that
• •'\It has the torm 'fl. • cle where e sat1sties e ut, (J •

Let production ~ be C _....er _ Then 'fit may also be

written 1n the torm ~t • CS"~)C. where _ len (<,,"1$) = nt-

The inequalit1es (1) then become

len (eo-), len (0() < len (er)

and so ~ can be wr1tten as 'lr = (f,ll

len (o().

where len (a- ~,) •
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Now and the
construction ensures that t:r't, • 0(, )f"", J., and
~2~ = 8 • Theretore, the derivation (2) may be written
ss

S -.. er C)If. ~ a"g, '¥\)(,

and 80 when v • k:x it follows that [c __",.~,. '6J , V ]

is 8 non-t1nsl LR(k) item which is valid tor 0<.
Recall that we hsve ~...)(= e and e __,.'"A so that.. It.,,, I"
~2X A.=::(3- It .then follows that 'EFFk(f') s EFFk(¥2v:)
and the pI'oof is·complete. 0

We csn now give the theorem on which our second method
of testing tor the LR(k) property depends.
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THEOREM 2.18
G is LR(k} it and only it its LR(k) stateset is adequate.
PROOF. To establish the result in the 'it' direction
we take its contrapositive. That is, we suppose G is not
LR.(k) and prove that its LR(k} stateset must contain an
inadequate state.
Now it G is not LR(k) there exist rst' s 0( and ~ ot G

with handles (p,m) and (q,n) respectively such that

and

m/fS e V~.
(m+k) : cl • (m+k) : (3 •
(p,m) :I- (q,n).

(1a)
(1b)
(1c)

We distinguish three cases according to the relative
magnitudes ot m and n.
Case 1 : m.n. Let production p be D" 0 and let q be
E_,.er • Also let e • m: p(, and let u • k:x where x is
the string satistying ~ • ex. Then it tollows trom (1a)
and (1b) that p has the torm p • By where y also
satisties u • k:y. Because (p,m) is a handle tor at

it tollows trom this oonstruction that [D" er. ,u ] is a
valid LR(k) item ter e. Similarly, because (q,n) is a
handle tor (3, [E .... fir. ,u] is also valid tor e.
But when man, (1c) can only be satistied it p ~ q.
Consequently, since they are distinct, the two items
[D ..... cS., u] and [E .... t"r. tU] are in c ontlict and so

V (a) is inadequate •.
Case 2: m < n, Again let produotion p be D-6 and let
9 and u be detined as in the previous case. As betore,
[D ..... o. tU] is valid tor e and (1 a) and (1b) imply that
f3 • &.! where u • k:y. Now because (q,n) is a handle

tor 9y and n > len (e), Lemma 2.17 implies that there is
a non-tinal LR(k) item tc ......)f •• )'a" v] Which is valid tor
e with EFP'k(Y) $ EFl k( l:av). It :tollows that [C.-+ 'g I .'~2'v]
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conflicts with [D _.,cS., u J an~ since both items are
vali~ for e, this means that Vee) 1s ina~equate.

Case ~ : m> n, In this case the construction and
argument proceed exactly as in the case above,' but with
the roles of p and _q, m and n, and ~ and p inter-
change~. Also, Lemma 2~3provi~es ~«~ v; which is'
needed in place of (1a).

We now prove the contrapositive of the theorem in
the'only ,if' direction. We suppose that st is inadequate
an~ proceed to deduce that G cannot be LR{k). Now if s;
is inadequate there must be some viable prefix e of G
such that V{S) contains a pair of conflicting items, say
[D ..... cS., uland Ic .; ~,. ~29 v]. For conflict to occur we
must have U 6 EFF Ie ( ~ 2v). l'ecause [D -+ d ., u] is valid
tor e there must be a derivation 1n G w1th the torm.

s -- ....; fADx -,- .." p.~ x
where I-'~ • e an~ u '= k:x. Let 0(. pox , m= len (e),

and let the product10n D-"S be called p. Then (p,m) 1s
a handle for~ and we have

(m+k) : oc • au .
S1m1larly, since [e .. ¥,. ~:a., V 1 is also valid for e, there
1s a der1vation 1n G w1th the torm

s
where e • ., ~, ana v. k:y. Now we bave U E EFF Ie ( '{~ v)
and thererore also U E Dlt' Se ( ~.t y) and so there exists
Z E v; such that 1r:aY--: Z an~ u = k:z. we nowAI,,,
distinguish two cases accord1ng to the number of steps
1n the der1vation

..
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Case 1 : ~~7 • z (i.e. no steps at all). It we let
the production C ... 1f, '!~ be called q and let len("l,~,~2) "

= n then (3) imp11es that (q,n) 1s a hand.1.eot l(~,'61Y.

But '7.l. = e and ~~ 7 ::z and so (q,n) 1s a handle for,
ez • S1nce len (e) :: m and u ::k:z, we also have

end
(m+k): ez :: au
m/ez " v;

Now if G were LR(k), the tacts that (p,m) 1s a handle
for 0( and (q,n) is a handle for ez , combined w1 th
(2), (4) 'and (5), wouJ.d 1mp17 that (p,m) • (q,n). We
now show that these handles must be d1stinct and hence
that G is not LR(k). If (p,m) • (q,n) then obviously
p::q and m.n. Observe that n • m + len ()(t) and BO m=n
implies ~2. J. wh1ch in turn implies u=v (s1nce
u e EFFk(~2.v». We l:l0whave p-q, ~a:: J, and u::v. But this
means that the two items [D - c5 ., uland [e .. '6,.ll' v 1 are ·
the same and so contradiots the hypothesis that they
are in conflict. Thus we oonclude (p,m) I (q,n) and

,.,

'.

therefore that G is not LR(k).
Case 2 : l...7 -_+ z (i.e. at least one step). Since the..""
derivation contains at least one step, we may d1stingu1sh
the last and write

~2 y ",a",." f> -<q, n) It."',. Z •

Note that since this a rett-derivat1on we must have n > 0.·
Comb1ning this derivat10n with that of (3) g1ves

S -flo; '1~,~~"-.i''''2'g,~ -<q,n+len('lts,>'~ ~~,Z

and because "'l~, :: S, len (9) ::m and k:z • u th1s
provides

and so (q,u+m)1s a handle tor ez • The results (4) and
(5) will tollow exact17 8S 1n the previous case and then
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. .

the supposition that G is ~(k) will require that (p,m)
= (q,n+m). But this is clearly impossible if n) 0 and
so we conclude that G is not LR(k) and the proof of the
theorem is complete. 0
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Given e grammar and its La(k) stateset, we can certainly
I

test the stateset tor adequao7 end -thereby determine
whether the grammar is LR{k). Thus in order to furnish
an alternative method ot testing tor the LR{k) property,
it only remains to prescribe an algorithm tor construct-
ing LR{k) statesets. To this end, we begin with 8 ne~
definition.
DEFINITION 2.1 ~

When !J. is any set of LR(k) 1tems tor G, we detine 1ts
Gclosure, denoted CLOSURE k( 6), recursively as the

smallest: set satistying : _. .____._ _ .
CLOSURE~( !J.) = /).v f[A _. • eX ,u] Ithere exists an item

[.B .. (3,. A f3~'v] e CLOSURE~ ( 6.) where

A ~tXe P and u e FIRST~(,B.2V)1
and when X e,V we define

NEXT~( D.,X) == [n .... c5,x.Jl,w] I [D ... d,.Xd.2'W] e 6.].

It is clear that the functions CLOWRE and NEXT are
computable. We define a third function by the1r composition
thus :

GOTO~ (6. ,X) = CLOSURE; (NEXT; ( 6., X) )•
As usual,we will omit th.sub and superscripts trom
these tunctions when the meaning is clear. 0

The algor1thm tor construct1ng LR(k) statesets 18 based
on the follow1ng theorem.

THEOREM 2,20

Let 9 € V· and X, V. Then' V(eX) • 'GOTO(V (e) ,x) • 0

A proot ot this result 1s provided b7 Aho and Ullman
(1972a, Theorem 5.10)
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Imp1101t 1n th1s proot are oertain propert1es o~

the tunct10ns CLOSURE and NEXT wh10h are useful 1n
themselves (and from which Theorem 2.20 may be deduced
d1rectlY). In order to be able to state these propert1es
conveniently, we partition the items making up an LR(k)

state into, two groups, called the 'nucleus' and the
'completion' ot the state. The basio idea is that the
nucleus .ot an LR(k) state contains all snd only the non-
initial items in the state; a~ remaining items torm the
completion ot the state. The tormal definition is slightly
complicated by the need to deal with the state'V (J\)

as a special case.
DEFINITION 2.21
The nucleus of the LR(k) state for e is denoted by
N~{e) and is defined by :
(i ) N; (A ) • {[ S _., • 0( ,~ ] J s_..,.o( e P J ,
(ii) and when e , A

G ' G
Nk (e) • {CB .... ~,.,82' V ] e Vk ( e ) I {Jt , Al..

The completion of the LR(k) state for 9 is denoted
by o~(e)and is given by :

o~{e)• ~(e) ~ N~(e).

..

.. ._ , ••. _ •• c •• ~. __ ~_ ••

."ben the mean1ng is clear, we drop the sub and super-
scripts and write simply .N{e) and 0(8). ,D

Note tbat when e ,I.A we have, a s a consequence o~
its very de~in1t1on, that N(e) s vee). It is easy to
prove that this relationship remains true when e.A •
We may now state the properties ~ the tunotions NEXT and
CLOSURE alluded to earlier.
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THEOREM 2.22
L..et e e

(1)

(1i)

*V and X e V. Then
N(ex} = NEXT (v(e),X), and
vee} • CLOSURE (N(e}). 0

At last we can present the algor1thm tor construct-
ing LR{k) statesets. We start oft with just a.single state.
(1.e. V (A» and add states to the stateset unt1l we
determ1ne that no more should be added. Note that during
execut10n ot the algorithm a tabulat10n of the funct10n

(;GOTOk{6.,X) may be produced tor all states 6. ln the state-
set and all symbols X e V. This tabulatlon will be needed
later when we come to construct parsers tor the LR{k)

grammars.

ALGORITHM 2.23

Evaluation ot the tRek) stateset tor G.
Input: The Grammar G. (vN,VT,P,s) and a value tor k.

GOutput : Sk· - the LR (It) stateset tor G.

Method : The stateset 1s built up ln the set-valued
var1able S. A marker tlag 1s cons1dered to be
attached to each LR(k) state placed 1n Si states
are 'unmarked' when tlrst added to S.

begin oompute V.(/\·) and set S. {V(A >J ;
whlle S oontains any unmarked states do-select an unmarked state 6. trom Sand

mark it;
tor each X e V do- -

endtor
endwhl1e;
set s~ • s

~. 0

compute ~ • GOTO( 6 .x):
.!! :E ~ ~ and::E ls not 1n S then

add ::E to S end1!



81

The correctness 01' this algorithm tollows directly trom
Theorem 2.20. It is plain that the algorithm will
terminate atter a .finite number 01' steps, provided that
the stateset is tinite; clearly it is tinite tor it is

Gno larger than the powerset 01' Ik - which itselt is
finite.

We now have an alternative algorithm tor. testing
for the tRek) property, when k is tixed.
PROOF OF THEOREM 2.8 - SECOND METHOD
Construct the ta(k) stateset tor G using Algorithm 2.23
and test it for adequacy. By virtue of Theorem 2.18, G
will be LR(t) if and only it no inadequacies are found. Cl

01' course we may save ourselves a certain amount 01'

wasted effort in the case of grammars which are not LR(k)
by testing each new tRek) state for adequacy betore we

•
add it to S: in Algori thIn2.23. The enumeration 01' S~
may be abandoned as soon as an inadequate state ia
encountered. With grammars which are LR(k),however, the-
enumeration must proceed to the very end.

We illustrate some et the ideas introduced in this
section by proving once again that the grammar Gl is not
LR(i). We use Algorithm 2.23 to construct the LR(i) state-
set for Gi and display the result in Figure 2.1. We
number each state inthe atateset and tabulate the function
GOTO by referring to states via their ~umbers.
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STATE LR (1). STATES GOTO
NO.

NUClEUS COl1PLETION S A a b e

1 [8--J; .aAc~~] 2

2 [S4a~Ac,~] [A4.bAb,c] 3 4

[A4.b,~
-.

3 [s -4aA.c~v\] S

4 [A-+b.Ab,cjJ [A-4.bAb,G] 6 7

[A-4b.,~ [A-4.b~1iJ

5 [S-aAc •• J,,)

6 [A_:_bA.b,ca 8

7 [A4b.Ab,b] [A~.bAb,b] 9 7

[A4b.,b] [A~.b,b]

8 .[A-4bAb •• c] ,

9 [A-4bA.b~G] . 10

10 [A~bAb ••b]

Figure 2.1. The LR(1) Stateset and GOTO Function tor
Grammar <11.

We see that state 7 is.inadequate because it contains the
conflicting items [A ......b., b] and [A - .b, b ] among
others. It tollows that grammar <11 1s'not LR(1).
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Although the procedure we have described does
provide a practical test tor the LR(k) property, it
has one important drawback: it may take an unaccept-
ably long time to make its decision. In order to be
more precise about this topic _we need to introduce the
idea of the "complexity" ot an algorithm.

Once we have an algorithm for solving a particular
pronem, it is natural to enquire into the efticiency
of the algorithm; that is the amount ot time and space
it consumes when solving instances of the problem. So
that we may achieve a measure of independenoe from the
details of the implementation of the algorithm, and also
from the preoise model ot oomputation involved, we
usually choose to express thsse quantities as functions
of the size ot the input to the algorithm. Here we are
mainly concerned about the time taken by an algorithm
to process an input of a given size in the worst oase.
Aooordingly, we define the time oomplexitlot an algorithm
to be that funotion f(n) whioh is the maximum, over
all inputs of size n, ot the time taken by the algorithm.
It,tor example, an algorithm processess all inputs of
size n in time whioh is bounded above by c.n2, tor some
constant c, then we say that the oomplexity of this
algori thm is O(n~) - pronounced "order n ~ ". An
algorithm is said to be ot polynomiel oomplexity if its
time oomplexity is O(p(n» for some polynomial p, while
it is said to be ot exponential complexity it its
complexity is o(:~q(n» tor some polynomial q.
Algorithms of exponential complexity are unattractive
beoause, as the size of the input increases, the time
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taken by the algorithm grows so explosively that it
rapidly becomes unacceptably large.

The inputs to the algorithms we are presently
considering are descriptions of grammars Which are to
be tested for the LR(k) property. (We are supposing the
value of k to be fixed beforehand.) Therefore, if we
wish to examine the complexity ot these algorithms, we
must be more precise about what we mean'by the "size"
of a gr ammar.

Now any description of a grammar must enumerate,
in some torm or other, the productions of the grammar.
Conversely, assuming certain reasonable conventions, a
grammar may be completely specified by just its set of
productions. Accordingly therefore, we define the size
ot a grammar to be the space required to list its
productions, assuming that each symbol inthe grammar's
vocabulary occupies just one unit of space. Thus we have:

DEFINITION 2.24

Let G D (VN ' VT, P, S) be a grammar. Detine the size of G,
denoted SIZE (G) by

SIZE CG) D ~. (10ft, deg:(q». 0'qep
Observe that it SIZE (G) • n, then, IV I :.O{%r:}, Ipl. O(n)
and '1 I~ I • 0(nk+1}.

No" the problem with our second method ot testing ,
tor the LR(k) property is that it requires the construction
and examination ot every LR(k) state in the LR(k) stateset
ot the grammar concerned. (At leaat it does when the
grammar ls LRCk).) Since the processing of each LRCk)

•state must occupy at least one unit ot time, it tollows
that it there exist any families of LRCk) grammars in
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which the cardinality ot the LR(k) stateset grows
exponentially with the size ot the grammar, then
Algorithm 2.23 will have exponential complexity.

Such tamilies ot grammars do exist. One such was
tound by John Reynolds and was reported by Earley (1968).
When n is a positive integer, the n'th member of this
family is denoted by EXP(n) and is defined by the
following production schema ••

S -. Ai (i, ~ i~ n)

Ai .... cjAi (1~ ifj , nf i rI j)
Ai -. ci13i (1 l 1 ~ n)

Ai .. di (1,(i~ n)

131-. cj131 (1 ~ ifj ~ n )
13i ..... di (1 .$ 1 ~ n)

-- ---- _. ':-~-::;;;;;:::;.: --.--

For each n > 0, the grammar IXP(n} is tR(O} snd its size
is O(n}. However, the cardinality of the LR(O} stateset
tor EXP(n) is 0(n.2n). Since, tor sny grammar G snd any,
k ) 0, the cardinality ot the LR(k) ststeset tor G is at
least as great ss that ot its LRCO) ststeset, this
family ot grammars demonstrates that our second method
of testing tor the LR(k) property is ot exponential
complexity tor all values ot k.

In the next section we consider a method ot testing
tor the LRCk) property whioh does not sutter from this
disadvantage.



86

2.4. Test1ng ~or the LR(k) Property - Part,3.

We have seen that our second method of testing tor
the LR(k) property is ot exponent1al complexity. In
contrast, the first method we presented can be shown to
have polynomial complex1ty. By combining techniques from
each of these two methods it is poss1ble to derive a
practical algorithm which tests for the LR(k) property in
time 0 (n 3k+3), where ~ is the size of the grammar under
test. By refining the technique, Hunt et al. (1974) showed
that the complexity of th1s algor1thm can be reduced to
o (n 2k+2) and by means of additional refinements they
showed (1975) that it can be r educed still f'urther - to
only 0 (n k+2). We shall present the 0 (n3k+3) algor1thm
since it embodies most ot the principal 1deas without
requ1ring too extended a development.

Central to this .third algorithm is the construction
ot an extended tinite state automaton. The states of this
automaton. correspond to the LR(k) items of'the grammar
under test while its input alphabet is the vocabulary of
the grammar. Its construotion is formally defined thus :
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CONSTRUCTION 2.25
When G = (VN,VT,P,S) is a gnammar and k is a natura~
number, define the ENFA M~ == (Q,qo,F,I,o) as follows:
(a) Q = I;v {q.1.

(b) F is irrelevant,
(c)

(d)

I = V, and
0, the transition function 1s given by :
(1) 6 (qo'..A) == f[s ..... c( ,,I. ]Is -. 0( e p} ,
(i1) when q is of the form q == [A - e, .Be2, u]

with B e VN, then
S (q, Jv) == {[B..... .,s' v] I B ... peP and

v e FIRSTk(9aU}),
(iii) when q is of the form q == [A""""9••xe:t ,u]

with X e V, then
S(q,X) == {[A .... 9,X.~ ,un. D

"

, G
It may be seen that tbe type (111) transitions ot Mk
pertorm tbe role of tbe functlon NEXT used in the
prevlous sect10n : tor eacb LR(k) item ~ and each X e V

we have cS ( 6., X) 1\1 NEXT( { 6.} , X).

.S1milarly, the type (11) transitions ettectively perform
the CLOSURE operation. Consequently, when the domain ot

. 0 is extended to Q x I" in the usual way, we obtain
the following result :

LEMMA 2.26
* G G GLet e e V • Then in Mk we have d(q.,&) ("\ Ik == Vk(9). 0

·This lemma may be proved formally by a straightforward
induction on the length of e. (The intersection with
I~ 1~ needed. simply to discard the start state q•• )
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It follows from Lemma 2.26 that we could use M~
to evaluate s~ if we so wished - but this would be to
no advantage, since it is the size of s~ which causes
our previous algorithm to have exponential complexity.
Instead, we shall seek to compute the set PAIRS~ which
ie ,defined as follows :
DEFINITION 2.27
PAIRS~ = {( Il,~) I 6 and :E are LR(k) items for G such

both 6., ~ e v;(e) for some e e v*},D

That is to say, PAIRS; contains all pairs of LR(k)

items which are simultaneously valid for some viable
prefix of G. Clearly, as a corollary to Theorem 2.18.
we have :
THEOREM 2.28

G is LR(k) if and only if PAIRS~ contains no inad-
equate members. 0

Observe that the cardinality of PAIRS~ is
polynomial in the size of the grammar G (it is 0(n2k+2»,

and so we avoid the problem that was the downfall of
our previous algorithm.

Now given any ENFA ~. (Q,qo,F,I,d) we may
,define the set STATE-PAIRS(M) to be the set of all
pairs of states which are Simultaneously accessible
from the start state. That is :
DEFINITION··2.29
STATE-PAIRS(M) • f(p,'q) • Q x Q I there exists e e 1*

.
such that both p, q. e S(q., e) 1, 0

Then, by virtue of Lemma 2.26, we have :

LE~ 2.30
PAIRS~ = STATE-PAIRS (~) r'\ I~ ~ I~, Cl
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Thus, in order to arrive at a new method ot testing
tor the tRek) property, all we need is an algorithm for
evaluating the set STATE-PAIRS(M~). It is, of course,
perfectly possible to give an algorithm which will
evaluate STATE-PAIRS(M) tor an arbitrary ENFA M. However,
we are only interested in applying the algorithm to auto-
mata of the type given by Construction 2.25 and by
exploiting the particular form taken by these automata we
can obtain a specialized algorithm whioh is more etticient
than a tUllY general one.

Our algorithm will use the fact that the nondetermin1sm
Gin the automaton Kk is or a restricted torm; although a

given state may have several ~-transitions, there is at
most one tranSition defined on a symbol other than A. It
a state q does have a transition defined on a symbol trom
V then, Since this symbol must be unique, we may unambig-
uously refer to it as the 'OUTSYK' ot q. States which have
only A-transitions may be said to have an undefined
OUTSYM. Formally, we define OUTSYM as a function thus :
DEFINITION 2.31
Let q be a state of ~ • If q m qo (the special start
state) or if q is a final LR(k) item then OUTSYM(q)=q>
(i.e. 'undefined'). Otherwise q can be written in the
form q = [A -- S, .xe2, u ] and in this case we define
OUTSYM(q) = X. (Note that X is the unique symbol such
that 6(q,X) :/~.) 0

We may now present an algorithm lwhich is a
slightly adapted version of one due to Hunt et al.
(1974» for evaluating the set STATE-~AIRS(M~).
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ALGOR ITHM 2.32
( G 'Evaluation of STATE-PAIRS Mk) •.

GInput: The ENFA Mk = (Q,qo,F,I, s ).
Output: The set STATE-PAIRS(~).
Method: The set STATE-PAIRS (~) will be built up in
a IQI x IQl bit matrix called PAIRS, which is indexed
by the states of M; '.\Vhen the algorithm terminates,
PAIRS [p, q] will contain 1if and only if (p,q) e

STATE-PAIRS{M;>. A stack, called STACK, 1s used to
contain backlogged pairs (p,q); that is those pairs of
states for which PAIRS [p,q] = 1 has been found, but
whose successors have not been examined. InitiaLly, PAIRS
contains all zeroes, and STACK ls empty.
procedure INSERT(p,q); ,

.!! PAIRS [p,q] == 0 then
PAIRS [p,q 1 : == 1;

push (p,q) onto STACK

. .

endlf
!m1 INSERT;
begin comment maln algorithm;

INSERT (Q.,qo);
1. while STACK is not empty do-2. pop (p,q) from STACK;
3.
4.
5.
6.

.~ each q' e 6(p,A)!2' INSERT(p,~')·endfor;
~ each pt e o(q,~)do 'INSERT(p',q) endfor;.
set X = OOTSY:M(p) andY = OUTSYM(q);
..!! X ~ <p and Y # cp and X = Y then

INSERT( 0 (p,X), cS (q,Y»

endwhl1e
end. 0-

endlt
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It should be olear that Algorithm 2.32 oomputes STATE-
PAIRS{\!~) correotly. Now let us consider the complexi ty
of the algorithm. We will examine the amount of work
charged to eaoh of the numbered steps. Since no (ordered)
pair of states is ever stacked twice, steps 1,2,5 and 6
will have work amounting to at most 0(IQI2) charged to
them. In the worst oase, steps 3 and 4 will be executed
onoe for every pair (p,q) e Q x Q. Or to put it another
way, these steps w1ll be executed at most I Q I times· for
each state p f Q. Thus the total work performed 1n each
of steps .3 and 4 is oC IQ I· • p~ Is (p, Iv ) I ) - that
1s the cost of traversing eaoh of the " Jv - transi tiQn
lists" I Q I times. Thus the total cost of Algorithm
2.32 is 0 (I Q I ~ + 1 Q I • p~ 1 ~ (p,.A) I).

Now consider the cost of applying Algorithm 2.32 when."
the size of the grammar G is n. We will have :

lQI = O(nk+l) , and at worst
p~ 16(p, A ) I = 0 <l Q12) = .0(n2k+~ ) •

.Consequently we have :

THEOREM 2.33
~hen G is a grammar and SIZE (G) = n, the oost of applying

.Algorithm 2.32 to ~ 1s 0(n31<:+3).0

We can now give our third proof ot Theorem 2.8
PROOF OF THEOREM 2.8 - THIRD METHOD
Construct ~ and apply Algorithm 2.32 in order to oompute

G .STATE-PAIRS (Mk) • Then use Lemma 2.30 to construct the set
PAIRS ~ and test each member ot this set for adequacy.
By virtue of Theorem 2.28, G will be LR(k) it and only it
PAIRS'~ contains no inadequate member. We claim that the
overall running time ot this testing procedure is dominated
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by the time taken by Algoritbm2.32. Thus the complexity
of this third method ot testing for the LR(k) property
is O(ri3k+3)-," where n is the 'size ot the grammar under
test. 0

In order to illustrate these ideas, we once again
show that grammar Gl is not LR(l). The state - diagram
of M~l is given in the following diagram, Figure 2.2.
Note that we omit states which cannot be'reached trom
the start - state.

q. (start) ,[A-.b,c 1
a b

[A-b., e ] [A-. b, b]

b

[S-a.Ac,A] J. (A-. bAb, e l [A-b.,b]

A b

e A b

(A-,bA. b, c] [A.. b.Ab, b]

b A

[1.. bAb., e l [A:.. bA. b, b ]

b

[1-bAbe ,.b]

Figure 2.2 : The Transition Diagram of M~l ~ the ENFA
Corresponding to Grammar Gl when k = 1.
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It may be seen that the input string abb takes the
automaton ~l from the start-state to the set of states :
{lA -. bAb, b ],[A - b.Ab, b]t [A - .b,b], [A - b.,b lJ. Th~s, in
particular, both [A _.,•b,b ],[A - b.,b ) e PAIRSil and since
these items conflict, it follows that Gl is not LR(l).

The improved algorithm ot Hunt et al.(1974), which
has complexity O(n~k+2)., is similar to the one described
in this section but constructs the automaton~ rather
more carefully. The dominant tactor in the complexity ot

Algorithm 2.32 is the O(n~k+2) term due to the number
ot ~ - transitions in ~ • At the expense ot adding
a number ot special states to the automaton (but not so
many that the total ·number ot states rises above O(nk~l) ),
the number ot A - tranSitions may be reduced trom
o ( n2k+2) .to· O(nk+l) • Using this modified form of
automaton, the cost ot applying Algorithm 2.32 is
reduced to O(~~k+2).

The fastest known algorithm for testing the LR(k)
property,also due to Hunt et al.(1975), works s11ghtly
d1fferently. Instead of constructing a single automaton
KG which is then used to tind all the conflicting pairs
k

ot LR(k) items, th1s method constructs many separate
automata. Each automaton is used to find those pairs ot

LR(k) items which are in cOnf11ct for a particular look-
ahead string. The cost ot applying Algorithm 2.32 to
each individual automaton is O(n 2) , and since there
are IV;kl = O(nk) ditterent look-ahead strings to
consider (and theretore .O{nk)_ separate automata), the
overall complexity of this method is O(~k+2).
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2:5. Parsing the LR(k) Grammars.

Now that we know how to test whether a grammar is
LR(k), we may prooeed to desoribe a method tor parsing
the LR(k) grammars. The method is one ot those modelled
by Algorithm 1.4 and is distinguished from other such
methods by the partioular torm of its parsing tables.
These are known, naturally enough, as 'LR(k) parsing
tables' and the parsing algorithm whioh results when
these are used to drive Algorithm 1,4 is known as the
'LR(k) parsing algorithm'.

Reoall that a set ot parsing tables'tor Algorithm
1.4 are a 4-tuple T = (Q,so,g,t) where Q is set ,ot

parsing states, s. is a distinguished initial state, g
is a parsing goto tunotion, and t is a parsing aotion
tun~t1on. Throughout this seotion we will suppose that
G = (VIt, Vr.' p,s) is an LR(k) grammar an~ we will show
that, given G, its LR(k) stateset, and a tabulation ot

1ts GOTO function (both provided by Algorithm 2.23), it
is always possible to construot a set of parsing tables
to drive Algorithm 1.4 oorrectly.

In order to do this, it is neoessary tirst ot all to
construot a suitable set ot parsing states Q - and to do
this we need to partition the viable pretixes of G into a
set ot equivalence olasses and then take each ot these
equivalence olasses to correspond to a parsing state in Q.
The technique which is employed in LR(k) tables 1s to
aSSign viable prefixes to the same equivalence class if
they share the same LR(k) stste. That is a pair of viable
prefixes, say e and ~ , belong to the same'class it (and
only it) ,V(e) = V(~). In other words, the parsing states
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in Q are identified with the LR(k) states in s~.Under
this construction, the LR(k) states tor G may be regard-

Ged as names for equivalence classes of VP and it
should be clear that this construction does provide an

. Gacceptable way of imposing a tinite partition over VP •
There is one small, but vital point here,however,which
must not be overlooked. The parsing states in Q are
assumed to be simple objects bearing no information in

Gthemselves, whereas the LR(k) states in Sk are complex
objects, being composed of LR(k) items, and carry a
considerable information content. Therefore we do not
identify the set Q with s~ directly; instead we identify

~ sGkit with a set composed of the names of members o~ ,
where names are supposed to be simple objec~s bearing no
information other than their own identity. This distinct-
ion between LR (k) states and tbeir names is not entirely
frivolous and will prove significant during constructions
which appear in Chapter 4. In or~er to make this
notion of naming precise and uniform, we introduce the
following definition:
DEFINITION 2.34
Let X be any finite non-empty set. Then NAMES(X) is an
alphabet with the same cardinality as X and NAMEOF x :
X~ NAMES (X) is assumed to be a fixed bijection taking
members of X into their'names'. We also allow the
function NAMEOFx to be applied to arguments which sre not
members of X and in this case the function value is always
'undefined'. ~~en the identity ot the set X is clear we
omit the subscript trom the tunction NAM~OFx'By
convention, we always assume that distinct sets X and Y
give rise to disjoint alphabets NAMES(X) and NAMES(Y). 0
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We may now describe the construction of the parsing
tables which drive the LR(k) parsing algorithm.

CONSTRUCTION 2,35
First we need a subsidiary defin1tion. Let ~ be any set

, *kof LR(k) items for G and let u e VT• Define the value
of the function ACTION ( ~, u) to be : .
(a) if 6 contains an item [B "'(3, .P.2' v]

where fiJ1' Jr and u e EFFk (p~v)

(b) REWCE q it 6 contains the item[A~O(.,u]where

SHIFT

.: A ~ 0( ·1s production q,

(c) ERROR it neither case (i) nor case (ii) applies •

.Note that ACTION( ll,u)will be multi-valued if (and onlY'
if)the set /lis inadequate. Nowwe can give. the main.
construction.

. G
The LR(k) parsing tables tor G are denoted bY'Tk and are
given bY'T~ • (Q,so , g,t) where :

(i) Q ::I NAMES(S~ ),
(Ii)
(iii)

(iv)

80 • NAMEOP (v{A) ),
Gfor each ll. Sk and X e V,

g(NAMEOF (6) ,X) a NAMEOF(GOTO{ AX», and
G *ktor each II i e Sk and u .e VT,

t(NAMEOF{A'), u) • ACTION(~u). 0
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Note that the empty set ¢ is not a member of S~ and
therefore, according to Definition 2.34, NAMEOF(¢)
is undefined. This means that if GOTO( ~ ,X) = ¢

then, by part (iii) of the definition above, the
value of g(NAMEOF( ~ ),X) will be undefined. This is
intentional and is consistent 1\'ith the general notion
of parsing tables given in Section 1.7 where, it may
be remembered, the parsing goto functfon g was
expressly permitted to be a partial function. The
action function f must, in contrast, be total and it
may be seen that part (iv) of the definition above
ensures that this is so. Also note that because G is
required to be LR{k) it follows from Theorem 2.18

Gthat every LR(k) state in Sk must be adequate. It is
this property which ensures that the parsing action
function i~ truly a function; that is, it is single-
valued. If G were not LR(k) then we could still
construct the tables T~but f(NAMEOF( D. ),u) would

G *kbe multi-valued for some D. e Sk and u e VT • If
6 contained a shift/reduce conflict on lookahead u,

then the value of f(NAMEOF( 6.), u) would be simul-
taneously both SHIFT and REDUCE q for some production
q. Similarly, in the case of a reduce/reduce con-
flict, the function value would be both REDUCE p
and REDUCE q for dissimilar productions p and q.
These observations explain the choice of terminology
used for the two types of conflict that can occur.
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........

Before discussing the theoretical properties ot

the LR{k) parsing algorithm, we will work through an
illustrative example. For this illustration we will
use a rather more realistic grammar than those encount-
ered previously. The productions of this grammar are
listed below :
1 S - E
2 E - E + TI (Grammar G3)
3 T
4 T - T + pi
5 p

6 P - (E)I
7 X

Grammar G 3 is a model fragment trom a conventional
ALGOL-60 type programming language grammar. It generates
a language consisting of simple arithmetic expressions

, .involving the two operators, + and , and a single operand
X. The grammar caus~s • to have higher precedence than +
and parentheses are available to override. the normal order
of evaluation. Using Algorithm 2.23 the LR(1) stateset
I:UldGOTO tunction tor this grammar may be computed and the
result is displayed in Figure 2.3. Note that collections

.ot LR{l) items which ditter trom one another only in
their second components are abbreviated by writing them
as single 'compound' items. Thus, tor example, the
three items [T - .P,)] , [T - .P,+] and [T - .P,.]

[T - .P,) ,+,*] '. The LR{l)are. combined and written as.
states appearing in Figure 2.3 are assigned integer names
(the "state number') and entries in the GOl'O portion ot

the table reter to states via their numbers. Strictly
speaking, this means that it is really the parsing goto
tunction g rather than GOTO which is displayed in the
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figure. C.learly,the distinction between GOTO and g is
rather a fine one,' existing only for expository rather
than p~actical reasons, and no real contusion is caused
by the form of presentation used in Figure 2.3.

GO! 0
.

~"''' LR(l) STATES
II.. ..

COMPLETION S E or P ( x ) * +NUCLEUS
1 [3- .Et~] rE -.E+T,A,+ J cs _.T,J,+] 2 3 4 5 6

[T-. T.P,,,, ,'+, *] [T - .P,A.,+, *]
[P-. (E),A,+,*l I.P - .x,A , +, *J

2 ts- E. ,.A. J [E-E.+T,J,,+] 7
3 [E- T. ,"\,+] (T_T.*P,A,+,*] . .. 8

:4 [T.. P. ,.\ , +, *]
5 [P-(.E),A,+,*] CE-.E+T, ~'+] [E-.T,~,+J 9 10 11 12 1.3

[T-.T*P, ,+,*J rr - .P, ,+, *) ..
[P_ • (E), , +, *] t:P- .x, , +, *)

6 [p...X. fA, +, *]
7 rE - E+.T,J., +] [T - .T*P,A,+, *J (T- .P,"',+, *) 14 '4 5 6

[P - • (E),A, +, *) Cl? - .X,J.,+, *]
'8 [T-T*.P,.A.,+,*] . [p - • (E ),,A ,+, *] [p - .X,A, +, *] 15 5 6

9 (p-(E.),A,+,*] [E.E.+T, ),+) 16 17
10 [E-T., ),+] [T-T.*P. ),+,*] .. 18
11 fT-P., ),+,*] ..
12 [p - (. E), ), +, *] [E- •E+or,~'+] re -. T, ~'+] ' 19 10 11 12 13

~i-·T*P, ,+,*] ~- .P~ ,+,*]
P-.(E), ,+,*] -.x, ,+,*]

13 rp-x •• ).+.*]
14 ts .. E+T.,Jv, +l (T- T.;*P,Jt, +, *] 8
15 [T-T*P. ,J. ,+, *]
'16 [P-(E).,J,,+,*J
17 (E .. E+.T, ), +] ~-.T*P, ~,+,;r [T-.P, ~,+,*l 20 11 12 13 .

-.(E), ,+,*] [p-.X, ,+,*)
18 [T-T·.P, ),+,.] LP-.(E),),+,*] CP-.x,),+,*] 21 12·13
19 (P-(E.), ),+,*] (E.E.+T, ),+ J 22 17
20 [E - E+T., ), +) (T- T.*P, ), +, *1 18
21 [T -T*P., ), +, *]
22 [p -(E)., ),+,*]

Figure 2.3. : The LR(l) Stateset snd GOTO Function
forGrammar G3

It can be seen from Figure 2.3 that no inadequacies
are present in the LR(l) stateset for G3 and so the grammar
is LR(l). The parsing tables T1G3 may therefore be
constructed and these are given in Figure 2.4. using the
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conventions for displaying parsing tables which were
established for Figure 1.2.

STATE ACTION FUNCTION GOTO FUNCTION
NO. ~ ( X ) * + S E T P ( X ) * +

1 ah sh 2 3 4 5 6
2 1 ah 7,
3 3 ah 3 8

'4 5 5 5
5 ah eh 9 10 11 12 13
6 7 7 7
7 ah ah 14 4 5 6

'8 eh ah 15 5 6
9 ah . ah 16 17

10 3 ah 3 18
11 5 5 5
12 ah ah 19 10 11 12 13
13 7 7 7
14 2 ah 2 8
15 4 4 4
16 6 6 6
17 ah ah 20 11 12 13
18 ah ah 21 12 13
19 ah ah 22 17
20 2 eh 2 18
21 4 4 4
22 6 6 6-

G3 .Figure 2.4 : Tl - the LR(l) Paraing Tables for Grammar G3.

In order to'illustrate the behaviour of tre LR(k)
parsing algorithm we displey in Figure 2.5. the various
moves executed by the LR(l) paraer for G3 (that is to say
Algorithm 1.4 driven by the tables ot Figure 2.4) while
processing the string X*(X+X),.
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MOVE SYMBOL STACK STATE STACK UNCONSUMED ACTION
NO. CONTENTS CONTENtS INPUT
1 ~ 1 X*(X+X) SHIFT
2 X 1,6 " *(X+X) REDUCE p ...X
3 P 1,. *(X+X) REDUCE T...P
• T 1,3 *(X+X) SHIFT
5 T* . 1,3,8 (1:+X) SHIFT
6 T*( . X+X) . SHIFT1,3,8,5
7 T*(X 1, ),8,5,13 +X) REDUCE p .. X

I

8 T*(P 1,),8,5,11 +X) REDUCE T ..P
9 T*(T 1, ),8,5,10. +x") REDUCE E-T
10 T*(E 1, ),8,5,9 +X) SHIFT. . .....
11: T*(E+ 1,),8,5.9,17 . X) SHIFt
12 Ttt(E+X 1,),8,5,9,17,1) ) .REDUCEP-X

1

13 T*(E+P 1,3,8,5,9,17,1l. ) REDUCE T-P
14- T*(E+T 1,3,8,5,9,17,20 ) REDUCE E - E+T
15 T*(E . 1,3,8,5,9 ) SHIFT
16 T*(E) 1, 3,8,5,9,16 J, REDUCE P - (E)
17 T*P - 1,3,8,15 .)., REDUCE T-T*P
18 t 1,3 J. REDUCE E-T
19 E 1,2 i It REDUCE S-E

and ACCEPT-

Figure 2.5. : The Behaviour of the La(l) Parser for
Grammar G3 with Input X*(X+X).

From Figure 2.5 we see that the input string X~(X+X)
is accepted by the algorithm and, anticipating results which
are given shortly, we clsim that this means that the string
is a valid sentence or Grammar G3. By inspecting the
•REDUCE' entri es in the "ACTION" column of Figure 2.5 we
Ican construct the parse tree shown in Figure 2.6.
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S
I
E
I

/i~
T * P
~ -: i"")
I /1"x E + T

I IT P
I I
P x
I
X

Figure 2.6. : The Parse Tree of X*(X+X) with respect to
Grammar G3.

For'comparison, we display in Figure 2.7 the behaviour
of this parser when presented with the invalid input X{X+X).

MOVE SYMBOL STACK STATE STACK UNCONSUMED ACTION
NO. CONTENTS CONTENTS INPUT
1 1 X(X+X) SHIFT

"2 X 1,6 (X+X) ERROR

Figure 2.7: The Behaviour of the LR{l) Parser tor GrammarG3
with input X{X+X).

From this figure we see that the input X{X+X) is
rejected by the LR{l) parser tor G3 at the earliest
possible moment, that.is as soon 8S the. substring it has
seen so far (i.e. the two symbols "X(") tails to be 8

prefix to any valid sentence of'G3.
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Fortified by this example, we now turn to a theoret-
ical examination of the properties of the LRCk) parsing
algorithm. The following theorem assures US that the
algorithm performs correctly when presented with valid
input.
THEOREM 2.36
The LR{k) parsing algorithm parses all sentences correctly.
PROOF. In the discussion which followed the introduction
of Algorithm 1.4 we deduced conditions which its parsing
tables must satisfy if the algorithm is to parse sentences
correctly. In order to prove that the LR{k) parsing
algorithm performs properly it is therefore necessary to
prove that its parsing tables T~ = (Q,so ,g,~) satisfy
these conditions.

First note that~since the grammar G is supposed to be
LR(k),its LR(k) stateset can contain no inadequacies and
so the parsing action function t of Definition 2.35 is
single-valued. Next we must construct a surjective mapping
EQUIV : vpQ - Q and show that :
(1)
(1i)

EQUIV (A ) =
whenever a, '+'

s. ,
G-e Vp and X e V are such that

(a) EQUIV(e} = EQUIV( "'} and
(b) both ex, 'fiX c ypGr, then

EQUIV{eX) = EQUIV{ 'V X},
(i11) whenever a e yp a nd X e V are such t hat ex e vpG

then g(EQUIV(e},X}. EQUIV(eX}, and finally
(iv) whenever ex is an ref of G with a handle (q,m)

satisfying m ~ 1en(9), then the value of
f(EQUIV(9),k:x) is :
(8) REDUCE q if m = len(9), and
(b) SHIFT if m > len(e).
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Now in the case of LR(k) parsing tables we can
construct a suitable function EQUIV by the definition

. EQUIV(9) = NAMEOF{V(6».
Then, since Definition 2.35 specifies that
So = NAMEOF(V(J\ », we see that condition (i) above is
satisfied immediately by this construction. Condition
(ii) is equally obvious and to establish condition (iii)
it is only necessary to note that Definition 2.35 gives
g(NAMEOF(V{S»,X) = NAMEOF(GOTO(V(6),X» and that
Theorem 2.20 gives V(6X) = GOTO(V(6),X). Hence
g(NAMEOF(V{9»,X) = NAMEOF(V(6X» as required.

In order to prove the final condition (iv),
suppose first that m = len(S) and let production q be
A- 0( • Then since (q,m) is a handle for ex there must
be a derivation in G with the.·form S -.r fA Ax ~ j-!o(x

where t'o<. = 6~ If we put u =. k:x then this derivation
implies that' the item [A.....0(., u] is valid for e and
therefore f(NAMEOF(V(6»,u) = REDUCE q as required. On
the other hand, if m > len(e), then we may use Lemma
2.17 to see that Vee) must contain a non-final item
of the form [B .... A.P.1,v] with EFF(x) S; EFF(,6,v). Since
x is a terminal string, we have EFF(x) = {uJ and so
f(NAMEOF(V(S»,u) = SHIFT as required to complete the
proof. 0

Not only does the LR(k) parsing algorithm parse
sentences correctly, but it does so in linear time •

•THEOREM 2. 37
The number of moves made by the LR(k) parsing algorithm
while parsing a sentence of length n is ·O(n). 0

This result is proved by Aho and Ullman (1972a,Theorem
5.13).
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Note that Theorem 2.37 expresses the running time of the
LR(k) parsing algorithm in terms of its own primitive
operations, not of time directly. However, it is clear
that each move made by an LR(k} parser can be performed.
in fixed time by any reasonable model of computation and
so the total time taken is indeed linear in the length
of the input. The only workspace used by the LR(k} parsing
algorithm is that needed for the parse and state stacks
and since no individual move can add more than one symbol
to each of these stacks it follows from Theorem 2.37 that
the space used by the algorithm is also linear in the
length of the input.

,All that remains now is to examine the ability of
the LR(k) parsing algorithm to detect and reject all
those inputs which are not valid sentences of the grammar
concerned. It can be seen from the description of
Algorithm 1.4 that there are five Situations in which the
LR(k} parsing algorithm can reject its input. These are
when
(i) The unconsumed input is found to be empty during a

shift move (part (i) of sub-step 3 (a)).
(ii) the parsing goto function yields 'an undefined value

during a shift move (part (iv) ot sub-step 3 (a»,
(iii) The symbol stack is round to'contain too tew

symbols during a reduce move (part (i) of sub-step
3 (b»,

(iv) the parSing goto function yields an undefined value
during a reduce move (part (vi) of sub-step 3 (b»,
and

(v) the parSing action function yields the value ERROR
(Sub-step 3 (c».

There is a fundamental difference in the error detection
behaviour of the LR(k) parsing algorithm between the cases
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k') 0 and k = O. The LR{O) action function can never have

the value ERRORand 60 all error detection in the LR{O)

parsing algorithm is performed in the first four of the

situations listed above. (Actually, Situation (iii)

cannot occur Viith any LR{k) parser.) Whenk> 0, however,

not only is ERRORin the range of the action function,

but it can be shown that all syntactic errors are caught-
by this mechanism, This means. incidentally, that the

efficiency of the LR(k) parsing algorithm may be improved

when k) 0 by removing from Algori thIn 1.4 all those tests

which are concerned with detecting situations (i) to (iv)

above. We shall concentrate our attention on the case k> 0

and in the next lemma we specify the circumstances in which

the LR{k) action function has the value ERROR.

LEMMA 2.38

Let k '> 0 and let T~: = (Q,s. ,g,f) be the LR(k) parsing

tables for the grammar G = (VH, VT ,p,S). Also let e be

a viable prefix of G and let x e v; be a string tor

*which all s e VT such that.9y is an rsf ot G satisfy

k:x I. k:y. Then f(NAMEOF(V(e» ,k:x) = ERROR.

PROOF.Let u· k:x and suppose that. f(NAMEOF (veal ,u) =

SHIFT. Then according to Definition 2.35 there must be

some non-tinal LR(k) item [B .....p,.p"'v). e Vee)
such that u e EFF (13" v). Nowbecause [B -11,· P2' V ]

is valid for e there must be some derivation in G with the

form S -: tABz ~ fA~.{J1Z with f(i. = e and v = k:z.

Then, since u e EFF{~:tv) •. we also have u e EFF(PaZ)

and this means that there exists y e VT'"such that Liaz -.: yr-; I'll'':

~d u = k:y. But because ep,zz" is an ,rst of G, this means

that ay 1s also an rsf of G and since u = k:y this

contradicts the hypothesis that no such y exists. We
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conclude that f (NAI4EOF(V{e»),u);.SHIn. A similar
argument'shows that f (NAMEOF(V{e»,u) f REDUCE q for
any q £ P and so it follows that value of the function
can only be ERROR and the lemma is proved. 0

This result will be used shortly to prove that,when
k ) 0, the LR(k) parsing algorithm rejects all invalid
inputs as soon as possible. Before we can do this,' it
is necessary to be more precise about what we mean by
'as soon as possible~.

DEFINITION 2.39

Let G = (VN' VT' P,S) be any grammar and let x 6 V; be
such that x ~ L (G). Then the error position in x (with
respect to G) is denoted by EpG (x) and is given by
EPG(x) -len(j')+l where y is the longest prefix ot x tor
which some Z E V; can be found such that yz E: L(G). We

will omit the superscript G and write simply EP(x). when
no ambiguity can result. 0

We claim that the error position is the first point
during a strictly lett to right Scan at which it is
possible to determine that astring is not a valid sentence
ot the grammar concerned. This is because all initial
subs~rings which do not extend as far as the error pOSition
are pretixes to valid sentences ot the grammar and there-
fore provide no baSis for rejecting the string.,Note that
this is not the same as saying that the symbol in the
error position is "wrong" or that the error was committed
at that pOint. Consider, for example, the following string
which is intended to be an ALGOL60 statement :

If X < Y then- Z : = 0 ; else Z : = 1 ;
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Our experience of ALGOL60 allows us to assert with some
certainty that the error in this supposed statement is
the presence of the semi-colon precedin~ the ~. How-
ever, the string up to and including the semi-colon is
a valid ALGOL60 statement snd so no error can be pro-
claimed during a left to right scan until the else is
encountered. The symbol else occupies the error position-
in this string because it is the first point at which
the error csn be detected, even though it is probably
neither the source, nor the location,of the true error.

wYhen we speak of the ability of the LR(k) parsing
algorithm to detect errors "as soon as possible" we
mean "as soon as the symbol in the EPCx) 'th position is
examined" and we claim that this is the best performance
which can be reasonably required of a left to right
parsing algorithm. Since the LR(k) parsing algorithm

- looks k.symbols ahead and advances down the input string
•by one symbol each time a shift move is made, stating

that the algorithm detects errors "as soon as possible"
is therefore the same as saying that it rejects an
invalid input, x say, on the move following the EP(x)-k'th
shift move; that.is as soon as the symbol (1f any) in
the EP(x)'th position comes into view. We will now prove

.this property of the LaCk) parsing algorithm.
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THEOREM 2.40

•Let k '> 0 and let x € VT be a string such that
x , L(G). Then the LR(k) parsing algori thm rejects'
x on :
(i) the first move if EP(x) ~ k, or
(ii) the move following the EP(x)-k 'th shift move if

~(x) > k.

PROOF. Suppose that EP (x) ~ k. Then there can be no
Y Q L(G) such that k:x = k:y and so, by virtue ot

Lemma 2.38, we have' z {NAMEOF( V (A », k:x) = ERROR.
Since the initial state of the LR(k) parsing algorithm

and So = NAMEOF(V(A » , this means that x
will be rejected on the first move made by the algorithm.

Now consider the case EP(x) > k. We can write x in
the form x = yz where len(y) = EP(x)-k and the definition

101of EP{x) means that there can be no w e VT with k:z I:

101k:w such that yw e L (G) but there must be some 'v e VT
with (k-l):z = (k-l):v and yv e L(G) •. ' Consequently,
until it has made its EP(x)-k'th shift move, the LR(k~'
parsing algorithm has no way of knowing that its input is
in fact yz (ie.x) rather than the valid sentence yv.
Certainly therefore, the algorithm cannot reject x before
it has made its EP{x)-k'th sh1ft move. Immediately atter
that move the parse stack will contain some viable prefix
a such that e -; y and the lookahead string will be

itu = k:z. Now there can be no w e VT such that ErR is,,an

rsf of G which also satisfies k:w = k:z, for if there were,
then yw would be a sentence of G - contradicting the
observations made earlier concerning the non-existence of
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such a w. It follows, again from Lemma 2.38, that
f(NAMEoF{v(e» ,u) = ERROR and since the state on top
of the state stack at this time must be NAMEOF(V(e»

it follows that the algorithm will reject x on its
next move. 0

As we remarked earlier, the error detection of the
LR(O) parsing algorithm is rather different to that of
the case 1t > 0 discussed above. Because the LR(O) parser
uses no lookahead, it is not until it has committed '
itself to a move that this parser is able to inspect
the next symbol or its input string. In spite of thiS,
LR(O) parsers do detect and reject all invalid inputs,
though not quite a soon as, say, an LR (1) parser would.
Although we shall not prove it, it can be shown that when
an LR(e) parser is presented with an invalid input string
x, it will always halt and reject the string either during
or before making its EP(x)'th shift move. This means that
an LR(e) parser may make some moves, but only of the
reduce type, after an LR(l) parser presented with the
same input would have halted, but will itself halt and
declare ERROR before maKing another shift move.
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2.6. Summary

By virtue of their very definition, the LR (k)
gra~ars are the largest class which can be parsed
deterministically from left to right. This gives them
an immediate theorectical appeal which is heightened
by the discovery that they gener~te exactly the
deterministic languages (at least they do when k > 0).
Although the LR(k) property is undecidable in general,
we have seen three different algorithms.for deciding
whether a given grammar 1s LRCk) for some particular,
predetermined; value of k. The method of Section2.2
though conceptually stra1ghtfoward and useful for proving
Theorem 2.8was not developed sufficiently to yield a
practical algorithm. The methods of Sections 2.3 and
2.4 both yield practical algorithms but the former
suffers from the disadvantage that its worst-case comp-
lexity ~s exponential in the ,size of the grammar under
test. However, it seems that for conventional p~ogramm1ng
language grammars the size of the LR(k) stateset grows
only linearly with the size of the grammar (see Purdom
(1974». Thus the poor worst-case performance ot this
algorithm 1s unlikely to be as~rious drawback in
practice. As far as we know, the etficient algorithms
of Section 2.4 are untried in practice.

A parser for an LRek) grammar is easily constructed
from its LR(k) stateset. The performance of these parsers
is superior in many respects to almost all other bottom
up methods. One of the great advantages of the LR(k)

parSing algorithm over most of its rivals is the fact that,
when a reduoe move is called tor,an LR(k) parser knows
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imnediately which production is to be used in the
reduction. In contrast, most other bottom up methods
know only'that a reduce move involving some production-
is required, and must spend time examining their parse
stacks in order to discover the identity of the
production to be used. The tRek) parsing algorithm is
therefore, in general, faster (that is it has 8 smaller
constant of proportionality) than other linear-time
parsing methods.

Furthermore, the ability of the LR(k) parsing method
to detect syntactic errors at the earliest possible moment
is vastly superior to the error detection facilities
arforded by other bottom up methods. Although, as we have
seen, the "error position" w'1thin a syntactically incorrect
string is not necessarily the point at which the error
was committed, it is almost certainly the best place to
which to direct the user's sttention, and it is also the
point at Which the contents of the parse stack may best
be used to enable the automatic generation of meaningful
diagnostic messages and to in1tiate automatic error
recovery procedures.

The price paid for the generality, speed, and
excellent error,detection of the LR(k} parsing method
is in the great size of the tables which drive the
parser. It'is ultimately the cardina11ty of the LR(k}
stateset for a grammar which determines the size of 1ts
LR(k) parsing tables and this value grows dramatically
with increasing k. Although LR(O) atatesets are quite
modest 1n size, the LR (0) grammars are too restrictive
to be useful in practice. The LR(1) grammars, however,
appear sufficiently general to model thes,yntax of most
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conventions! programming languages. Those· programming
language grammars which are not La(l) are quite likely
to be ambiguous or to present other difficulties to a
human reader. Practical confirmation of the utility of
the LR(l) gremmars is provided by the fact that many
more restricted classes of grammars have found wide-
spread and successful application. Sadly,· though, the
LR(l). parSing algorithm founders in practice because its
parsing tables are intolerably large - the LR(l) state-

the sizeset for a grammar/of ALG0L60 will contain many thousands
of states and will give rise to parSing tables requiring
tens of thousands of machine words for sto~age.

Fortunately, methods derived from the LR(k) parsing
algorithm (or, more precisely, from the LR(l) algorithm)
have been found which reduce the space required by the
parsing tables to acceptable proportions, while retaining
almost all the advantages of the basic algorithm. These
methods are discussed in Chapter 6.

There is one parsing method which does outperform
the LR(k) algorithm in one important respect. This is the
"operator precedence" method ot Floyd (1963), and while
it is applicable to only a very restricted class ot

grammars and affords appalling error detection facilities,
it is very fast indeed. T he reason for this is that the
operator precedence method does not really parse accord-
ing to the original grammar at all, but parses with
respect to an abbreviated "skeletal grammar". This enables
it to bypass completely many or the reduction steps needed
by conventional parsing algorithms. Since matters are
arranged so that these bypassed reductions are without
semantic significance, the "sparse parses" produced by the



114
operator precedence method are just as acceptable for
the purpose of translation as ordinary parses. In the

•
next chapter we shall generalize the LR(k) property so
that the LR(k) parsing algorithm too may bypass certain
reduction steps, thereby obtain1ng a considerable gain
in parsing speed, without sacrificing any of the other
attractive properties of this parsing method.
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CHAPl'E-'R 3.

THE CFLR (k) PROPERTY

In order to motivate the subject matter of this
chapter, we invite the reader to consider the parae
tree shown in Figure 3.1 which displays a derivatiQn
in the programming language EULER (Wirth and Weber,
(1966».

/EXPR-
VAR . _.
IVAR-
I
"I
A

,

EXPR-
I

CATENA
IDISJ
ICONJ
ICONJ-
INEGATION
IRELATION
ICHOICE
ICHOICE-
I

. SUM
ISUM-
I

TERM
ITERM-
IFACTOR
IFACTOR-
IPRIM.ARY
I

V.AB.
IVAR-
I
"I
B

r.:

Figure 3.1 : A Derivation from EULER.
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The only productions involved in 'this derivation which
have any semantic signiticance are :

EXPR- _.... VAR ... EXPR-

VAR- - A
PRIMARY - VAR

A - A

'A -- B

Consequently, the "sparse parse tree" of Figure 3.2 is
just as satisfactory tor the purpose ot translation as
that ot Figure 3.1.

_______ EXPR- ~

VAB.- PRIMARY
1\1 ~ I
A VAB.-
I 1
A 'A

I
B

Figure 3.2: A Sparse Parse of the Generation in Figure 3.1.

However, the tree shown in Figure 3.3 is not a satistactory
replacement for that ot :E!·igure3.1 because some derivation
steps ,with 'semantic significance have been omitted.

Figure 3,3 : An Unsatisfactory S~arse Parse ot the
Generation in Figure 3.1.
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A conventional parsing algorithm tor the language

EULER would_,ot course, produce the parse correspond1 ng to
Figure 3.1. In particular, an LR(k) parser (or any other
shitt-reduce bottom up parser) would require 3 shitt
moves and 23 reduce moves in order to produce that parse.
Ot the reduce moves, only 6 involve productions with
semantic signiticance; the other 17 (i.e 74% ot the total).
are ot no interest tor the purpose ot translation and
the proportion ot the parser's ettort which is expended
ontnese moves may be considered wasted. It would be very
interesting and useful theretore, to seek parsing

.;algorithms capable ot producing the "sparse parse" ot

Figure 3.2 directly. We would expect such a "sparse
parser" to be very much taster than a conventional parser.

Because the tRek) grammars and their associated
parsing algorithm are generally very attractive, it is
with them that we shall concentrate our search ter sparse
parsing techniques. Betore proceeding turt~r we need to
tormalise the notion of a sparse parse. Following Gray
and Harrison (1972) we suppose that, independently ot .

context,a production either does or does not have
semantic signiticance. AccordingLy we make the tollowing
defini tion.

DEFINITION 3.1
l1liLet G = (VN, VT,P,S) be a grammar and H ~ P. It ~,p e V

satisty 0( -: p and D == «qi' mi)>1~1 is an explic1 t
derivation ot p trom ~ then the H-sparse derivation
corresponding to D 1s :

Naturally, when D is an r-derivstion, ~ 1s said to be an
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H-sparse r-der1vation and PH' the H-sparse parse

correspo~ding to D.is defined as the sequence of
productions which appear in DH ; that is :

The intended interpretation here is that the productions
in H have semantic significance while those in P\ H do
not. An H-sparse derivation ls the subsequence of an
ordinary derivation which contains only those steps which
have semantic signficance. Note that,unlike the case with
ordinary derivations, different sentences may share the
same sparse derivation.

We would like to discover shift-reduce bottom up
parsing algorithms which ignore the productions in P\H
totally. Howeve~, it is diftioult to see how this can be
accomplished in general. In particular, it any productions
in P \ H have degree other than 1, then ignoring reductions
by these productions will surely cause the parse stack to
have the "wrong length" during the subsequent activity 01'

the parser. It we undertake only to ignore productions
of degree 1, then this diffioulty at least does not arise.
This is because the parse staok in the shift-reduce bottom
up parsing method bas the same length both before and
after reduction by productions 01' degree 1. Productions 01'

degree 1 and without semantio significance are called
"chain" produotions (because they partake in long chains
of redUctions such as that from PRIMARY to EXPR- in
Figure 3.1). We make this notion precise and introduce
some additional terminology in the next definition.
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DEFINITION 3.2

Let G =(V.N,VT, p,S) be a grammar. The production
A -"> e e P 1s sai d to be a chain production it

:(i) it has no semantic signiticance, and
(ii) A ~ S and len (a) = 1.
~ben e , ~ is a set 01' chain productions, we say that
C is a chain set for G and the pair (G,e) is called a
chain specified grammar, or cs-grammar for short. If
we define H = l? \ C ...then the H-sparse derivations in
G are more conveniently called the chain free derivations
in (G,C). Similarly the H-sparse r-derivations and H-
sparse parses in G will be called the chain-free
r-derivations and chain tree parses respectively. 0

Thus a chain-free derivation is a subsequence of an
ordinary derivation from which all steps involving chain
productions have been deleted.

In future we will often abbreviate "chain-free" to the
~phenated prefix "cf_lt• Chain-free r-derivations will
be called cfr-derivations. When D is a derivation in
G we will denote the ef-derivation in (G,e) corresponding
to D by Dct • Observe that Definition 3.2 requires
that no chain prodUction has the goal symbol as its left
part. We make this stipulation because it is a simple
WaY to ensure that no sentence in L{G) has a null

"
ct-derivation. This is convenient for technical reasons.
Note that this is the only condition which we place On
chain productions. In pl rticular, we do not exclude chain
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productions whose right parts are terminal symbols,
nor do we preclude sets of chain productions which
share the same left part.

Since we have now retreated from our original
objective, which was to find a fully general sparse
parsing technique, in favour of a lesser goal, namely
the discovery of a chain-free parsing method, we

,

should enquire whether the likely benefits remain
worthwhile. In practice it seems that programming
language grammars contain relatively few chain
productions. For example, an ALGOLW grammar containing
183 productions has but 13 chain product10ns; that
is about 7% of the total. However, the·frequency of
occurrence of chain productions within grammars is
not the real issue. What really matters is the frequency
with which chain productions appear in derivations.
If chain productions teod to occur in the "heavily
used" portioos of grammars then they may well appear
in derivations with considerably greater frequency
than their comparatively infrequent appearance within
grammars might suggest. T his does indeed seem to be
the case, for within a programming language gra~~ar

,chain productions are typically used for two d1fferent
purposes, both of which concern portions of the
grammar which are likely to be heavily used. Firstly,
they are used to collect together several syntactic
categories under a Single heading. In ALG0L60 for
example we have :



121
<STATEMENT) __.,.. (UNCONDITIONAL STATEMENT) I

(CONDITIONAL STATEMENT) I
(FOR STATEMENT> •

Secondly, they are used to enforce precedence among the
operators in expressions. In the case of Grammar G3 tor
instance, the productions E - T and T ~ P are chain
productions which cause parenthesized sub-expressions
to be evaluated before unparenthesized ones and also
caUse the operator * to have higher precedence than +.
It is especially this second use of chain productions
which causes them to occur disproportionately often in
derivations. Measurements by Anderson (1972) on several
ALGOLW programs showed that, on average,7~1 of all the
productions appearing in derivations were chain productions
(even though chain productions accounted tor only 7% ot

the productions in the grammar). When an ad-hoc method
for bypassing reductions by chain productions was
incorporated, Anderson tound that the parsing phase ot

the ALGOLW compiler was speeded up by almost 5~~ and that
totel compilation time was reduced by about 15%. Further
evidence is provided by Aho and Ullman (1973b) who report
3 private communication ot Horning relating to experiments
at Toronto which showed that the parser in the XPL
compiler was speeded up about 2i times when reductions
involving chain productions were bypassed. Since compilers
are usually well constructed and carefully optimised
programs, these improvements are to be regarded as very
substantial and worthwhile. It is worth noting that almost
all the productions without semantic significance in
programming language grammars do turn out to be chain
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productions; and those semanticless productions which
are not chain productions do not seem to occur all
that frequently in derivations. In summary, chain-tree
parsing is likely to retain almost all the benefit of
fully general sparse-parsing and this benefit 1s
conai,derable.

There have been several attempts to modity the
LR(k) parsing algorithm so that it bypasses reductions
by chain productions. We have already reterred to the
work of Anderson, that of Aho and Ullman (1973b) is
also notable. These methods suffer f'romcertain
~actical disadvantages and because of' their ad-hoc
nature they provide no theoretical insights into the
nature' and properties of'cf'-parsing. In contrast,we
shall seek to construct LR(k)-type chain-f'ree parsers
from "first principles" in the hope of'obtaining both
a better understanding of the underlying processes and
also a better chain-tree parsing method.
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3.1. Bottom up Chain-Free Parsing.

Ylebegin our investigation of chain-f'ree parsing
by moditying some of'our existing concepts in order
to take account of'chain productions. First of all we
must revise our idea of syntactic ambiguity.Consider
the following grammar :

S - A

A --- A. (Grammar G4)
A - x

This grammar generates the language [x} and plainly
it is an ambiguous grammar; in f'act its single sentence
has an infinite number 01' r-derivations. However, it
A- A is a chain production, then all the r-derivations
of x yield but a single ctr-derivation, namely

<CS -- A,l), (A - x, 1)>. For the purposes of
translation it is only the ctr-derivation which is
sign11'icant, and since this is unique, the gra1mmar is
"as good as" unambiguous. Accordingly we will now
consider a grammar to be ambiguous only if'some of its
sentences possess more than one chain-free r-derivation.
The next definition makes this notion precise.

DEFINITION 3.3
The chain specified grammar (G,C) is ct-unambiguous
if and only if every sentence in L(G) has a unique
cfr-derivation. 0

The next result is an obvious corollary to this defin1tion.
THEOREM 3,l;t

(G,e) is cf-unambiguous it G is unambiguous. 0
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The next candidate tor revision is the concept

ot a "handle". Recall that the handle ot an rst is
eftectively the last step to appear in an explicit
r-derivation ot that rst. By analogy, we may provision-
ally detine the "chain-tree handle" (or "et-handle" tor.
short) ot an rst to be the last step appearing in
some explicit chain-free r-derivation ot the rst.
Associated with the concept ot a handle was the idea
of "reducing" an rst. Remember that reducing an rst .
meant replacing its handle phrase by the lett part ot

its handle production. We may suppose,by analogy. that
."et-reducing" an rst means replaci ng its ct-handle phrase
by the lett part of its ct-handle production. The
general bottom up parsing algorithm (Algorithml.2 )was
expressed in terms ot these two primitive operations -
finding the handle of an rst and then reducing the rst.
We may tentatively construct a bottom up chain-free
parSing algorithm by replacing the terms "handle" and
"reduce" in Algorithm 1.2 by "et-handle" and "et-reduce"
respectively. Let us see how this works in practice.

We will use the grammar G3 given in Section 2.5

and will choose C3 = fE'" Tt T ~ PtP ... X J as the
chain set. Suppose we wish to et-parse the sentence
x-x-x , The explicit r-derivation ot this sentence
is :

<cs - E,l)
(p -- X,S)
(E - T,l)

,
,

(T -T ". P,5)~
(p- X, 3),

o- X, 1».
, (T -- P,

(T-P, I,
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The tirst step ot our proposed bottom up cf-parsing
algorithm requires that we tind the cf-handle of
X+X*X. Inspection of the r-derivation above reveals
that (T..T*P,S) is the ct-handle ot this sentence.
We should now cf-reduce the string X+X*X, that is
to say we should replace its ct-handle phrase by the
lett part ot its cf-handle production. A problem now
arises because we have not specified the notion of a
ct'-handle phrase sut't'icientlyprecisely. If (T4>T*P,5)
were the ordinary handle of some string, we would expect
that string to contain the right part of the handle
production, that is T*P, as a substring occupying the
3rd,4th and 5th symbol positions and that occurrence of
T*P wou~d be the handle phrase. Here" however, we find
the string X.X in the pOSition where we would expect to
find the handle phrase. However, x*x is derived from
T*P by a sequence ot'chain productions so let us suppose
that the correct interpretation of "ct-handle phrase"
here is the substring X*X. Then, suppressing any doubts
that this may occasion, it seems that to ct-reduce
X+X.X we should replace the substring X*X by the symbol
T (that is the left part of the ct-handle production).
This operation yields the string X+T and the proposed
ct-parsing algorithm now requires us to find the ct-handle
ot this new string. But at this,point everything collapses
in disarray. The string X+T is not an rsf of the grammar
and so we cannot speak of its r-derivation, let alone its
cfr-derivation or its ct-handle. We must re-examine our
constructions •
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One dubious aspect of our failed cf-:-parsingattempt

was the interpretation of "cf-handle phrase" and the
way in 'which viecf-reduced the string X+X*X. But this
is not the real cause of our failure. The true roots
of the problem lie in the notions of rSf's and r-deriva-
tions, for these are inappropriate to the cf-parsing
context. As presently defined, a cfr-derivation is a
subsequence of an r-derivation. This means that not only
are non-chain proauctions constrained to be applied
right - canonically, but so too are chain productions.
Surely there is an inconsistency here. We profess no
interest whatsoever in chain productions and do not care
to be told whether they are used or not; it must be
unn8tural.therefore~to require, as we do above, that
when chain produotions are used then they are used r1ght-
canonically. Either we care about chain productions or
we do not. We should not take a middle course.

We escape this dilemma by defining a new type of
derivation (called a "rorc-derivation") in which non-
chain productions must be used right canonically while
chain productions are allowed to be used "anywhere".This
is the import of the next definition in which we also
consolidate some of our earlier provisional definitions
and introduce sundry other related concepts and notations.
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DEFINITION 3.5

Let (G,C) be a cs-grammar. It ~,~ *e V have the torm
0< = 'tAcf and p = ~Xd where A - X e C then we say
that cl. directly chain derives p {wi th respect to
(G, C» and write 0( ~ p • Clearly ~ ls a relation on
V~.We use it to define turther relations on V* as
tollows :
(1)

(li)
(i11)

- = - A - )Itc: It e

- = - v - ,Rone. It c- = - \ -ltC, IC t:

These relations are pronounced 'directly ~ight-
canonically shain derives' ('rc-derives' tor short),
'd1rectly right-canonically or chain derives'(' rorc-- --
derives • for short), and 'directly right-canonically-
shain!ree derives' ('rcf-derives' tor short) reapect-
1vely. Their closures are denoted by

etc. in the usual way.

When A - e is production q, f>( = ($A~, P = "6 BJ •

and m = len (~e) we extend our previous notation and
write ••

(i) 0< -( q,m>--C p it q e C,
(il) ex -(q,m}-;- p 6 :IIit q e C and e VT,

(i11) 0( -(q,m>-=c ,s S * and11' q e C or e VT,
(iv) 0( -(q,m) it:,. Ii p\c and G *it q e ,

VT•

Observe that if O{-(q,m) "o~c,sthen q e C implies
eX -(q,m~ p and q e P\C implies 0( -<q,m.~ (3.

oWWhen 0( --. A there must exist a sequence of stringsAOIIC{-

< \.f' i> i~O and sequence of reductions D = «qi,m1 ~1:~

such that eX = ~ 0-{ql..'ml Tit":' "iJl-< q2' m2) ~ ~2 •••

••• ~r-l -(~, mr) 11.'::- ~r = f3.
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The sequence D is called an explicit ~-deriv8tion ot

f t'rom 0( {with respect to (G,e» and we may write
C>( --{D] ROA~ f3 • We define explicit c- , rc-, and rct-

derivations similarly.

The rorc-sentential torms ot' (G,e) (called rorcst's
for short) are the members ot the set {·cX C .v" I s --: 0(1•• "eo
"'t'ben'0 is a rorcst of (o,c) there must exist further
rorcst's 0( and (3

that
and a derivation step (q,m) such

and then (q,m) is said to be a cf-handle of 't • Note
*that we will have m/{3 e VT' m/(3 = m/"6, and len( (3) =

len( 2r ). . Provided that (q,m) is the only ct-handle
ot 0 we can unambiguously refer to q as the cf-handle
production of ~ and to m as the ct-handle position in ~ •
Also the strings m:~ and m/~ may be called the left
and right contexts 01' the ct-handle 01' 0 respectively.
It productiorl'q is A- 9 then 0/, ~ and (f can be written
in the torm ex = SAx, (J = sax and " = t-t ex where
len(8e) - 8 .... and s~~ ~ • The substring 01'-. m, ~ I-' ~

is then called the cf-handle phrase of 0 • The act
ot replacing the ct-handle phrase ot a rorcst by the lett
part ot its ct-handle production is known as et-reducing
the rorest. It can be seen that ct-reducing 0 above
yields the $tring }-lAx. Observe that this string is also
a rorest ot (o.c); Cl
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The detinitions above are crucial to all the

developments which follow. In these developments, the
rore-derivations and roresf's will tulfill the roles
previously occupied by r-der1vations and rSf's.
Similarl~ the notion of a et-handle and the operation
ot et-reduction will replace those ot handles and of
ordinary reduction. The vital property of roresf's is
that they are closed under the operation ot ef-reduetion.
Observe that when the chain set ia empty, these notions
of rorest's, rore-derivations and et-handles etc.,
revert to the corresponding "old" notions ot rst's,
r-derivations and ordinary handles. Thus the new theory
which we are constructing is a true generalisation ot

the established theory.

There is one concept, the most tundamental ot all,
which is still bound to the old ideas. As detined by
Detinition 3.2, a etr-derivation is a subsequence ot an
r-derivation, and we have discovered that r-derivations
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LEMMA 3.6,

*Let (o.c) be a cs-grammar. It «.~ e V satisfy 0( -:::,: ~

and D is an explicit rorc-derivation er ~ tram ~ then
there exists fJ e V· such that 0( ._.. ~ -. "f ~ , and,

& Co

furthermore~there is an explicit r-derivation E ot ,

trom 0( such that Dct = Ect•

~OOF. The proot is by induction on the length ot

the derivation D. The basis ot the induction is the case
where D contains no steps at all and is trivial. For
the inductive step we assume the result to be true at

all rorc-deri vations containing n steps (n ~ 0) and
then suppose that D contains n + 1 steps. We csn
distinguish the last step in D as (q,m) and write
D ::D' .«q,m» where the derivation D' contains n
steps. For some c5 £ ~ we will then have :

Applying the inductive hypothesis to the derivation D',
we deduce that there exists fA • V· and an r-derivatlon
B' at,.. trom 0( such that Elf :: D'

f
and,c c

0( --{E' ~ Lt _;- cS -<q,m~ ".
111'- " ..... c.

There are now two cases to consider according to whether
or not q 1a a chain production.

Case 1 : q e C. Then we have· cS '-(q,mr:1 and 80 jJ ~ ... ~.

We may detine E ::E' and p:: r and the inductive step
'i8 complete tor this· case.
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Case 2 : q e p\ C. Then we have cJ -(q,m~" and so

ltc,

we can write 6 and 1S in the form cS = "lAx and '6 ="'1 ex
where A'~ 9 is production q and len(~9) = m. Since we
also have fA -i~it follows that we can write lA = o-B1T

where a -:,., , B -.: A and tr _; x.
c -, c c.

implies TT ~ x. Also, because B e
Ac

* ..Since x e VT, iT~ x
VN, B -t. A implies

...B -P A. Therefore there exist explicit rc-derivationslie.

Ea and E' such that
,.,. =

We also have
tS"Ax -<q,m~

,.. =~.er ex ~ "'l ex
c.

Hence, if we define E by E = E' • E2. • El • «q,m» and
p by f1 = aex, then we have 0( --{E1-;,s i~as required
and it only remains to verify that Ect = Dcf • Clearly
we have Ect = E~f • E~f • E~f • «q,m» and since
E~ and E2 are rc-derivations, we must have that both
E:f and E~f are null sequences. Thus Ecf = E~f • «q,m».
But we also have Dcf = D~f • «q,m» and E~f = D~f.
It follows that E'cf • Dcf and so the inductive step .
and the proof of the lemma are complete. 0

The result we seek is a straishtforward corollar,y to
this lemma.
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COROLLARY 3.1

Let (G,C) be a cs-grammar. It x e L(G). and D is
an explicit rorc-derivation ot x trom S then Dct is
a ctr-derivation ot x from S.

PROOP. We have 5 --ID 1 • x and so by the
ROlle.

proceding lemma there exists 0( e V* and an
explicit r-derivation E ot ~ trom S such that

*Since x e VT
OIl ~ x and so,..oC ._." x• we must also have

there exists an explicit rc-derivation F of x trom «.
We now have

... \

S ~E~ ol -!P1--:x
and if we derine'EI = E • F we see that EF is an
explicit r-derivation of x trom S. The corresponding
orr-derivation is .El cf == Ecf • F cf •But F is an
rc-derivation and so Fcf is'the null sequence. It
tollows that Dct == Ecf and since we know that Eef ==

Dct it tollows that· EJ'cf == Dci' and hence that Dot
is indeed an explicit ctr-deri vation ot x trom S. 0

Another usetul corollarl or.Lemma 3.6 is the tollowing
.result.
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COROLLARY 3.8.

It ~ is a rorcst ot a cs-grammar, (G,e) with a et-

handle {q,m),then there exist ~JP
S -; 0< "'(q,m}-..A ..... CS.

" R.c~ r ,

*e V such that

PROOF. By detin1 tion, it 'l( is a l'Orest ot (o,c)

wi th a et-handle (q,m) there must exist d and ,p' e Y*
such that

.. ,

In other words, there is an explicit rore-derivation
D ot ¥ trom S such that (q,m) is the last member ot

• (To see this, note that -. c -... • )
Co - ./fC

Theretore, by Lemma 3.6.there exists *fL e V and an
expl1ei t r-derivation E such that .Eet = Dcf and

~
S -{E1--: r ~ 'a'.

S1nce (q,.) is the last member ot the sequence Dct
and Dcf = Bef ' , we may wr1 te E 1n the torm

•
where the sequence E2 is an rc-derivation. (That 1s
to say Ecf 1s the null sequence). Clearly, there

*ex1st tX.p e V such that
S --{E' h 0( -<q, III>- .,.--b: 1 J.-.-. p... ~, ~

and thus we have
S

and the result is proved. 0

.,Betore returning to a re-examination ot the bottom up
et-parsing algor1thmwe prove an important result which
relates ef-ambiguity to the uniqueness ot,et-handles.
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(cf. Theorem 1.1)

Let a :III. (v , v , P, S) be a reduced grammar in whichNT· .
s +~ S· does not occur and let e be a chain set for
. G. Then (o,c) i8 et-unambiguous if and only if every

.'. rorest of (G,C) has exactly one ct-handle, except S
whi ch has none.

.PROOF. We prove the result in the "only if" direct-

". ,

ion·by showing that it any rorcsf has two distinct
cf-handles then (G,C) is ct-ambiguous. Let Co( be a
rorest of (a,c).with a pa1r ot dist1nct cf-handles (p,m)
~nd (q,u). There must be two explicit rorc-der1vations
D and E ot ~ trom S such that (p,m) i8 the last member
ot Det and eq,n) 1s tQelast member of Eef • Since
(p,m) I. (q,u) 1t tollows that D ef .,Eef• Now because a
1s reduced, there must be some x e V; such that

1,./ •0< _ X
It

, so let F be an exp11cit r-derivation of
x from 0( • Then if·we define DF == D • F aud EF == E. F
1t tollows that DF and EF are both rorc-derivations ot

x from S. By Corollary 3.7 this means that both DFcf
and iFof are etr-der1vations of xtrom S. But we have ••

DFct == Dcf • Fct and
iF cf :III E of • Fcf

and since Dcf '.Eof ' this implies that DF f: El".

Hence the sentence x has two d1stinet efr-derivat1ons
and so (a,c) is ot-ambiguous and the proot isoomplete
tor the "only it" d1reet10n.

For the proot.in the "if" dil'ection we show that
if (a,c) 1s ct-ambi~ous, then some rOl'cst ot (G,e) has
a pair ot dist1nct Dt-handles. Suppose that (G,e) 1s
ot-amb1i'!ous. Then some sentence x : e LeG) possesses
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a pair of explicit r-derivations D and E such that

Dcf ~ Ecf• Three cases need to be considered.

Case 1 : Dcf = Q ':& Ecf tor some non-null

sequence Q. Wewill show that this case is impossible.

Wehave S -[E ~ x and. since no chain production

may have S as its left part this means that the first

member of the sequence E is the same as that of the

,subsequence Ec! • Rlrthermore, this first member'has

the form (S _... 0< ,len( 0( » where S ~ Of e P. Wecan

therefore write Ec! in the torm EC!=,-«s ...OC',len(Of») • R.

Since Dcr= Q' • Ecf we can partition the sequence

·D and write

. D • D' • < (s .. c< , len ( 0( ) )> • D2

where Dbr = Q and D~f I: R. Clearly there exist

l'" d €. V· such that

S -[D' ~ '6 -(S .. O(, len(oi) >-: ~ -{ D2.~ x.
*It follows that ~ has the torm "r = se for some z e VT.

Nowdefine D:I by Dl 1:' <CS ..:,.o(,len(-c») • D2 and we

have Sz ~Dl ~ X • But we also have 5 -{E ~ x

and Eef = D:!. This 'implies z = J" and so

s --{n'1-: 1r becomes S -{D'~ S • NowDcf = Q

'and Q is not null. Hence S _.+ S • But this contradicts

the requirement that S _.,.+ S, does not occur in G and

so we conclude that this case is impossible.

Case 2 : Ecf = Q • Dcr for some non-null

sequence Q. This case is symmetrical with Case 1 and

. may be shown by the same argument to be impossible.
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Case 3 •• Neither Case 1 nor Case 2 obtains. In
this case, since Dct ~ Ecf we must be able to write
D and E in the torm : ..

= • «p,m»
«q,n»)

, andD

E == E' , •
where p,q .. p \ c , (p,m);: (q,n) and Dc~ == Ec!

*will exist 0(/(3,''6 J J e V such that
S --rn' 1--;; e.' --{ p,m) «<;~ fI -In 'l ~ x and

S ---[E' J--.: ~ --{q,n) 1Ie~ C§ --{E2 1-:x •

•
There

.Now althoush D~· .• E~f ' it is not necessarily the
case that D:l • ·12. and so we cannot be sure that
{3 = c5 • However, by a straighttoward induct'1on on
the length ot the sequence D~f (we omit the details)
it can be shown that there exista •(I C V such that
both and J~'" 8

Co
• We therefore have

s_:o( --(p,m)....:.. A --: e
. " IICII r c.

and . S ~ )S -(q,n>-;;;:- d --i e and so we see
that e is a rorcst ot (a,c) with a pair ot distinot
handles (p,.) snd (q,n). This completes the proot'in the
"it" direction snd so we may conclude the theorem. 0

We Saw earlier how our tirst attempt to tormulate
a bottom up ot-parsing algorIthm broke down due to an
inadequate definitional tramework. We have now repaired
.these deticiencies and may pro~eed to re-present the
algorithm.
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ALGORITHM 3.1Q (cf. Algorithm 1.2)

.Bottom uP. cf-parsing algor1 thm.

Input : A cf-unambiguous cs-grammar (G,e) and a
sentence x e L(G) which is to be cf-parsed.
The exp11c1t ctr-derivation (in reverse order)
of x with respect to (G,e).

)

.Output:

Method: .
1•

2. Repeat steps 3 and 4 until 0(. = S·(S 1s the
goal symbol ot G).
Determine the cf-handle of ~ and output it.
Of-reduce 0( by 1ts cf-handle and let the
result replace 0( .• 0

4.

The close similarity between Algorithms. 3.10 and 1.2
should be noted. The present algorithm 1s in tact identical
to Algor1thm 1.2 except that cf-handles have been
substituted tor handles and the operation ot cf-reduction
bas replaced that of ordinary reduction. Unlike that of

Algorithm 1.2, however, the correctness of Algorithm 3.10
1s not at all obvious and must be established by a formal,
proof. This we proceed to do •.

_.,THEOREM3.11

Algorithm 3.10 terminates atter a finite number ot

repetitions ot steps 3 and 4 and its output is the correct
efr-derivation (in reverse order)· of the input sentence x.
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PROOF. Let r be the number ot times that steps 3

" and 4 ot Algorithm 3.10 are executed (note that r will
•

be infinite it the algorithm tails to terminate) and let
._ (Pi ,lilt) be the cf'-handle·tound during the i'th
execution of Step 3 ot the algorithm and let 0(" denote
the .contents ot the string 0(, after the i'th execution
ot step 4. Let 01. = x. Since x e L(G)and (G,e) is
ct-unambiguous, there is a unique explicit ctr-derivation
D = {(q. ,no ».' ot x trom S. Note that tor convenience.. .. ... ,
we have numbered the steps in D in the reverse ot the
normal order. Let <~ ,,0 and < ,4,. ).0 b~ sequences ot

T" /'.s "(. •....

rorcsf's of (G,e) such that
.S ==. "'$ -i P, -{ qs ,n, >;:; 'Ys-.-i ¢s-,-( q,_. ,n,,_. )-~ o/s-a -; • • •

... -{ .._ • • • ~ P, q, ,n, ) ,;, % ~ P. :. X

and let t be the minimum ot sand r. Observe that since
no chain ~roduction has S as its lett part, we in fact
have S = '-1'1 ill4s • We will prove that tor all i in the

.range 0 ~ .1 ~ t we have and tor

1" 1~ t we have (p,. m,) = (qL • n.). The proot'is
by induction on i. For the basis we merely observe that

and 1>" = ~o = X and so ll.l -.'" 01••To ..

For tbe inductive step we suppose that tor some i in the
range O~. 1 < t we bave "1'........ ,. ol.. and proceed
to prove that 't'"., ....'"<c.. and (p~."mL") = (q,..,n, ..,,).

By construction we have
S .c 'It.,""; ~.,., -(q,••,nt.. ~~ '-JI;,

and by'the inductive hypothesis we have l.u. -. ... 0( ••T c. c. ..

Tberetore (q. , n .....). is the ct-handle of'ol· • Algori tbm".. -,. .
3.10 finds (P.' ,lIli+.) sS the ct-bandle ot 01."

L+'

s~ce (G,e)is ct-unambiguous this means that
and

= (P.;.,."lIl, .., ) as required.
(q. .. n·L.),.," c...,

Now we can write J... and ...11.T... T c.
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in the form CP;.., = r Ax
A.... a is production q.

CI+I

and \11.. = ",ex where,
and len f,·S) = n. • And since'r '+1

we can write 0<" in the torm 0(,' = pax
where and 8 -.: e . The act ot

"
ct'-reducing «, clearly yields the string O(i. .., = pAx

and we see immediately that (/>. -.: t)(. • Since
"'" Co '~I

we therefore have "" 4(>('. which is thei", Co "+1

result required to complete the induction.

We prove that Algorithm 3.10 terminates by demon-

strating that r ~ s. Suppose that r > e , Then trom the

forgoing induction we know that "'.. -.r Ol$ • But '1'.1 = S

and no chain production has S a~ its lett part. Therefore

0(•• S' snd so Algorithm 3.1Q terminates atter step 4 has

.been executed for the s Ith time. Weconclude that r' s

It remains to show that r = 8. Suppose that r < s • This

implies tha t O<yo = S and ~ence that 'f" ~ s • But if

r < s we have S -",!, '1'.,. and therefore S ....+ S. But (G,e)

is cf-unambiguous and so it cannot be that S ...,;~Sin G.

Weconclude that r = 8 and hence that Algorithm 3.10 is

a correcto~-paraing algorithm. 0

r

Let us now return to our abortive attempt to ct-

parse the string' X+X*X : with respect to (G3, 03).
Observe that, as far as it went, the metpod employed in

that attempt was consistent with Algorithm 3.10. The

ct-handle of ,X+X*X. is indeed (T --:T*P,5), and

its et-handle phrase i8 indeed X*X •. Theretore ct-re-

duction ot :_.X+X*X yields the string ·X.."T·8S before.



140

.We previously gsve up et this pOint because X+T
1s not an rsf of the grammar. We now know that X~T
is a rorcsf and that the algorithm may proceed. A
rorc-derivation of .X+T is,

< (S'" E, 1) ,

(T -.. P, 1) ,

(E~E+~,3) , (E ... T,l) .

(p ....X, 1 »

> . and so we see that its ef-handle is (E"'E+T,3>' This

means that when. X+T is cf-reduced it yields the
single symbol E. One more iteration of step 3 of
Algorithm 3.10 gives the laet cf-handle of the parse,
namely (S ....E, 1) and after cf-reducing E to S the
algorithm terminates. The cfr-derivation found by this
process is of course the correct one :

«8 ... E, 1), (1£ .. E + T,3), (T -. T • p,S».

Just as Algorithm 1.2 cen be developed to yield
the shift-reduce bottom up parsing method of Algorithm
1.3, so Algorithm 3.10 may be recast as a sbift-reduce
method. We do not reproduce tbe development in detail
since 1t exactly parallels that in Section 1.7. It is
easy to see that the parsios'method of Algorithm 1.3.
becomes a cf-parsing method on simply substituting an
appropriate chain-free parsing action function for the
ordinary action function f.

Note that this modification of Algorithm 1.3 depends
crucially upon the fact that chain productions bave
degree 1 end hence that tbe length of the parse stack
is not disturbed by failing to make reductions involving
chain prOductions.
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Recall that A1gori tbm 1.3demands that the grammar G
be unambiguous and that when ~ denotes the contents
or the parse stack and x denotes the unconsumed input
then O(X must be an rst ot the grammar whose handle
(q,m) satisties m ~ len (~). Also the parsing action
tunction must satisty :

t (0( ,x) = REW CE q it m = len(oc),
m ) len(0( >'•.and f (0( ,x) = SHIFT it

To produce act-parser trom Algorithm 1.3 we simply
require that (G,C) be or-unambiguous, that 0<. x be a
rorest ot (G,C) whose gt-handlg (p,n) satisfies,
n ) lene Q() and that

f (0( ,x) = REDUCE P

and .f (C( ,x) = SHIF.r

it n = len (c( ),

ir n ) len (O( ).

The places where the ct-parsing requirements differ trom
the ordinary ones are underlined.

In the ordinary shift-reduce parsing algorithm,
the strings that could appear in the parse stack were
called the "viable pretixes" ot the grammar. Their

I counterparts in the chain-tree shift-reduce parsing
method are naturallY called the -chain free viable
prefixes". They are detined as follows:
DEFINITION 3,12'

A string ~ £ V· is a chain-tree viable prefix for
(G,C) ( a cf-viabl.e prefix tor short) if and only it
there exists fiI ~ V· such that OI.(J is a rorcst ot (G,C)
with a cf-handle (q,m) satisfying m ~ len (0<). The set
ot all ct-viable pret1xes tor (G,e) 1s denoted
bl 'CFVP(G,0). [J



142
When the chain set e is empty, the ct-viable pretixes
ot (G,e) are 3ust the ordinary viable prefixes ot G.

From Algorithm 1.3 we earlier develop~d the general
form ot a "table driven bottom up parser using k
symbol lookahead'" which was modelled by Algorithm 1.4.
Remember that this latter algorithm requires that the
viable prefixes of the grammar be partitioned into a
tinite number of equivalence classes and that is precise

. .behaviour is governed by a set ot parsing tables ot the
In an identical fashion we can

derive table-driven ot-parsing methods ot the same type.
To model these methods we retain Algorithm 1.4

completely unchanged but drive it with 8 set ot ct-parsing
tables instead ot with ordinary parsing tables. As with
ordinary tables, ct-parsing tables will consists of a set
Q of states, an in! tial state s•• and a pair of tunctions
f and g whicb are the action and goto functions respect-
ively. Whereas in ordinary tables the statea Q are the
names ot the equivalence classes into which the viable
pretixes ot the grammar are partitioned, in ct-tables it
is the ct-viable pretixes Which are partitioned and
aSSigned to the stateein Q. Also, in ct-tables the action
function t will never have the value REDUCE q when q is
a chain production since the intention is that all such
reductions are bypaased. Following the specitication
ot Algorithm 1.4 we deduced conditions which ordinary
parsing tables must satisty if they are to drive the
algorithm correctly. These conditions extend to the case
of ef-parsing tables in a natural manner and we incorp-
orate them into tbe formal definition of a set of ct-
parsing tables as follows :
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DEFINITION 3.13
Let (G,C) be a cf-unambiguous cs-grammar where
G = (VN,VT,P,S) and let k be a natural number. A set
of cf-parsing tables .(using k symbol lookahead) for

(G,C) is a 4-tuple CFT = (Q,so,g,f) where:
(i) Q is a finite, non-empty set of cf-parsing states,
(li) So 8 Q is a distinguished initial state,
(lii) g : Q x V- Q is the cf-parsing goto function, and
(iv) f: Q x V;k -. CF-ACTIONS(G,C) ls the cf-parsing

actlon function, where CF-ACTIONS(G,C) is the set
of possible cf-parsing actions for (G,C), that is:
CF-ACTIONS(G,C) = {ERROR,SHIFT} v [REDUCE qlq e'P\Cl

For these tables to drive Algorithm 1.4 as a correct cf-
parser, there must exist a surjective mapping
CF-EQUIV : CFVP(G,C) __ Q such that:
(i) CF-EQUIV(,t\) = e, ,
(ii) whenever 9 and ~ are cf-viable prefixes and

X e V such that
(a) CF-EQUIV(S). CF-EQUIV( 'f' ) and
(b) both ex and ~X are cf-viable prefixes

.then CF-EQUIV(9X) = CF-EQUIV( '¥X),
(iii) whenever 9 and ex are both cf-viable prefixes

then g(CF-EQUIV(e),X) = CF-EQUIV(eX), and
(iv) .whenever ex is arorcsf of (G,C) with a cf-

handle (q,m) satisfying m ) len(e), then the
value of f(CF-EQUIV(e),k:x) is :
(a)

(b)

REDUCE q if m = len(S), and
SHIFT if m ")len (9 ). 0

To illustrate these ideas we show in Figure 3.4 a set
of cf-parsing tables for the cs-grammar (G3,C3) using 1
symbo~ lookahead. Although we do not care to explain
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yet how these tables were constructed, we claim that
they satisfy all the conditions of Definition 3.13.

-STATE CF-ACTION FUNCTION CF-GOTO FUNCTION
NO. Jr ( X ) * + S E T" P ( X ) * +

1 sh sh 2 2 2 3 2
2 sh a 4 51 sh

. 3 sh eh 6 6 6 3 6

4 sh eh 7 7 7 3 7.
5 sh sh 8 8 8 3 8
6 sh sh eh 9 4 5

7 4 4 4 4
8 2 2 sh 2 4

9 6 6 6 6

Figure 3.4 : Cf-Parsing Tables for (G3,C3) using
1 Symbol_Lookahead

In Figure 3.5 we display the moves made by Algorithm 1.4
when driven by the tables ot Figure 3.4 and presented
with the input string X*X+X.

MOVE SYMBOL STACK STATE STACK UNCONSUMED ACTION
NO. CONTENTS CONTENTS INPUT
1 J. 1 X*X+X SHIFT
2 X 1,2 *X+X SHIFT
3 x* 1,2,4 X+X SHIFT
4 x*x 1,2,4,7 -x REDUCE T ..T*P
5 T 1,2 +X SHIFT
6 T+ 1,2,5 X SHIFT
7 "T+X 1,2,5,8 Iv REDUCE E"E+T
8 E 1,2 h REDUCE S ....E

and
ACCEPT

Figure 3.5 : Behaviour of Algorithm 1.4 when Driven bl
the Tables of Figure 3.4 and Presented with Input X*X+x.
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Inspection of the reduce entries in the action column
of Figure 3.5 shows that the correct ct-parse,namely
<S ...E,E - E+T,T - TIIIP),is output by the algori thm.

The motivation behind the introduction of the LR(k)

grammars Was to capture and explore the properties ot

the widest class ot grammars tor which bottom up
parsing tables using k symbol lookahead can be constructed.
The next step is naturallY to extend this idea by
attempting to characterize those cs-grammars which can
be et-parsed trom lett to right using k symbol lookahead.

\.
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3.2 The CFLR(k) Property.

The essential property ot LRCk) grammars is that any
handle is uniquely determined by its lett context and
the tirst k symbols ot its right context. This property
was given precise expression in Definition 2.1 and some
alternative formulations ot the property were briefly
considered and rejected in Section 2.1 .We now detine
an analogous property tor cs-grammars.'Ne say that 8

cs-grammar is CFLR(k) it every cf-handle i'suniquely
determined by its lett context and the tirst k symbols
ot its right context. We detine this property mor~
'exac~ly as follows:

DEFINITION 3.1!t (ct. Definition 2.1.)

Let (G,C) be a cs-grammar and k a natural number. Then
(G,C) is CFLR(k) it and only it the tollowing conditions
are satistied:

,(i) G is reduced and S ...+ S does not occur in G, and
(ii) whenever cl and If are rorcst's ot CG,C) having

ct-handles (p,.) and (q,n) respectively snd
satisfying m/f3 e v; and (m+k):O<= (m+k):p , then
necessarily (p,m) = (q,n).

We say that G is CFLR(k) it there is a chain set C tor G
........ ,_

"such that (G,C) 1s CFLR(k). A language is CFLR(k) 1f it
is generated by some CFLR(k) 'grsmmar. []

This def1n1tion is the natural chain tree generalisation
of the tRek) property (Def1n1tion 2.1). Observe that when
the cha1n set is empty, the CFLRCk) property degenerates

, into the LR(k) prop~rty. Thus the CFLR(k) property 1s a
truegenera1i8ation ot the LR{k) property: to every LRCk).
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grammar G there corresponds the CFLR(k) cs-grammar
(G,,0).

A property which is needed to establish certain
results concerning CFLR(k) grammars is the following.

LEMMA 3.15 (cf. Lemma 2.3)

If ~ and pare rorcsf's of a cs-grammar (G,C) and have
cf-handles (p,m) and (q,n) respectively such that

•m:iX = m:p, then n/CI. e VT•
PROOF, This result may be proved by the same argument
as that used in Lemma 2.3. Cl

Now let us look at some simple examples, The grammar
G4 given at the beginning of Section 3.1 Is ambiguous and

,is theretore not LR{k) tor any k.However G4 is CFLR(O)
it fA -. Alis taken as the chain set. This is easily
seen to be $0 because {G4, fA .... A} ) possesses only
three rorcsf's namely, S, A, and x, The goal symbol S

has no ct-handle, while A and x have er-handles (S- A,i)
and (A -. x,l) respeotively. Clearly these satisty the
CFLR{O) property. This example plainly shows that the
CFLR{k) grammars include some that are not LR(k), nor
even unambiguous, Note however, that al~hough G4 is
ambiguous, (G4, {A - A1 ) is ct-unambiguous. This is no
acoident; just as all LR{k) grammars are unambiguous, so

.all CFLR(k) cs-grammars are ot-unambiguous.

THEOREM' 3.16 (ot. Theorem 2.2)
. It (G,C) 1s a CFLR{k) cs-grammsr, then it is ct-unambiguous,

PROOF ': This result tollows trom Definition .3.14 and
Theorem 3.9 by just the Same argument 8S that used to
establish the corresponding result (Theorem2.2) for the
LR(k) ~ammars. 0
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Ambiguous grammars are not the only ones which may
tail'to be LR(k) and yet be CFLR(k) with respect to
certain cbain sets. Consider the following grammar :

s .. Ayl (Grammar GS)
ax

A .... a

This grammar is LR(1) but not LR(O). Intuitively, the
reason for this is that having seen the symbol a, it is
impossible to decide whether or not to reduce it to A
without inspecting the next symbol. Grammar GS is CFLR(O),
however, 11' fA -. aJ is taken as the chain set. This is
because the decision which needs lookahead to resolve 1t
during an ordinary parse just does not occur during a
ct-parse since the reduction causing the difficulty is a
chain production. Thus the grammar can be cf-parsed w1thout
lookahead and so 1t 1s CFLR(O).

We'have now seen two examples of non-LR(k) grammars
Which becomeCFLR(k) when suitable chain sets are chosen.
Naturally we should now ask wh~ther any LR(k) grammars
ta11 to be CFLR(k) tor certain chain sets. This question
is answered below and provides an important and interesting
theorem.

We shall prove that it G is an LR(k) Grammar and C
1s any chain set in G, then (G,C) 1s CFLR(k). The proof
1s qu1te lengthy and difficult. First we need a lemma
concerning LR(k) grammars which is rather similer to a
result quoted (but not proved) by Geller end Harrison
'(1973) and which they call the "Extended LR(k) Theorem".
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LEMMA 3.17 .

Let G = (VN,V'r'P'S) be an LR{k) grammar with o<,p • V·
. ..,.

. and x,y e V'r such that·

(i)
. (ii) .

(iii)

(iv)

s
s

Then S
k:x = k:y.

~
c( y.

III

PROOF. The proot is by induction on the number ot

steps in the r-derivation 01' fJ trom 0( • The basis is

the case where there are no steps at all, that 1s to say

when oC = f3, and the conclusion 01' the lemma 1s trivial

1n th1s case.

For the inductive step, assume the result to be true

whenever the number 01' steps 1s n (n ~ 0) and then
It.'suppose that 0( ---It {J • Wemay distinguish the last

step in this derivation as (p,m) and then tor some (JfV·

we will have

0( ---: lS -<p,m~ Q.
IC " r:

It then tollows from (i) that

S __,! cC x --:)fx -{p,mh px
It It "

and so (p,m) is the handle 01' fJx. NowCl) 1mp11es

: that m , len (p ) end thet mlp e v;. Therefore

*_m/py'_ e. VT and we also have, by virtue 01' (iv),

that (m+k): px = (m+k): /AY. Because G is LR{k), it

must tollow from these observations that (p,m) is also

(1 )

the handle ot p Y and 80 we have

S -.: l r -(p,m~ Py. (2)

. Now (1) gives 0( ~ '6' ,(2) gives S -.; 'is' y and 'we

still have (i) and (lv). Therefore we msy apply the
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inductive hypthesis (to c< ~ () ) and conclude that,.
S tI: 0( :r, which is the result needed to complete the" .
inductive step and the proof of the lemma. 0

We also tind it convenient to introduce a concept ot

"distance" between strings in a cs-grammar.

DEFINITION 3.18
Let (G,e) be a et-unambiguous, reduced cs-grammar. It
0<, f3 e V· satisty 0( ~c p. then define the

et-distance trom c( to f3 to be the number of steps
.in the etr-derivation ot {3 trom 0<. • 0

Note that the requirements that G be reduced and that
(G,e) be ef-unambiguous ensure that the idea of ct-

distance is Vlell detined. Note too that it c( --":....p
then the ct-distance trom 0( to p is zero. ·And observe

"'"that it 0< ~ ~ -: Cl then the ct-distance from 0(.- ,- "'.c
to ~ is equal to the sum of the ef-distances from ~
to p and trom f3 to () •

We may now state and prove an important theorem.

" :'
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THEOREM 3.19
Let G be LR{k). Then tor any cha1n set C 1n G, (G,C)
is CFIB{k).

PROOF. Because it 1s LR{k), G must be reduced aud

•

S -,+ S cannot occur 1n G. Also,by Theorem 2.2, G

must be unambiguous. Let C be any chain set in G..Then
(G,C) 1s ct-unamb1guous by~eorem 3.4. These observations
'will be needed 1n the proot.

Now in order to prove that (G,C) is CFLR{k), we
suppose that 0( and p are rorcst's ot (G,C) w1th
ct-haudles (p,m) and (q,n) respect1vely such that :

""/p € V III ,(la)T
and (m+k): 0( == (m+k): Ii (lb)
and proceed to show th~t (p,m) == (q,n).

It (p,m) is a ct-handle for ~ ,then by Corollary
3.8 there ex1st ~. S, v* such that

s ....:1r ...(p,m~ 8 _",.-eX.• lie".
Owing to the def1n1tion ot the relat10n _.,. we must have,.c~

8 == JlX and 0( == exand so we may write
,where m == len(lA) == len(9) end
theretore rewrite (2) as :

S ~ ~ -{p,m) .ec~ /Ax ...;ex. (3)

S1nce G 1s reduoed, there must exist' z e v; such

f --:_...,8. We may

'*that e ......z.
1&

Let the of-distance from e to z be d.
Because
f' {z

U. _.,.'# e and 9 -..:Z we must also haver Co 1&

end the,ot-d1stance trom r to z must be
d also (this is because the ct-d1stance from ~ to e 1s

'.zero). We may now extend (3) to give :

ZX. (4)
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We also have that (q,n) is a cf-handle for p

8 V*and so, again by Corollary 3•• there ex1st e, tr e
such that

·S.....; (:) -(q,n).-,.. TT ....... A. (5)
\ Itc,. Co r:

From (la) and (re) it follows that p has the form f3 = ay
*where y e VT aatisf1es k:y:; k:x and s1nce we

~ ~already have e --: Z , it follows that TT" -"it zy.
We can therefore extend (5) to give

S -;,."~ -<qtn)~~If" -: zy. (6 )
n .

Note that the cf-distance from" to zY is again d. (This
1s because the ct-distsnce from" to ey 1s zero, snd the
ot-distance trom e to z 1s d.)

Now (4)gives S _.* f'xIt

and (6) gives S _' zy....
"snd we know that ., snd that k:x :;k:y.fA'" z

"Theretore Lemma 3.17 gives S
'II

and so we' obtain-: t'y
s _.-

"
(7 )

From (4) we see thst the handle 01' ~x 1s (p,m). Recall
that m :;len(lA) and k:x. k:y. It tollows that

*m/ fA y e VT 'and that (m+k):}Jx = (m+k)wr-
Theretore, since G 1s LR(k), ,the handle 01' /AY must be
(p,m) also. Thus tor some ~ e v* ,(7) becomes

,,' s -f tr -<p,m) tt~' '"Y _",.: zy. (8)

But then both (6) and (8) are r-der1v~tions 01' zy •
Since G 'is unambiguous there osn be only one r-derivstion
of zy and so (6) snd (8) must simply be ditferent ways
of writing this unique r-derivation. Let «q, , m.»'" be. ,.,
the explicit r-derivation of zy trom S and let < '1'.; ) ~: •
be the corresponding implicit derivation. From (6) and (8)
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it follows that there exist 1, j in the range 1 ,< 1,j ( r
such that
(from 6) : ~-, = ~, and

(9)
(trom 8): (qj " m~) = (p,m) 'Vi-I = er, ~~ '"rs .
Remember that our goal is to show that (p,m)=(q,n). We
can do this by show1ng that i=j. Clearly exactly one ot the
relations i=j, 1 < j and i > j must be true. Suppose first
that 1 < 3. Then we have

'If '* \II -< \ _ -~. -: '11 ~ T~_, q~ ,m ir"j, ~. --II "'".

Substituting S for ~ ,zy tor o/~ and using the identities
from (9) gives :

S ,.".. tr ~.,. cS' -{p, m ~ JAY .....tI. zY. (10)
A . A ~

Now we know that p e p\ C (since (p,m) is the ct-handle
ot ~) and so it follows trom (10) that the ct-d1stance
trom TT" to Zy is at least one greater than the cf-distance
trom PT to Zy. But this is not so, tor both these
ct-dista·nces are known to be d. From this contradiction
we conclude that i ~ j. By an exactly similar argument it
may be shown that the supposition i ) j is also untenable
and so we dedUce that 1 =3. Then (9) gives (p,m) = (q,n)

and we may conclude the theorem. Cl

This result is ot great practical significance, for it
means that the speed benefits of cf-parsing can be obtained
(anticIpating for the mement that it is possible to
construct cf-parsers to~ the CFLR(k) os-grammars) without
.sacrificing the attractIve generality of the LRCk) grammars •
. :

) .' "
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Intuitively,. the conclusion to be drswn from Theorem
3.19 seems to be that cf-parsing is essier than
ordinary parsing. While this is gratifying, it is
hardly surprising, since a cf-parser is required to
provide less information than an ordinary parser. The
proof otTheorem 3.19 suggests the following general-
isation.

CONJECTURE 3.20

If (G,C) is 8 CFLR(k) cs-grammar and et is any chain
set in G such that et 2 C then (G,C') is CFLR(k)

also. 0

The obstacle to proving this conjecture seems to be
,

purely one ot notational complexity.

While Theorem 3.19 goes some part ot the way
towards relsting the tRek) and CFLR{k) properties, it
tells us nothing about those CFLR(k) cs-grammars (G,e)
where G is not LR(k). It may seem plausible that it a
grammar is CFLR(k) but not LR(k) then "all the places

.,
. t where the grammar is not LR(k) involve chain productions:

This idea certainly tits the behaviour ot grammars G4

and G5 considered earlier and Wben expressed more
preciselt it provides the tollowins proposition.
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PROPOSITION 3.2l
Let G.-, (V,pVT,p,s) be a reduced grammar 1n wb1ch
8 __+ 8 does not occur but wh1ch 1s not LR(k). Let C
be a'chain set tor G. Then (G,C) 1s CFLR(k) it snd only
it whenever ~ and ~ are rst's ot G with handles (p,a)
and (q,n) respect1vely such that "
(i) m/~ e VT • ,

(ii) (a+k):o( - (m+1t):f3 and
(iii) (p,m) ~ (q,n)
then e1ther p e C, or q E C, or both.

REFUTATION. Wh11e the proposition is clearly true in the
less interesting "onl7 it" direction, it 1s talse in the
"it" direction as the tollowing counter-example shows.

'Consider the grammar :
8 ... Axl

B

A - a

(Grammar 06)

a - a

and take fA ....a, B - a) a8 the chain set.
Th1s grammar is not LR(O) and the only circumstance in
wh1ch (i), (ii) and (iii) above obtain 1s when we take

and (3 - ax • The handle ot a is (B .....a, 1)
while that ot ax is (A - a,l). Both ot these handles
involve chain productions and so our propos1tion claims
that the grammar ahould be CFLR(O). But this is not so,
tor the' et-bandle of a i8 (8" B,l) while the et-bandle,:

)

ot ax is (S - Ax,2) and these elearlY violate tbe ,
OFLR(O) property. 0
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Since Proposition 3.21 is false, we still know little

about those CFLR(k) grammars which are not LR(k). In
particular,we do not know whether the sets ot CFLR(k) and
LR(k) languages are the same. In the next section we will
resolve these questions and others by an indirect approach
using the concept ot a "cover arammar".

•

"
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3.3. Indirect Approaches to the CFLR(k) Property,

The CFLR{k) property was introduced as the natural
way of extending the LR(k) property to the context or
chain-free parsing. It has been shown that every LR{k)
grammar is a CFLR(k) grammar and hence that every LR(k)
language is an CFLR(k) language. It has also been
demonstrated that some CFLR(k) grammars are not tRek)
and we now ask Whether any or allot these grammars
generate LR(k) languages. If they do, then we ask whether
it is possible to prescribe a method for constructina
LR(k) grammars for tbese languages directly from the
CFLR(k) cs-grammars concerned. This investigation will
involve the use of "cover grammars" and leads on to
indirect methods of testing for the CFLR(k) property and
for of-parsing. Tbese methods are called indirect because
they reduce the problem ot testing a given cs-grammar
for tbe CFLR(k) property to that of testing anotber grammar
(the cover grammar) for tbe LR(k).property. Similarly
the problem or cf-parsing with respect to the original
cs-grammar is replaced by that of ordinary parsing with
respect to the cover grammar.

The notion ot grammatical covering Which we sball
employ is from Gray and Harrison (1972) but tbe full

---"'-'-- --. - .~"...___.-- . generality or their derinition is-unnecessary in tbe
present context. Roughly speaking, one grammar covers
anotber if the ability to parse aocording to the
covering grammar conters the ability to parse according
to the oovered grammar by a table look-up teobnique.
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We will show that every eFLR(k) cs-grammar is covered
by an LR(k) grammer. This provides the principal tool
needed tor th1s investigation. We begin by specialising
Gray and Harrison's detinition to the case ot cs-
grammars covered by ord1nary grammars.

DEFINITION 3. 22
Let G = (VN,VT,P,S) and G' • (V~'VT'P:s') be grammars

(note that these grammars share the same term1nal
vocabulary) and let e be a chain set tor G. Let h be a -
mapping trom P' into p\e. For alV' exp11cit derivat10n
D' = «90 l' m1 »1:1 1n G', detine the image ot D' under h
to be :

h(D') = «h(q1),m1»1:1
and observe that because the rsnge or b 1s p\e,h(D~)

1s a chain-tree der1vation 1n (G,e). We say that ~
covers (G,e) under h ~t and only 1t :

(1) , L(G) • L(G'), and
(11) tor every x e L(G) ,

(a) it D is a ctr-der1vation et x 1n (G,e),there
exists an r-derivat10n D' ot x in G' sucb
that D = b(D'), and

(b) it D' is an r-derivation ot x 1n G' then
b(D') is a crr-derivation ot x 1n (G,e).

We say simply that G' cover, (G,e) it there ex1sts some
b sucb that G' oovers (G,e) under b. 0
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. I"·,

Observe that it G' covers (G,e) under h, then any
r-derivation in G' can be converted (by taking its
image under h) into a ctr-derivation in (G,e). This
means that parsing with respect to.G' is as good as
(and as fast as) chain-tree parSing with respect to
(G,e). Our next goal is to develop a method for
constructing cover grammars with usetul properties.
There is a well known method for removing chain
productions from a grammar while preserving the
language generated (see, for example, Hopcroft and
Ullman (1969),Theorem 4.4) and it might seem reasonable
to seek suitable cover grammars in this construction.
It turns out that this will not do.l1e resulting': ._.
grammars do not bave the properties we desire and, in
any case, the method cannot deal with chain productions
whose right parts are terminal symbols. We will employ
a quite d1fferent construction. In order that this may
proceed satistactorilY"it is necessary to exclude cs-
grammar. possessing a oertain simple type ot ambiguity.

DEFINITION 3.23
The cs-grammar (G,e) is said to be chain-ambiguous it
there exist distinct produotiona A -+ ol and A -+ II

in P \ c and s string e • V· such that both 0( -.r 9

and ,s, _".: e.' Cl
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Our construction will be restricted to cs-grammars
which are not chain-ambiguous. Note that it is
elementary to decide whether a given cs-grammar is
chain-ambiguous or not (unlike ct-ambiguity, which is
undecidable in general) and that it (G,C) is chain-
ambiguous and G is reduced, then (G,e) is ct-ambiguous.
It tollows that no eFLR(t) cs-srammar can be chain-
ambiguous.

CONSTRUCTION 3.2M
Let (G,C) be a cs-grammar which is not chain-ambiguous
where G • (VN,VT,P,S). .The grammar eOVER(G,e) •.
(V~, VT.P~S) ia conatruGted aa tOl~OWS :

v' • {A E V,. I A i8 the·'left part of someIf production in P \ C 1 ,
p' • fA -+ e A ~o< ~ P\C and

0(-;9 in (G,e)}.
We detine the sur3ective mapping .h : pt - P \ C 8S

tollows :
it A - 9. e pt, then h (A: - e) • A .... 0( where A.. o< e p\e

....and 0( --: 8 in (G,e).
Note that it (o.c) were chain ambiguous,. then h would not
be a mapping. Cl

Some examplea using the grsmmars introduced in this
cbapter may belp clarify the construction. In these
.~xamples we tollow eacb production in COVER(G,C) by an
indication ot the produotion in G from whioh it ia
obtained (tbat is to say, its imsge under the mappingh).
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(1) fake GrammarG4 wlth 1A - AJ a8 tbe cba1n set.

COVER (04, (A .... A] ) is: .S A (from 8 ... A)

A x (trom A..... x).

'rake Grammaras w1th {A --.. a) as tbe cha!n set •.
COVER(as, iA - a 1 ) is.:8 .. Ay (from S - Ay)

S .. a7 (trom S ... 4)
-

S _..ax (trom s - ax).

'rake Grammar G6 w1th IA _.." a,B -- a) as the cha1n Bet.
COVER(06,' {A ....a,B~.... a 1 ) 18: .

. ".

.. S ....Ax
FfrOIll a ..Ax)

S - ax
S -B

~(Frolll S - B)a--a

'..(4). For a B11gbt17 more rea11stic example, t8~e the

GrammarG3 wlth 03 88 the ohain set. COVER(G3,C3)1s:

S ....El
TI

(trom S - :Ie )pi
X

E ...... Ii: + T I
E + pi
Ii: + X I
'r + T I
T + pi (trOll E ... E .. T )
f + x l
P + T I
p + pi
P + xl
x + T I
X 4+-pl

. X + X
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'r .....T·pl ~
T • x I·.
p • pi

P • X I
X • p I

. :,X • X

P -4 (E) I'
(1') I
. (p) I
(X)

(trom T - 'r • P )

(trom P - (E». .

As its name suggests, tbe grammau COVER(a,C) does indeed
oover (a,e). We now prove tbis tact.

THEOREM 3.25

Let (a,e) be a os-grammar wbich is not cbain-ambiguous aud
.let COVER(a,C) aud h be tbe grammar and mapping detined by
.Construction. 3.24. Then covsato,c) covers (o.c) under h.
PROOF. We state and prove two claims from wbioh it ia easy
to deduoe the theorem.

It e is an rst ot eowa(a,e) with an SXilioit
r-derivation D in.COVER(a,C), then e ia a rorcst ot (G,e)
an.d h (D) is a ctr-derivation. er 9 in (G,e).

Proof ot'cle1" We use induction on the length ot the
derivation D. The basis ot the induction. is the case in
which D contains no steps and in tbis situation the result
is trivial •.~or tbe induotive step, sssume the claim to be .
true ot derivations oontainin.g n.steps (0. ~ 0) snd suppose
thst D contains n + 1 steps. We may distinguish the last
step ot D and write.

D • D' • «q,m»
where D' contains n steps. There clearly exists ~ sucb that

. S . -{D' J-..... ol -<q,mr.;. e in COVER(G, C).
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Applying the inductive hY,pothesis to the rsf cC and the
derivation D', we conclude that ~ is a roresf 01' (G,C)
and that h (D') is a otr-derivation ot 0< in (o.c) , Now
since 0( -(q,m~ e in eOVER(G,e), we may write 0<

and e in the form 0( • pAx and e • ~'6x where m.len(r't)
and A _,..)S i8 production q in COVER (G,e) • By construct-
ion, we w111 have h (A _"."IS ). A:---/I where A -- p" ~ p\ c

,. . ~nd (J -.t" 0' in (o.c), In (c.c) we therefore have the
derivation

0( • uAx -(h(q),111 ~ ~(3x _,.» po ~x = er : Af,«

and so it follows that et --: 9 in (o.c) and that
... c

«h(q),m» is an explic~t ctr-derivation ot e from 0(

in (G,C). Thus h (D') • «h(q) ,m» = h(D)

is a etr-derivation of e in (G,e) and this is the result
needed to complete this inductive step and the proot ot

the first claim. The next result is the inverse ot this
one •.

Claim 2 I It 9 is a rorcs,t ot (G,C) with an explicit
ctr-derivation D in (G,e) then e is an rst of eOVER(G,e)
and there is an explicit r';';'derivationE ot e in eOVER{G,e)
such that h (E)= D.
Proof 01' cla1m: The proof is by induction on the length
01' the crr-derivation D. Again the basis is the case where
D contains no steps at all and is trivial. For the
inductive step, assume the result to be true 01' all ctr-
derivations containing n steps (n ~ 0) and suppose that D
contains n+1 steps. By Det1nition 3.2. there must be some
r-der1 vat10n pate in .(G,C) suoh that Fof= D. We may
isolate the last step ot P wbiob does not involve a chain
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production and wr1te P - P' • < (q,m)>. I'~ where

..q e p' \ e, F~f' contains n steps and ~~ ia null •
•.For aome ,DC. ,p, V we will have a derivation in (o,c)

wit n the torm :

S ---{I" ~ 0( -(q,n) :;, f3 -1)2.1-;;: 9. (1)

It produotion q is A ... " , we maywrite 0(, (J and e
1n the torm QC - ""Ax, P == fA '6 x and e == eO x where

len (p~) = m, . IJ ~ ...El,
From (1) we then obtain:

S -{F' ~ cc: == ,_.Ax ----;* ('~ -( q,.),.:,. el x ....:(6x == e.
Wesee f'rom Corollary 3•.7 that F~f is a ctr-derivat10n.. .

ot ~Ax in (G,C) an~ sinee F'f contains n steps 1t, c
follows by the 1nductive nypthes1s that ~Ax 1s an rst

ot COVER(G,C)and that there is an r-derivat10n Et of'

, e= 'in ,COVER(G,C)such that F~f == h(E'). Also, ,since

A ....~1s product10n q 1n P \ C and ~ --: d 1n (G,C),

1t f'ollows that COv:rm(G,C)contains the product10n A_. J

and that ..h (A.... cJ ). q. COVER(G,C)therefore conta1ns

and . ~ _",."~. .
c.

the derivation

S ----lE'] -It pAx -(A -- ~,m~ <:,cix :I p.
If' we det1ne E == lI' • «A .... G"m»then clear17

hell)- . heE') • «h(A-d ),m»- p' • «q,m) > .cf
== Fcf- D.

Th1s completes the 1nduct1ve step, .the proO: ot·the second'

cla1m and tbe proof' of' toe theorem. 0
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By way ot illustration, observe that the r-derivation
ot the sentence X+X.X with respect to COVER(G3,C3) is

«a-E,1) , (I ....X+T,3) , (T .....X.X,S». The
image ot this derivation under the mapping associated
with tbe cover grammar is

«8-.E,1) • (E .....E+T,3) ,.(T --T.P,S» which, as we
saw earlier, is the.correct ctr-der1vat1on or this
sentence with respect to tbe cs-grammar (G3,C3).

The relationship between a cs-grammar and 1ts·cover
grammar is very interesting. Tbe properties ot the cover
grammar are mirrored in the cs-grammar by the cha1o-free
counterparts ot tbese properties, and vice-versa. For
instance, it is quite easy to prove tbat a cs-grammar 1s
ot cf-ambiguous if end only if its cover grammar is
ambiguous in the ordinary sense. A much more interesting
result or tbis type is the following.

THEOREM 3,26

It(G,C) is CFLR(k) then COVER(G,C) is La(k).
PROOF. First observe that since (o.e) is CPLR(k) it 18

,

also ct-unambiguous. Thus (a,c) is not chain ambiguous
and so the cover grammar may indeed be constructed. Let
a - (VN,VT, P,8). Because (G,e) is CFLR(k), G must be

. ...reduced and 8 ~ a cannot occur in G. It is easy to see
that these properties imply that the cover grammar is

o reduced also and does not a4mit the derivation 8 -.:+ S •
.In order.to prove that the cover grammar is LR(k) it remains
to show that whenever 0< and (3 are rat's 'otCOVER(G,e)
with handles (p,.) and (q,n) respectively such that m4B
and (.+k}:~- (m+k):p , then (p,m)-(q,n).

*e VT
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Now it c( is an rat ot COVER(G,C) with a handle

.(p,m), it tollows trom Claim 1 ot the proot of Theorem
3.25 that' 0( is a rorest ot (G,C) with (h(p) ,m) as a
et-bandle. Similarly, it the handle ot ~ in COVER(G,C)

I is (q,n) then (h (q),n) is the et-bandle of f3 in (G,C)•
•Then, it m /p E V T and (m+lt):e< • (m+k):(3 , the CFLR(k)

property ot (G,C) will ensure that (h(p),.). (h(q),n).
It only remaina to show that p • q. Let the production
.h (p) in p\ C be A ~ er • Then since h (p). h{q), the
productions p and q in COVER{G,C) must be at the torm
A -. cS and A .... I(T respectively, where botb )(-{ ~ and
~ ~. ~. in (G,C). Thus p and q have the same lett parts
and the lengtha ot their right parts are the same. Because
(p,m) is a handle ot 0< , we' can write 0< • ",Ix where
len(Jld) = m.And because (q,n) is a handle at p , we can
wr1te f3 • {It:ry where len (E><S"'). n • m. Then since (m+k):o(
• (m+k}:(3 we must have m:o< • m:p ,.that is 1'0 = e e:s-.
But since len (cS) • len (er), this implies that J == er.

Thus p == q and so we may oonclude the theorem. []

A number at important oonclusions may be drawn trom
Theorema 3.25 and 3.26. The tirst ot these is :

COROLLARY 3.27

The tamilies ot La(k) and CPLR(k) languases are
co-exteneiv ••
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PROOF. To each La(k) grammar G there trivially
corresponds the CFLR{k) cs-grammar (G,p). Thus each
LR{k) language is a CFLR{k) language. And by virtue
of Theorem 3.26 to each CFLR{k) cs-grammar (G,C) there
corresponds the LR{k) grammar COVER(G,C) generating the
same language. Hence each CFLR(k) language is also an
tRek) language and the proot is complete. 0

Thus 8lthoughthe CFLR(k) grammars are more extensive
than the tRek) grammars, the generative power of the two
families is identical. Furthermore, given a CFLR{k)
grammar which is not LR{k),we can mecahnically construct
an tRek) grammar generating the same language by just
taking the cover grammar described by Construction 3.24.

Theorem 3.26 also indicates how table-driven ot-parsers
may be constructed tor the CFLR(k) cs-grammars.

COROLLARY 3.28.
If(G,C) is a CFLR(k) os-grammar, then a table driven
ot-parser using & symbol lookahead oan be construoted
for (G,C).
PROOF. Because (G,C) i8 CFLR{k), COVER(G,C) must be LR{k)
by virtue of Theorem 3.26. A parser using k symbol look-
ahead can oertainly be constructed ror COVER(G,C) and the
parses Which it produces become ct-parses witn respect to
(G,C) on Simply taking their images under the mapping h
associated with the oovering relationship. 0

We have yet to prescribe 8 method ot testing ror the
CFLR{k) property. For tixed k, (the property is, of course,
undeoidable unless k is tixed) Theorem 3.26 provides a
necessary condition tor the CFLR(k) property, namely that



~8

cover g~ammarbe LR(k). The converse ot Theorem 3.26
,supp11es:the sutt1cientcond1t1on that 1s presently
lacking.

; "
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THEOREM 3.29
The cs-grammar (G,C) is CFLR(k) it COVER(G,C) is
detined and LR(k).
PROOF. Note that COVER(G,C) is undetined it and

..

only it (G,C) i& chain-ambiguous and that (G,e) cannot
be ,CFLR(k)in this oase. Let G. (VN,VT'P,s) and fruppose
that COVER(G,e) i8 detined and LR(k). Then eOVER(G,e)
is reduced and does not admit S ..+ S. ~is 1s easily-
seen to imply that G has these propert1es also. Now.
suppose that 0( and pare rorcst's ot (G,C) with ct-

*handles (p,m) and (q,n) respect1vely and that m/, e VT
and (m+k): 0( • (m+k): p • In order to prove that (G,C)
is CFLR(k) it is necessary to show that (p,m) =(q,n).
Now by Claim 2 ot Theorem 3.25 we know that '0< and,
f3 are rst's ot COVER(G,C) with handles (1" ,m) and
(q',n) respectively where h{p') • l' and h{q'). q. Since
COVER{G,C) 1s IR(k) ,the cond1 tions mit' e v; and
(m+k):o<=(m ...k):p imily that (p',m)=(q',n) and so
h(p'). h(q')-trom whioh we oonolude that (p,m) =- (q~n)
a8 required to complete the proot ~ the theorem. D

In combination, Theorems 3.26 and 3.29 provide a
method ot testing tor the CFLR(k) property. They redu~e
the problem ot testing a cs-grammar tor the CFLR(k)
property to that ot testing its cover grammar tor the
LR(k) property, and that test may be performed by any ot

,three different methods described 1n Chapter 2. Since
Corollary 3.28 il'0V1des a method tor ct-parsing the
CFLR(k) cs-grammars, it seems that all the important
questions concerning the CFLR(k) property have been
resolved. In theory this 1s indeed 80; in practice,
untortunately, it 1& not.
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The objection to using these indirect techniques in

practice is that the cover grammar is usually larger,and
,otten very much larger, than the cs-grammar which it
covers.\bereas, tor example,the size ot Grammar G3 ls
20, that ot COVER(G3,C3) ls 96 - an increase in size ot

almost tive-told. The behaviour ot G6 indicates that
cover grammars tor realistic programming language grammars
(where "chains" are typicallY 10 or 12 productions long)
are likely to assume sizes ot breathtaking proportions.In
tact, the size ot COVER(G,C) can be exponentially larger
than that ot the underlylng grammar G. To demonstrate this,
we exhibit the tollowing family ot ~ammars.

When n is a positive integer, the ntth member ot the
family is denoted by EXPCOVER(n) and is detined thus z

S ...... x, Xa X 3 • • • X"

(1 ~ 1~ a)

(1 ~ i' n)

The chain set ot EXPCOVER(n) is taken as
CEXPCOVER(n). {XL - a 1 , 1~ nl •

For example, when n • 3 we have:
S-.. X, x, X,

·X ...... a I b,
X,z -- a I b
Xl ..... a I b

(Grammar EXPCOVER(3»

and CEXPCOVER(3) .1 X," 'a, Xa- a, Xl-- a 1
The cover grammar COVER (lIXPCOVER(3), CEXPCOVER(3» Is :
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s· -::9Do X, Xa xli
X, Xl a I
X, a X3 I
X, a a I .(rrom S .....X,· X2 Xl ),a . Xl X3 I
a X.1 a I
a a X3 I
a a a

X, .. b (trom X," b )

X2 - b (rrom Xl" b )
Xl ... b (trom Xl" b ).

.The size ot EXPCOVER (3) is 16, that of itscover grammar
is 38. In general, the size ot KXPCOVER(n) is 5n + 1

:while that ar COVER{EXPCOVER{n), C~COVER{n» is
2n + (n+l) .2"'· • Thus the size or the cover grammar grows
exponentiallY in n while that ot the basic grammar grows

.only linearly.
--,

','

This means that, even it covel' grammars are tested for
the LR(k} property using the polynomially time-bounded
algorithms of Section 2.4~the worst-case time-complexity
otthe indirect approach to CFLR(k) testing remains
exponential in the size ot the grammar under test. The
behaviour ot programming languages 1s unlikely to be
as bad as that ot the fsmily EXPCOVER(n), but even BO,

it will probably be quite bad enough to render the
indirect approach to the determination ot the CFLR(k)
property unattractive. Ot course, by virtue ot Theorem
3.19,the need to test tor the CFLR(k) property can be '
avoided altogether it we 8re content to restrict ourselves
to cs-grammars b8sed only on LR(k) grammars. This
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restr1ct1on 1s probably acceptable in practice. How-
ever, when we wish to actually'build ct-parsers us1ng
the indirect approach, there 1s no escaping the
necessity to construct the cover grammar and its LR(k)
parser. It is here that the large size ot the cover
grammar becomes really objectionable. The LR(l) parser
for Grammar G3, for example, has 22 states, while the
LR{l) parser for COVER (G3,C3) has 73 states. Using
the indirect approach, therefore, the speed benefits
of cf-parsing are obtained at the cost of a considerable
increase in the (already substantial)s1ze of the parsing
tables.

In summary, the indirect approach to cf-pars1ng
via the ordinary pars1ng ot cover grammars is enligh-
tening and yields important theoretical results. But
it does not yield practical methods either for CFLR(k)
testing or for cf-parsing the CFLR(k) cs-grammars.We
will now turn our attent10n to direct methods for
solving these problems. In the next three sections we
will construct CFLR(k) versions of the three LR(k)
tests introduced in Chapter 2. Later we will cons1der
the problem of constructius direct ct-parsers for the
CFLR(k) cs-grammars.
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3.4. Testing tor the CFLR(k) Property Directly - Part 1 •.

Throughout this and the two sections tollowing we
suppose that k is a tixed natural number, and that .
G = (VN ,VT,p,S) is a reduced grammar in which S _.."S

does not occur, and that C is a chain set tor G.
Add1tionally, 1n th1s present aection, we reserve the
spec1al symbol 1 tor use as an endmarker. We require

.that 1 is not in V •.

We begin our investigation ot direct methods ot
, .

test1ng tor the CFLR(k) property by adapting the LR{k)
test ot Sect10n 2.2. Because the method 1s ot l1ttle
pract1cal signit1cance, we w1ll provide only the
theoret1cal results necessary ~o justity the extension·
ot the method to tbe CFLR(k) context. We w1ll om1t all
construct10nal details; the reader can supply them

.eas1ly. In Section 2.2 we began by detining, tor eacb
production q ot the grammar G, a set which we called
the "LR(k) contexts" ot q and wh1ch we den.ted by R; (q).
The LR(k) test developed 1n that sect10n depended upon
the properties ot tbese sets ot LR(k) ,contexts. By
analoSf, tor each non-chain production q ot a cs- grammar

•(G,C), we will det1ne tbe CFLR(k) contexts ot q, denoted
(G,e)by CFR k tq) as tollows :

DEFINITION 3.3Q (ct. Det1n1tion 2.9)

For each product10n
CFR~G! C) (q).

q , p\ C we derine
{ (m+k) : ~ lk I (3 is 8 rorcst ot

(G,C) with et-bandle (q,m)}. 0
Just 8S the LR(k) property can be stated in terms ot

Gconditions upon the sets ik (q), so can tbe CFLR(k)



174
property be expressed in terms o~ the sets CFR(;,C{q).

LEMMA 3.31 (ct. Lemma 2.10)
.(G,C) is CFLR(k) it and only it, for any p,q ~ p\C,

'M1,,1c V* I_Ie (G C)
0( E V and u e T.L ; c( e CFRk' (p) and

'. O(U Q CFR~G, c ) (q) imply P = q and u = Jv.
PROOF. This result may be proved by a straightfoward
adapt ion ot the argument used to prove Lemma 2.10.0

For typograph1csl convenience we will henoefortb
omit the sub and superscripts trom names ot the sets
c~G,C) (q) and R~ (q) and write simply CFR(q) and
R(q) • The LR(k) test et Section 2.2 depends upon the
tact that the sets R(q) are regular. We shall now prove
that the sets CFR(q) share th1s property. The regular-
·ity ot R(q} was established by a construotion involving
right linear grammars and this construction can be
adapted quite straighttowardly to the present situation.
However, .a more interesting way to prove that the sets
CFR(q) are regular is to exploit their relationship to
the sets R(q). This relationship is exposed in the next
Lemma.

LEMMA 3.32
Let q be a production in P \ C. Then
eFR( q) = {p I there exists 0(' e Rfq) suoh tha.t d.. ~~ fJ J.
PROOF. First suppose thst ~ • CFR(q}. Then there is some
rorcst '2S ot (o,c) with act-handle (q,m) such that

. p = (m+k): ~ 1" • Now because (q,m) is a ot-handle ot ~

it tollows trom Corollary 3.8 that there exist ~~~ e V*

such that S. ~ ~ -(q,m~, r --;-)S.
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. Thus (q,m) 1s an ordinary handle ot,... and so if we

detine 0<. = (m+k):,...t then it tollows that C( e R(q).

But }A~:)$ and so it must be that 0( ~ .. f3 .• (Note

that we are taKing liberties with the use ot the relation
I .. ... --.... here, since and p may include the

endmarlter symbol 1 , whicb is not in V. However, the

intended interpretation should be clear).

Conversely, suppose that QC. R(q) and that 0( --:_.. f3.

Then there exists an rst ~ot G with a handle (q,m) such

that 0< = (m+k): 2r lk • Por simplicity we will suppose

that len (¥) ~ m+k, so. that 0< = (m+k): '0 .(It len{ ZS ) <
m+k then the endmarker symbol 1 will appear in 0( and

the argument that follows will be complicated by some

tedious details that are needed to take account ot this

tact'.) Let . X e V; be the string such that )(. c(x.

Then since (q,m) is a handle ot ~ and 0( -t fJ we have

s -; e -< q,m)- if
1Ic~

= o(x -t fiX
, .

: tor some e E V • ThUSfoX is a rorcs~ ot (G,C) with (q,m)

as a ef-handle. Since (J. (m+k): pxl" we theretore have

fA e CFR(q).

We have now demonstrated the mutual inclusion ot the

two sets appearing in the statement ot the lemma. It

tollows that these two sets are equal and so we may

conclude the lemma. '[:J
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.We may now prove that OFR(q) 1s regular.
LEMMA 3.33 (cf. Lemma 2.11)
Let q e P \0.Then CFR(q) 1s a regular set.
PROOF. A substitution f is a mapping from an alpbabet

•A onto subsets of B for some alpbabet B. Tbus f associates
some· language over B with each symbol of A. The mapping

•f can be extended to str1ngs in A as follows :

•(11) .f(c( x) • f( 0< )f(X) for 0( e A and x e A.
We can further extend t to languages by def1n1ng f(L) to

.be the set : . f(L). V f(oc.)where L 1s a language«eL

Now cons1der tbe part1cular subst1tut10n from V
•onto subsets of V def1ned by :

f(a) • {a] when a e VT and
f(A) = {X e V I A --;..X 1 when A e VN•

It 1s easy to see that tor 0( e V· we have
f(oc) • I p e V· I 0< --:_.. ~ l,

'. Then,by v1rtue of Lemma 3.32 1t follows that
CFR(q) • f(R(q».

Now the regular sets are known to be closed under
subst1tut10n (see Hoporoft and Ullman (1969),~eorem 9.7)
and so the regular1ty of CP.R(q) follows d1rectly rrom
that of R(q). 0 .
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Because uemmas 3.31 and 3.33 parallel Lemmas 2.10
and 2.11 exactly, a method ot testing tor the
CFLR{k) property may be constructed along the same
lines as the LR{k) testing method indicated in the
first proot ot ~heorem 2.8 (see Section 2.2). ~h18

,concludes the derivation ot our tirst direct method' ,
ot testing ror tbe OFLR{k) property.

~. I • •
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3.5. Testing ror the CFLR(k) Property Directly - Part 2.

We continue our investigation ot direct methods ot

testing tor the CFLR(k) property by adapting the LR(k)
test ot Section 2.3 to this new task. First we need to,
develop appropriate generalisations tor toe not10ns ot

LR(k) items, states,and statesets. All the construct10ns
and det1nit~ons to be introduced 1n this section w111
possess the property that they become equivalent to the
corresponding ones trom Section 2.3 when C, the chain
set, is empty. Thus tbe~new constructs may truly be
considered as generalisstions ot the old ones.

We beg1n by detining the CFLR(k) items tor (G,C) to
be the same as the LR(k) items tor G except that items
involving chain productions are excluded.

DEFINITION 3.3!J: (ct. Detlnitlon 2.12)

A CFLR(k) item tor (o.c) ls a pa1r [B-{3,.p."v) where
B - P,fJ! .e p\ C and v e V;k. The set ot all eFLR(k)
ltems tor (G,e) ls denoted CFI~G,C).0

Because CFLR(k) items are also tRek) ltems, we may
speak ot ln1tlal, lntermedlate,and rinal CFLR(k) items
1n Just the same way as with LR(k) ltems. It ls usetul
to have a name ror those LR(k) ltems which are not

',CFLR(k) 1tems; we will call them LR(k) chain 1tems.
Observe that no chain item ls intermediate.

(G,e)Next we lntroduce a function CF-STRIPk . trom sets
ot LR(k) items to sets ot CFLR(k) items as rollows :
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DEFINITION 3.35
Let Il be a set ot LR(k) states ror G.'Then

'OF_STRIP'~G,.O)(Il) I. d" OFI~O,O).

We usually omit the sub and superscripts and write this
tunotion as simply OF-STRIP. CF-STRIP(6) merely discards
all ohain items trom 6 and retaina the CFLR(k) items.
It will prove convenient to allow OF-STRIP to be applied
to arguments which are not simply sets ot LR(k) items,
but sets ot such sets (such as sets of LR(k) states). In
thia oase we require that OF-STRIP first torm the union
of the components ot its argument. That is, when K 1s
contained in the powerset ot I~, detine

OF-STRIP(.) • OF-STRIP (V 6). 0
6e14

Now we generalise the notion of 'valid' tRek) 1tems.

DEFINITION 3,36 (ct. Def1n1tion 2.14.)
•When 9 e V , the OFLR(k) 1tem [:8 - p,. Pa', v ]is said to

be et-valid for e (with re.pect to (0.0) and k) it and only
1t there 1s a der1vation

5 --: 1$:Bx _,.. "lit f.I lit X .. eA x
1II... Co RC, II II ,-1 ~ 1'".1

in (0,0) with v • ksx. [].

The notions ot LR(k) states and statesets are generalized
straightforwardly.

-.
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(cf. Definition 2.15)

When 9 e..V·, the'set of all CFLR(k) items which 8l'e
cf-valid for e is called the CFLR(k) state ror e and is
denoted by
CFV~G'~)(e) o~ more br1etl~ by CFV(e). The set
cons1sting or the CFLR(k) states ot all the ct-viable
pret1xes ot (G,C) is called the QFLR(kl stateset.tor
(G,C) and 1s denoted by CFS~G,C). Note that CFV(e) 1s
non-empty it and only it e is a cf-viable pretix of
(G,C). Hence:

CFSi(G,C) • {CFV(e) ~ If
k

•ge V}.D

The idea ot pairs ot LR(li.:)1tems being in "conflict"
(see Detinit10n 2.13) app11es unchanged to pairs ot

CFLR(k) items and, just as with LR(k) states, we say
that a CFLR(k) state is "adequate" 1t and only 1t 1t
conta1ns no pairs or conflicting items. ~imilarly, a
CFLR(k) stateset 1s said to be adequate it and only if
each ot its component states is adequate. The CFLR(k)
property 1s related to the adequaoy ot CFLR(k) statesets
in exactly the same way as the tRek) property 1s relsted
to the adequaoy ot LR(k) statesets. Before we oan prove
this genera11sation ot Tbeorem 2.18 we f1rst need to
generalise Lemma 2.17.
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LEMMA 3.38 (cr. Lemma2.17.)

Let Cl..f3 be a rorcsr or (G,c) with a cr-handle (q, n)

satistying n > len(oc). Then there is a non-tinal CFLR(k)

which is cr-valid tor ~ with

PROOF. This result is proved by a generalisation ot

the argument used to prove Lemma2.17. The generalisation

is not completely straighttorward and so we present it

in tulle

SUppose that 01.(.3 is a rorcst ot (o,c) with a ct-

handle (q,n) satistying n) J.en(o<). Then it tollows

trom Corollary 3.8 that (q,n) is the ordinary handle

ot some rsr I-' ot a satistying • This latter

"

relation implies that JI. has the torm p. = lX'p' where

0<' ~. 0( and ~,. -... p .Note that len (0() :II
to

len (0('/). Let D = «q.,n, »,'" be an explicit r-deriv-. " .. c..,
ation ot oI.'p' trom S with (q",n.,) == (q,n) and let < 'f~~:o
be the corresponding implicit derivation. Clearly there

exists t in the range 1 (. t " r such that both

. nt: - deg(q~) ~ len (c() and q. E P\ C. (Take t = 1 tor

example; we must have n, - deg(q, ) = 0 and since the

lett part ot production q, is S,q, cannot be a chain

production). Nowchoose tne largest such t. Wewill show

that len ,0( ) < nt • This ls true by hypothesis it

t = r, so assume that t < r and suppose, ror the saKe

ot contradiction, that len (0( ») nt• Let s be the

. least integer in the range t < s "r such that q, € p\ C.

(Such an s must exist because qT == q and qT E P\ C

since it figures in the ct-handle ot~.) Because D is

, an r-derivation we bave :
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n - deg( q.... ) < ne
~

to ....

n~.~ - deg( ~ •.1) < n f:,., ) (1)• )••
~ns - deg(qs ) < ns.,

and, by construction, for i in the range t < i < s we

have q, e C - which implies deg(qi) • 1 for i in this

range. It therefore tollows from (1) that
ns - deg(q.) < nr., , ns_a , ••• ~ n .. , ~ nt;

and so the supposition that len(o<) ~ nt:implies that

ns - deg(q,) ~ len(~). But this contradicts the choice

that t be the largest integer wlth the prescribed

properties. Hence we conclude

nl; - deg(q.) ~ 1en(-<) < nt•

Wenow have the derivation

S ~ ~_, -<q, ,nt: >-:, ~. ~ o/'p' -~t0It' (3)

and the choice of t ensures that either n, - deg{q,) >

(2 )

, len( ~ ) or q~ e C for all i in the range t < i ~ r. -

It tollows tbat 'l't; bas the torm ~t • DC'S where 0("-t 0<'

and e -;;; (J' • Nowlet production Qt be C- 'tS' • Then

~t can also be written in the torm ~ = <S''6xwbere
)J' 1 J; ,

len(O"o) = nt• The inequalities (2) then become
11~::j \ o r: I

lane CS') ~ lane '" ) < len( er 1$ )
r Lvw. l.

and we can therefore rewri te ~ as (5 = o,~~ where
~ -.1)_. ~ Jl_) .. :t ~., .... I.:'~~I(~'lSt~,.len(oC). ~~,~sLl~~~es<S'~,.c(If, ~tl~"';" and

~.z x • e and so (3) provides '
;l-I:~ll .}, JJuL l,:" 1I1\,

• .. Mo "vS --- tS' Ox - tS'~,~.X • 0(" "r x_""o( o~x.
III It'l" - :J (,.

lll: l HI Le l' .J L'!' ill
It tollows when v • k:x that [0 -- '6,. )sa, V lis a non-

Lil:!J, L'ullel\
final OFLR{k)item which 1s et-valid for c<. Since we also

J! l" \ li",,) ~
have e = "'" x and 9 ~ pi 1t t'urther tollows that ~2x -.~ fA

lJL.'h' I '!":t4li ou ",.,
and so we finally conclude that EFFk «(8) ~ EFFk(~"'v) and

",. t: d h 'I-'
the proot 'ls 'oomplete: O~'

L'livicl L. \_:iWU!'\.!: de: - 1!I:L',l
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Now we can generalize Theorem 2.18.
THEOREM 3.39 (ct. Theorem 2.18)

.(G,C) is'CFLR(k) it and only it its CFLR(k) stateset .
is adequate.
PROOF. As with the preceeding lemma, the proot ot
this. result is based on the argument used to prove the
oorresponding result ·in the LR(k) case. The proof in the
~if' direction is based upon Lemma 3.38 in just the same
way as the proot in the 'if' direction of Theorem 2.18
is based upon Lemma 2.17. The details are straightforward
and we omit them •

.J

.We establish the result in the only it' direotion
by proving its oontrapositive. Suppose 'that the CFLR(k)
stateset for (G,C) is inadequate. Then there is a ct-
viable prefix e of (G,C) whose CFLR(k) 'state,CFV(e),
containe a'pair ot conflicting items, say [D -- c5'.,u]
and [C .....1S,.l ... vI. For conflict to occur we must have
u e EFFk ("6.1v).Now it [D - &., u] is ct-valid tor
S, there must be a derivation in (G,e) ot the form

_,:- ex
c.

where u = k:x. Let cC • ex, III == len{S) and let
production D - & be called p. Then (p,.) is a
cf-handle tor 0< and (m+k): cC = au. Sim.ilarly since

[c _,.. ~,. ll' v] is et-valid tor e also, :there is a
derivation in (G,C) ot the torm

S J. "lOy -;:; 'l~' ~2Y -t e~2Y (1)

with v • k:y. Now we bave u c EFFk ("'.tv)and therefore
for som&~
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z e v; satistying u = k:z where it may be thet some,
all,or none of the steps in the ett-derivation of z
:trom '~.ly involve chain productions. We distinguish
two cases.

,Case 1: )$.21 _; z.•
(1) to obtain

5 --: ."Oy..... "n ~.¥..r -: 9z.
A.. c, "'~ -, .. Co

In this case we can extend

Now let product10n 0 -~, ..~ be called q and define
n = len{"l2.~ I ~2 )

ct-handle tor (!l

.(m+k):p', = SU.

This' letter identity gives (m+k): 0( = (m+k): (J end
so it (G,C) were CFLR(k) we should have to have (p,m) =

,and tJ = ez • Clearly (q,n) 1s e
_I uT·anClwe elso have wt(J £ Y' and

(q,n). We sbow that tbis is impossible end hence that
(G,C) is not CFLR(k). Suppose (p,m) = (q,n). Obviously
this iJJ).pliesp = q and m = n, Now n == m + len( 'lS =t ) end,
so m = u implies ~a .A and therefore u E EFFk«($~v)

imJ?lies u • v. We now have p = q, "'.1 = Jt and u = v and
so [D - d.,U] = [e-- '6,.~,v]. But this contradicts the·
hypothesis that these items are in conflict ( and are
theretore distinct). We conclude that (p,m) I (q,n) and
tberetore that (G,c) is not'CFLR{k).

9nSe 2 : )sol y ~ z. In this case, any et:t-

derivation ot z trom, ~2Y must involve at least one
non-ohain production. Also, sinoe z is a terminalstr1ng,....
~"y -;:. z implies l$21 ,.,£ z. We may therefore
d1st1nguish the last ~on-ohAlft steD ln \hlD ror'-Qorlvatlon
as (q,~) and write

~. *47 Itl;, ~ . -(q, j }Il':F G" ~ 11

where q E p\ C and' (since tbis i8 a reft-derivation)
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_.

j > O. We can append this derivetion to (1) end thereby.
obtein

·S .._;c elS'~l _: er -(Q,j+1en(e)4 ecS'-: se,
,_" "'IIe. /tCF c.

Now put n = j + len(e) end p = 9z· end 1t follows that
(q,n) is a cf-handle for p .• We again beve .m/f5 .e V;
and, since u = k:z, (m+k): 0< == (m+k):p. But then,s1nce
len(9) = m end j > 0, it tollows from n = j + len(e)
that m ~ n. Theretore (p,m) ~ (q,n) and sO (G,C) is not

.CFLR(k) in this cese either and the proot 1s complete. [J

Given e cs~gremmer (G,C) and its CFLR(k) stateset we
can easily test the stateset tor adequacy and thereby
determine whether (G,C) is CFLR(k). All we need now is
an algor1thm tor computing the CFLR(k) stateset corres-
ponding to a given os-grammar. We will develop such an
algorithm by constructing appropriate generalizations
ot the tunction CLOSURE, NEXf and GOTO which were intro-
duced in Definition 2;19 and then use these to generalize
Algorithm 2.23

DEFINI;ION 3.HQ (ct. Detinition 2.19)
When I:::. is aDJ'set et CFLR(k) items for (G,C), its chaip.
tree closure is given by the definition
CF-CLOSUR~ (o.c) (/:l) = CF_STRIP~G,C) (CLOSURE~(I:::.»)
and when X e V we define
CF_NEXT~G,C) (I:::.)C) .:y':Ix NEXT~ (I:::. J Y) and

•
CF_GOTO~G.C)( 6,x) • CF-cLOSUR~G.C) (CF_NEXT~G.C)(6,X»

As usual, we omit the sub and superscripts trom the names
of these tunctions whenever possible. [J
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Because these new functions are detined in terms ot

the tunctions CLOSURE and NEXT, we can establish their
properties directly trom those ot these tamilier tunctions.
First we need to distinguish the 'nucleus' and the
'completion' ot a CFLR(k) state. As in the ordinary
tRCk) case, the 'nucleus of a CFLR(k) state contains ell
the non-in1tial items trom the state, while the initial
items comprise the completion ot the state.

.,DEFINITION 3.41 (ct. Detin1tion 2.21)

The nucleus ot the CFLR(k) state tor Q is denoted by
'CPN~G,C) (a) and detined by :

(G,C) G
(i) CFNk (A) • Nit (A i.

-.-.-~.--.-\-.
(i1) and when e ., J,I

CFN~G,C) • {[B-p,.p~,v] e CFv~G,C)(e)IA.,J,l •. .

~'; ."
Whenever possible we write nuclei and complet1ons as
simply CFNea) and ClO(e) respectivel1. 0

. c
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Next we relate CFLR(k) states and their nuclei to ordinary

tRek) states'and nuclei. Wedo this in an important theorem

which is established as a corollary to the tollowing lemma.

LEMMA 3.4g
•Let e E V. ']hen the CFLR(k) item [B-'P,.(3"v] is et-valid

, tor 8 it and only it it is valid in the ordinary LR(k) sense

tor some I-' E V· satistying ,... ~ .. e.
PROOF. For the proot in the "it" direction, suppose that

is' valid tor fA and that,.. ~" IJ • By

the detinition of a valid LR(k) 1tem we have that G contains

a ,derivat10n of the form

where '6p, = fA and v I: k:x. Since [B......f3,.,6~,v] is requ1red to

.be' a CFLR(k)·item we have B ....P'P2 e p\C , and since

fA ~ e the der1vation above y1elds

S .-f ~BX -;:,r '613,p~'x -i 9{J:lX •

From thi sit tollows 1mmediately that [B -...~ I .~.2 ,v] is ct-
va11d tor e and the proof 18 complete tor th1s d1rection.

.'
For the "only it" direct10n, suppose that [B.....,&'.p2' V 1

1s ct-va11d tor S. Then (a,c) contains a derivation 01' the

torm

where v I: k:x. Let the produot10n ' .B .... (I.,.. be called q

and let n I: len(8pJ.'\. It follows that (q,n) 1s a et-handle

tor the rorest ,9fJ,_x
ex1sts an rst c(

snd hence, by Corollary 3.8, there,
»-01' a such that o(~, 9(3"x and

(q,n) 1s a handle for oc:: • Clearly, c( can be wr1tten

10. the form 0(. I: Op,p.~. where. ~p. ~~.. 9 and so
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G must contain the derivstion.

S --.; ~Bx --"a ~P,p~x •

Now put,.,.• rSfl, and it follows immedia tell' that
p -{ e and that [J3 .......tf'.,sa'v] 1s va11d for p. 0

~HEOREM3.43·

, .. ",
Let •e e V • Then

CFV(e) • CF-STRI~( f V(p.) I,.. ~ e 1 ) .and
.CFN(O) • CF-STRIP( { N( fA) I,.,.' -.r e J ).

, (1)

(11)

PROOF. These results are 1mmed1ate consequences of the
preceed1ng lemma. Note that the statement of this theorem
employs the notational tr1ck of allowing OF-STRIP to be
app11ed to sets of sets of LR(k)1tems (see Definition
3.35). Note also that these results are true whether or
not e 1s a ct-viableprefix of (G,C); 1n the case that
9 is not a ct-v1able prefix, all the sets appearing in
the statement or the theorem are empty. 0

Next we present two lemmas whicb expose the properties
of the functlons OF-NEXT and CF-CLOSURE.

ItEI4?M 3.44 (ct. Part (i) ot Lemma 2.22)

Let e 8 v· and X e V. Then OFN(eX) • OF~NEXT(OFV(e),x).

PROOF. By part (11) of Theorem 3.4' we have
OFN{ ex) • OF-STRIP( {.N on I ~ ---;.""ex J )

which may be rewritten as
OFN(ex) • OF-STRIP' {N ( I-' y), fA. -i e, Y -iXl). (1)

Then from part (1) of Lemma 2.22 we have
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and using (2) in(1) gives
OFN(eX)",= OF-STRIPe { NEXT( 'V{fA) .r) I p. -'! s, Y -f x j ), (3)

,The properties ot OF-STRIP and NEXT clearly allow (3) to
",,be rewritten as

'OFN(eX) = "-!. NEXT(OF-STRIP<iv{",)11""': e1), Y) (4)
Y -=. X .,. ,

& ,

and part (1) or Theorem 3.43 gives
OF-STRIP' {v( t'") I ,.,.~ e}) • OPV(e)•

Using this in(4) givea
. .\_)

OFN{ex) ;:Y ~X NEXT(Opv(e), x)
, . , (s)

,and by Deti"nition 3.40, the right hand side ot (5) is just
.':CF~NEXT(Cpv(e) ,X) from which we conclude the lemma. Cl

. ',.

LEMMA 3.42 (ct. Part(ii) ot Lemma 2.22)

•Let e 8 V. Then CFV(e) ;:CF-CLOSURE(OFN(e».

PROOF.' By part (i) ot Theorem 3.43 we have
OW(S);: OF-STRIP( {VCr)' po -f el)

and by part (ii) ot Lemma2.22' we have
V( fL) ;: OLOSURE(N(f!». (2)

Us1ng (2) in (1) gives
OFV{e) ;:OF-STRIP{ {CLOSURE( N (')-'» I lA -{ e 1 ). (3)

Uow only non-tinal LR(k) items can oontribute items other
than themselves to the CLOSURE operation, and all chain
ltems which appear.in the nucleus ot an LRCk) state must be
final ltems. (This is because N(~) contains no chain items
at all, and when r y: J" Ne,.,) contains only non-in!tlal items-
and a chaln item which is non-ln1tlal must be rinal). Hence,

*tor any fA e V we bave
CF-STRIP(OLOSORE(N( fA))) ;:OF-STRIP{OLOSURE(OF-STRIP(N(~»».

(4)
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Using (4) and (3) and recalling the definition of the
runction OF-CLOSURE (Definition 3.40) we obtain

CFV(e) == CF-CLOSURE(Cr-STRIP(rYe N(tA»).. (5)

Then using part (ii) of Theorem 3.43 the argument of
..CP-CLOSUREln (5) may be Simplified to yield

CFV(e) == CP-CLOSURE(CFN(e»
which concludes the lemma. [J

Using these resUlts we obtain the theorem upon Which
the algorithm for constructing CFLR(k) statesets depends.

THEOREM 3.46 (ct. Theorem 2.20)

Let e c V· and X e V. Then OFV(ex) == OF-GOTO{OFV{e) ,X)•

.PROOP. This result is immediate trom the two preceeding
lemmas and the definition of the function OF-GOrO. 0

w~ can now ~resent an algorithm for computing CFLR(k)
statesets. This algorithm ia 8 straightforward adaption
of the algorithm u~ed for co~tructing ordinary LR{k) state-
seta.

; :

,
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(ct, Algor1thm 2.23,)'

Evaluati~n ot the CFLR(k) statesets tor, (G,e),

'Input: The cs-grammar (G,C) and a value tor k.
Output:,' CFS~G,e) - the CFLR(k) stateset tor ~G1C),

Method :Just as in Algor1thm 2,23, the stateset is
built up in a set-valued variable S. Again,

,a marker tlag ls considered to be attached to
-'eachCFLR(k) state added to S; states are
,'unmarked' when tirst added to S:. During

".,: '.,

execution ot the algor1thm a tabluation ot the
tunct10n CF-GCTO(~} m~y be built up tor all
CFLR(k) states /).in the s tateset and all
X e V. As 1n the LR(k) case this tabluation
will be needed during construction ot the
ct-parsing tables tor (G,C).

l?egin
•compute CFV (~) and set S = { CFV(}, )1 ;

while S contains any unmarked states ~
select an uDnlarked state /).:t'romS and mark it;
.w each X e V ~

oom'Pute :E • CF-GCTO( /).,X) ;

J: :E,L _ and ~ .is not in S then add
::E to S 2nd!!"

endfor
, 2ndwhile;. ,
set CFS(G,C) = s'

k

.~. Cl
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In combination, Theorem 3.39 and Algorithm 3.47
provide a second direct method or testing for the CFLR(k)
property along exactly the same lines as the corresponding

·LR(k) test outlined in the second proof of Theorem 2.8
(see Section 2.3). Observe that the notion of the adequacy
of statesets is identical i~ both the LR(k) and CFLR(k)

, cases and that Algorithm 3.47 is basically identical to
·Algorithm 2.23. Consequently, if an implementation of the
,LR(k) test of Section 2.3 is available, it can be
·converted to a CFLR(k) test with very little programming

.,effort - all that need be done is to substitute code for
the evaluation or the function CF-GOTO in place of that
tor the function 00'10.

Also note that when C, the chain set, is empty,the
CFLR(k) stateset degenerates into the ordinary LR(k)
stateset and Algorithms 3.47 and 2.23 become identical.

, It therefore follows that'the worst-case time complexity
of this method of CFLR(k) te'sting i'sat least as bad as
that of the corresponding LR(k) test - and that is

·exponential in the size ot the grammar under test.

To conolude this' section we display in Figure 3.6
.. ,

the OFLR(1) stateset and OF-GOTO tunction for (G3,C3) •
.......Sinoe no inadequaoies are present 1n the stateset we

oonclude that this os-grammar 1s CFLR(l) - as 1t must
be sinoe G3 is La(l) • Observe that whereas the LR(1)
stateset tor'G3 (see Figure 2.3) has 22 states, the
CFLR(l) stateset tor (G3,C3) bas but 19. This reduction
1n the n~ber or states is unusual; CFLR(k) statesets
generally oontain more states than their LR(k) oounterparts.
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We shall have more to say about the relative sizes or
LR(k) and CFLR(k) statesets in Chapter 5.

STATE CP'LR(l) STATES CP'-GOTO
lio. NUCLEUS COm'LETION S E T P ( x ) * +

1 [s -.E,A] rE -. E+T,A , +1 2 3 3 4 3
[T ... T*P,A ,+, *1
[P ... {E),~.+,*]

2 [S .. E.,A] [E-E.+T.4.+] 5

3 (S .. E•• ..4] [E-E.+T,J.,+] 6 5
[T'" T. *P,A ,+, *)

4 [P- (.E).",+,*l IE - .E+T, }'+l 7 8 8 9 8
[T_.T*P. ,+ •• )
[P... (E). ,+,*)

5 [ E - E+. T,A• +J fT -. T*P,.4 ,+, *] 10 10 4 10
P ... (E),J,,+.*]

6 CT.. T·.p,A,+,·] [p ... (E),A ,+,*J 11 4 11
7 [P- {E. ),Jr,+,*J 12 13

[E-E.+T, ),+]
8 [P- (E. >,J,+,*] 12 14 13

[E .. E.+T, ~'+]
[T-T.·P, ,+,*]

9 [P-(.E), ).+,.) lE -.E+T, ~,+J 15 16 16 9 16
. . T- .T·P. ,+,.]

{P-.(E}. ;+,*]
10 [E - E+T. ,A ,+1 6

[T-T.·P,A,+,*] .
11 [T-T*P. ,A ,+,*J
12 CP - (E).,4 ,+,*]
13 [ E - E+•T, ), +] [T-.T·P, ~,+,.1 17 17 9 17

[P •• (E), ,+,*1
14 [T-T*.P,>,+,*] (p-.(E},),+.*j 18 9 18
15 CP - (E)., ~,+,.J 19 13

[ E - E. +T, , +1
16 CP- (E)., J,+,.l 19 14 13

[ E- E. +T, ,+]
[ T- T•• p, , +, *] .

17 [ E - E+T. , ~,+] 14
[ T - T. *P, , +, *)

18 (T-T*P., ),+,*1.
19 [p .. (E)., ).+,*J

, Figure 3.6 : The CFLR(l) Stateset and OF-GeTe Function
for the cs-grammar (G3,C3).
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3.6. Testing tor the CFLR(k) Property Directly - Part 3.

\

In thia section we wish to develop a practical
algorithm for testing for the C!LR{k) property in poly-
nomial time. The algorithm which we construct will be
akin to the LR(k) testing algorithm ot Section 2.4.First

,

ot all we will adapt the LR(k)· constructions in a
straightfo~ward manner and show that, while this approach
does provide an acceptable algorithm, it also has certain
drawbacka. We will then modify the constrUction slightly
in order to achieve a more satisfactory solution. We
choose this step by step approach to the tinal solution
because it seems more perspicuous than a direct attack.

Recall that the techniques of Section 2.4 were based
upon the enumeration or a set called PAIRS~ consisting or
all those pairs ot LR(k) items which are simultaneuously
valid tor some v1able pretix ot the grammar. The next
definition generalizes this concept 1n the natural manner.

DEFINITION 3.48 (c~. Definition 2.2?)

The eet CF-PAIRS(G,O) 18 detined by I
k

OF_PAIRS~G,C) _.

{( 6,:l:) I 6 and :::E are CFLR(k) items tor· (G,C) such
that both A,:::E e elY(e) for some e eY* }.O

The algorithms we shall develop will exploit the
following result - which i8 an immediate oorollar,y to
Theorem 3.39 •.
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THEOREM 3.49 (ct. 'Theorem 2.28)
(G,C)(G,C) is ~FLR(k) it and only ir CP.PAIRSk contains

no inadequate members. 0
(G~C)We now requ1re 8 method tor constructing the set ~F-PAIRSk •

In Section 2.4 we constructed anondetermin1stic tinite
, Gautomaton Mk in order to enumerate the corresponding set

PAIRS~.

We adopt a similar construction in the present case and
detine an automaton CF~G,C) to enable the enumeration ot

CF-PAIRS~ G,C).

QONSTRUCTION 3.52 (ct. Construction 2.25)
The ~A CF~G,C). (Q,q.,F,I.l) is detined as rollows :,

(a) Q a I~ v {q.l.

(b) 14'is irrelevant,
(c) . I a V (remember V is the vocabulary ot G), and
(d) cS, the transition tunction is given by :

(i) cS(q.,A). {[s ......ot,A]1 S .....o( e pI,
(ii) wben q is ot the torm q':: [A - e,..Bea ,U ]

'with B "V
N

tbe~ & (q,Jv) a

{[B-..p, T] B-f3" Pand T.e 14'IRSTk(eau)l
(iii) when q is ot the torm q:: [A-__ 9•.xe:a'u ]

with X "V then cS (q,Y) a 1[A ....e.x.ea, u lJ
~tor each Y " V such that:X ....Y~.. &

During the more informal parts ot the subsequent discussion. '(G,C)
we shall write cn rather than CF}{k" and la{ rather::
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Comparison ot Construct10ns 2.25 and 3.50will reveal _
that CFU ditters trom M only 1n its type (ii1) transitions;
whereas in LI we have 6( ~,X) = NEXT( { 61 ,X) tor each
LR(k) item ~ and symbol X e V, in CFM we haved(~,X) =

-CF-NEXT' { ~ J ,X). Since the type (ii) transitions
continue to fulfill the role' ot the CLOSURE function, it
is eas1ly seen thst CFU possesses the tollowing property :

LEMMA 3,51· (ct. Lemma 2.26) _
Let 8.e V·. Then 1n CFM~G,C) we have

C" (' n.) eFI (G, C)() q.,~" k

This result may be proved formally by a straighttorward
induction on the length ot e. From this lemms and the
detinition ot the function STATE-PAIRS (Definition 2.29)

_we immediately obtain the following result :

LEMMA 3.52 (cf. Lemma 2~30)
--

C:r_~AIRS~G,C) •

STATE-PAIRS(CFM~G,C» " (Q]'I~G,e) x CFI~G,e». Cl

--~- -- ---_- - -.

The reader may wonder why the states ot CFU comprise all
.the LR(k) 1tems for G when we are ultimately interested
only in the CFLR(k) items. The explanation'is that the

-chain items, (the LR(k) items Which are not CFLR(k) items)
are needed because ot their contribution to the type (1i)

transitions in CPM; although ot no interest in themselves,
they serve as intermediaries in sequences,of~-transitions
from one CFLR(k) item to another. Strictly speaking, it
is only the initial chain items which are needed for this
purpose. However, 1t does no barm to also include the
final chain items among tbe state of CPU since they are
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discarded in Lemmas 3.51 and 3.52 by virtue ot the
intersections with CFI~G,C) .,By allowing the states ot

CFM to include all LR(k) items, the construction ot

,this automaton is kept more unitorm with that ot M.
-We sball see later that this unitormity is usetul.

In order to illustrate the construction in general
and the points raised in tbe last paragraph in partic-
ular, we now -introduce a simple example. We will use the
tollowing grammar :

- ,

s - Ax ( Grammar G7)
A --- B I ,

, -,

x
B _..., y

, " and take C7 = {A--- B} as the chain set. We use k=O
..and display the transition diagram-ot CFK~G7,C7) in

Figure 3.7. Note that in this figure we omit the second
element (that is the lookahead string) when writing
LR(O) items. This is because the lookahead string in
LR(O) items is always A and 80 there is no need to
indicate it exp11citly~
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A

[S .......Ax 1

-Iv

[S ....A.x) CS-Axe J

[A-.B J

~

[A-B.]

[B ..... y]

(A-.x]

Figure 3.7 : The Transition Diagram of CFM~G7,C7) - the
ENE! Corresponding to the cs-grammar (G7.Q7) when k=O.

Observe in Figure 3.7 that the LRCO) chain item
·[A-.B]. 1s needed 1n order to make CFLR(O) 1tem [B .....z l
accessible from the start state. Notice also that CFM~G7,C7)
d1ffer.s from Mg7 only 1n the presence of the transit1cm
on B from [8 ...... Ax 1 to [S ..... A.x]. .
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Our new methoa ot testing tor the CFLR{k) property is

the tollowi ng : .
Construot the automaton CFM and evaluate the set
STATE-PAIRS{CFM). Then use Lemma 3.52 to produce

.CF-PAIRS{G,C) ana test each _ember ot this set for
k

adequacy. Declare (G,C) to be CFLR(k) it no
inaaequacies are tound.

The oorreotness ot this method tollows immediately trom
Theorem3.49 and Lemma 3.52. In order tor it to become

...'a practical algorithm, we must prescribe a method tor
evaluating STATE-PAIRS{CFM). Now in Section 2.4 we used

l.

. ...

Algorithm 2.32 topertorm the corresponding evaluation,
namely that ot STATE-PAIRS(M), but we cannot use this same
algorithm bere because it relies upon a property of M

which is not shared by CFM. This property is thst no state
in M has transitions on more than one symbol from V. It is
this property Which allows us to spe~k of the OUTSYM of a
state and it is used in steps 5 and 6 ot Algorithm 2.32.
In contrast, states in CFM may have transitions detined on
manr symbols trom V. For example, in Figure 3.7 the state
[8 ... Ax]has transitions on both the symbols A and B.

We will call the set ot symbols in V tor which a state in
CFM has transitions detined the 'CF-OUTSYM' ot the state •

.~--~-
DEFINITION 3.5 J (cf. Definition 2.31)
Let q be a state in CFM~G.C). Then

CF-OUTSYK(q} • {:x e V J '(·~,X)~ ¢L 0
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Note that although each state 1n CFM may have transitions
det1ned tor several symbols 1n V, there is no non-
determinism 1nvolved; tor each state q and each symbol
X e CF-OUTSYM(q), there is but a single state in d(q,X).
Tbus, just 11ke II, all tbe nondeterminism in CFM is on
tbe ~-transitions and so it is only steps 5 and 6 of
Algorithm 2.32 wbicb need to be changed in order to
cope with thi's'new type ot automaton. In this way we
arrive at tbefollo,wing algorithm tor evaluating STATE-
PAIRS(CFM).
ALGORITHM ',54 '(cf. Algorithm 2.32)'

Evaluation of STATE-PAIRS(CF~G,C».
• ' . (G,C) ( , ,") ...,Input. Tbe ENFA CFM = Q,q ,F,I, d •

k •
Output: ,Tbe se; STATE-PAIRS(CFM(G,C) ).

, k" .

Yethod: The data structures and the procedure INSERT are
reta1ned unchanged trom Algor1thm 2.32. The output 1s
represented by the b1t matr1x PAIRS.

begin
INSERT (q.,qD );

1. while STACK is not empty ~
2. pop (p,q) from'STACK;
3. " l..9l! each q' c d (p, J., ) ~ INSERT(p,q') endtoI";
4. -sss each p' e cJ(q,.).,)~ INS:a:RT(p',q)endfor;
5. .:s.r each X ca V ~

..u X • CF-OUTSYM( p) .Il19 X e CF-OOTSnI( q) tbea
'INSERT(J(p,X), d(q,X»

endit
endror

endwhil •.
.a§.CJ



201

Observe that Algorithms 2.32 and 3.54 are ,identical
except that the two steps 5 and 6 in the former ere
replaced by the single step 5 in'the latter. The correct-
ness of Algorithm 3.54 should be cleer from the remarks
which preceeded its introduction, so let us now consider
its complexity. The work charged to each ot its steps 1
to 4 will be exactly the same as that charged to these
steps in Algorithm 2.32, that is o(IQI 2) to steps 1
and 2 and o( IQ I. ~ Is(q,-A) I ) to steps 3 and 4. Since
'the numbers ot states and J. -trans1 tions in CFM are the

,.
same as those in K~'it follows that when the size of the

,grammar G is n, the work charged to-steps 1 and 2 in
Algor1thm 3.54 1s o(n2k+2 ) while that charged to steps
3 and 4 is 0(n3k+3). These 'costs are just the same aa
those ot the corresponding steps in Algor1thm 2.32. How-
ever, the cost ot each execution of step 5 in Algorithm
3.54 is O( Ill) and so the total work charged to this
step is O( IQI • III>. Since I = V and Ivi = O(n) the
cost ot th1s step is therefore 0(n2k+3) Bnd this should
be compared with the O(n2k+2) cost of steps 5 and 6 in
Algorithm 2.32. Nevertheless, the overall complex1ty ot

Algorithm 3.54 is clearly dominated by the cost ot steps
3 and 4 and so we see that this algorithm has the same
complexity, that is O(n3k+3), as Algor1thm 2.32.

We claim that just as the overall complexity ot the
tRek) test given in the third proot ot Theorem 2.8 is
dominated by the cost of evaluating the set STATE-PAIRS{K),
so the complexity of the corresponding CFLR(k) test is
dominated by the cost of evaluating STATE-PAIRS(CFM). It
this evaluat10nis performed using Algor1thm 3.54 then the



overall complexity ot this method ot testing tor the
CFLR(k} property will be O(n3k+3). This is the same
cost as that ot testing tor the ordinary LR(k) property-
which seems a very satisfactory result. The situation
becomes somewhat less satistactory, however, when we
consider the more etticient LR(k) tests of Hunt et al.
(1974 and 1975).

As has been explained before, tbe metbod rrom tne
earlier or these references obtains its O{n2k+2) time bound
by dint of constructing a modified form ot the automaton
M in which the number of ~-transitlons is reduced rrom
O(n2k+2) to O(nk+l). This reduces the cost of steps 3
and 4 in Algorithm 2.32 from O(n3k+3) to O(n2k+2) and
thereby reduces the overa!lcomplexity ot the Algorithm,

, 2k+2and hence ot the entire LR(k) test, to O(n ). It we
attempt to improve the etticiency ot our CFLR(k) test in
the same way, that is by reducing the number ot ~-

transitions, then the overall complexity ot Algorithm
3.54 will become dominated by the cost of its step 5.
Thus we would reduce the complexity ot the CFLR(k) test
to only o(n2k+3) rather than to the target of o{n2k+2).
The 0{nk+2) LR(k) test ot Hunt et al. (1975) will likewise
yield an O{nk+3)' CFLR(k) test. It therefore seems
necessary to exsmine Alsorithm 3.54 more closely in order
to see whether the O{n2k+3) cost ot step 5 is really,
neoessary.

The costliness ot this step isclesrly due to its
,iterative nature. Now it is apparent trom the detinition
of the type (iii) trsnsitions in CFM that trom any given
state ~ the nonJ-transitions lead to but one destination
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state. That is, in each state q, cS (q,x) = 0 (q,Y)
tor all X,Y e CF-OUTSYK(q}. It tallows that the etfect
of step 5 in Algorithm 3.54 can be accomplished more
economically by the tollowing non-iterative step:

J.&: (CF-OUTSYK(p) '" CF-OOTSYK(q» ~ p then
select any X 0 CF-OUTSYM(p) and any
Y e CF-OUTSYK(q) and INSBRT(d(p,X),~(q,Y»

end1t

In this new step, instead at following all the transitions
from,p and q,we tollow just one representative from each,
having tirst ensured that there is at least one symbol on
'which a transition is defined in both states.

We now need some rapid means tor testing the emptiness
of the intersection CF-OUTSYll(p) rv CF-OUTSYl4(q) and tor
selecting the representative symbols X and Y. Now when p
is a state of CFM, its CF-OUTSYK set is empty if p is
either the initial state or it it corresponds to a final
LR(k) item. Otherwise p must correspond to a non-tinal
item ot the form [A -- e••X92,u] and in this case
,CF-OUTSYM(p) = iY e V I X -: y J • But CFM shares the
same states as K and so p may also be regarded as a state
ot M. Regarding it thus, we may speak at the OUTSYM at p
(recall Detinition 2.31) and this will be ~ (i.e undefined)
it p is either the initial state or it it corresponds
a tinal LR(k) item. Otherwise p must correspond to a
non~tinal LR(k) 1tem at the torm [A'" e I.X6:l ,u] 'and

/
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in this case OUTSYK(p) • X. We have 3ust proved :

LEMMA 3.55

Let p be a state in CF~G,C) • Then it is also a state
Gof Ilk and

(a) CF-OUTSYM{p) = ¢ it and only it OUTSYM(p)=~, and
" (b) if CF-OOTSYK(p) !~then

. ,

, , (1) CF-OUTSYK(-p) = {X e V I OOTSYK(p) ..;x) and so
(1i) OOTSYK(p) e CF-OOTSnI{p). 0

We now define an equivalence relation on the vocabulary
of G.

DEFINITION 3,56 ,

Let C be a chain set for the grammar G. Define the
equivalence relation~ on V by x ~ Y it'and only if
there exists Z 'e V such that both X -! Z and Y -{ Z • [J

From this definition and the,preceeding lemma 'we'immed-
. iately deduce the following resUlt t

LEMMA 3.51
Let p and q be states,in CF~G,C).
CF-OOTsn(p) rv CF-OUT~YM(q) !¢ if and only if both
(a) OUTSYM(p),L, and OUTSn(q) ,L q>., aud
Cb) ,OUTSYK{p), 7 OOTSYK(q)., Cl ,

, ! .'.
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It a tabulation ot the relation ~ is assumed to be
mailable, then Lemma 3.57 indicates how the emptiness
of the intersection CF-OUTSYM(p) A CF-OUTSYM(q) can be
decided at fixed cost. If this intersection is non-
empty, then part b (ii) of Lemma 3.55 shows that the
representative symbols X and Y trom C~OUT~YM'p) and
CF-OUTSY.M(q) can be provided by taking X • OUTSYM(p)
,and Y = OUTSYM(q).

Thus step 5 of Algorithm 3.54 can now be replaced
by the two steps :

set X. OUTSYK(p) and'y = OUTSYM(q)i
~ X ~ er and Y ~, and X ~ Y then

INSERT(cS(p,X), cr(q,Y»
endit

,Both these steps have tixed cost (provided a tabulation
ot ~ is available) which is what we require. But
observe also an additional advsntage conferred by this
retormulation of step 5 : the only non-A transitions

,now involved are those of the torm G(p,X) where X =
OUTSYM( p) and transi tions ot this type are identical in
both CFM and M. Thus, in this modified form,Algorithm

,3.54 will use only those transitions wbich are common
to both' CF~ and M. This means that the algorithm now has
the rather remarkable property that it evaluates STATE-
PAIRS (CFM) directly trom K. For completeness we state
the mod1t1ed,algorithm1n tulle
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,ALGORITHM 3.58 (ct. Algorithms 2.32 and 3.54)

Evaluatton otSTATE-PAIRS{CFM(G.C».
k

Input : The ENFA 14~ = (Q,q.,F,I, J ). '
Output : The s et STATE-PAIRS{CF~G,C» •.
Method : The data structures and the procedure INSERT
are retained unchanged trom Algorithm 2.32. The output
is represented by the bit matrix PAIRS.
begin

.INSERT (q.,q 0 );

1• while STACK is not empty ..2.2
2. pop (p,q) trom STACK;
3. tor each q t e & (p, A) .9.2 INS'ERT(p,q t) endfor;
4. tOE each p' e o(q,J.,) ~ INSERT(p',q) endfor;
5. set X = OUTSYM(p) and Y = OUTSYM(q)i
6. ' ... X I tV' and Y t Cl> and X ~ Y then

INSERT{¢ (p,X), 0 (q,y»'

endlt
endwhile

~.o
Observe that this algorithm ditfers rrom Algorithm

2.32 only 1n tbe deta1l ot 1ts 6tb step. Algor1thm 2.32 bas
JrL X l~and Y I- q>. and X = Y then

INSERT(cS(p,X), d (q,Y»

endit'
and Algorithm 3.58 differs only in that 'X = y' is replaced
by 'X ~ Y'. Therefore, whenever both algorithms are
applied to the same automaton,their complexities will be
w1thin a constant tactor ot each other. Now the rast LRCk)
tests ot Hunt et a1.(+974 and 1975) reduce the cost ot
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Algorithm 2.32 by applying it to a variant ot M (or,
in the case ot the later reterence, to a series of
variants) rather than to M itself. Since ALgorithm 3.58

.will work just a8 well when applied to these variants,
its cost,too,may thereby be reduced to only 0(n2k+2)
or 0(nk+2) as desired.

In its complete form, the basic 0(n3k+3) test·tor
the CFLR(k) property is the following :

ALGORITHM 3.59 (ct. the third proot of Theorem 2.8)

Testing for the CFLR(k) property •.
Input: The cs-grammar (G,C) to be tested and a value

for k.
Output:
Method:

'Yes' it (G,C) is CFLR(k), otherwise 'no'.
Tabulate the relation ~ and construct the
automaton K~. Then Use Algorithm 3.58 to .
evaluate the set STATE-PAIRS(CF~G,C» and use
Lemma 3.52 to extract the set CF_PAIRS~G,C).

Test each member of this set tor adequacy and
output 'yes' it no inadequacies are tound,'no'
otherwise. 0

This algorit~ is similar in every way to the LR(k) test;
indicated in the third proot or Theorem 2.8 and, ignoring
tor the moment the cost ot tabulating the relation ~,
its complexity is therefore dominated by that ot

Algorithm 3.58. Since this can be reduced to 0(nk+2) by
using the methods ot Hunt et a1.(1975) it tallows that
CFLR(O) testing can be pertormed in time 0{n2). Hence
it is necessary that the tab~lation at the relation
be performed in time 0(n2) it this is 'not to dominate'
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the cost of CFLR(O) testing.

Now:Definition 3.56 defines +:- in terms,of the
relation -.t and so it seems that tabulating ~
will be at least as expensive as tabulating the
trans~tive closure of ~ • This seems rather

.unpromising since all known algorithms for computing
the transitive closures ot arbitrary relations incur
cost greater than 0(n2) in the worst case. lOrtunately
however, the relation ~ has special properties which
do allow it to be.,tabulated within the 0(n2) time bound.
In order to establish this fact we appeal to the
following theorem which is due to Hunt et al.{1974,
Theorem 6).
THEOREM 3,60

Let 6 be an expression whose operands are relations
having graphs wi th at most v vertices and e edges each
and whose operators are chosen from composition,

,transitive closure, retlexive transitive closure,union
and inverse. Then the relation denoted by 6 can be
computed in O(ve) steps. [J

Now observe that the chain set C is really a
relation on V and that the graph tor C has Ivi (i.e.
O{n» vert1'ces and as ma~ edges as there are productions

.in C (i.e. at most O(n». It follows that the product
ot the number of vertices and the number of edges in
the graph ot C is bounded by 0(n2).The following
identity is evident from Detinition 3.57 :

~ = C·. (0-1)*

from which it follows by Theorem 3.60,that can
indeed be computed in time 0(u2), where n is the size of

the ~ammar concerned.
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3.7. Chain Free Parsing the CFLR(k} Grammars.

In Section 3.3. we showed that a ct-parser tor
a CFLR(k) cs-grammar can be constructed by simply
building the ordinary LR(k) parser tor the corresponding
cover grammar.~e disadvantage ot this indirect approach
1s that the LR(k) parser tor the cover grammar can be
very much larger than that tor the basic grammar. For
example, the LR{l) parser tor G3 has but 22 states while
that tor COVER{G3,C3) has 73 states. Using this indirect
approach, the speed benet1ta ot ct-parsing are bought
at the expense of inordinately large parsing tables.. "

We now show how ct-parsers tor the CFLR(k)
cs-grammars may be constructed directly. Recall that an
ordinary LR(k) parser is formed by taking the basic table
driven parser ot Algorithm 1.4 and driving it with a set
ot LR(k)parsing tables. CFLR(k) ct-parsers are produced
by an exactly analogous procedure: Algorithm 1.4 is
retained but driven by a set ot 'CFLR(k) parsing tables'.
These are construoted trom CFLR(k) statesets in just the
same way as ordinary LR(k) tables are constructed trom
LR(k) statesets. Their tormal definition is given by the
tollowing construction.
CONSTRUCTION 3.61 (ct. Construction 2.35)
The CFLR(k) parsing tables tor (G,C) are denoted CFT~G,C)

(a)

(b)

(0)

are give~ by CFT~G,C) :: (Q,so,g,f) where"
Q = NAMES(CFS~G,C»,
s.:: NAMEOF(CFV{ J., » ,
tor all ~ e CFS(G,C) and X"e V.k

g(NAMEOF( A) .x) :: NAMEOF(CF-GOTO( IJ. .x) ,and

and
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(d) tor all A. CFS~G,C) and u e V;k,
r (NAMEOF (6.), u) = ACTION( 6. , u) •

(The function ACTION waB defined in Construction 2.35). 0

Note that, just like the ordinary LR(k) case, the action
tunction f in a set of CFLR(k) tables for (G,C) will be
single-valued it and only if (G,C) is C~(k).

We now examine the theoretical properties of the
CFLR(k) parsing algorithm, Por the rest ot this section
we assume that we are concerned with the CFLR(k) parser
tor a cs-grammar (G,C) which is supposed to be CFLR(k)
tor the value of·k concerned. As we should expeot, the
algorithm pertorms correctly when presented with valid
input.

THEOREM '.62 (ct. Theorem 2.36)
The CFLR(k) of-parsing alg~rithm produces correct chain
tree parses for all inputs in L(G).
PROOP. The conditions which a set of et-parsing tables
must satisfy in order to drive Algorithm 1.4 correctly are
given as part ot the formal definition of such tables

.(Definition 3.13). These conditions sre simply the chain
free generalisations ot those Which ensure the correctness
of ordinary LR(k) tables. Similarly, the.CFLR(k) tables
are them8~lves the natural chain free generalisation of
LR(k) tables. Consequently, the proot of the correctness
ot the ordinary LR(k) parsing algorithm (see Theorem 2.36)

may be adapted straightforwardly to the present case. We
omit the details.O
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The tollowing result shows that the algorithm runs

in linear time and space.

THEOREM 3,63 (ct. Theorem 2.37)

The number ot moves made by the CFLR(k) ct-parsing
algorithm in processing an input sentence ot length n
is O(n).
PROOF. It Ls,unfortunately, not sutticient to merely note
that the CFLR(k) parser tor (G,C) makes no more moves than
the LR(k) parser tor G and then appeal to the linear time
result tor LR(k) parsers.~is is because there is no
guarantee that G is LR(k). (Indeed there exist CFLR{k)
cs-grammars (G,e) where G possesses sentences with (ordinary)
parses ot infinite length.) Instesd we appeal to Theorems
3.25 and 3.26 and note that it (G,C) is CFLR(k) then
COVER(G,C) is LR(k) and generates exactly the language
LeG). Thus an tRek) parser exists tor COVER{G,C) and it is
clear that its moves are in one-to-one correspondence with
those ot the CFLR(k) ct-parser tor (G,C). The present
theorem than tollows directly trom Theorem 2.37 which
guarantees the linear time bound ot the LR(k) parser tor
eOVER(G,c). Cl

The tinal theorem shOlBthatthe CFLR(k) parsing algorithm
retaina the excellent error detection properties ot the
LR(k) algorithm.
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THEOREM 3.64 (ct. Theorem 2.40)
IIILet k ) 0 and let x e VT be a string not in L(a).

Then the CFLR(k) parsing algorithm rejects x on :

(a) its first move if EP(x)(k, and
.(b) the move following the EP{x)-k 'th shitt move it

EP{x) > k.

PROOF. This result may be proved in a similar manner
to the previous one - by appealing to the pertormance
of the LR{k) parser forCOVER{G,C). 0

We end this section by displaying in Figure 3.8
the CFLR(l) parsing tables for (G3,C3) - these are
obtained by applying Construction 3.61 to the CFLR(l)
stateset tor this cs-grammar which is shown in Figure
3.6.
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STATE CF-ACTION FUNCTION CF-GOTO FUNCTION
·NO. A ( x ) * + S E T P ( x ) * +

1 ah ah 2 3 3 4 3
2 1 ah 5
3 1 ah ah 6 5
4 ah ah 7 8 8 9 8
5 ah ah 10 10 4 10
6 ah sh 11 4 11
7 sh sh 12 13
8 ah sh ah 12 14 13
9 ah sh 15 16 16 9 16

10 2 sh 2 6
11 4 4 4
12 6 6 6
13 sh sh 17 17 9 17
14 ah sh 18 9 18
15 sh ah 19 13
16 sh ah sh 19 14 13
17 2 sh 2 14
18 4 4 4
19 6 6 6

Figure 3.8: CFTiG3,C3)_ the CFLR(l) Parsing Tables
for (G3, C 3) •

In Figure 3.9-we display the moves made'by the CFLR(l)
parsing algorithm tor(G3,C3) - that is to say Algorithm 1.4
driven by the tables of Figure 3.-8_ while processing the
string X*(X+X). Figures 3.8 and 3.9 should be compared with
their LR(l) counterparts which are shown in Figures 2.4
and 2.5 respectively. Observe that the CFLR{l) psrser makes
less than 60% ot the moves made by the LR{l) parser when
presented with' the given input.
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MOVE SYMBOL STACK .STATE STACK UNCO!tSUMED ACTION
NO. CONTENTS CONTENTS INPUT
1 J- 1 X*(X+X) SHIFT
2 X 1,3 *(X+X) SHIFT

,..
3 X* 1,3,6 (~+X). SHIFT
4 X*( 1,3,6,4 X+X) SHIFT

-
5 . X*(X . 1,3,6,4,8 •.. ·+X) .., SHIFT
6 X*(X+ 1, 3,6, 4, 8,13 X) . ' SHIFT

!

7 X*(X+X'·, 1,3,6,4,8,13,17 ). REDUCE E...E+T
8 X*(E _.' 1,3,6,4,7 ) , SHIFT
9 X*(Er 1, 3,6, 4, 7, 12 Iv REDUCE P - (E)
10 x*p . 1,3,6,.11 Jr REDUCE T-T*P.
11 T 1,3 Jt REDUCE S ..E

- . and ACCEPT

Figure ).9 : The Behaviour of the CFLR(l) of-parser
for (G), C) with Input X*(X+X) •

."
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3.8. Summary

This Chapter has introduced the idea of a chain
specified grammar {a cs-grammar), that is a pair (G,e)
where G·is a context free grammar and C is a set of
chain productions trom G which are to be ignored during
parsing. We have seen that, .provided care is taken with
the detin1tional tramework, the basic ideas of parsing,

~ and in particular the table driven bottom up parsing
algorithm, can be generalised' to accommodate the notion
of chain tree parsing (ct-parsing) - a torm of parsing
in which all chain productions are ignored. The major
original contribution"ot this thesis lies in the intro-
duction of the CFLR(k) cs-grammars. These are the
largest class of cs-grammars which can be ct-parsed from
lett to right while looking k symbols ahead ot the
current point ot the parse.~ne LR(k) grammars ot Knuth
are included as the special case in which the chai~ set
C is empty.

The remainder of this chapter has been concerned with
exploring the properties or the CFLR(k) cs-grammars.First
we examined the relationship between the LR(k) and CFLR(k)
properties and proved a significant. result: it G is
LR(k) and e is a chain set tOI' G, then (o,c) is CFLR(k).
ConveI'~elY, it was demonstrated that there exist CFLR(k)
cs-grammars (G,e) in which the undeI'lying grammaI'G is
not LR(k), nor even unambiguous.

We then took a different tack and related the CFLR(k)
property ot a cs-grammar to the LR(k) pI'opeI'tyof a
'cover' grammar •.In this way we were able to establish
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that the LR(k) and CFLR(k) languages are co-extensive.
This approach also provided theoretical solutions to the
problems of testing for the CFLR(k) property and of
constructing ct-parsers tor the CFLR(k) cs-grammars.
However, no practically teasible algorithms were provided
by these techniques because the cover grammars were
tound to be very much larger than the cs-grammars which
they c~vered.

In order to obtain practical CFLR(k) testing and
parsing algorithms we then proceeded to generalise the
corresponding LR(k) techniques. Each ot the three methods
of testing for the LR(k) property was succestully
generalised to test tor the CFLR(k) property. It was
shown.that the greater generality of the CFLR(k) property
need notincrease the complexity of its decision procedures
above those ot the ordinary LR(k) case.

Finally, a method was presented ror constructing
table driven cf-parsers for the CFLR(k) cs-grammars. By
virtue ot their chain tree nature, these parsers are
taster than their LR(k) counterparts yet they preserve
the same high quality et error detection.~eir only
disadvantage is that they may be rather larger than
ordinary LR(k) parsers. In a later chapter { Chapter 5 )

we shall present en optimisation that removes this
disadvantage.

We submit that the techniques presented here are the
right and naturel way to eliminate chain productions from
LR(k) pars~rs. Unlike all other techniques (except that
ot Anderson (1972), Which is tundamentallY the same as our
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own and,indeed,the source ot its inspiration} ours
places no rest~iction on the chain productions that
may be eiiminated {save only that none may have the
goal symbol as its lett part}, nor does it add to the
constraints upon the grammar: given an LR(k} grammar,

. JW..I set ot chain productions may be selected in the
sec~e knOWledge that a CFLR(k) chain tree parser can
be constructed.

It is also worth noting here that the similarity
between the LR(k) and CFLR(k) testing and parser
construction algorithms is such that, should an imple-
mentation ot any ot the LRCk) algorithms be available,
then it may be converted into its CFLR{k) counterpart
with only very modest ettort.
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CHAPTER 4,

gONY@TING LR(k) PARSERS INTO CHAIN FREE PARSERS

Section 3.7 described the standard method ror construot-
ing CFLR(k} parsing tables. Nowwe shall reconsider this
topio trom another angle; we shall suppose that ordinary
La(k) parsing tables are already available and we shall

'seek to convert them directly into CFLR(k} tables.'

We are concerned with this approach ror two reasons :
tirstly because it could be useful in practice, and
secondly because it will enable us (in Chapter 7) to
relate our work to that ot Aho and Ullman (1973b)and
others.

It will be shown that tables constructed in this way are
'not always exactly the same as proper CFLR(k) parsing
tables (in general they are much 'bigger) but their
pertormance when used to drive Algorithm 1.4 is indistin-
guishable trom that ot CFLR(k) tables. We say that these
new tables 'cover' the true CFLR(k) tables.

Later, we shall modity the technique in an attempt to
reduce the size ot tables produced. The moditication takes
the torm or a simple, a1most crude, optimisation, yet is is
sutticient (in an important special 08se) to produce tables
which are identical to true CFLR(k) parsing tables.

Much ot the middle section ot this chapter is concerned
With elucidating the nature and properties ,or the special
oase alluded to above. This case ooncerns os-grammars baving
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a property which we call 'Property A' and it is one
which finds constant application throughout the
remaining chapters.

,.. ','
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4.1. The 'Post-Pass'Method for Constructing CFLR(k)
Parsing Tables.

Although the goal of this chapter is to tum LR(k)
parsing tables into CFLR(k) tables, we begin by discuss-
ing how the availability of LR(k) statesets can assist
in the construction of CFLR(k) statesets. We do this
because the technique is interesting in its own right,
leads on naturally to the main topic, and enables us to
explain some rather nice points that arise in Chapter 6.

The technique we have in mind depends upon associat-
ing with each CFLR(k) state, CFV(S), a collection of
LR(k) states given by :

COLLECTION (e) • t V(.,_), ~ II" -i e 1.
Now, by virtue of Theorem 3.46, we have

CF-GOTO(CFV(e),X) • CFV(6X) (1)

I . and by virtue of Theorem 3.43 we have
CFV(eX) • CF-STRIP(COLLECTION(SX» (2)

while Theorem 2.20 gives
COLLECTION(eX) •

{GOTO( fj" Y) , ~ I fj, e COLLECTION(e), Y-t xl
The identities (1), (2) and (3)effectively express
CF-GOTO in terms of the functions CF-STRIP and GOTO.
Now GOTO is only marginally easier to evaluate than CF-

(3)

GOTO and so this result would be of little interest
were it not for the fact that a tabulation of GOTO for
all the 'arguments required in (3) is obtained as a by-,
product of the construction of the LR(k) stateset '
for G.
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So if we have the LR(k) stateset and a tabulation ot

the GOTO function for our grammar G available we can
reduce the evaluation of OF-GOTO to a series oC table
look-ups (tor GOTO) and application of the (very simple)
function CF-STRIP. In this way we can construct the
CFLR(k) stateset tor (G,C) and hence its CFLR(k) parsing
tables.

Having introduced the basic idea, we must now give
it a more practical realisation. In order to maintain
unitormity with later constructions (which must manipulate
La{k) tables, not statesets) we shall associate with
CFV(e), not the set of aotual LR{k) states COLLECTION(S),
but rather the set comprised of the names ot these states.
We shall oall this set ot names the "quasi CFLR{k) state
for e" and we shall define a tunction called ITEMS to
enable LR(k) states to be recovered from their names. We
shall also'define a "quas! CF-GOTO function" to realise
a version of the ident!ty (3) above. Finally, instead of
using these objects to construct the CFLR(k) stateset
,directly, we Shall tirst construct a "quae! CFLR(k) state-
set" composed of quasi CFLR(k) states and then convert
this into the CFLR{k) stateset proper. We now g!ve the
tormal det!nitions ot these notions.

'.,..
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DEFINITION 4.1
Let T~ ~ (Q,so,g,f) be the LR{k) parsing tables for.G
and let C be a chain set for G. We do not require that

•G be LR(k), nor that (G,C) be CFLR(k). For 9 e V , define
QCFV~G!C)(e), the quasi CFLR(k) state tor e, to be the
subset of Q given by

QCFV~G,c) (e) = {NAMEOF(V(p» I to" -t e.V(p.) ~ ¢J.

As usual, we drop the sub and superscripts and write
simply QCFV(9) when it is safe to do so. We define QCFS~G,C)
the quasi CFLR(k) stateset for (G,C),to be the Bet of all
quasi states for (G,e) : QCF8~G,C) • {QCFV(9) , ¢Ie e V*}

we define QCF_GOTO~G,C), the quasi CFLR(k) goto function
(G.C) as follows: when M ~ Q and X e V,

, )
QCF-SOTO~G,C)(Jl,X) = (g(a,y) t <p 1 a e M, Y -t xl

.(recall that q> means 'undefined'). We use the term'
QCFLR(k) as an abbreviation tor the phrase 'quasi CFLR(k)'.

and
tor

,Finally, we detine the function ITEMS to be the inverse
ot the NAMEOF tunction used in defining the set Q ot LR(k)

,parsing states for G : for seQ, ITEMS(s) = vee) where
vee) is the LR(k) state tor Gauch that a = NAMEOF(V(e».
It is convenient to extend tbe domain of ITEMS to sets
of parsing states (suchas quasi states) : when M, Q
detine ITEMS(K) = V ITDB (a). [Jse)l,

, .
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We require the following Lemma.

LEMMA 4.2
*Let 9 e V and X e V. Then

QCF-GOTO(QCFV(S),X) • QCFV(eX).

PROOF. We have
QCF-GOTO (QCFV( e ), X ) • f g (e , Y) , <p I s e QCFV( e ) , Y ~ X}

• fg(NAMEOF(V(p»,Y) 'q>I,.. -? e,
V(p) , ~,Y --:"'x 1

• fNAMEOF(GOTO(V(tA), Y» ;l cp 1 )A ~ e,
V (I-') ;l ¢,Y ~ x]

• {NAMEOF(V(py»1 J-' -t£ e, Y -i x,
v<ttY) ;l ¢ J

• QCFV(6X). 0
"

This result ensuresthat QCF-GOTO has the property we
require ot 'aGOTo-type tunction and consequently the
following algorithm may be used to construct QCFLR(k)

statesets. Note that, as witb all the other stateset
construction algorithms, a tabulation ot the gato
function concerned (~CF-GOTO) may be produced during
execution ot this algorithm.

, ,
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ALGORITHM 4.J
Construction of the quasi CFLR{k) stateset for (G,C).

: The cs-grammar (G,C), and T~ = (Q,so,g,f) -
the set of LR(k) parsing tables for (G,C).

. (G,C): QCFSk - the QCFLR(k) stateset for (G,c).

Input

Output
Method : The method is similar to that of the earlier

stateset construction algorithms. The quasi
stateset is built up in the'set-valued variable
S; each quasi state has the usual marker flag
attached to it and is unmarked when first added
to s.
beSip

set S = {QCFV(J.)J ; (note QCFV(Ir) = {s.l)
while S contains any unmarked quasi states..2S

select an unmarked quasi state M from S

and mark it;
ts:&. each X e V .22

compute N = QCF-GOTO(M,X);
.it: N I. J6 snd N i8 not in S tben

add N to S endlt
endfor

endwh110i
set QOFS(G,C)

k
~.[J

• S·



225

To illustatethis construction we show in Figure
4.1 the QCFLR{l) stateset and a tabulation of the
QCF-GOTO tunction tor the grammar (G3,C3). The numbers
in the second column ot this tigure are the names ot

the LR{l) states comprising each quasi state. These
names reter to the states ot the LR(l) parsing tables
tor G3 given in Figure 2.4.
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QUASI COMPONENT LR(l) QCF-GOTO
STATE PARSING STATES. ( INo. S E T P X ) * +

1 '··1 2 3 4 5 6
2 2 7
3 , 2,3 .. 8 7

•4 2,3,4 8 7
5 5· . 9 10 11 12 13i
6 2,3,4,6 8 7
7 7 14 15 5 16
8 8 17 5 18
9 9 z: 19 20

10· 9,10· 19 21 20
11 9,10,11 19 21 20
12 12 .. 22 23 24 12 25
13 9,10,11,13 19 21 20
14 14 . 8
15 14,4 8
16 14,4,6 8
17 15
18 15,6·
19 16
20 17 26 27 12 28
21 18 29 12 30
22 19 31 20
23 19,10 31 21 20
24 19,10,11 31 21 20
25 19,10,11,13 . 31 21 20
26 20 21
27 20,11 21
28 20,11,13 21
29 21
30 21,13.
31 22

FiK9te 4.1. The QCFLR(l) Staieset and Q9F-GQTO Function tor
(G3,03)
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Observe trom Figure 4.1 that the QCFLR(l) stateset
tor (G3,C3) contains 31 states whereas the true CFLR(l)
stateset (Figure 3.6) contains only 19. Clearly, there-
tore, there is no simple one to one relationship between
the quasi and the true CFLR(l) states for (G3,C3). However,.
the two sets ot states ~ related: provided that the
function ITEMS is available, the quasi stateset and
QCF-GC7.rO!'unction ot Figure 4.1 can be converted into
the true CFLR(l) stateset and CF-GOTO function ot Figure
3.6. The CFLRel) parsing tables tor (G3,C3) can then be
built using Construction 3.61 in the usual way. The proot
ot the tollowing theorem indicates how this transformation
may be pertormed in general.
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THEOREM 4,4

Given the QCFLR(k) stateset and a tabulation of the QCF-GOTO
function for. (G,C), the functions ITEMS and CF-STRIP
enable the corresponding CFLR(k) parsing tables to be
constructed.
PROOF. In order to build CFLR(k) parsing tables using
Construction 3.61 we need the CFLR(k) stateset and a
tabulation ot the CF-GorO funotion. First we show how to
convert the quasi CFLR(k) stateset tor (G,C)into the true
CFtR(k) stateset.

Let M be a set ot tRek) parsing states for G. Define
the tunction ~ by ~(K) = CF-STRIP(ITEMS(M». Then we assert
Claim 1: tor each e e V·, ~(QCFV(e» = CFV(e).
Proof of claim: Theorem 3.43 gives

CFV( 9) = CF-STRIP( { V(P) I I-' -{ e1 )
and ITEMS(NAMEOF(V(f») = V(~) for all ~ e V·. Hence

CFV~e) = CF-STRIl?(ITEMS( { NAMEOF(V(I'» I fJ ~ 9,v(,.,) !.14 J »
"= CF-STRIP(ITEMS(QCFV(e»)
. = 'I'(QCFV(9»

and the claim is proved.

The CFLR(k) stateset for (a,c) is given by
CFS~a,C) = {CFV(e)!. 11 lee V·J

..
. and so, by the cla1m ~ust proved,

CPs(a,c)
k • { '" ( QCFV( e) !.14 lee v:*}

f ~(l.t) t 14 IKe QCFS~G,C) 1.II:

This last identity reveals how the quasi CFLR(k) state-
set for (G,C) can be s1mply converted into the true CFLR(k)
stateset using ~ust the tunction ~ (i.e. the composition of
CF-STRIP and ITEMS).
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To complete the proot we must show how a tabulation of

CF-GOTO can be obtained trom one ot QCF-GOTO. Note that the
function ~ is a surjective mapping from the set

f M e QCFS~G,C) 'iJ (M) !¢ I
to the true CFLR(k) stateset tor (G,C). Consequently, we
can tind' and tabulate a right inverse tunction I.{I-' tor. '-1';
that is to say a tunction ""-' satistying '"(\f'-'(6» = IJ.
for all CFLR{k} states 6. (In general, 'f-' will be neither
unique nor a true inverse - but this is unimportant.) We
now assert
Claim 2: tor each 6 c CFS~G,C) and each X e V,

'l' (QCF-GOTO{~{t{I::l) ,X» .= CF-Garo{Ax).
Proof or Claim: let 'P-'(~ = M. Then M e QCFS~G,C) and
so there exists e e V* such that M = QCFV(e). Now by
Lemma 4.2, QCF-GOTO(QCFV{e),X). QCFV{eX) and by claim 1

above, 'I' (QCFV (eX» == CFV (ex) • Hence
'f (QCF-GOTO(",-/(6 ),X» == CFV(eX)

and it only remains to show that CFV(9X) == CF-GOTO(6,X)
or, equivalently, that CFV(e) == 1:1. But this is easy
since Claim 1gives ew(s) == '" (QCFV{S» and,by construction,
QCFV(S) == ,M = 'Y"'( 1:1). Hence ~FV{e) == 'Y ""'-'{IJ.) • ~ and the
claim is proved.

Thus a tabulation of the CF-GOTO function can be
produced from one for QCF-GOTO using only the'function ~
and its right inverse.' C
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We call this approach to the construction of
CFLR(k) parsers the "post pass" method. ClearJ.Y it is a
rather roundabout process and we are certainly not
proposing~ as a practical method £or,building such
tables. The important point is that we have snown that
it can be done and that the tables produced must be
the true CFLR(k) tables. Later (in Chapter 6) we shall
encounter a situation in whioh of-parsing tables
oonstructed by the post-pass method are different to
those oonstructed conventionally. Consequently, the
more practical techniques to be introduced shortly will
not generalise to that situation-.

From a practical point of view, the unattractive
teature ot the post-pass method is the need to retain
access (in the form ot the function ITEMS) to the actual
LR(k) states ror which the parsing states are merely
names. If·we are to succeed in our goal ot converting
LR(k) tables directly into CFLR(k) tables then we must
assume that LRCk) statesets are discarded once the tables
have been built and we must theretore eschew the function
ITEMS. This is the task ot the next section.
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~.2, Quasi CFLR(k) Parsing Tables.

Our.original intention was to turn LR{k) tables
directly into CFLR{k) tables. So t'arwe have found how
to use the LR{k) tables and stateset to ease the
construction of the CFLR{k) stateset - from which the
CFLR(k) tables may be constructed in the usual way,
We now need to seek methods which bypass the need for
an intermediate stage involving the CFLR(k) stateset.

Theorem 4.4 has shown that there is some relation-
ship between quasi and true CFLR{k) statesets, and also
between the corresponding CF-GOTO functions. It there-
fore seems plausible that a type or CFLR{k) parsing
table could be built using these "quasi" objects: the
names of the quasi states could furnish the parsing
states while the QCF-GOTO function provides the goto
function. The difficulty is to find some way of
constructing an action function without referring to
LR{k) items. The solution here is to realise that the
ordinary LR(k) action function provides sufficient
information to enable atlquasi CFLR{k) action function"
to be constructed: each quasi state is a set of LR(k)
parsing states and by combining the values of the action
function for these component states, but excluding
reduces by chain productions, we rorm a new action
function of the required type. We define this oonstruotion
formally a8 follows.
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DEFINITION 4.5
Let T~ = (Q,so,g,t) be the tRek) parsing tables tor G.

. *kLet M S; Q, u e VT and let C be a chain set tor G.
Then detine the value 01' QCF-ACTION{M,u) - the guasi
cf-actiQn function tor (G,C) to be :
(a) SHIFT it t{s,u) = SHIFT tor some s e M,
(b) REDUCE q i1'q e p\C and t{s,u) = REIlJCE q

for some s e M

(c) ERROR it neither case (a) nor.case(b)
obtains. D

Thus equipped with a simple means tor producing a quasi
action function we can detine the construction 01' quasi

. CFLR{k) parsing tables.

CONSTRUCTION 4.6 (cf. Construction 3.61)

: (a)

(b)

The quasi CFLR<.i) parsipg :tables for (G,C), denoted by
QCFT{G,c) = (Q,so,g,f,), are constructed as tollows :

k .

Q = NAMES{QCFS~G,C»,
.s, = NAMEOF (QCFV{A ) ) ,

for each M e QCFS~G,C) and X e V,
g{NAMEOF(M),X) = NAMEOF(QCF-GOTO(M,X»,

tor each M e QCFS~G,C) and u e v;k ,
.t(NAMEOF(M) ,u) = QCF-ACTION{M,u). D

(c)

(d)

.An example 01' this construction is given in Figure 4.2•

.which displays the QCFLR(l) parsing tables for (G3,C3).

, '
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QUASI . QCF-GOTOQCF-ACTIONSTATE.No •. Iv ( X ) * + S E T P ( X ) * +

1 ah ah 2 3 4 5 6
'2 1 ah 7
3 • 1 ah ah 8 7
4 . 1 ah ah 8 7
5 ah ah 9 10 11 12 13i
6 1 ah ah 8 7
7 ah ah 14 15 5 16
8 ah ah 17 5 18
9 ah eh 19 20

10 eh ah ah 19 21 20
11 ah ah ah 19 21 20

·12 ah ah 22 23 24 12 25
13 ah ah ah 19 21 20
14· 2 ah 8
15 2 ah 8
16 2 ah 8
17 4 4 4
18 4 4 4·
19 6 6 6
20 ah ah 26 27 12 28
21 ah ah 29 12 30
22 ah ah 31 20
23 ah ah ah 31 21 20
24 ah ah ah . 31 21 20
25 ah ah ah 31 21 20
26 2 ah 2 21

I

27 2 ah 2 21
28 2 ah 2 21.
29 4 4 4,
30 4 4 4. 631 6 6

Figure 4.2 : QCFT~G3,C3) - the Quasi eFLR(l) Paraing
I

Tablea for (G3,C3).
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These tables should be compared with the true CFLR(l)
tables t·or (G3,C3) shown in Figure 3.8. ·It is clear that
the two sets of tables are not the same: the quasi tables
contain 31 states while the true ones contain only 19. We
assert, however, that both sets of tables drive Algorithm
1.4 in exactly the same way. Formally we say that the
quasi tables "cover" the true ones.

DEFINITION 4.z
Let T = (Q,so,g,f) and T' = (Q',s:,g',f') be a pair of
cf-parsing tables for the cs-grammar(G,C) using the
same amount, k, of lookahead. Let H be a mapping H:Q+Qt.
Then we say that T COvers T' under H if

H is surjective,(a)

(b)

(c)

(d)

,s. ,
for each seQ and X Q V, H{g{s,X»= g'(H{s),X), and
for each seQ and u e V;k , f(s,u) = t'{H(s).u).

We say simply that T goyerl T' if some H exists such that T
\covers T' under H. If H is bijective then we say that T and

T' are, equivalent. 0
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If one set or tables T covers another set T' under a
function H, then Definition 4.7 indicates that the role of
any parsing state s in T is mirrored exactly by that of the
state H(s) in T'. This means that by observing only the
external behaviour of Algorithm 1.4 we will be unabte to
tell whether it is being driven by T or by T'; any difference
between these sets or tables is to be round only in their
internal structure. Since H is surjective, there may be
more states in T than 1n T'. The tables T' are therefore
more economical than T, and so may be considered more
desirable, but are otherwise indistinguishable from them.
Equivalent sets otttables are, to all intents and purposes#
absolutely identical to each other.

We claim that the QCFLR(k) tables tor any grammar
(G,C) cover the corresponding true CFLR{k) tables. However,
we shall not prove this tact as we prefer to postpone our
proots until the next section - in which we introduce a
moditied torm of QCFLR(k) tables which contain rather fewer
states.
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4.3. Strong Quasi CFLR(k) Parsing Tables,

The QCFLR{k) parsing' tables introduced in the
previous section provide a solution to the problem
ot converting LR{k) parsing tables into chain tree
parsing tables. Unfortunately, this method sufters '
from the disadvantage that it produces tables which
may be substantially larger than true CFLR{k) tables.
For this reason QCFLR{k) tables are rather unattract-
ive trom a practical point ot view. Now although it
is possible to reduce the size ot QCFLR(k) tables by
using techniques akin to those tor minimising finite
state automata,it is much more interesting to enquire
why these tables are so much larger than true CFLR(k)
tables in the first place, and to ask whether anything
can be done to mitigate this effect at its source.

The reason why QCFLR(k) tables contain more states
than CFLR(k) tables is quite simple: it is Clueto the
fact that CFV{e) = CYV( ~) does not imply QCFV(e) =
QCFV(p ). Thus although the CFLR(k) states CFV{e) and
CFV{ f') are identified in the true CFLR{k) stateset,
the quasi states QCFV{e) and QCFV(r) may be distinguished
(unnecessarily) in the QCFLR(k) stateset. One
particularly simple circumstance in which this can
bappen is when

QCFV{ e) = QCFV( 11-) v M
where M ~ ~ is some set of'LR(k) parsing states such
that CF-STRIP(ITEMS(M» = ~. We call such sets M "cf-
'US eless". Now although this is not the only circumstance
which can cause QCFV(a) and QCFV(r) to be distinguished
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unnecessarily, it is a very common one. For example, in
Figure 4.1 the quasi states numbered 14,15 and 16 are
distinguished trom one another ror just this rEason.

It would seem a good idea to try and exclude et-useless
sets from quasi states. We have to ask:

(a) how, without using the function IT:C:MSCan
cf-useless sets be identiried, and

(b) if they can be identified, does excluding
them rrom quasi states do any harm?

The answer to (a) is straightforward: if M is any set of
LR(k) parsing states, then M is cf-useless if and only if
QCF-ACTION(M,u) = ERROR for all u e V;k. Furthermore,
excluding cf-useless sets rrom quasi states cannot alter
the value of the quasi action function, for if M is cf'-
useless and N is any other set of LR(k) parsing states then

QCF-ACTION(Kv N,u) = QCF-ACTION(N,u)
*kfor all u e VT • Both of these results are trivial

deductions from the definition of the function QCF-ACTION
(Definition 4.5.).

We shall now exploit these observations and&fine
a "strong " version ot our QCFLR{k) constructions in which
et-useless sets are excluded trom quasi states.
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(cf. Definition 4.1)

Let T~ = (Q,so,g,f) be the LR(k) parsing tables for G
*and let e be a chain set for G. For each e e V define

SQCFV~G,O)(e), the strong quasi CFLR(k) state for e by :

SQeFV~~,C)(e) = {NAMEOF(V(p» I~~e,OF-STRIP(V(~»I¢J.

Define SQeFs~G,C), the strong quasi CFLR(k) stateset for
(G,e) as follows :

SQeFs~G,O) = {SQCFV(e) I ¢ lee VJ .
Finally, define SQOF-GOTO~G,e), the strong quasi CFLR(k)
goto function for (GtO) as follows.: when M S Q and X e V,

SQCF-GOTO~G,C)(M,X) == {g(s,Y) s eM, Y-t'X, and g(s,Y)
is not cf-useless].

We use the term SQOFLR(k) as an abbreviation for the
phrase 'strong quasi OFLR(k)'. 0

The results which we need in order to establish the
new method and its correctness are provided by the
following lemma.

I .
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LEMMA 4.2
JIltLet a e V and X e V. Then

(i)

(ii)
(iii)

CFV(e) = CF-STRIP(ITEMS(SQCFV(a»),
CFV(a) = ~ if and only if ~QCFV(a) = ¢, and
SQCFV(eX) = SQCF-GOTO(SQCFV(e),X).

PROOF. Part (1): It is immediate from their def1n-
itions that QCFV(a) and SQCFV(e) differ only in that
SQCFV(a) contains no ct-useless states. Hence
CF-STRIP(ITEMS(SQCFV(e») = CF-STRIP(ITEMS(QCFV(e»). The
result then follows from Claim 1 of the proof of Theorem

.'

Part (ii) : The result in the '1f' direction is immediate
from part (i) of this lemma. For the 'only if' direction
suppose that CFV(e) = 0. Then part (i) provides
CF-STRIP(ITEMS(SQCFV{a») = ¢ and this can only be so
if SQCFV(a) is either empty or if it consists solely of
cf~useless states. The latter possibility is excluded
by the definition of strong quasi states and so the
result follows.

Part (iii): This may be proved by a similar argument to
that used to establish the corresponding result (Lemma 4.2)
for the ordinary quasi case. 0

Part (iii) of this lemma indioates that SQCFLR(k) statesets
may be constructed by a simple modification of the algorithm
for constructing ordinary QCFLR(k) statesets.
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ALGORITHM 4.10

Construction of the strong quasi CFLR(k) stateset tor (G,C)
Input:

. GThe cs-grammar (G,C), and Tk = (Q,so,g,t) - the set
ot LR(k) parsing tables for (G,C). ,
SQCFS~G,C) - the SQCFLR(k) stateset tor (G,C).Output:

-_ ....._._..._-
Method: The method is just that ot the ordinary QCFLR(k)

case (Algorithm 4.3) but with thetunction
QCF-GOTO replaced by its 'strong' counterpart:
SQCF-GOTO. [J

SQCFLR(k) parsing tables are also constructed in just
the ssme way ss ordinary QCFLR(k) tables.

CONSTRUCTION 4.11 (ct. Construction 4.6.)
The strong quasi CFLR(k) parsing tables for (G,C), denoted
by SQCFT~G,C) = (Q,so,g,f) are constructed as follows:

(i) Q =.NAMES(SQCFS~G,C»,
(i1) So = NAMEOF(SQCFV{A»,
(iii) tor each M Q SQCFS~G,c) and X e v,

g(NAMEOF(M),X) = NAMEOF(SQCF-GOTO(M,X»,
(lv) for each M e SQCFS~G,C) and u e v;k,

t{NAMEOF{M),u) • QCF-ACTION{M,u).[J

To illustrate this construction we show in Figure 4.3
the SQCFLR(l) stateset tor (G3,C3). Observe that this state-
set contains just 19 states - exactly the same number as in
the true CFLR(l) stateset for this grammar shown in Figure
3.6. We do not illustrate the SQCFLR{l) parsing tables tor
(G3,C3) since these sre exactly the same as the true CFLR{l)
tables shown in Figure 3.8. Thus in this case our "strong"
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STRONG COMPONENT LR{l) SQCF-GOTO
QUASI PARSING STATESSTATE No S E T P ( X ) * +

1 1 2 3 3 4 3
2 2 5
3 2,3 6 5
4 5 7 8 8 9 8
5 7 ,10 10 4- 10
6 8 11 4- 11
7 9 12 13
8 9,10 12 ~4 13
9 12 15 16 16 9 16

10 14 6
11 15

"

.
12 16 "

13 17 17 17 9 17
14 18 18 9 18
15 19 " 19 13
'16 19,10 19 14 13
17 20 14
18 21

22 •19

Figure 4.3 : The SQCFLR(l) Statese'tand SQCF-GOTO Function
for (G3, C3).

version of the "quasi" construction has succeeded in
eliminating~ the extra states introduced by the basic
method. Unfortunately, it is not always so successful: in
general, SQCFLR{k} tables are not equivalent to true CFLR(k)

, Itables, they merely cover them. We now prove this ract.
F1rst we need two lemmas.
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LEMMA 4.12
* *kLet a e V and u e VT • Then

QCF-ACTION(SQCFV{a),u) = ACTION(CFV(a),u).
PROOF. Suppose QCF-ACTION(SQCFV(a),u) = SHIFT. Then,
by Definition 4.5, SQCFV(a) contains the name of some
LR(k) state V{f) such that ACTION{V(~),u) = SHIFT. Now
it can be shown by a straightforward, but rather tedious,
argument that if ACTION(CFV(~),u) = SHIFT, then
ACTION(CF-STRIP(CFV(~»,u) == SHIFT also. But if the
name of V{~) is a member of SQCFV(a) it must be that

.... '

p. --: a and so, by Theorem. 3.43, it follows that
CF-STRIP(V(fA»' CFV(a). Thus ACTION(CF-STRIP(V{..-»,u) ==

SHIFT implies AC~ION(CFV(e),u) = SHIFT and the result
is proved for this case.

The result can be established for the remaining
cases (i.e. REDUCE and ERROR actions) by similar

.arguments. 0

LEMMA 4.13

Define the relation i between the SQCFLR(k) and
CFLR(k) st&tesets for (G,C) by :
ii = {(M, 6), M = SQCFV{a) and 6,- OFV(e) for som.ea.e V*J.
Then i is a surjection.
PROOF. First we show that i is tndeed a function, that
is to say it is single-valued.
Claim : M iD 6. and M i ~ implies 6. == :E.

*Proof of claim. If M iD ~ there exists a e V such tha-tt
M = SQOFV (e) and 6 - OFV (a). Hence, by part (i) of .
Lemma 4.9, ~ = OF-STRIP(ITEMS{M». Similarly, M i ~
implies ..~ - CF-STRIP(ITEMS(M» and the conclusion
~ - ~ is immediate.
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It remains to show that m is a mapping - that is that

its domain is the whole SQCFLR{k) stateset, and that it
is surjective - that is its range is the whole CFLR{k)
stateset. Both these properties are trivial consequences
of part (ii) of Lemma 4.9. 0

Using these result we can justify our claim that
SQCFLR{k) parsing tables cover the corresponding CFLR{k)
tables.

THEOREM 4.14

Let SQCF(G.C) (Q s ~) d CFT{G,C) (Q' , t. ~')1k = 'olg, .. an k = ,so,g , ..

be the SQCFLR{k) and CFLR{k) parsing tables respectively
for (G,C).
"Then SQCFT~G,C) covers CFT~G,C) •

PROOF. First we need to construct a surjection H trom
Q to Q'. Now the previous lemma has provided a surjection

. Q between the statesets from which these sets of parsing
states are constructed snd so we csn establish H as
tollows. Let seQ. Then s = NAMEOF{M) for some SQCFLR{k)

,
state M. Define

.H(s) = MAMEOF{i{M». Because 5 is known to be a surjection
and the NAME OF functions are bijeotive, it follows that H
is a surjection. We now prove that the SQCFLR(k) tables
cover the CFLR{k) tables under this H.

Proof of Claim. By Construction 4.11, s. = NAMEOF(SQCFV(~»
and so H(s.) = NAMEOF(i(SQ,CFV(Jv»). But iti (SQCFV(J,» •
CFV(~) andJbY Construction 3.61, NAMEOF(CFV(A»
Hence H(s.) = s! and the claim is proved.
Claim 2 : H(g{s,X})= g'(H(s),X) for all seQ and X e V.

,
= ~••

~.
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Proof of Claim: It a e Q then a = NAMEOF(SQCFV(e» tor

101aome 9 e V and so H(s) = NAMEOF(CFV(e». By Construction
.·4.11 we have g(s,X) = NAMEOF(SQCF-GOTO(SQCFV(e),X» and by
~art (iii) of Lemma 4.9 this gives g(s,X) = NAMEOF(SQCFV(~X».
Hence H(g{s,X» = NAMEOF{~(SQCFV(eX»)

= NAMEOF(CFV(eX».

Now gl (H(s),X} = a' (NAMEOF(CFV(e» ,X)and so Construction3.61
provides gl(H(s),X) = NAMEOF(CF-GOTO(CFV{e),X)} which can
be simplified using Theorem 3.46 to give
g'(H(s),X) = NAMEOF(CFV(eX».

The claim then'rollows from (1) and '(2).
IOIkClaim 3: f(s,u} = f'{H(s),u) for all seQ and u e VT •

Proof of Claim. Again seQ implies s = NAMEOF(SQCFV(e» and
so, by Construction 4.11.f(s,u) = QCF-ACTION(SQCFV(e),u).But,
by Lemma 4.12, QCF-ACTION(SQCFV(e),u) = ACTIUN(CFV(e),u) and
since Construction 3.61 gives f'(NAMEOF(CFV(e»,u) =

ACTION(CFV(e),u), it :f'ollowsthat f(s,u) = ft(NAMEOF(CFV(e»,u).
The claim then rollows because NAMEOF(CFV(e» = H{s).

All the conditions ot Definition 4.7 have now been
satisfied and so we conclude the theorem. 0
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This result shows that SQCFLR(k) tables are perfectly
valid chain-free parsing tables, although they may be
somewhat larger than true CFLR(k) tables. It is interest-
ing to enquire whether any conditions can be round which
ensure the complete equivalence of these two types of
tables .•Now it can be shown that this equivalence holds
when G is LR(O) - but this result is too restrictive to be
of any practical interest. From a practical point·of
view (and it is only from this point of view that the size
of parsing tables is of any concern), the only important
case is k = 1. Unfortunately, the requirement that G be
LR(l) is not a sufficient condition for the result we seek.
The following grammar demonstrates this point.

s - aAb (Grammar Ga)

aB
DAb I
bB I

A - C
B - C
C - ""D - b

This grammar is LR(l) but tbe SQCFLR(l) tables for(G8,
{D - b ~ ) contain 13 states whereas the true CFLR{l)

,tables contain only 12.
In the next section we define a property called

"Property A" which .!.§ Sufficient to guarantee the
equivalence of SQCFLR(k) and CFLR(k) parsing t ables.We
provide results which indicate that most LR(l) grammars
may be expected to have this property.
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We begin with a definition.

DEFINITION 4.15
The cs-grammar (G,C) has Property A it, whenever 0< and
~ are viable pretixes ot G, the existence ot

lieP e V
....such -that c( -r r and p -; e always implies

that 0( = ex and *p = ey tor some a ~ V and X,Y e V.
(In other words, 0( and f3

tinal symbols.) 0
may ditter only in their

•

This seemingly obscure property turns out to be
extremely usetul : in the next section we shall prove
that it (G,C) has Property A then its CFLR(k) and SQCFLR(k)
parsing tables are equivalent. This present section is
concerned with the problem or testing ror Property A and
with determining how likely it is that a given grammar will
possess the property. In tact we do not present algorithms
tor testing tor Property A directly; instead we give a
series ot easily tested conditions which are sufficient
to gua~antee the property. These conditions suggest that
Property A is possessed by all LR(l) gram::tarsof the type
likely to be encountered in practice. ~ince the property
will only be invoked to prove results ot purely practical
~erest, this restriction to the case k • 1 is pertectly
-:acceptable.

The conditions we seeK rollow as corollaries to the
next theorem. The rollowing definition is needed during tbe
proof and is also used in Cbapter 6.
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DEFINI'r ION 4.16

Let (o,c) be a cs-grammar and let M,N S V. Then (M,N)

is a maximally chaine? pair'if each X e M and each
'"YeN satis.fy X ~ Y. A Symbol Vi e V is an intermediate

for such a maximally chained pair if'all X e M satisf'y
X -; Wand all YeN satisfy W ~ Y. An intermediate W
is said to be a maximal intermediate if no other inter-
mediate U satisfies U _,.+ W. 0

e,

THEOREM4.17

Let G be an LR(k) grammar where k > 0 and let C be a
chain set t'orG. Let 0< = 9Xl and (:J = 9Y& be viable
prefixes or G with X ~ Y and such that ;t'orsome Z e V

* ...and fL e V both XlS'~ Z", and xs ~ Zft Then every
IIIx e VT ~uch that r --: x satisfies len(x) ( k ,

PROOF. Since we have X '5 and yJ --t Zp, we must
have X .._.. Z• and Y -.* Z • We distinguish three cases

"
accord1ng to whether or not X and Y cha1n derive each
other.
Case 1: Y -; x. Because X ~ Y we must have Y -t;;,+ X

II> X.and so there exists A e VN suoh that Y ~ A" Nowc.

*f:l = eycf is a viable prefix and so there is some (J" e V
that S .... IIIsuch --. eYO<1". Let y e VT be any string suoh

that ~ -: y (such a string must exist because G 1s LR(k)
II

*,snd must therefore be reduced) and let x e VT be such
that fA-. -: x, Since, 0 --r '" and ~ ~ x it follows thst
t5 _-It X and so we have •

n •
s _",.... 9YS c-

"
.--/I. 9Yly ..

_",.
,4

...
9Yxy - SAxy

II
-.... 9Xxy.

,. I

Let the production A -- X be called p snd let m =len(eX).
Then it follows from this derivation that (p,m) is the
handle of 9Xxy.
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We now consider the string oc= an. Since ex is a
viable prefix of G, there exists IQ!

'l e V such that o(~

is an rsf of G with a handle (q,n) satisfying n~ len (0<).

'" ~Let z e VT be any string such that "Z ~ z. Since
0( = ex~, '{ ....: ~ and p.": x , G contains the following
derivation for some '"e V ••..

aXo12 ~ aX(fz
tt.

'"- aXxz.
'"

(1 )

We now distinguish two subcases according to the number ot

steps in the derivation it__"..xz.
a

Subcase (a) : Ol'l = xz (i.e. no steps at all). Then
(q,n) is the handle ot 9Xxz. Suppose len(x) ~ k. Then

lie(m+k):aXxy = (m+k): 9Xxz and certainly m/9Xxz e VT •

Since G is LR(k), these conditions imply that (p,m) =

Cq,n) - but this is impossible because we have n ~ len(<<),.
len(o<) = m + len(l), l' -: x , len(x) ) k ') 0 ,and so
len{~» O. We conclude that the supposition len(x)~ k is
untenable.
Subcase (b) : xz (i.e. at least one step). We
can distinguish the ~ast step ot this derivation and write

...
1rJZ -"A 7r-{q' ,n'~ xz. Note that it n' = 0 then

deg{q') = 0 also. The derivation (1) above then gives:
S ~ .... ex~"2. ~ ex 17" --( q , ,n '+m) -" eXxz

and so we see that (q',n'+m) is the handle of 9Xxz. Now
suppose that len{ x ) ~ k~ As before the t'act that G is
LaCk) must imply that (p,m) = (q',n'+m). This can only be
so it'n' = O. But n' = 0 implies deg(q') = 0 and we gnow
that deg(p) = 1 (remember that p is the production A ~ X) •
.Hence (p,m) I (q',n'+m) and trom this contradiction we again
conclude that the supposition that len(x)~ k must be false.
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Case 2 : x _* Y. The proof'in this case is exactly,
analagous to the previous one.

and Y
x ~ ...Y and Y -,4-- X. ::lincewe have X ....: z

Co Co &.

Z, ({X, y], {Z]) is a maximally chained
Case 3 :

pair. Let W be the maximal intermediate ror this pair.
Note that W must exist and must be unique for other-
wise G would be ambiguous and therefore could not be
LR(k). Note also that w p X and W P Y. (If W = X,
for instance, then Y ~ W implies Y -:X and this
situation is excluded in the present case.) We therefore
have X ->+ Wand Y _.+ Wand so there exist A,B e VNCo Co

such that X -",:_"A ~ W and Y ....,:B _..,.W. Note tnat
• Co Co

A I B for A = B implies that A is an intermediate
which sat1sfies A ......+- Wand this.contradicts the require-
ment that W be the maximal intermediate. Pictorially we
have:

x ....- A,• -e W - z
/'

Co

Y
...- B..

Now let x e V; be any string such that f ~ x, let
the production A -- W be called p and let m = len (ex) '.
Th;en because 0( :I ex~ is a viable pref1x or a, we
see by the argument used in case 1 that.tor suitable

* * derivation :(S" e V and y e VT' G contains the
S #fI eX~tr ... eX~y .. ex/,y .. eXxy ..._,... - --- _.,.,..

(I. 1& 1& ~

eAxy -<p,m~ ewx.y. Thus (p,m) is the handle' of
t~e rsf'eWxy. NoVilet the produc tion B - W be called
q. Then rrom the viable prefix I' = eytf we deduce
by a similar argument that (q,m) is the handle of the

1(1rsf ewxz tor some z e VT• Suppose that len{x) ~ k.
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Then (m+k): eWxy= (m +k): ewxz and ~ewxz

so, from the fact that G is LR(k), we deduce that (p,m)

= (q,n).But this is not so, because A I B implies p I q.

We aga1n conclude that the supposition len(x) ~ k is

untenable and, since all cases have been considered, the

theorem is proved. 0

Nowwe can prove a series 01' increasingly powerf'ul.

corollaries.

COROLLARY4.18

Let G be an J,-f'ree LR{l) grammar and let C be a chain

set for G. Then (G,C) has Property A.

PROOF. Let 0< and p be viable prefixes of G and let

'" .E' e V be such that 0<.--:, eo and P""":.· f'. We need
lie

to show that eX = ex and fJ = ay for some a e V and

x,Y e V. ~he result is tr1vial 1f' 0< = P ,so suppose

that.o< /. p and let a be the longest commonprefix to

both 0< and p • Certainly 0< ,f3 and p all have the

same length and so we can wr1te them in the form :

0( = aX2S, (J = aYd and f> = "'1 Zp

where X -I Y~ a --: 12 ,XlS ~ Z,.... and Y6 ...: Zp..

Siu-ce G is LR(l), 1t follows from Theorem 4.•17 that every
•x e VT such that fA- .. x satisfies len(x) < 1, that is

x = J., •. But if G is .).,-free, this can only be so if'

tA = r =" = J, • 'l'husoc= ex and ~;: ay and the result

is proved. 0

Results which exclude A -rules are too restrictive to

be useful in practice. The next result weakens this

constraint a little.
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COROLI,ARY 4.19
Let G be an LR(l) grammar in which every nonterminal A
satisfies A ~ x for .some x e v; and let e be a chain
set f'orG. Then (G,e) has Property A.

PROOF. The proof'of'the previous result may be adapted
straightforwardly to the present situation. 0

We call nonterminals which generate only the empty
terminal string 'nUll' nonterminals. Corollary 4.19
weakens its predecessor by replacing the constraint that
G be J., -free by the requirement that it contain no null
nonterminals. While most programming language grammars
are of this type, it is sometimes considered useful to
introduce null nonterminals as 'hooks' upon which to hang
semantic actions. The third and final corollary of'this
sequence indicates how grammars containing null non-
terminals may be tested f'orProperty A.
COROLLARY 4.20
Let G = (VN'V~,P,s) be a grammar and let e be a chain
set f'orG. Detine a new grammar G' = (VN,VT,PI,S) where:

VT = V~ v {~A I A is a null nonterminal in G},

pi = P v (A _.. ~AI A is a null nonterminal ln G).

and each ~A ls a new terminal symbol distinct from
all others.1hen (G,e) has Property A it G' is LR(l).
PROOF. By Construction, G' has no null nonterminals. There-
fore by the previous result,(G:C) has PToperty A 11' Gt is
LR(l). Now 1t 1s clear that any subgrammar 01'a grammar
with Property A also has that property.~e result then
follows because G 1s a subgrammar of Gt• 0
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It G is LR(l), then it is surely a very stL'i.'''';'::

grammar ipdeed it the gremmar G' of Corollary 4.20
tails to be LR{l) (Grammar G8 is such agrammar). We
conclude that, provided G is LR{l), (G,C) is very
likely to possess Property A even it G contains null
nonterminals.

Since one symbol lookahead (i.e. k = 1) is the only
practical choice. Corollaries 4.18, 4.19 and 4.20 are
sufficient to ensure that results which depend on
Property A will generally be applicable in practice. The
next section establishes one such result.
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4.5. The Equivalence of SQCFI,R(k) and CFLR(k)

.Parsing Tables.

In this section we shall prove that if (G,C) has
Property A then its SQCFLR(k) and its CFLR(k) parsing
tables are equivalent. The following lemma is the crux
ot the argument and is also the place where Property A
is needed.
LEi,IMA 4,21

Let (G,C) have Property A and'let a and ~ be cf-viable
prefixes of (G,C) such that CFV(e) = CFV(~). Let

V* 1Il ..c<,p e be such that Cl<, ~ e, p ~ ,.,.
~(~) ~ ,N(f)I ¢. Then V(~) = yep).

and

PROOF. If any of o<,~, '" and a are the empty string
then all of them ar~and the result is trivial in this
case. So suppose 0<. fJ ~.Jv • Since LRCk) states
are uniquely determined by their nuclei, it is only
necessary to prove that N(~) = N(~). We shall prove
that N(cx) ~ N(p). Symmetry will provide N(0()2
N(p) and hence N(~) = N(~).

Because 0< ~ J, ,we may write it in the form 0(= ~..'X
where X c V.~en X is the associated symbol at all the
LR(k) items in N(~) and since N(~) ~ N~) ~ ¢ it must
also be the associated symbol of all items in N(p) •

Thus (I has the form (J = (6'X. Now let 6 be any LR(k)
item in N(O(). We must show that l:l is in N(p) also.
There are two cases to oonsider.
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Case 1: /J. e CF-STRIP(N(o<». ~ecause eX -i S,
Theorem 3.43 provides 6. c CFN(e) in this case. Then

because cn(e) = CFV(r), it follows that 6. e CFN(I").

*Hence, again by Theorem 3.43,there exists ~ e V such

and 6. e N(o). Note that X is the

associated symbol of 6. and so " has the form ~ = ~'X.

We also have )S -'f lA and ~ -:_."lA and so, because (G,C) has

i>roperty A, if 'if and (J differ, it is only on their

final symbols. But both have X as theirfinal symbol and

so we conclude that (f = (1. Thus 6 e N(p) as required.

Case 2 : 6. I. CF-STRIP(N(O(». In this case, [). must be

a chain item. That is to say it is of the form 6. = .
LA -- x., u J where A - X is a chain production. Clearly

[l( -- .X,u J e V (ex') and,since this is an initial

item, it must have been added to V(~')during the CLOSURE

operation. That is, there must be some non-final item

::E. ::: [B -.. CS.Od, v ] e V(O(') such that

[A- .X,u] e CLOSURE({:El) • Furthermore,:E can be

chosen to. satisfy

chain item) and C

B .....~ 0 er e p\C (i. e. ~ is not a

__~ A. It follows that~

:E'::: [B..;,. 2SC.G',v] e OF-STRIP(V(o<'O». Nowwe have

0(.'0 -: ot.'A ..... o('X = 0< _,..~ S
& .. &

and so, by Theorem 3.4.3, we obtain ::E' e OFV{e)'. But

CFV(e) = CFV{~) and so ~' e CFV(",). Then, again by

Theorem 3.43,it follows that ~' e V(6") tor some cr-i }J.

Now f:T Jt1ust have the torm a :::",,'0 and clearly ~'e vCcs-)
implies ::E e V(e-'). But ~ i.ntroduces: [A ...• X,u]dur1ng

the CLOSUREoperation and so~ ~ .X,u] Q V(~').Hence

6. 1\1 [A- X. ,u J e N(cr'X). Nownote that, er'X -i Jl- and

Therefore, because (G,C) has Property A, it
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(5"X and (3 differ, it is only on their final symbols.

But both have X as their final symbol and so a'X =p •.
Hence 6--e N(p) as required to complete the proof. 0

Using this lemma we can establish the next one.

LEMMA 4.22

Let (G,C) have Property A. Then the surject~on i from the

SQCFLR(k) to the true CFLR(k) stateset gi ven in Lemma4.13

is injective. (Hence it is a bijection).

PROOF. Let M and N be SQCFLR(k) states and let II be a

CFLR(k) state such that M is ~ and N is ~ • ~eneed to

prove that 14= N. We will show that M ~ N. Symmetry will

provide M ~ N and hence M = N.

NowM is ~ implies that 11= SQCFV(a) and 6 =
•CFV(a) tor some a e V • Similarly, N is ~ implies N =

'"SQCFV(fA)and II = CFV(jA)for some f e V. First we

dispose of the case where e (or, symmetrically ~ ) is the

empty string. When a =.A we have CFV(fA)= A- CFV(e) =
CFV(Ir.) and so ~ = A also. Immediately this gives

M= N and the proof is complete in this case •

. We now suppose that a I- J. and f I- J, • Remember

that by Definition 4.8, Mand N are sets of LR(k) parsing

states for G. Let s e M. The Lemmais proved if we can show

that seN. Now it 6 e M, we must have s = NAMEOF(V'~»

where 0( e v· satisties 0/. -.: a and CF-S'l'RIP(V(o<» I IS.
This last implies that CF-STRIP(N(~» F ¢ also, so let ~

be any LR(k) item in CF-STRIP(N(o<». By virtue ot Theorem

3.43, we then have :E e CFN(a). But si nee CFV(e) = CFV(",)

we also have CPN(a) = CFN(",) ana so ~e CFN(",). Then

Theorem 3.43 implies that :E e N (p) l'or some (J such that
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f3 JfItp.. It I'ollows that CF-STRIP(N(p» I. ¢ and so, by
Definition 4.8, Viehave NAMEOF(V(,s» ~ N. We also have
0(. _,t S, (3 -f J.l, CFV(~) = CFV~) and N(o(),....N(p) :/ ~.

The previous lemma therefore provides V(~) = yep).
This means that NAMEOF(V(~» = s and so seN as
.required to complete the proof. 0

Finally, we achieve the result we seek.
THEOREM 4'23
If (G,C) has property A then its SQCFLR(k) and its
CFLR(k) parsing tables are equivalent.

PROOF. B:{virtue of Theorem 4.14,we know that the
SQCFLR(k) tables for (G,C) cover its CFLR(k) tables
under the mapping H constructed during the proof ot that .
theorem. 1his mapping H is detined in terms ot the
mapping ~ of Lemma 4.13. The previous lemma has
established that G is bijective when (G,C) has Property
A and so it tollows that H is also bijective in this
case. 'TIleTheorem then follows trom the definition ot

equivalent sets ot parsing tables given in Detinition
4.7. 0
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4.6. Summary.

Given the LR(k) parsing tables for a Grammar G,
an object called the l'quasiCFLR(k) stateset" may be
constructed for the cs-grammar (G,C). There is a
close correspondence between quasi and true CFLR(k)
statesets: chain free parsing tables may be
constructed for (G,C) using information contained in
its quasi CFLR(k) stateset. Two methods for doing so
were presented in this chapter. The first of these
guarantees to produce the true CFLR(k) parsing tables
for (G,C) but requires access to the actual LR(k)
items associated vlith each LR(k) parsing state. This
is called the "post pass" method of constructing
CFLR(k) tables. The second method requires only the
information contained in the LR(k) parsing tables for
G and does not guarantee to deliver the true CFLR(k)
tables for (G,C). Instead it produces "quasi" CFLR(k)
tables which are otten substantially larger than the
true CFLR(k) tables, although their behaviour is the
same when they are used to drive Algorithm 1.4.

A simple modification ot the method leads to the
generation of "strong quasi" CFLR(k) parsing tables •

.These are Similar to ordinary quasi tables but contain
tewer states : in many cases the strong quasi CFLR(k)

.tables are identical .to the true CFLR(k) tables. A
property of cs-grammars,called Property A, was intro-
duced and shown to be a sufficient condition tor
guaranteeing this equivalence. Methods et testing for
Property A were presented. These methods are specialised
to those cs-grammars (G,C) where G is LR{l) and indicate·
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that only very. rarely will such grammars tail to possess.
the property.

The "strong quasi" constructions of this chapter
provide a practical method tor converting LR(k) parsers
into chain tree parsers. They should be useful in
circumstances where an LR(k) parser generator is avail-
able but not amenable to conversion to a CFLR(k) generator.
No disadvantage is likely to be incurred by adopting this
approach in the important practical case k = 1.
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CHAPTER 5,

OPTIMISING CFLR(k) PARSING TABLES

In Chapter 1 we claimed theLR(k) parsing algorithm
to be one of the most attractive of all parsing methods
because of its generality, speed and excellent error
detection. We have seen that the CFLR(k) cf-parsing
algorithm is even more widely applicable, and is sub-

,

stantially faster than the LRCk) algorithm, while afford-
ing the same high quality ot error detection. Unfortunately
however, just as it improves still further those features
ot the LRCk) parsing algorithm which are already excel!ent,
so the CFLR(k) method exacerbates its major disadvantage
- it usually makes the parsing tables even bigger.

This claim may surprise the reader who remembers
that the LR(l) tables for G3 have 22 states while the
CFLR(l) tables tor (G3,03) have only 19. However, had we
taken the chain set f E ....T 1 ··insteadof 03 we should
have tound 23 states in the CFLR{l) tables. Now it can be
shown that the CFLR(k) tables tor (G,C) always contain
fewer states than the LRCk) tables ror G when G is LRCO),but .
in general it seems that CFLR(k) tables are usually larger
than their LR{k) counterparts. Thus it may be that the
speed benefits of CFLR(k) parsing are bought at the expense
of excessively large parsing tables.

All is not ~ost, however, tor in this chapter we
present a simple technique for reducing the size of CFLR(k)
tables which is 80 successful that it generally make these'
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tables substantially smaller than their LR(k) counter-
parts. This optimization technique exploits some
redundancy that is always present in eFLR(k) tables and
so ~t does not degrade the performance of the parser
in any way. Thus our optimized eFLR(k) parsers have
a double advantage over ordinary LR(k) parsers : they
.are not only much t'aster, but smaller too •

Although we shall introduce the optimisation
technique as one to be applied to' existing CFLR(k)
tables, we will show later that it can also be applied
during the construction of the tables and actually
reduces the cost of their construction.

Before proceeding to describe the technique, we
must point out that although we believe that it preserves
the correctness of the CFLR(k) tables' for any cs-grammar
(G,C),given only that G is LR(k), we shall only prove
this preservation of correctness in the case that (G,e)
has Property A. Effectively, this restricts application
of the technique to the case k = 1 - because our
sufficient conditions for Property A (Corollaries 4.18,
4.19 and 4.20) are particular to this case. We make no
apology for this restriction; our interest in reducing
the size of CFLR(k) tables 1s mot1vated solely by practical
neceSSity, and k = 1 1s the only case of practical

; concern.
•
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5.1. Inaccessible Entries in Parsing Tflbles.

We indicated earlier that our optimisation technique
is based on the elimination of some redundancy from
CFLR(k) parsing tables. The redundancy concerned is
manifested by the presence of "inaccessible entries"
within the tables. A parsing action or goto entry is
said to be "inaccessible" if no input string whatsoever
can cause the parsing algorithm to inspect the value of
that entry. By virtue or their inaccessibili ty, the
values possessed by such entries are irrelevant to the
bebaviour ot the parser and so they may be changed in
any way which proves convenient. By judicious manipulation
of these entries it is sometimes possible to cause a group
of parsing states to become so similar to one another that
they may all be replaced by 9 single composite state. A
detailed discussion of this general process, at least as
it applies to ordinary LR(k) parsers, has been provided
by Aho and Ullman (1972b).

" ,.

The problem ot exploiting inaccessible entries
optimally (in the sense ot reducing the number of states
'to a minimum) is similar to that ot "mtnimising incompletely
specified sequential machines" - a problem which Ptleeger
(1973) has shown to be NP-complete in the general case.

,Thus optimal application ot the technique may well be
computationally intractable and so approximate solutions
must be sought. Our tecbnique tor reducing the size of
CFLR(k) tables is ot this approximate type J although very
effective,it makes no claim to optimality. We speak of the
technique as an optimisation in only an informal sense.
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Now although our optimisation techique will
turn out to be very simple, we must first complicate
matters a little. It is here that we part company
with Aho and.Ullman (1972b) since their notion of
inaccessibility is too blunt a tool for our purposes.
At present the notion of inaccessibility is under-
stood to have a global context: an entry is either
inaccessible or it is not. We shall prefer a more
local interpretation : certain entries may not be
inaccessible in the former, global, sense, but they
may be so when the states in,which they occur are
entered on some particular symbol. An example may
help here.

,Consider the following grammar :

1 • S __.,. Xa (Grammar G9)
2. Yb
3. aXa'l
4. aZb
5. X -- x
6. s
7. z
B. y _.,.. y
9. Z _...., x

and take C9 = {x ~ x, X ....... Yl as the chain set.
The CFLR(l) parsing tables for (G9,C9) are shown in
Figure 5.1.

In Figure 5.1. the action f(B,b) is not inaccessible
1n the global sense because the input string ayb causes
its value to be inspected. This entry l! inaccessible,
however, when state 8 is entered under a transition on
the symbol X. This is because .an X ~an only be
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STATE OF-ACTION CF-GOTO
NO. Jv a b x y z a b x y z X Y Z S

1 sh sh sh sh 2 3 4 5 3 6
2 sh sh sh 7 8 5 8 9
3 sh 10
4 sh 8 10
5 7
6 sh 11
7 sh 9 12
8 sh 12
9 sh 13

10 1
11 2
12 3
13 4

Figure 5.1 : The CFLR(l) Parsing Tables for (G9,C9).

produced by a reduction involving the production X ...z
and no such reductions are performed when b is the look-
ahead string. Thus although the error entry r(8,b) cannot
be changed, it is permissible to substitute state 7 tor
state 8 as the value of the goto entry g(2,X). This
manipulation does not save any states in this particular
instance, but it does cause the goto entries in the column
for X to become identical to those in the column for x,
thereby permitting a more e~onomical representation of the
tables in storage. This demonstrates another benefit ot

our optimisation technique: in general we are able to
remove not·only rows (i.e. states) trom the parSing tables.,
but also columns (i.e. symbols).

: .,
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We now detine formally our notion ot an
inaccessible entrYe,

DEFINITION 5.l

Let T = (Q,so,g,f) be a set ot ct-parsing tables,'
using k symbol lookahead, tor the cs-grammar (G,e).

*kLet p e Q, X El V and u e VT • We say that the
action fCP,u) is inaccessible on X it, when Algorithm
1.4 is driven by the tables T, no input string whatso-
ever can cause it to inspeot the value of tCp,u) when
X is the symbol on top of the parse stack. Similarly,
when p e Q and Y El V, we say that the gotc entry
gCp,Y) is inaccessible if no input string whatsoever can
cause the algorithm to inspect the value of gCp,Y).D

Notice that this detinition uses a "local" interpretation
of inaocessibility for actions,and a "global" one tor
soto's. (This distinction is only signiticant in the
case of CFLR(k) tables. With LaCk) tables, our
def1nition agrees with that of Aho and Ullman (1972b).)

Unlike Aho and Ullman (1972b), who use(their notion
,of) inaocessible entries to permit certain states to be
completely replaced by others, we shall only seek to
replace selected references to certain states by
references to others. That is, we shall use the presence
of inaccessible entries to permit us to change the
values otcerta1n soto entries (not only inaccessible
ones). If we ohange the value 'of an ~ccess1ble goto entry,
then we must ensure that the new value 1s a "valid
substitute" for the old.
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DEFINITION 5.2

Let T = (.Q, SO ,g,f')be a set of ct-parsing tables tor
the cs-grammar.{G,C) and let p,r e Q and X e V. Then
r is a valid substitute for g (p,X) if changing the

value of g(p,X) to r makes no difference to the
behaviour of the parser driven by these tables. 0

Now we combine Def'in1tions 5.1 and 5.2 and obtain 'the
theorem which underlies all our subsequent developments.

THEOREM 5.3
Let T =' (Q,s.,g,f) be a set ot cf-parsing tables, using
k symbol lookahead, for the cs-grammar (G,C). Let
p,r e Q and X e V be euch that either
(1) g(p,X) is inaccessible, or
(2) g(p,X) • q where q e Q and both

(1) for each u e V;k, either
(a) f(q,u) = f(r,u), or
(b) f(q,u) is inaccessible on X,

and (ii) for each Z e V, either
(a) g(q,Z) = g(r,Z), or
(b) g{q,Z) is inaccessible.

Then r is a valid substitute for g(p,X).
PROOF. The conditions satisfied by p,r and X are such

that substitution of r for the original value of g(p,X)
1s equivalent to (locally) changing the values of certain
inaccessible action and goto entries. By virtue of' the
very definition ot inaccessibility, such changes cannot
81ter the behaviour of' the parser soothe theorem f'ollows.Cl
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5.2. The Optimisation Techhique.

Our·task now is to determine the locations ot (some
ot) the inaccessible entries within CFLR(lt) parsing
tables. The next two lemmas provide the results we need.

LEMMA.5,4
Let (G,C) be a CPLR(k) cs-grammar, where k) 0, and let
T 111 (Q,so,g,r) be its CFLR(k) ct-parsing tables. Let

.q e Q and u e V;k be such that t(q,u) 111 ERROR. Then
the action. f(q,u) is inaccessible on all nonterminals.

PROOF. Let X e VN and suppose that Algorithm 1.4,
while driven by the tables T, inspects the value ot t(q,u)
when X is On top ot its parse stack. Then because t(q,u)
.= ERROR, the parser's next action will be to declare
ERROR md halt. Now since X e VN lies on top ot the parse

\ stack. the previous move must have been a reduce move
involving a production with X as its lett part. But when
k> 0, we know trom Theorem 3.64 that .!ll errors are
declared immediately tollowing a shitt move. The conclusion
tollows. 0

LEMMA S.S

Let (G,C) be a CPLR(k) cs-grammar, where k > 0, and let
T 111 (Q,so,g,t) be its CFLR(k) ct-parsing tables. Let
q e Q and X e V be such that g(q,X) is undetined.
Then g(q,X) i8 inaccessible •

.,.'
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PROOF. Wben Algorithm 1.4 encounters an undetined
goto entry it halts and declares ERROR. But when k > 0,
we know from Theorem 3.64 (or more aocurately, tram the
proof of Theorem 2.40 - wbich underlies that ot Theorem
3.64) that sll errors are deteoted during inspection of
the aotion function. Thus undefined gato entries can
never be examined. 0

Next we need two lemmas which assist in the explo1tation
ot Theorem 5.3.
LErlMA 5.6

Let(G,C) be a CFLR(k) cs-grammar and let T = (Q,so,g,f)
be its CFLR(k) ot-parsing tables. Let X,Y e V satisty
X .: Y and let p,q,r e Q be such that q • g(p,X) and

Co

·k. r • g(p,y). Then tor eaeb .u e VT either:'

(i) f(q,u). t( r,u)or
(ii) t(q,u). ERROR.

PROOF. ~ Construction 3.61 we must have
p • NAMEOF(CFY(6» .for some e e Y* and then
q • NAMEOF(CFV(6X» and r • NAMEOF(CFV(6Y». Hence

f(q,u) • ACTION(CFV(6X),u) and
f(r,u) • ACTION{CFV(6Y),u).

Since X -t Y, Theorem 3.43 provides CFV(9X) ~ CFV(SY)
and so any non-ERROR value of f(q,u) must also be a
value of f(r,u). But f(r,u) must be single-valued (for
otherwise CFV(SY) is inadequate) and so if the value of

.f(q,u) is not ERROR, then it must be the same.p.8 f(r,u). Cl

It is in the next lemma that this development first
requires Property A.
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LEMMA 5.7
Let (G,C) be a os-grammar with Property A and let

•oI..,/!J e V be suoh that p( --;.~ p.

either

Then when X e V

(i)

(ii)

•
CFV(o<X} .= CFV'(pX}, or

CFV(o(X) == iJ.

Suppose CFV(CCX) F CFV(pX} and CFV(o<X) ! ¢.PROOF.
Because 01. =: fJ it follows from Theorem 3.43 that

CFV(o(X} ~ CFV<PX}. Therefore, it these two states

are diUerent, tbere is some CFLR(k) item b. in

CFV~X} wbicb is absent trom CFV(o<X}. Theorem 3.43 then
•impli es that 6 e v( 'i') tor some '/I e V suoh that

'-V _"..'"'" (:J X and that
c.

CFV(OCX)'!~, it must oontain some item .~ and so

Theorem 3.43 gives ~ e' vee) tor some a e v· suoh

But becauae

that' a ~~ o(x. S:ince ot.-....:p it tollows that

9 --.: taX. .Nowwe also have Y' -.£" ,eX, and because

(G,C) bas ~operty A it then tollows that ~ and e oan

only difter on their tinal symbols. They may theretore

'be written in the torm 'II. flY and a = f' Z. ~ .. .t' ~ ~ ~ I' ,Y --: x, and Z..... x•..then '-Y • fA Y ~ (XX. ' Tb1s oontradiots

._" '-h." clX, .and so we oonclude the lemma. Cl

where

But

Wemay now combine Lemmas5.4. to 5.7 with Theorem 5.3.
'and so o'btain the crucial result.
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THEOREM 5,8
Let k > 0 and let (G,C) be a CFLR{k} cs-grammar with
Property A. Let T = (Q,so,g,t) be the CFLR{k) ct-
parsing tables for (G,C) and let p e Q and X,Y e V.

Then the value of g{p,y) 1s a valid subst1tute fo~
.g(p ,X) whenever X --:,... y.

PROOF. If g(p,X) 1s undefined then,by Lemma 5.5,
it is inaccessible and tbe result follows from
condition Cl) of Theorem 5.3. So now suppose that

, of' .g(p,X) is detined and that X --:,Y. Let q = S(p,X).Then
by Construction 3.61 we will have p = NAUEOF(CFV(e» and

•q = NAMEOF(CFV{aX» tor some e e V • We must have
CFV(ex) ~ ~ (for otherwise g(p,X) would be undefined)
snd since Theorem 3.43 gives CFV(eX) £ CFV(ey) it

. .
follows that eFV(SY) , ¢. Because g(p,Y) =

NAMEOF(CFV(9Y» it then follows that g(p,Y) is defined.
_---- ..--.-......Let r ~_S(p, Y) and u e v;k and Lemma 5.6 then provides

-. '., ,

either f(q,u) = t(r,u) or t(q,u)= ERROR. In the former
csso, condition' 2(i)(a) of Thoorem 5.3 is satisfied.
In tho latter caso, since X ~ ...Y must imply X e VN
(or X = Y, in which case tho Theorem is triv1al), it
follows from Lemma 5.4 that f(q,u) is inaccossible on X.

'Thus cond1tion 2(1)(b) of Theorem 5.3. is satisfied 1n
this case.

Now let Z e V. Then g(q,Z) -NAMEOF(CFV(exZ»
and g ( r, Z )= NAMEOF(CFV(eyZ » and 80, by Lemma 5.7,

either CFV(eXZ) - CFV(eyZ) or CFV(eXZ) • D. In the
former caee wo will have. g(q,Z) • g(r, Z) - which
satisfios condition 2(11)(a) ot Theorem 5.3. In the
latter ease , g{ r, Z) will be undefined and therefore, by
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Lemma 5.5, inaccessible. This Will satisty condition
2(11;) (b) ot Theorem 5.3.

Thus all appropriate conditions ot Theorem 5.3.
are satisfied in all cases and the result is proved.D

Our method ot optimisation should now be clear.
We shall simply replace some or all goto entries g{p,X}
by the value some g(p,Y) where X"; Y. Note that since
this process really only involves manipulation ot

inaccessible entries, the changing ot any particular
g(p,X) in this way cannot attect the assumptions which
ensure the validity ot any subsequent changes. Thus
the identities ot the particular Bubstitutions made,

.;.
.and the order ot their application, are immaterial to
the preservation at the correctness ot the tables. The
.issue that remains is to exploit this technique
systematically and to maximum advantage.

The tirst pOint to note is that when X ~ Y and X , Y,
we have the option ot either changing the value ot

g(p,X) to that ot g{p,Y) or ot leaving it alone. Clearly,
we ahould change it and should do 80 in every state
p e Q because in this W&,¥, and only in this way, will
we cause all states which were tormerly reterenced only
on X (that 1s all states q such that g(p,Z) • q implies
Z= x) to become unreferenced. These states then become·
totally redundant and may be rEmoved trom the iarsing
tables.
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This deletion ot states is the m8~or benetit ot the
technique and the source ot its motivation. However,
another valuable benetit is available, provided that
substitutions are pertormed suitably. Suppose we have

..,. ..X ---. Y, X _. Z and X.,J. y;: Z. Then in any
c. c

state p we can change the value ot g(p,x) either to that
ot g(p,Y) or to that ot g(p,Z). F or the purpose ot being
able to delete states, it is immaterial which ot these
substitutions is chosen. Indeed, we could choose one ot

the alternatives in certain states and the other in the
remainder. But it the substitutions are pertormed
consistently, tor instance it g(p,Y) is substituted tor
S(p,X) in everl state p, then (and only then) will the
columns ot the goto table oorresponding to the symbols
X and y. become identical. Only one ot them need be
represented explicitly and so we obtain the double benetit
ot deleting trom the tables not only rows (1.e.states) but
also columns (i.e. symbols).

Accordingly we detine our optimisation technique in
terms ot an ."optimising tunction" F : V -a,. V which 1s
used as tollows : tor each symbol X Q V and in each state
p e Q, change the value ot S(p,X) to that ot g{p,F{X» •

.In order that only valid substitutions are performed by
this process we must require that X ~ F(X) tor eachc

'.' X e V. It any symbol X e V is not in the range ot F,
then all states accessed only on X become inaccessible
and can be deleted, as also can the oolumn ot the goto
table corresponding to X. Obviously the maximum benetit
1s obtained when the optimis1ng function has the smallest
range possible - since this will permit the delet10n ot

•
the largest number ot rows and oolumns.
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We now detine some terminology that allows precise
specitication of this type or optimising tunction.

DEFINITION 5.9

An optimising function tor the cs-grammar (G,e) is a
mapping F: V -.. V sucb t bat X ~ F(X)tor eachc..

X e V. For technical reasons we require that it' X F S

then F(X) yI. S·. (s is the.goal symbol of G.) Toe alphabet
which is the range or F is d~noted RF. That 1e :
RF = { F(X) x e V 1 • We Viould expect (but do not
require) that it X e RF, then F(X) = X.

"'"A symbol X e V is called aleat' ot (G,C) it X .... Y implies
- Co

y = X or Y = S. (Obviously all terminal symbols are leaves,
and so ie S.) Now if X it a leat, ani optimising tunction
F must sat1ety F(X) = X. Thus no optim1s1ng function can
have a range smaller than the set ot leaves. Conversely,
whenever A e VN 1s a non-leat, a lest X may always be
tound such that A """':.04 X, (Provided G is reduoed and no
'symbol satisties A ... + A). oonsequently, an opt1m1s1ng

Co..
function can always be found whose range is exactly the
leaves of (G,e). S1noe ·tb1s 1s the smallest range po~aible,
we oall such a funotion a tull optimising function tor
(G,C). 0

., .
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Vfuen we optimise a set of CFLR(k) tables by applying
en optimising function F, we do so by replacing the value
of g(p,X) by that of g(p,F(X» tor each p e Q and
X e V. As mentioned earlier, this operation clearly renders
inaccessible &11 states which were formerly referenced
only by symbols outside the renge of F. We now prove that
all and only such states become inaccessible.--
THEOREM 5,10

Let (G,.C) have Property A' and let T = eQ,sa ,g,f) be a
set ot CFLR(k) tables for eG,C)."Let F be an optimising
tunction for (G,e) and define a new set ot tables T' :I

(Q,so,s',f) where g'(p,X) • g(p,F(X» for each p e Q

and X e V. Then a state 'P e Q is accessible f rom So

in T I if and only it p • s(q,X) tor some q e Q and
X e RF•

PROOF. First extend the domains ot the goto functions
g and g' trom "Q x V to Q x V· in the usual wey (i.e.
define g(p, Jv ) :I P and g(p, ClX) :I g(g(p,o(),X»)and

•extend the domain of., from V to V by the detin1 tiona
F(~) :I A end F(~X) :I F(~)F(X). Then by (imp11ed)
detin1tion, p is accessible from So 1n T' it and only it

...p :I g'(so,9) tor some 9 e V • Now note that the construct-
ion ot T' ensures that, tor any 9 e V·, we have g'(so,9)
:I s' (so' Fee» = g(so ,Fee». The "only 1t " direction of
the present theorem follows straightforwardly trom these
observat1ons and so we now consider the "1t" direction.
Suppose that p = geq,X) where q e Q and X e RF' We must
have q = NAMEOF(CFV(9» tOI- some e e V· end so p :I

NAMEOF(CFV(.eX». Let ,...= F(e). By the dotin1 tion ot an.
optimising function we must have e -: I". ~

end so by .
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virtue ot Lemma 5.7, we have either
CFV(ex) = CFV{~X), or
CFV(eX) = ¢.

Now because NAMEOF(C~(eX» is a state in Q (it is the
state p) we cannot have CFV{eX) = ¢ and so we must have
CFV(eX) = CFV( I" X). This implies that p = NAMEOF(CFV<I'X»,
which in turn implies that p = g(8., P X). Now I'" = F{a)
and X e RF• Therefore ,IAX = F(eZ) for some Z e V.
Hence p = g(so ,F(eZ}) = s' (so.ez ). Thus P is accessible
in T' and the theorem is proved. Cl

Supported by this result we may now sately detine
the construction ot optimised CFLR(k) tables in the
manner whicb was informally indicated earlier.
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CONSTRUCTION 5.11

Let (G,C) be a CFLR(k) cs-grammar wi th Property A and
let F be an optimising function tor (G,C).Let the
CFLR(k) ct-parsing tables tor (G,C) be T = (Q,so ,g,t).
Then the optimised CFLR{k) tables ror (G,C) with respect
to pt are given by OCFT~G,c~.P = (Q',so,g',~') where

(1) Q' == {sol v ~g'(p,X) e Q I p e Q, X e RF1,
(il) gf ls the restriction ot g to domain Q'·x RF, and

. (111) ~,ls the restriction ot t to domain Q' *kx VT •

.Note that the detin1tion ot these tables depends not on
F directly, but only en its range. Consequently, the

.tables ~orresponding to a ~ optimi sing function are
independent ot the particular function employed : they
are, in short,unique. We call them the tully optimised
CFLR(k) tables tor (G.e) and denote them by FOCFT~G,C) •
For brevlty we usually write OCFLR(k) instead or
"optlmised CFLR(k)"ancS FOCFLR(k) insteacS ot ":tUlly
optimised CFLR(k)". 0

Since a tull optimising tunction can be tound
mechanically tor any CFLR(k) os-grammar, there seems
little pOint 1n constructing any less than tully optimisecS
CFLR(k) tables. In the present situation this is indeed
the case. However, in the next chapter we shall encounter
circumstances in whioh it mSl be necessary to consider
optimising tables to less than the tull extent.
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In order to use OCFLR(k) tables, hlgorithm 1.4 needs
to be moditied slightly so that it takes account or the
absence ot all goto columns corresponding to symbols out-
side the range of the optimising function concerned. The
only reterences made to the goto table by Algorithm 1.4
occur in its steps 3 (a) (iii) and 3 (b) (vi). These are
reterences ~o gCs,a) and g(r,A) respectively, where a € VT
and A is the "left part of production qU. These steps must
be changed so that they reference s(s,F(a» and g(r,F(A»
instead and it seems that the need to apply the optimising
function during these steps might slow them down.
Fortunately, this is not ao. All optimising tunctions are
identities when applied to arguments in VT - so step
3(a) (111) need not be altered at all. The ettect of
altering step 3·Cb) (v1) can be accomplished more neatly
and rapidly by replacing the identity ot the symbol A
directly. That is, modity step 3 (b)(1ii) ot Algorithm 1.4
so that 1t,reads "set A equal to the image under F ot the
le:'t part of production qlt. (Note that th1s cannot disturb
the test" A = Stl pertormed 1n step 3 ('b){1v) beoause ot

the requirement that optim1sing tunctions satisty F(A) =
s~only it A= S.) In practice, Algorithm 1.4 will determine
lett parts by a table look-up and so the ettect ot the
required change can be achieved by Simply replacing the
table ot left parts by its image under F.\In this way the
speed ot the parser will be unimpaired.

To 1l1ustrate the construct1on we show the FOCFLR(l)
tables tor (G3,C3) 1n Figure 5.2. There is only one tull
optimising funct10n tor this grammar: 1t takes E,T and P
to X and 1s an identity elsewhere. Thus the modit1ed table
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ot lett parts which 1s required by Algor1thm 1.4 w111
record S as the lett part ot product1on 1 and X as
the lett part ot all others. Observe that these FOOFLR(l)
tables contain only 16 states, as opposed to 19 1n the
unopt1m1sed CFLR(l) tables and 22 1n the ord1nary LR(l)
tab1e~. (See Figures 3.8 and 2.4 respectively).

.STATE CF-ACTION FUNCTION OF-GOT a FUNCTION
No~ A ( X ) * + S ( X ) * +

1 sh sll 3 2
2 :1 sh sh 5 :4
3 sh sh 7 6
4 sh sh 3 8
5 sh sh 3 9
6 sh sh sh 10 12 11

. 7 sh sh 7 13
8 2 sh 2 5
9 4 4 4

10 6 6 6
:11 sh sh 7 14
;12 sh sh 7 15
:13 sh sh sh 16 12 11
,14 2 sh 2 12
15 4 4 4
16 6 6 6

Figure 5.2. FOCFT1(G3,C3) - The FOCFLR(l) et-Parsing Tables
tor (G3.Q3).
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5.3. Constructing Optimised CFLR(k} Parsing Tables Directl:.

Building OCFLR(k) tables using Construction 5.11
involves first constructing the ordinary CFLR(k) tables
and then modifying them. This is wasteful and unattractive
and so we now consider methods tor constructing optimised
tables directly. We concentrate first on modifying the
standard method for building CFLR(k) tables given in
Construction 3.61.

The states in a set of optimised CFLR(k) tables
are just those states from the ordinary CFLR(k) tables
which are accessible on symbols in the range of the
optimising function F. As noted in the proof ot Theorem
5.10, there are the states q such that q = g(so,a) for

'"some a e Rp. In Construotion 3.61 the parsing states
oorrespond to the names of CFLR(k) states and the gato
functio~ is based on the function CF-GOTO. It is there-
fore easy to see that q = g(so,a} if and only it

q = NAME OF(CFV(a)). Consequently, the parsing states:
that remain in the OCFLR(k) tables are the names of the
members of the set {CFV(a) I pS le. e R; 1 . We oall
this set the "optimised CFLR(k) stateset for (G,C) with
respect to Fit. It is easily formed by modifying the

'. usual CFLR(k) stateset'construotion algorithm (Algorithm
3.47) so that a state ::E = CF-GOTO(ll,x) is added to the
stateset only if X e RF• The OCFLR(k) tables may then
be formed from this optimised stateset in just the same
way as ordinary CFLR(k) tables are formed from ordinary
statesets. Thus we obtain the following algorithm.
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ALGORITHM 5.12

Direct construction ot optimised CFLR(k) cf-parsing ..
tables.
Input: The CFLR(k) cs-grammar(G,C), which must have

Property A, and an optimising function F.

Output: OCFT~G,C),F - the optimised CFLR(k) tables for
(G,e) with respect to F.

Metho4:
1. First construct the optimised CFLR(k) stateset

tor (G,e) with respect to F by using Algorithm
3.47, moditied so that the loop '~ X El V ~"
becomes "for X Q R do If.

- F-

2. Then build the optimised tables by applying
Construction 3.61 to the optimised, rather than
to the ord1nar~ CFLR(k) stateset tor (G,C) and
taking the domain of the second argument of the
goto function as RF rather than V.O

Similarly straightforward modifications may be applied
to the constructions ot.Chapter 4. By replacing the loop
'~ X El V.£2". in Algorithm 4.3 by one which reads "~
X e RF _gg", that algorithm may be caused to construct an
"optimised quasi CFLR{k) stateset" directly trom a set of

tRek) parsing tables. This stateset may then be used to
construct the OCFLR(k) parsing tables (assuming that the
function ITEMS is available) by using the technique indi-
cated in the proof of Theorem 4.4. Alternatively, it may
be used 9S the basis for constructing the "optimised quasi
CFLR(k) tables tor (G,C) If. These are formed by adapting
Construction 4.6 in just the same way as Construction 3.61
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is aoapted in Step 2 of Algorithm 5.12. These optimised
quasi tab.les will perform the same as the true OCFLR(k)
tables but may be rather larger (that is to say,
they will gover the true OCFLR(k) tables).

More interesting are the corresponding "strong"
constructions based on the techniques of Section 4.3. In
order to form optimised CFLR(k) tables with confidence
in their correctness, the grammar (G,C) must have
Property A - and this is precisely the property which
ensures that SQCFLR(k) tables are equivalent to true
CFLR(k) tables. Consequently the following algorithm
converts LR{k) parsing tables directlY into OCPLR{k)
tables.
ALGORITHM 5.13

Direct conversion of LR(k) tables into optimised CPLR(k)
tables.
Input : The CFLR(k) cs-grammar (G,C), which must have

~operty A, an optimising function F ~or (G,C),
and the LR{k) parsing tables for G.

Output: OCFT~G,C~ _ the optimised CFLR(k) tables tor
(G,C) with respect to F.

Method :
1. First construct the optimised strong quasi

CFLR{k) stateset tor (G,C) with respect to F
by using Algorithm 4.10, moditied so that the
loop "tor X e V do" becomes "tor X e R do"._ _ F-

2. Then build the optimised tables by applying
Construction4.ll to the optimised, rather than
to the ordinary, strong quasi CFLR(k) stateset
for (G,C) and taking the domain of the
second agument of the goto function asRF rather
than VA 0
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Note that in all these cases, causing an algorithm
to produce optimised, ratber than ordinary, statesets
or tables actually reduces the amount of work performed
by the algorithm.
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5.4. The Value of Optimising CFLR(k) Tables.

The benfits of (full) optimisation are considerable:
in practice it seems that fully optimised CFLR(l) tables
always contain fewer states than ordinary LR(l} tables.
However, this reduction in the number ot states does not
always occur, as the tollowing grammar shows.

S - sAl
bA I
cA I
dA I
eD I
rn I
gD I
hD I

A - Xa

D - Xa
B - Yb
E - Yb
C - Zc

F - Zc
X - y I a

y - Z I b

Z - c

aBI
bB I
cEI

dE I
eB I
tB I
'aE I
hEl

aC I
bP I
cC I
dFl
cC I
tF I
gCl
hP

(Grammar G10)

Grammar G10 is LR(l) and has 48 states in its LR{l} parsing
tables. The cs-grammar (G10, iX .. y, y .. ZJ) ,has Property
A (since G10 is LR(l) and -A-tree} and is CFLR{l). Its
FOCFLR(l} tables contain 50 states - two more than the LR(l)
tables (the unoptimised CFLR(l) tables contain 56 states).

I

Note that even here, since the optimised tables contain two
less columns (those corresponding to X and y) than the
ordinary tables, the space required to represent the FOCFLR(l)
tables is probably less than that required tor the LR{l)
tables in spite ot the two extra states.
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Grammar G10 is complex and highly contrived, and
yet it is the smallest and simplest grammar we have
been able to find where the FOCFLR(l) tables contain
more states than the LR(l) tables. We suspect that all
grammars which exhibit this behaviour will contain
subgrammars similar to G10. For this reason we are
convinced that.for the grammars likely to be encountered
in practice, FOCFLR(l) tables will always be smaller
than their LR(l) counterparts. Unfortunately, we have
been unable to find an attractive characterization of
the grammars tor which this behaviour can be guaranteed.
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5.5. Summary.

Redundancy present in CFLR(k) parsers may be
exploited in order to reduce the size ot the parsing

<tables. The optimisation technique is very straight-
torward : it simply removes those columna ot the gototable
which correspond to (some or allot) the symbols
that. appear as the left parts ot chain productions,
and then deletes any states Which thereby become

,
unreferenced. Furthermore, the algorithms ,for construct-
ing CFLR(k) parsing tables are easily modified to
produce optimized tooles direc,tly.

Algorithm l.4 must be changed Slightly in order
to use these optimised tables, but these changes in no
way impair the sp~ed or error detection ot the parsep.

The correctness of these techniques is only
guaranteed tor those cs-grammars with Property A and
this effectively constrains their application to the
case k = 1. The space savings conferred by the technique
are considerable : optimised CFLR(l) tables tor
programming language grammars are actuallY' smaller than
ordinary LR{l) tables.
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CHAPTER 6.

APPROXIMATE CFLR(l} PARSING TABLES

The theory developed so tar shows that the CFLR(k}
chain tree parsers surpass the ordinary LR(k} parsers in
generslity and speed and yet otten occupy less space.
Unfortunately, however, it is impractical to use CFLR(k)
parsers in compilers for programming languages because
their parsing tables are intolerably large when useful
values ot k (namely k = l) are chosen. The same is true
of ordinary LR(k) parsers but certain techniques have
been developed which successfully oYercome the problem~'
in this case. Our goal now is to extend the application
of these techniques to the CFLR(k) parsers and thereby
develop truly practical chain free parsing algorithms.

In order to reduce the size of LR(k) parsing tables
some ot the benefits ot the method have to be relinquished
- notably generality and the immediacy of error detection.
Several techniques for doing so have been proposed by
various authors, for example Korenjak (1969), Pager (1970),
DeRemer (1969,1971) and Anderson (1972). The most
important ot these methods, both theoretically and in
prsctice, are the SLR snd LALR methods developed
independently by DeRemer and Anderson. The acronyms
stand tor ,§imple .LE and ,I,ook,Ahead ~ respectively.
Both ot these methods use one symbol lookabead and are
applicable to a large subset ot the LR(l) grammars and
yet yield only LR(O) size parsing tables. For a grammar
Similar in s1ze ~o that ot Algol this means tables with
about 400 states as opposed to over 4000 in the LR(l)
tables.
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Aho and Ullman (1972b) have ahown that the SLR

and LALR techniques, and also some others, can be
described in terms of two manipulations that may be
pertormed on LR(l) parsing tables. These are the
"postponement of error detection" and the "merging of
compatible states". The first of these exploits the
fact that the quality ot error detection afforded by
an LR(l) parser is so excellent that it may be
degraded slightly and yet rema1n acceptably good. The
technique 1s to replace certain ERROR actions by
REDUCE actions. When a true LR(l) parser would halt
and declare "error", a parser whose tables have been
modified 1n this way may cont1nue to make reduoe moves
but matters are so arranged that it too will halt and
deolare "error" before'~nsuming another input symbol.

The benef1t oonterred by the postponement of error
deteotion is that the aotions in oertain states of the
parser may be caused to become suffioiently similar that
whole groups of states may be replaced by a Single
composite state. This phase of the process is ~nown as
"merging oompatible states".

"

We shall be concerned to extend these ideas to the
context of CFLR(l) parsing tables. First we need to
oonsider the postponement 'ot error detection in a little
more detail.

Aho and Ullman (1972b) derine a "postponement" to
be a triple : (q,u,A _,..O() where q is a parsing state,u
is a lookahead string, and A -. ~ is a produotion. This
postponement is interpreted to mean that the action
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r(q,u) should be changed to REWCE A -...0<. Apart trom
certain constraints which ere necessary to 'preserve the
correctness ot the modified tables, postponements of
this type may be chosen freely. For our purposes this
notion is rather too general : we shall only use a
postponement (q,u, A ... ~) when REDUCE A ....eX is already
present es the ection on some other lookahead string 1n
the state q. We csll postponements of this type "weak"
postponements end formally def1ne them as follows.

DEFINITION 6.1
Let T = (Q,so,g,f) be e set 01' cf-pars1ng tables tor
(G,C). (Note that throughout this chapter we assume that
all parsing tables use one symbol lookabead). A weak
postponement for T 1s a tr1ple (q,u,A ..cc') wbere

*1q e Q, u e VT and A ...... 0(, Cl p'are such that
f(q,v) = REDUCE A ....0( tor some v e V;1.

Since We sball be concerned solely witb weak postponements,
we otten refer to them as simply "postponements". A
postponement (q,u,A- o() is somet1mes called a "post-
ponement w1t~ A". The application 01' tbe postponement
(q,u, A~ ~) to T causes the aotion f(q,u) to ~ecome
REDUCE A ....~ • A set 01' postponements for T is called
a postponement set tor T. D

We must ensure tbat the correctness 01' parsing
tables is preserved under app11cat10n 01' postponement
sets. In particular we must ensure that only ERROR actions
are changed and that all errors will eventually be
detected. Aocord1ngly we detine "valid" po'stponement sets
a8 tolloW8.
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DEFINITION 6.2·
Let T ::(Q,so jg,t) be a set ot chain free parsing tables
for (G,C). Extend the domain ot the goto function g from. ,

. Q x V to Q x V by means of the detin1 tiona :
g(p,.A,) = p and
g(p,O(X) ::g(g (p,ex),X)

•where p e Q, 0( e V and X e V.

A postponement set R is valid tor the tables T it
,all postponements (q,u,A" 0<) in R satisfy

. (i) A :/ S,

(11) ,f(q,u) • ERROR end
(ii1) whenever p e Q i& such that g(p,~) • q

then (a) g(p,A) is defined and
(b) f(g(p,A),u) .ERROR. 0

Clearly, an algorithm may be constructed to test
whether a given postponement set is valid tor a
particular' set of tables. Matters are simplified when
the tables am proper CFLR(l) tables •

. ,
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THEOREM 6,3

Let T be the eFLR(l) tables tor (G,e). Then any post-
~onement set tor T which·satisties cond1t10ns (1) and
(11) ot Definition 6.2 also satisties condition (iii)
o~ that definition.
PROOF. This result 1s an elementary consequence of
the definition ot CFLR(k) tables (Construct1on 3.61)
and the properties of CFLR(k) states. Note that the
result 1s also true of any tables which cover the true
eFLR(l) tables (such as SQCFLR{l) tables). 0

The application of a valid postponement set
preserves the correctness of the parsing tables.

THEOREM 6.4

Let T be a set ot ct-parsing.tables tor (G,e) and let
T' be the set of tables produced by application of a
valid postponement set to T. Then
(i) all sentences in L(G) are et-parsed correctly when

Algor1thm 1.4 is driven by T',
(1i) all erroneous strings x, L(G) are rejected

when Algorithm 1.4 is driven by T' and the number
of symbols consumed prior to rejection will be the"
same 8S when Algor1thm 1.4 is driven by T,

(111) if T drives Algor1thm 1.4. so thst all errors are
detected by encountering an ERROR action, then
T'also has this propert7.
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PROOF. Part (i) is immediate trom the tact thst valid
postponement sets only alter ERROR actions - and these
cannot be encountered while parSing valid sentences.
Part (ii) tollows trom the prootOf a similar result
provided by Aho and Ullman (1972b', Theorem 4). Note that
our notion ot a valid postpone'ment set is a special case
ot'theirs '.and ot course they are concerned only with
ordinary, not chain tree, parsers. However, these points
do not atfect the argument used in the proof. Part (ii1)
is an elementary consequence ot the constraints placed
upon valid weak postponements. Cl

Figure 6.1. illustrates the valid weak postponement
ot error detection in the CPLR(l) tables tor (G3,C3)
Which appeared in Pigure 3.8. We do not indicate the
postponement set used explicitly, but do so implicity
by putt1ng a circle around the REDUCE actions introduced
by the postponement set.
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STATE CF~ACTION FUNCTION CF-GOTO FUNCTION
,'NO. A ( x ) * +:- 5 E T P ( X ) * +

1 ah ah 2 3 3 4 3
2 1 ah 5
3 1 ah ah 6 5
4 ah ah 7 8 8 9 8
5 ah ah 10 10 4 10
6 ah ah 11 4 11 .

7 ah ah " 12 13
8 ah ah ah 12 14 13
9 ah ah 15 16 16 '916

10 2 ® ah 2' 6
11 4 <D 4 4
12 6 ® 6 6
13 ah ah 17 17 9 17
14 ah eh 18 9 18
15 ah ah 19 13
16 ah ah ah 19 14 13
17 ® 2 ah 2 14
18 <D '4 4 4
19 ® 6 6 6

Figure 6.1. : The CFLR(l) Tables tor (G3,03) atter Application
ot a yalid PQstponement Set.

The reader may'care to check that the tables ot both
Figures 3.8 and 6.1 re~ect l,beinvalid atI'ing "X*X)"
atter consuming the three symbols "X*X" but that the
tables ot Figure 6.1 make a ~educe move atteI' this pOint
before re~ecting the input.
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Next we define the merging of compatible states. Our
definition is a restriction of the one used by Aho and
Ullman (1972b).

DEFINITION 6.5
Let T = (Q,so,g,f) be a set ot ct-parsing tables for
(G,C).A partition TT" on Q is said to be compatible if,
whenever p a~d q are in the same block of 7.r , then

for each X

*1u e VT, f(p,u) = f(q,u), and
e V, either g(p,X) and g(q,X) are

(i)

(ii)
for each

both undetined or both are in the same block of ~.

When 7T is a compatible partition on Q, the tables
formed by applying TT to T are denoted by
Trr = (Q' ,so' ,g' ,t') and defined as follows. Let [q]
denote the block ot T.r to which the state q e Q belongs.
Then (1)

(i1,)
(111)

Q' = Hq J I q e Q},

s' lIZ [ e, J ,
for eacD q e Q and X e V

J

. )' ~ '? if g( q,X) = cp and
g' ( [q ],X lIZ

. [ g (q,X) ] otherwise,
(iv) tor each q e Q and u e

t' ( [q ] , u ) • t( q, u) •

'l*l
T ,

Tables formed by applying first a weak postponement set
and then a compatible partition to T are called approxi-
mations to T. If the postponement set concerned is valid,

,
then the approximat1on 1s said to be valid also. Tables
formed 1n this way from the CFLR(l) tables tor (G,e) are
called approximate eFLR(l) tables tor (a,e). 0
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Figure 6.2. illustrate the valid approximate

OFLR{l) tables tor (G3,03) that are produced by
applying the compatible partition- {1,2,3,{4,9),{S,13),
(6,14),{7,15),{8,16),(10,17),{11,18),{12,19)} to
the tables ot Figure 6.1. Observe the substantial
reduction in tbe number ot states obtained by this
process.

STATE OF-ACTION FUNCTION OF-GOTO FUNCTION
NO. J., ( X ) • + S E T P ( X ) • +

1 sh sh 2 3 3 4 3
•2 1 sb S

3 1 sh sh 6 S
-4 sh sb 7 8 8 4 8
5 sh sh 9 9 4 9
6 sb sh 10 4 10
7 sh sb 11 S
8 sh sh sh 11 6 S
9 2 2 sh 2 6

10 4 4 4 4
11 6 6 6 6

Figure 6.2: A Set ot Valid Approximate CFLR(l) Tables tor
(G3,C3). I

Applying a compatible partition to a set ot t f' I merely'
reduces their size, it does not sttect their pertormance
in any way. Consequently, it tollows trom Theorem 6.4. that
valid approximate OFLR(l) tablea are perfectly good ct-

parsing tables although their error detection is slightly
inferior to that ot the OFLR(1) tables. We Know trom
Theorem 3.64 that the OFta(l) parser tor (G,C) will reject
an invalid input string x on the move immediately
tollowing the EP(x)-l'st shitt move. A valid approximate
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CFLR{l) parser will certainly make no more shift moves
after this point, but may make some reduce moves before

",it rejects the input.'This quality of error detection
is superior to that of all other practical bottom up
parsing schemes and is sufficient to allow the automatic
generation of good error disgnostics and effective
automatic error recovery (see Wynn (1973}). Furthermore,
the technique of Eve (1973) allows full CFLR{l) quality
error detection to be regained from approximate CFLR(l}
tables at the cost of a modest decrease in parsing speed.

An attractive feature of true CFLR(l) parsers is
that they detect all errors during inspection of the
sction function and so it is unnecessary to check for
error conditions during steps 3{a) and 3(b) of
Algorithm 1.4. This is beneficial to the speed of the
parser and is essential to the optimisation technique
of Chapter 5. Part (iii) of Theorem 6.4. ensures that
valid approximate CFLR{l) tables preserve this property.

Two basically different classes of methods for
producing spproximate CFLR{l) tables may be identified.
Methods in the first class tSKe care to apply only valid
postponement sets and tnen aeeK a compatible part1t10n
conta1n1ng as rew blocks as possible. These methods
guarantee to produce va11d approximate CFLR(l) tables
but are complex end usually require access to the true
CFLR{l) tables. Since these tables may be very large,
methods in this class are generally considered impractical.
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Methods in the seoond olass (and tor tne ordinary
LR(l) oase these inolude the SLR and LALR methods) work
rather differently. In effeot, these methods seek to
apply a partioular partition and so they generate a
postponement set whioh, if valld, will render that
partltion oompatible. Clearly, the disadvantage of these
methods is that they may generate invalid postponement
sets. The utility of each suoh method depends upon the

,
extent of the class of grammars tor which it does generate
velid postponement sets. The great advantage of these
methods is that they are able to produce their approx-
imate CFLR{l) tables directly, thereby removing the

.,necessity to construct the CFLR{l) tables first.

We shell be solely concerned wlth methods in the
seoond class. They mey be characterized in terms of an
"approximation funotion". The following definition defines
this concept and shows how apprOXimate CFLR{l) tables
may be oonstruoted d1reotlJ.
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DEFINITION 6.6

Let 6 be a eet of CFLR(l) items for (G,C) and let.' .e e V • Then 6 is an approximate CFLR{l) state for
e if'-

(i) 6 j cWl (e), and
(ii) whenever [:e _"'~, .fJ~ ,v ] e /:::,then

(a) if B = S, then [B-,6, ..,8.,v ] e CFVl(a)

(b) if B , S, then (B .....p,.PIl.' u ]e CFV 1(8)
tor some u e v;l.

•We say that a tunction i trom the CFLR(l) states tor
(G,c) to sets of CFLR(i) items for (G,C) is an approx-
imation tunction tor (G,C) it i(CFV1(9}} is an

•approximate CFLR(l} state for a, ror each 8 e V • \Vhen
i is such an approximation function, we define the i -
approximate CFLR(l) stateset ror (G,C) to be

Cn(G,C)
i •

•9 e V J
and we define the i - spproximate CF-GCTO function by :

CF_GOTO~G,C) ( iii (CFVl (a» ,x):= I(CFY 1(ax».

The i-approximate CFLR(l) tables f'or (G,C) are given
by simply subst1tuting the i-approximate stateset and
CF-GCTO funct10n tor the normal stateeet and CF..OOTO
f'unction in Construction 3.61. Cl
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It is necessary to be able to check whether 5 - .
approximate CFLR{l) tables are valid approximations
or not. The next theorem provides the necessary result.

THEOREM 6,7

It the i-approximate CFLR(l) stateset tor (G,e) .
is adequate then
(i) (G,C) is CFLR(l) and
(ii) the i-approximate CFLR(l) tables tor (G,e)

are valid.

PROOF. It (G,C) is not OFLR(l) then its CFLR(l)
stateset will be inadequate and therefore, by virtue
ot part· (i) ot Detinition' 6.6, so will its 5 -
approximate eFtR(l) stateset~

Now suppose that (G,e) is CFLR{l). To each CFLR{l)
parsing state NAMEOF(CFV(a)} there co~responds a 5 -
approximate parsing state ~AMEOF{i{CFV{e»). Now
i(CFV(e», is formed by adding items to CFV(e) and it
1s clear that the constraints on the items which may
be so added ensure that if

ACTION(CFV(e),u) ~ ACTION(i(CFV(e»,u)
then ACTION(i(CFV(9»,u) = REDUCE q where, for some
v e V;l, ACTION(CFV(a),v) = REDUCE q also.
Thus the actions in the parsing state corresponding to
i{CFV(e)} are equivalent to those that may be obtained

by applying a weak postponement set to the parsing
state corresponding to CFV{e). By virtue ot Theorem 6.3

we need only to verity that conditions (i) and (ii) ot

Detinition 6.2 sre satisfied by this postponement.
Condition (i) is olearly satisfied because ot the
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constraint (iia) of Definition 6.6. If'condition (ii)'
is not satisfied, then there must be some item
[B ~ f31.~.1 ,v le CFV(9') with u e ElF 1 (,sa v) to which

another, distinct item CA _.,. 0<. ,u] is added when
torming. i(CFV{e)}. Clearly this causes i{CFV{e}) to
become inadequate and so we conclude that it the i -
approximate stateset is adequate,then the i-approximate
CFLR(l) tables are valid. 0

Kany difterent types ot approximate CFta(l} parsing
tables may be defined by choosing suitsble approximation
tunctions. We shall concentrate initially on the chain
tree generalisation ot the SLR .method.
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6.1. The CFSLR Method,

In this section, we introduce a chain tree
generalization ot the SLR method. We call this the
"CFSLR" method and characterise it by an approximation
tunction iSLR as tollows.

DEFINITION 6.8

Let G = <VN'VT'P,S) be a'grammar and X e V. The
tollowset ot X in G is given by

FOLLOW G<X) = 1l:x S ~ c<Xx, x e V;I.
Clearly FOLLOW (x) -SV;l • Algori thmsmay easily be
constructed t"or the evsluationot tollowsets. (See,
tor exampl~, Anderson et al (1973).)

The CFSLR approximation method is detined by the
...approximation function iSLR wbere, tor eacb e -e:V ,

we detine
-------_ .._ -- -.- .....

iSLR{CFV1{a» = ( [B ....P' •.s2'V 11 [B ....~, •.s:&,u1e OFV1(9)
, and v e FOLLOW(B)}

We write OFSLR rather than "iSLR - approximate OFLR{l)";
CFSLR states are written as CFSLRV(a) rather th~
iSLR(CFV1(9». We say that (G,C) 1s OFSLR if its
OFSLR stateset is adequate; G is said to be CFSLR if
there is a chain set C for G such that (G,C) is CFSLR.
A language is CFSLR if it is generated by.",some OFSLR
grammar. Cl
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The CFSLR approximation tunction iti SLR certainly
satistles condltions (i) and (iib) ot Detln1tion 6.6.
However, it may not always aatisty condition (iia) if

.the gosl symbol appears in the right psrt ot a
production.{ Consider the grammar S ..aSa I b. )
This in turn may cause condition (i) ot Detin1tion 6.2
to be violated. The etfect of this w111 be to torce
the reintroduction of error checking in part (Vii) ot

step 3 (b) of Algorithm 1.4. (Consider the invalid
string ba with respect to the grammar above). This is
undesirable and may be av01ded by augmenting the
grammar with a production S·..... S 1 , where S· 1s a
new goal symbol and 1 is an (optional) endmarker.

Wben the chain set C is empty, the CFSLR method
becomes the ord1nary SLR method. We say that a grammar
G is SLR it (G,¢) is CFSLR and that a language is SLR
if it is generated by an SLR grammar. When the chain
set is empty, we talk of SLR states, rather than CFSLR
states, and write SLRV{e) instead of CFSLRV{e).

The CFSLR method generalizes the SLR method ~ust
as CFLR{k) generalises LR{k) •.We now ask s1milar
questions of the CFSLR method to those considered for
the CFLR{k) case in Chaptere3, 4 and 5. How extensive
are the classes of CFSLR grammars and langUages compared
to those ot SLR? How can we test efficiently for the
CFSLR property and how can we build CFSLR tables ? Can
we build CFSLR tables from SLR tables by a post-pass'
construction, and can SLa tables be converted directly
into CFSLR tables? Can CFSLR tables be optimised in the
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sense of Chapter 5? We shall see that with respect to
these questions the CFSLR m~thod exhibits broadly similar
properties to the CFLR(k) method. Not all approximations
are sowell behaved (as will be seen later when we
consider the chain free generalization of the LALR
method).

The first question we ask 1s whether the condition
that G be 8LR is sufticient to ensure that (G,C) is
CFSLR tor all choices ot chain set C. Unlike the corres-
ponding CFLR(k) result (Theorem 3.19) where the answer..
is always "yes", here we have only a qualitied "yes" :
We need an additional constraint upon the way in which
A -rules may be used in G. Betore introducing this
result we need to establish some technical lemmas and
theorems. The tirst of these expresses CFSLR states in
terms ot CFLR(O) states. (Definition, 6.8 expresses

,-them in terms ot CFta(l) states.)

LEr4MA 6.9

.'Let e e V • Then
CFSLRV(e) • ([B .....I',.".,u] I [B .....p,.,6.r,~ le CPVo(S) and

· u e POLLOW(B».
PROOF. The proof 1s trivial and we omit it. 0

Next we prove the CFSLR analogue ot Theorem 3.43 -
a result which found constant application throughout
Chapters 3,4 snd S.
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THEOREM 6.10 (cf. Part (i) of Theorem 3.43)
*Let e e V • Then

CFSLRV(9) = CF-STRIP({SLRV(~) I P ~ gJ).

PROOF. Suppose .[B~ fo'.~.t ,U ] e SLRV(p), B ~~A e p\C
and f< ---:.'" 9. Then Lemma 6.9 provides u e FOLLOW(B)
and [BaIp!,.t'l~ ,A ] e VO(r). Hence, by Theorem 3.43,

[B p,.f3a ,A]e OFVO(9) an~ so, again by Lemma 6.9;

[B p,.p~,u] e CFSLRV(e). Thus
OFSLRV (e) ;? OF-STRIP ( { SLHV (,..)I I-' -i e J ) •

Containment in the other direction m~ be established
equally straightforwardly and so we conclude the
theorem. D

We now define a property of grammars which ensures
that followsets are "well behaved" in the presence of
,A -rules. Grammars encountered in praotlce always
seem to have thls property.

DEFINITION 6.11

A grammar is empty rule followset consistent (ERFC for
short) lf, whenever X e V and A e VN.are such that
S --: o(XA(3 and A ~ A , then FOLLOW(X) a FOLLOW(A).O

The ERFC property 1s needed to establish the next
result.
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LEMMA 6.12
* *1If G is an ERFC grammar and e e V , X e V and u e VT

are such that SLRV(eX) contains an item of the form
[B ""'13,.{Ja ,v] with u e EFF 1 «(J:i v), then u e FOLLOW (X)•

PROOF. If [B"~,.,.s4'v] e SLRV(eX), then v e FOLLOW(B)
and [B ......~,.f4~ ,vi.] e VO(eX). Therefore, G contains a
derivation

(1)

with ex = ~P, _ There are now two main cases to consider.
Case 1 : f3~ -lA • Then u e EFFl (PtAv) implies ~~..; uy

*for some y e VT- (The possibility that u e EFF{Pav)
because ;34v _.." v and u=v is excluded by the
requirement of an eff-derivation.) Hence (1) gives

S

and the conclusion u e FOLLOW(X) is immediate.
Case 2 : ~2 = ~ • In this case, u e EFF1(~lv) gives
u=v, and so u e FOLLOW(B). Now if II, = ~ , the identity
01.(3, = ex becomes 0( = ex and so Cl) gives S ....ex.Bx.
The conclusion u e FOLLOW(X) then follows from
u e FOLLOW(B) by virtue of the ERFC property of G. If,
on the other hand, /I, -I A , then the identity 0<(5, = ex
implies the production' B ...(3, has the form B ....fAX and
the conclusion u e FOLLOW(X) follows directly from
u e FOLLOW(B). 0

We need one more technical lemma.
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LEMMA 6,13

Let (o,c). be a cs-grammar and let X, ~,z e V satisfy
X -: y _., Z • It u e FOLLOW(X) and SLRv(ax)F' Pc •

then [y .... Z.,u] El SLRV(aZ).

PROOF. We use induction on the number of steps in the
c-derivation ot Y trom X. The basis is the case where

!,'

there are no steps at all - that is X = Y. Since
SLRV{eX);'9J', VO{6X) must contain a non-initial item ot
the form [B -- ,8,X.,s.a'~] and so [B -... p•• XPt'J.,] e Voce).

It follows that [y -- •z,A ] e VO{e) also and
hence that [y -"!Io Z. ,A] c V0 (QZ). ,Because u El FOLLOW(X)

and . X = Y we then have [Y _... Z.,u] El SLRV(9Z)
and this completes the basis ot the induotion. For the
inductive step, assume the result to be true whenever the
c-derivation of Y from X contains n steps (n) 0) and

".,suppose X --: Y. Then we may distinguish the last
step of this derivation and write X -.. 'fit W -.. Y. By

(. Cl.

the inductive hypothesis we deduce that [w -.' Y., u]
El SLBV(ay). Now u e FOLLOW(X) and X -.... Y implyc.

U El FOLLOW (Y) and.since SLRv(ey) F' j, the basis ot the
induction then provides [y -- Z.,u] El SLRV(eZ)
and so completes the inductive step and the proot of the
lemma. 0
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We now bave tbe technical apparatus required to
establish sufficient conditions for (G,c) to be
CFSLR, given tbat G is SLR. Because it will be
required later, we present tbe crux of tbe argument
in tbe following lemma.

LEMMA 6.1M.
Let G be an unambiguous ERFC grammar and let C be
a chain set for G such that (G,C) bas Property A. If
CFSLRV{e) is inadequate, then SLRV{~) is inadequate
for some fA -.; e.

PROOF. The case e = A is trivial so assume e :j. A.
It CFSLRV{e) is inadequate, tben it contains a pair
of distinct items 6 = [B ......",.,.,~,v] and
~ = [A ... 0(. ,u] such that u ..e EFFl (,s2V). By
Theorem 6.10 we deduce that tbere exist ~. d e V*
such that 6 c SLRV{ ~ ), ::E c SLRV{ cS ), ~ -:." e
and cS --:. e. The lemma is immediate it 'I. = 6, so
assume I) ~ d • Since ¥ _ .. e and

Co
cS ...: e and..

(G,C) bas. Property A it follows tbat l and cS can
difter on only their final symbols. Therefore ~ J Sand
e may be written in tbe form "6. 'I'X, ~. 'f Y and

u e

where 'I' -.t ~, X ~ M , Y": M

Y. Note that Lemma 6.l2 provides the results
FOLLOW(X); and u e FOLLOW(Y) • Now { {X, Y1,£141 )

e = ~M

and X -I

is a maximally chained pair and since G is unambiguous
tbere must be a unique maximal intermediate, say Q, tor
tbis pair. We tben have X _',.Q, Y _,,: Q and Q .....it M.C, ,

There are three cases to consider.
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Because X ,l Y, Q _, "'" Y implies•
X _ + Yin this case. Thus X _,: U -:,.Y for some

c ~

U e V. Now u e FOLLOW (X). and SLRv(tX) ,l ¢ and so
Lemma 6.13 provides [U _.,. Y., u] e SLRV(tY). But
SLRV('I'Y) also contains the item ~ and this must be
distinct from [U ~ Y.,u] because it does not involve
a chain production. (Since it comes from CFSLRv(e).) The
two items ~ and [U -- Y., u] are clearly in
conflict and so SLRV(.."Y) is inadequate and the lemma
1s proved in this case.

Case 2 : Q = Y. This case is exactly similar to the
previous one.

Qase 3: Q.' X , Q , Y•. '"Since X -"JIo Q and Y Q

we must have X ~ U ~ Q and Y -i w ~ Q in this
case. Then because u e FOLLOW( X) and SLRV(tX) ~ ¢,

Lemma 6.13 provides
Similarly we obtain

[U -. Q., u ] e SLRV(i'Q) •

[W - Q.,u J e SLRV(tQ).
These two items must be distinot (tor otherwise U • W,
whioh oontradicts the requirement that Q be a maximal
intermediate) and are therefore in oonfliot. Thus SLRV(~Q)
. 1s inadequate and since __* a we may conclude

c

the lemma. 0

Now we oan prove the main result.



THEOREM 6,15

307

(ct. Theorem 3.19)

Let G be an ERFC~. SLR grammar and let e be a chain
set for G such that (G,e) has Property A. Then (G,e)
is CFSLR.

PROOF. Suppose (G,e) is not eFSLR. Then CFSLRV(e)
is inadequste tor some •e e V • SinceGis SLR, it
is certainly LR(l) and theretore unambiguous. Hence,
by Lemma 6.14, SLRV( f') is inadeQ.uate tor some ~ ~ e
But this contradicts the assumption that G is SLR and
so we conc.lude the theorem. 0

The conditions that G be ERFC and that (G,e) has
Property A are sutficient to guarantee that (G,e) is
CFSLR when G is SLR but they are not necessary conditions.
The following grammar 'demonstrates this point.

S· - AB I (Grammar Gll)
exl
Bx

A - y
C - y
B - zl

~

Grammar Gll is SLR but not ERFC (the tollowset ot A
is {A, z j while that ot B is f A, x 1) and
yet (en, { 0 ...y} ) is eFSLR.

On the other hand, the simple condition that G
be SLR is not sutticient on its own to guarantee that
(G,C) is CFSLR. This point 1s also demonstrated by the
grammar orr, tor the cs-grammar (ori , fA - y 1 ) is not
CFSLR despite the tact that Gll is SLR. Although this
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example demonstrates that CFSLR cf-parsers cannot always
be substituted torSLR parsers, no difticulty is likely
to arise in practice because the conditions of Theorem
6.15 are very mild and almost certain to be satisfied
by SLR programming language g~ammars. (Property A will
be required anyway by certain of our later optimisations.)

Grammar Gll is a slight modification or one due to
Anderson (1972) whose technique for eliminating chain
productions trom SLR parsers is the same as the CF~LR
method. Anderson stated and proved a weaKer form ot

Theorem 6.15 in his Ph.d thesis {Anderson (1972),Theorem
A}. Expressed in our terminology, Anderson's result
becomes : "(G,C) is CFSLR it G is both SLR and ""-tree".
Because (G,C) must have Property A it G is SLR and Jt -tree
(this tollows trom Corollary 4.l8), Anderson's result
follows a~ a corollary to our Theorem 6.15. Anderson
also exhibited CFSLR grammars which sre not SLR, nor even
LR(k). ThuG, just ss in the LR(k) case, the CFSLR
grammars are more extensive than the SLR grammars •.However, also like the LR(k) case, the corresponding
classes ot languages are the same. To see this we note
that results ot Mickunas (1976) show that the SLR
languages are precisely the deterministic languages.
The CFSLR languages must include all SLR languages, but
must themselves be inclUded within the CFLR(l) languages
- snd these are just the deterministic languages again.
It follows that the CFSLR languages are precisely the
deterministic languages.

,
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This result may also be deduced ,using the cover
grammar approach of Section 3.3 : because followsets
are preserved under the cover grammar oonstruction
{Construction 3.24} it is easy to adapt the proofs of
Theorems 3.26 and 3.29 in order to establish that
(G,C) is CFSLR it and only 1t COVER(G,C) is SLR.
This observation also provides an 1ndirect method ot

testing tor the CFSLR property.

Direot methods of test1ng tor the CFSLR property
may be tound by exploiting Lemma, 6.9. The most straight-
forward technique is to construot the CFLR(O) stateset
and then oonvert it 1nto the CFSLR stateset by using
Lemma 6.9.·The CFSLR stateset may then be tested for
adequacy in the usual way. Sinoe the oardinality ot

CFLR(O) statesets oan be exponential 1n the size of the
grammar (reoall the grammars EXP(n) ot section 2.3) this
method is of exponential oGmplex1ty.

The most eftioient method ot testing for tre CFSLR
property is to oonstruct the set CF_PAIRS(G,c) ando
then test each pair in this set:fOr an "S'l.Rconfliot"
where a peir of distinot LR(O) 1tems are said to have
an SLRt oont"liot it they have the torm [B....t9,.P~,J., ]

and [A ~ 0<.,.A ] and satisty either
{i} ~:J. = A end FOLLOW(A) " FOLLOW{B} /:~ or
(ii)

~::J. ~ A and FOLLOW(A) " EFFl (pI. ) /: ~.

It 1s an elementary deduction trom Lemma 6.9 that (G,C)
is CFSLR 1t and only irno pair in CF_PAIRS~G,C) has
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an SLR conflict. We have seen in Section 3.6 that the
enumeration ot the set OF-PAIRS~G,C) can be performed

. 2in time O(n·: ), where n is the size ot G. Since the
techniques ot Hunt et al.(1974) allow a pair ot LR{O)
items to be tested tor SLR conflict in fixed time, it

,
tollows that this method of testing tor the OFSLR
property has complexity O(n2).

Just as OFSLR testing is based on OFLR(O).
constructions, so is the construction ot CFSLR parsing
tables. The CFSLR stateset may be tormed from the CFLR(O)
stateset by using Lemma 6.9 and the CFSLR parsing
tables may then be constructed from this stateset and
a tabulation ot the CFLR(O) OF-GOTO tunction by adapting
Construction 3.61 in the obvious manner. It is clear

I

.trom this construction that CFSLR tables have the same
number ot ~tates as CFLR{O) tables. It is more
convenient in practice to build CFSLR parsing tables
directly from CFLR{O) statesets rather than first
convert these 1nto CFSLR statesets. This 1s accomplished
by replacing the function AOTION ot Construction 3.61
with a more sophisticated function: SLR-ACTION. This
is def1ned as follows :

Wben 6 is a set of·CFLR{O) items tor (G,C) and u e V*lT
the.value ot SLR-ACTION ( ~, u) i8 :
(i) SHIFT it :~ contains an item [B ... ",.,.s~,.A]

wi th {Sa ".J\ and u e EFF (p ~ ),
REDUCE q if 6 contains the item [A _". 0( "I J., ]

.where A.....Cl( is production q
and u e FOLLOW(A).

ERROR 1t neither case (1) nor case (li) obtains.(1il)
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It is clear that this construction is equivslent to
the previous one. To illustrate the technique we

, "

display the CFLR(O) state set tor (G3,C3) in Figure
6.3. Note that we omit the lookahead string when
writing CFLR(O) items, since it is always A.

STATE CFLR(O) STATES CF-GOTO
NUCLEUS COMPLETION S E T P ( X ) * +No.

1 [S - .E] rE - .E+T] (T" • T*P] 2 3 3 4 3
[p ... (E)]

2 [S - Eo] [E -Eo +T] 5

3 (S - E.] rE - E. +T1 6 5
[T - To*PJ

4 [P-(.E)] [E - .E+T] [T - • T*P] 7 8 8 4 8
[P - • (E)]

5 rE - E+o T] [T .. 0T*Pl [P - • (E)] 9 9 4 9
6 (T- T* .n [P - • (E)] 10 4 10
7, [P- (Eo)] [E -Eo+T] 11 5

8 [P - (Eo)] [E-Eo+T] 11 6 5
[T -To *P]

9 [E - E+Tol [T - T. *p] 6

10 [T" T*Po]
11 LP - (E )0]

Figure 6.3; The CFLR(O) Ststeset and CF-GOTO FunotiQn
tor (G3,C3),

The followsets of the nonterminals ot G3 are easily
computed and may be found to be as tollows :

FOLLOW (S) • f Al.
FOLLOW (E) • {A, +, )1.

FOLLOW (T) • FOLLOW (p) • {A, +, ), *1.

Using this information the CFSLR parsing tables for
(G3,C3) may be oonstruoted directly from Figure 6.3.
We do not display theBe tables here since the tables
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ot Figure 6.2 are, in tact, the CFSLR tables tor
(G3,C3).

We now briefly consider alternative methods tor
producing 9FSLR parSing tables, based upon the LR(k)
to CFLR(k) table convers1on methods ot Chapter 4"

We saw in Chapter 4 hOw" quasi" CFLR{k) ststesets
and CF-GOTO tunctions can be computed trom informat1on
contained in tRek) parsing tables and Theorem 4.4
showed how these may be used to construct CFLR(k)
parsing tables by a "post pass" method. It is elementary
to show that similar construct1ons apply to the CFSLR
case and that CFSLR tables produced by the post pass
method are exactly the same as those of Definition 6.8.

Direct conversion ot SLR into CFSLR tables may
be achieved by obvious adaptions ot the methods tor
producing QCFLR(k) and SQCFLR{k) tables (Comtruotions
4.6 and 4.11 respectively). Just as in the'LR{k) case,
1t can be shown that these "QCFSLR" and"SQCFSLR" tables
cover the true CFSLR tables. Furthermore, when the
cs-grammar concerned has Property A, its SQCFSLR

,tables can be shown to be 1dent1cal to its true CFSLR
tables. Again, this is exactly similar to the CFLR(k)
case.



The reason why these techniques and results
apply to the CFSLR method exactly as they do in the
CFLR(k) case is because Theorem 6.10 is an exact
parallel for Theorem 3.43. We shall see later that
in the case of the CFLALR method there is no
parallel to Theorem 3.43 and that these post pass
and table conversion methods behave rather differently .
in that case.
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6.2. Optimising CFSLR Parsing Tables,

As we have already noted, CFSLR parsing tables
contain the same number ot states as CFLR(O) tables.
For a typical programming language grammar this
amounts to several bundreds of states, as opposed to
the thousands ot states 1n CFLR{l) tables. The SLR
tables tor an ALGOLW grammar, tor example, contain
328 states whereas the LR{l) tables are an order or
magnitude bigger - 4091 states,

Using a compact list representation, Anderson
(1972) found that SLR parsing tables for typical
programming language grammars could be encoded in
two or three thousand bytes. Using a ditferent
representation~permitting rather taster access,Joliat
(1973) used between one and a halt and two times as
much space as Anderson. These quantities are suftic-
iently small to be tolerable, at least on medium and
large scale machines, but any reduction would be
welcome. Conversely, any more than a modest increase
might well be unacceptable in many applications,

Now just as in the LR(k) case, CFSLR tables
generally have more states than SLR tables. With
realistic programming language grammars the increases
are otten sUbstantial. For example, an ALGOLW grammar

.
with 13 chain productions bas 328 states in its SLR
tables and 519 in its CFSLR tables - an increase ot

60.%. Anderson (1972) tound tbat the space required to
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encode the tables grew even more dramatically than
the number of states. His SLR.tables tor ALGOLW
occupied 2145 bytes while his CFSLR tables required
5344 bytes - an increase ot 150%. This waS in spite
of the tact that several 01' the encoding techniques
used were especiall1 designed !ith 6FSLR tables in
mind.

These observations strongly motivate an attempt
to apply the optimisation technique of Chapter 5 to
CFSLR tables. Although it i8 more difficult to
establish than in the CFLR(k) case, CFSLR tables are
sufficiently well behaved to allow tull optimisation
in the sense ot Chapter 5. In order to prove this
tact we need 10 repeat the argument ot Lemmas 5.4
through 5.7 and Theorem 5.8 tor the case of CFSLR
tables. The tirst problem here is that the crucial
Lemma 5.4 is not true ot OFSLR tables. Fortunately,
however, we can substitute the following result.

LEMr..-1A 6 .16 (ct'.Lemma 5.4)
Let T = (Q,so ,g,t) be the CFSLR parsing tables tor
(G,C). Then when q e Q and u e v;l, the action

.:r(q,u) ~s inaccessible on any nonterminal A such that
u , FOLLOW{A).
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If the action f(q,u) is inspected when a
nonterminal A is on top of the parse stack, then the
previous' move made by the parser must have been
REDUCE q where q is some production with A as its
left part. But such actions only ooour when the look-
ahead is in the tollowset ot A. The result tollows. 0

Lemma 5.5 1s,in fact, true ot all approx1mations.

LEM~~!6,11 (ot. Lemma 5.5 )
Let T = (Q,so ,g,t) be a set of va11d approximate
CFLR(l) parsing tables tor (G,c). Let q e Q and X ~ V
be such that g(q,x) 1s undetined. Then g(q,x) is
1nacoessible.

When Algorithm 1.4 enoounters an undefined
goto entry it halts and declares ERROR. \ben driven
by CFLR(l) tables this circumstance cannot occur
because all errom are detected during inspeotion ot the
action tunotion. Part (1ii) ot Theorem 6.3 ensures that
all valid approximate CFLR(l) tables share this property
and so the result tollows. 0

The CFSLR version ot Lemma 5.6 is rather more complex.
We need not only that (G,C) is CFSLR, but also that it
has Property A and that G is both SLR and ERFC.
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(ct. Lemma 5.6.)

Let G be SLR and ERFC and let C be a chain set tor G
such that (G,C) is CFSLR and bas Property A. Let
T = (Q,so g,f) be tbe CFSLR tables tor (G,C), let
X,Y El V 'satisty X ~ Y and let p,q,r El Q be such
thatq = g(p,X) and I' = g(p,Y).

Then tor each u e ",*1 , eitherT
(1) t(q,u) = t{r,u) or
(11) (a) f(q,u) = ERROR and

(b) u t. FOLLOW (X).

PROOF. The argument used to prove Lemma 5.6 may be
used to show that it (i) 1s talse then (iia) is true.
The bard part is to prove that (iib) is also true. To
do this we suppose that. f(q,u) = ERROR and t{r,u) I,
ERROR. Now p is a CFSLR parsing state and so p = .

*NAMEOF(CFSLRV(e» for some 9 e.V • It follows that
q = NAMEOF(CFSLRv(ex» and r = NAMEOF{CFSLRV{ey».
Because t(r,u) ~ ERROR, CFSLRV(ey) must contain an item
::E = [B ... ;S"fl~' v ] with u e EFFl (,13.1 v), and because
CFSLRV(eX) cannot be empty (because its name is a parsing
state) tbere is some item 6 e CFSLRV(9X). By Theorem
6.10 we deduce that there exist fA- and 'i such that
:Ee SLRV(",) and 6 e SLRv( ~ ) where ~ ....;ay and
l ._,,: ex. Since X --.:"Y it follows tbat ¥ -: ay. , ~ ~

and then, because (G,C) has Property A, it tollows that
!J- and '(S' can only differ on their final symbols,

Viemay therefore write J" = c< U and . ~ = o<W where
U _.".: Y and W -1' x --: Y. Now (\U, xl , i yl) is
a maximally chained pair ~nd because G is SLR ( and
therefore both reduced and unambiguous) there must be
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some unique maximal intermediate, say Z , tor this
.' ~

pair. \;e then have U -... Z
Co

~, X......_ Z
c. and Z -: Y.c

There are three cases to consider :

Case 1: Z = X. Here U ~ Z becomes U..:t:.· X

which implies that r = C(U ~ ex and then, by

Theorem 6.10, . ~ Q SLRV(,...> gives ~ e CFSLRV(eX).

But this is impossible - tor it would imply that t(q,u)

= t{r,u). We conclude that this case cannot occur.

Case 2 : Z = U. Here X _",." Z
<.

becomes X u
but since we cannot have X = U (because the case above

. has shown U Xto be impossible), there must be

some A
..e V such that X --:. A ~ U. Now SLRV(O(X)

~ ¢ and so it u Cl FOLLOW( X) it would follow from

Lemma6.13 that [A ..... U. ,u] e SLRV(D<.U).But this

item conflicts with the non-chain item :E ,which is

also a member of SLRV(~U), and this contradicts the

premiss that G is SLa. We conclude that u t FOLLOW(X).

Case 3.: Z ~ U, Z ~ X. In this case, U ......", Z and

X _'" Z imply that U -:.. A _.,. Z and X ~ D ... Z
• • Co Co

for some A,D Q VN • Nowbecause :E Cl SLRV{cxU)and

:E has an action on u it tollows by Lemma6.12 -that

u e FOLLOW{U).~en since SLRV(~U)~.~ it tollows from

Lemma6.13 that [A .... Z.,u] Cl SLRV(o( Z). '

Similar17, it U Cl FOLLOW(X),it tollows thst

[D _.,. Z., u] e SLRV(c<Z). These two items must be in

conflict (or else they are the Same - which implies that

A = D and this contradicts the choice that Z 18&
•

maximal intermediate) and this contradicts the premiss

that G is SLR. We conclude that u _. FOLLDWCX)and

the proot is complete. []
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Lemma 5.7 extends d1rectly to all I - approx1mate
CFLR(l} tables •.
LEMMA6.19 (ct. Lemma 5.7)

_Let (G,C) have Property A and let T == (Q,so,g,t) be
the I - approximate CFLR(l} tables for'(G,C) where
I 1s a CFLR(l} approximation function. Let oI~f!5 e v*
be such that 0( -;_" (J • Then when X e V, either
(i)

(11)
I (CFV1 (0(. X» == I (CFV1 <,sX»

I (CFV1(ctX» == 11.·
or

PROOF. This result 1s a triv1al consequence' ot

Lemma 5.7 and Det1nition 6.6. [J

,~inallY, we achieve the result we seek.

THEOREM 6.20 (ct. Theorem 5.8)
Let G be SLR and ERFC and let C be a chain set for G
such that (G,C) 1s CFSLR and has Property A. Let T ==

(Q,s.,g,t,) be the CFSLR tables tor (o.c) am let
p e Q and X, Y • V. Then the value of g(p,Y) 1a
s valid subst1tute tor g(p,X) whenever X _';,Y.
PROOF. This result msy be proved by the El'gumentused
to establish Tbeorem ;.8, with Lemmas 6.16 througb
6,19 replacing Lemmas 5.4. through 5.7 respeot1vely.C
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It ,follows that (under the mild conditions ot Theorem
6.20) CFSLR, tables can be optimised just like CFLR(k)
tables - by selecting an optimising tunction F and
employing the obv1ous mod1fication ot Construction 5.11.
Optimised CFSLR tables (OCFSLR tables for short) can,

I

of course, be constructed d1rectly using straightforward
adapt10ns ot Algorithms 5.12 or 5.13. We 111ustrate the
effect of opt1misation by showing the fully optimised
CFSLR tables (FOCFSLR tables for short) tor (G"C3) in
F1gure 6.4.

STAT} CF-ACTION FUNCTION CF-GaTO FUNCTION
No. J ( X; ) • + S ( X ) • +

1 sh sh , 3 2
2 1 sh sh 5 4
3 sh ah 3 6
4 sh sh 3 7
5 sh sh 3 8
6 . 9 5 4. sh ah sh
7 2 2 sh 2 5
8 4 4 4 4
9 6 6 6 6

Figure 6.4 : The FOCFSLS Tables tor (G3.C3)

The SLR tables for G3 and the CFSLR and FOCFSLR
tables tor (G3,C3) contain 12,11 and 9 states respect-
1vely. These sav1ngs conterred by opt1m1sat,ion are
ma1ntained with larger, more realist1c, programming
language grammars. For example, the ALGOLW grammar
mentioned earlier has 328, 519 and 321 states in its
SLR, CFSLa and FOCFSLR tables respectively.
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Practical experience with programming language

grammars indicates that FOCSLR tables always contain
.fewer states than ordinary SLR tables. However, ss in
the LR(k) case, Grammar G10 demonstrates that this
reduction in the number ot states is not universal.
This grammar is SLR and has 48 states in its SLR tables
whereas the FOCFSLR tables tor (G10,.{ X .....y , y ......zJ)

contain 50 states.

.>
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6.3. OCFSLR Parsing Tables and the Further Postponement

ot Error Detection.

Postponement of error detection is an inherent
feature ot the CFSLR method and is the price paid tor
obtaining parsing tables ot 'an acceptable size. Now 1n
order to achieve compact representations of CFSLR
tables it is useful to use even more extensive post-
ponement of error detection than is strictly required
by the method. As an example, compare the CFSLR
tables for (G3,C3) shown in Figure 6.2. with those
shown in Figure 6.5~w~ere extensive addit10nal valid
postponement of error detection has occurred. ( The
reduce ent~ies introduced by the postponement are
circled in Figure 6.5) •.

,
, ,

j

STATE CF-ACTION FUNCTION OF-GOTO FUNCTION
NO. Jv ( X' ) III + 5 E T P ( X ) III +

1 sh sh 2 3 3 4 3
. 2 1 sh 5.
3 1 sb sb 6 5

'4 sh sh 7 8 8 4 8
5 sh sh 9 9 4 9
6 sh sh 10 4 10

,7 sh sh 11 5
8 sh sh sh 11 6 5
9 2 ® e 2 ah 2 6

10 4 <D
~

4 4 4
11 6 .® 6 6 6

figure 6,5: The CFSLR Tables tor (G3.C3) after
Applicat10n of a Set.
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The tables of F1gure 6.5 are capable of more
compact representat10n than those ot Figure 6.2. In
F1gure 6.5, the action table entries in state 10 are
all REDUCE 4 and uaing the representat10nal techniques
ot Anderson (1972) or Joliat (1973) we can avoid the
need to store the individual actions in thia state at
all; we just record the, Single tact that All the
actions in this state are REDUCE 4. Similarly, in
state 9 we explicitly record the tact that t(9,.) •
SHIFT and then s1mply note that ~ other actions in
that state are REDUCE 2 without needing to store them

',"' individually. The details et these encod1ng techniques
do not concern us. here, the important tact is that

';,; substantial sav1ngs in the space required to represent
'CFSLR ( and other CFLR(k)~type) pars1ng tables are
made possible by allowing additional postponement ot

error detection.

','

Now w1th ordinary SLR and CFSLR tables, th1s'
additionaL postponement ot error detection can cause
no problems: the weak postponement (q,u,A ...0< .) will

, ..

be valid provided only that A ~ Sand f(q,u) • ERROR.
The issue we need tG oonsider bere is tbat ot possible
interaction between the further postponement of error
detect10n and the teChnique presented in the prev10us
section tor optimising CFSLR tables. ~e potential for
interaction certainly exiats because the further post-
ponement ot error detection may invalidate Lemma 6.16
- one of the resUlts upon wbicb the correctness of the
optimisation teohnique depends. We demonstrate that
interaction can actually oocur by means ot an example.
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We use the tollowing grammar.

1 S ..... Eal . (Grammar G 12)
2 eba'
3' E ....... e I
4 c

This grammar .i8 SLR and ~ -tree. It must therefore be

ERFC and turtber~ore, the cs-grammar (G12,{1 -- el)

must bave Property A and be OPSLR.111eFOCFSLRtables tor

(G12, {E ..... e 1) are shown in Figure 6.6.

..
STATE OF-ACTIONFUNCTION OF-GOTOFUNCTION

No. A a b 0 e S a b 0 e

1 . sb. ab. i. 3 2
2 sh sh 4 s, 4
:4 1
s sh 6
,6 2

Figure 6.6. The FOCFSLRTables tor (G12, lE .....oj ).

It the weak postponement (3,b,1 .... c) ls applled to tbese

tables ltwl11 oause them to accept the lnvalld strlng

, oba. ~e reasou tor this 1s, ot oourse, that the postpone-

ment <"b,. B .... 0) ls not valld.
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Thus, unlike the case ot unoptimised CFSLR tables

where it is only necessary to ensure that postponements
.satisty c~ndi tiona (i) and (ii) ot D etin! tion 6.2 in order·
to be valid, it seems that with optimised CFSLR tables

.the condition (iii) must be checked esch time as wet 1.
There sre two disadvantages to'this technique. On the
practical side, it is rather complex snd time consuming;
while on the theoretical side, it gives no indicstion
of how much additional postponement ot error detection
is likely to be possible - we do not know whether we are
likely to reap virtually all, or virtually none, ot the
benefits which the further postponement at error detect-
ion confers on unoptimised tables.

Similar objections may be raised to the converae
.scheme of first applying additional postponement of error
detection to the unoptimised CFSLR tables and then
checking ~hat each substitution required by the optimisa-
tion technique is indeed valid.

In contrast to these "try it and see'"techniques,
•we present a theoretical result which may be used a

priori to guarantee the validity ot certain combinstions
ot optimisation and the additional postponement of error
detection. This result suggests that with conventionsl
programming lsnguage grammars both techniques may be
eXploited to the tulle

,
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THEOREM 6.21
Let T = (Q,s.,g,f) be the OCFSLR tables for (G,e) with
respect to the optimising function F where the validity
of the substitutions performed durins optimisation are
guaranteed by Theorem 6.20. The weak postponement
(q,u,A ...."0() is valid if :
(1)

(11)
(11i)

A , 5,
f(q,u} = ERROR,'and
u 'FOLLOW(P'(A». ,

PROOF. We have to ensure that all three conditions of
Definition 6.2 are satisfied. CertainlY its conditions.
(i) and (ii) are satisfied since they are the same as
those in the statement of the theorem. It remains to
prove that condition (iii) 'above implies condition (iii)
of Definition 6.2. That ia, we must show that Whenever

, p is such that S(p,O( ) = q, then
(a) 'S(p,A) 1s defined, and
(b) f(g(p,A),u). ERROR.

Now by the definition of a weak postponement, there must
be aome .v e v;l such that f(q,v). RlWJCE A ....O( and
so (a) must always be true - tor otherwise an undefined
goto entrYS(p,A) could be encountered with the tables
in their original form.

In order to see that (b) must be true, note that the
state p must alao be a state in the unoptimised eFSLR
tables for (G,e). Let these unoptim1sed tables be T' •
(Q', s! , S·,f'). Then S(p,A). S'(p,F(A». By combining
Theorem 6.10 and Lemma 6.12 it 1s easy to prove that tor
sny p e Q' snd X e V we must have t'(s'(p,X),u) •
ERROR whenever u ~ FOLLOW (X). Hence, it u ; FOLLOW(F(A»
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it follows that
f(g(p,A),u) III ft(s~(p,F(A»,u) III ERROR

and the proof i8 complete. 0

This result is extremelY powerful. Observe that
there is no point in applying a weak postponement
(q,u,A ~ ~) to CFSLR tables when u e FOLLOW(A)

'. beoause we must have f(q,u) III. REDUCE A .....0<. alr-eady.
Thus it is only postponements where u "FOLLOW (A)
that are of interest. Theore~ 6.21 applies to post-
ponements where u , FOLLOW(P(A» end sinoe we must
have FOLLOWCA) $ FOLLOW(F(A» it follows that
the "dark area" in Which Theorem 6.21 ls of no help

·l's·glven by DARXAREA(A) III FOLLOW(F(A» \ FOLLOW('A)
'The utility of Theorem 6.21 is'due to the fact that
such dark areas sre usually very small.

In any reallstlc programming language grammar-
only a handful of nonterminals will take part in obain
produotlons ; all others wl11 satlsfy A III peA) and
therefore DARXAREA(A) • ~ tor these nonterminals. Even
when A ~ F(A), the cardinality of DARKAREA(A) is likely
to be qu1te small. (It tbe grammsr admits of more than
one full optimising funct1on, tben minimising the size
ot these dark sreas provides a useful criterion for
select1ng among them). Furthermore, it is commonly the

,
oase that dark areas contain non-error aotions and there-
tore no postponement 1a possible there anyway. In the
FOCFSLR tables tor (G3,C3) (Figure 6.4), tor example,
the only non-empty dark area 18. DARXAREA(E). {. l. Thus
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part (111) ot Theorem 6.21 gives no help in deo1ding
the validity ot the postponement (7,.,2) (produotion

,:2 is E ......E + ~). However, t(7,.) • SHIFT and so
this postponement will be re3ected'by part (ii) of
Theorem,6.21.

Hence it seems that postponements which satisfy
conditions (1) and (11) but not (iii) ot Theorem 6.21
are very tew. They may either be tested tor validity
by using the tull torm ot Def1n1tion 6.2, or simply
re3ected outright. In abnormal clrcumstances.where
tew postponements are found to be valid, it may be
des1rable to use a less than fully optimis1ng function
1n order to increase the amount ot postponement whioh
ls possible. Experimentatlon would be needed to
evaluate the trade-ofts concerned.

We are contldent that the full',benefi ts of both
optimisatlon and the further postponement ot error
detection are s1multaneously aval1able with CFSLR parsing
tables, and that these tables may be represented in
less space than ord1nary SLa tables. Naturally, we should
welcome empirical investigation of these claims.

We conclude that CFSLR parsers are viable for use
in compilers. They sre as w1dely app11cable a8 the SLR
parsers, provide the same exoellent error detection, are
muoh faster and probably smaller. FUrthermore, the CFSLR
grammars and parsers exhibit very similar theoretioal
properties to those ot the CFLR(k) grammars and parsers :
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most results conCerning CFLR(k) grammars have natural
counterparts in the CFSLR case. In the rest o~ thia
chapter we shall consider another class ot approximate
CF.LR(l) parsers tor which this similarity does not hold
so well.

. .,
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6.4, The CFLALR Method.

Like SLR, the LALR method is an LR(l) approx-
imation which was first proposed by DeRemer (1969).
Several formulations of the method exist, we shall
use one due to Anderson (1972) and we define 1ta
chain free generalisation, which we call OFLALR as
:t'ollows.

DEFINITION 6.22

The CFLALR approximation method 18 det1ned by tbe
approximation function iLALR wbere, tor each e e V*,
we define

ilLALR(CFV1 (9» = .U CFV1( ).

CFVO(j-<)-CFVO(9)

For convenience, we write CFLALR states as OFLALRv{e)
rather than,iLALR (CFV1(e». The notion of the "core"
of 8 set ot CFLR(l) states is often useful in
discussion of the CFLALR metbod. It ~ is a set of
CFLR{l) items, then its core, denoted by CORE( t::.) is-
theset of CFLR(O) 1tem8 formed by changing to A all
the second (lookahead) components of the 1tems in ~.
That 1s ':

CORE{~). ([B .....{3,.,sQ ,J.. ] 1[B~t9,.,s.t ,u] _Q ~ I,

Note that the CFLALR state for e i8 8imply the union
o:t'all CFLR{l) states having the same core as CFV1(9).
Note also that it CORE(CFV1(9» .• CORE(CFVi(~» (or, I

equivalently, itCFVO(a) .CFVO(~» then CFLALRV(e) •
CFLALRV{ I" ).
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We 8ay that (G,C) ia CFLALR it ita CFLALR stateset

is adequate ; G ia CFLALR it there 1s a chain set C
tor G s~ch that (G,C) is CFLALR. A language is CFLALR
it it is generated by some CFLALR grsmmar.D

Wben the chain set C is em~ty, the CFLALR method
becomes the ordinary LALR method. ve say that a grammar
G is LALR if (G,~)is CFLALR and that a language is LALR
it it is generated by an LALR grammar. When the chain
set is empty,we talk ot LAta states, rather than CFLALR
states and write LALRv(e) instead ot CFLALRv(e).

As in the CFSLR case, the CFLALR approximation
function always satisfies conditions (i) and (iib) ot

Defin1tion 6.6 but may not satisty condition (iia) it
the goal symbol appears in the right part ot a production.
This difficulty may be circumvented by augmenting the
grammar with a new production .5' -.. e i •

It is clear from Defin1tion 6.22 that two ot-viable
prefixes share the same CFLALR state it and only it their
CFLR(O) states are the same. It tollows that CFLALR
states are in one-to-one oorrespondenoe with CFLR(O)
states and therefore with CFSLR atatea alao. Thua the
CFLALR and CFSLR methods yield parsing tables ot the
same size 8a eaoh other.

Of the two methods, CFLALR is the more powerful;
in taot CFSLR tables can be formed by applying a weak
postponement set to CFLALR tables. This result is
established in the following theorem.
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THEOREM 6.23

Let e e V·. Then
(i) CFLALRv(e) s CFSLRv(e) and
(ii) it [B "'".,s"u] e CFSLRV(e) then

[B-(9,.,s~, v ] e CFLALRV(e) for some v e V;l.

PROOF. Clearly, [B "p,.p, ,u] e CFLALRV(e)
implies [B -{!I,. (JI. ,J. ] e CFV 0(e) and u e FOLLOv~(B).
Hence, by Lemma 6.9, [B -p'.~2.,u] e CFS.LRv(e)" On
the other hand, [B--~'.~a ,u] e CFSLRV(e) implies
[B-"P,./Sa ,A] e CFVo(e) and so [B ......p,.,s. ,v] e

CFV
1
(e) tor some v e v;l • It tollows that

[B .. ~, .,82 ,v] e CFLALRv(e). 0

It is·clear trom this result that the classes ot

grammars acceptable to each method satisfy the following
inclusions CFLR (0) ~ CFSLR S· CFLALR £' CFLR (1) •
Examples may easily be constructed to show that each ot

these inclusions is strict.(See, tor example, Anderson
(1972), pp 36 - 48).

Since CFLALR is a more general method than CFSLR
it might seem that it is to be preterred to CFSLR in all
practical applications. This may not be so" however, for
the CFLALR method does have its disadvantages. Pr1'ncipal

•
among these are the complexity ot the algorithms used
to test tor the property and to build its parsing tables.
~bereas the CFSLR algorithms are comparable in complexity
to those tor CFLR(O), the CFLALR algorithms sre more akin
to those tor CFLR(l). Furthermore, the mathematics ot the
CFLALR method is rather intractable and some results trom
the CFLR(k) theory extend less well to this method than
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to the simpler CFSLR technique.

On the other hand the greater generality ot,

the CFLALR method may sometimes be a practical asset.
A!though the natural grammars ror many programming
langUages do seem to be eFSLR, there ere some which
are not but which ere CP'LALR. While it is always
possible to convert any LR(l) grammar, end therefore
any LALR grammar, into a similar SLR grammar tor the
same language (see MickUn8S (1976», this may be neither
easy nor desirable.

We shall now examine some ot the properties ot

the CFLALR method. The first question we ask is :
given an LALR grammar G and a chain set C,can we be

"

sure that (G,C) is CFLALR? Recall that in the LR(k)
case the answer is always "yes" (Theorem 3.19) while
in the SLR case we had to require that G be ERFC and

\

thst (G,C) have Property A (Theorem6.1S). In the
present case, the answer is again a qualified uyes";
we shall have to require that all chain sets are "simple"
and define this property as follows.

DEFINITION 6,2k.

A chain set is simRle it every maximally chained pair
(recall Detini tion 4.16) has an intermediate. [J
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In simple cha1n sets all cha1ns from one set ot

, symbols to another must p~ss through a common1nter-

.'med1ate symbol. Th1s excludes cha1n sets of the form

{x ......A,X -- B,Y -- A,Y. - BJ because there

'. is no intermediate tor the maximally cha1ned pair

({x,yl, t«, Bj )'.

Before proving the main result we need a minor,

but 1nteresting, lemma.

LEMMA 6.25

. Let (G,O) be OFLR(l). Then anJ inadequacies 1n the

OFLALRstateset tor (G,C) are due to conf11ots ot the

reduce/reduce vari~ty •.

, ' PROOF.Suppose the CFLALRstatesettor (G,C) contains

an inadequacy due to a shitt/reduoe conf11ct. Then tor
III. some e e V we.have

[B .....,s,.,sa'v]' (A ........ol.,U] e CPLALRV<a)

where P2 rI: j, and u ~ El'l t»,v). Then, by virtue

of the definition of CFLALRstates, there must exist
.' ... . . *1

some,....e V and w e VT such that CFVo(e) • OB'V0(1")

and [B-p ••,sa'w], [A-o( .,u]. e C1V1<fA>" ..
Nowsince f3." J., the value of EFF1<(lAv) is

independent of v and so we have u e .EFF1(,sa w). But

.then CFV1 (fl) - 1s 1nadequate and _this contradicts tbe

premise- that (G,C) 1s. OFLR(l). 0

Nowwe can state and prove tbe main result •.
',r \,
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THEOREM6.26

Let G be an LALR~a.mmar. and let C be a simple chain

set for G such that (G,C) has Property A. Then (G,C)

i8 CFLALR.

PROOF. The proof i8 long and arduous. We suppose

the theorem to be faise and proceed to derive a contra-

diction.

Now if (G,C) is

such that CFLALRV(~)
, .

it must be LR(l) and

* .not CFLALR, there exists \ e V

is inadequate. Because G is LALR

so, by Theorem 3.19, (G,C) is
,

CFLR(l). Hence, by Lemma6 .25,the inadequacy in

CFLALRV(~) must be due to a reduce/reduce conflict.

Therefore CFLALRV(,) contains a pair of distinct final

i tems ~.. [A ~ a(., u] and fl.". [B- P ., u J • By the

*definition of CFLALRstates, there must exist fJ()' e V

such that ::E e CFVl(e)' s • CFVl(~') and CFVo(~) •

CFVo(~) ... CFVo(f). Note that ~ :! p', for otherwise

CFVl (f) would be inadequate, and that p -I A and ~.".It.
(This is because CFVO(f) • CFVO(~)if and onlY if

f = J.. .) We now establish a series of claims •
•

*Claim 1 : There exist e, e' e V such that e-i f' ' e' -'i e' ,
VOce) .. Vo(e'), ::E e vl(e) and :E'. Vl(e') where :E'1s

an 1tem of the f ()rm ~'. [A......0( ., v ].

Proof of claim. Suppose first that ~ is a non-initial

item (i.e. 0< :! A ). Then·:E e CFN1,(e) and so, by

Theorem 3.43, there exists e -ie such that :E e N1(e)

and hence :£ e V1 (e). Now CFV0 (f) • eFV0 «(>') and so

CFN1(f) contains' an item :E'.. (A ..... 0( ., vJ. It follows

that :E' e N1(e'), and, hence :E' e V1(e'), for some

e' .. e' • Now note that [A. ..... Q( .,oAl e NO(8)" NO(S,'). It
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therefore follows by Lemma 4.21 that voce) :: Vo(9' )

and the. claim is proved for this case.

Nowsuppose that ~ 1s an 1n1tial 1tem (1•e ,

01 ==./\ ). Then there must, be some non-1n1 tial 1tem

r== (D .. e",. Er" , a 1 in CFNI(r) such that :E e CLOSURE({ r]).

By the argument used above, it follows that tbere ex1st

*9,9' e V such that a"';e ' a'-t (" , Voce) • Vo(e'),, ,r •Vl (a) and r. Vl(e') where r 1s of the form

.r':: [D_..8',:6"& ,b l- Nowbecause :E e CLOSURE({ r} ) 1t

follows t~at ~ C VI(a) and that ::::E'. CLOSURE({r'l)
, I

where ::::E'i~ of the for.m ~. == [A......Cl( • ,v l. Hence

:E'. vl(e') and the proof of the claim is comp~ete.

*Claim 2 : There ex1st fA,,..' e V such that,.,. ......: ~ ,,,,'--:,"r',
V0 (1') == V0 (p'), I:l e VI (fA) and' fl' e V1 (t") where fl is

an item of the form b. == (B .. r-. ., w ].

Proof of cla1m. The proof 1s identical to that of

claim 1.

Claim j : The strings a,a'.~,~·,~ andp'have the form:

a:: ¥ X , e ' :: S X,

/J == lsY, Jw" = &Y,

r :: erM , e' = wN

where 'r -'tI:_'" 6" , s _.,.'".". and ({X,Y1 , (M,Nl) is a maximally
. .

chained pair.

Proof of claim.
. .

and therefore a and et must both have the same final

symbol. (Consider the associated symbol of any non-

1n! t!al item in Vo(a).) Sinoe a ~ ...f , and e' -,.: e'
we may therefo,re write e == IX, et == ~X, e == cS" Mand

~'. 7TNwhere ~~"'(f' ,&"":71 , X __." and X ...rN.We
c; . cc.. c

also have both e ,~...r ' and l' ~..r and sinoe (G,C)
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has Property A it follows that e and~ can differ on
only their final symbols. Thus p. lY where Y ~. M.
By the same argument it follows that e' and~' can
differ on only their final symbols, and because
Vo(jo') • Vo("") it follows that}A and fA' share the same
final symbol. Thus /-,'• cY and Since f'-";,""e' we deduce
that Y --tl' N and the claim is proved.

Co

The remainder of the proof is a case analysis.

Case 1 : X • Y. In this case e • fA and et • f". It

follows that ~ e VI (e) and 6' e Vl (et). Since
VO(e) • VO(St) it then follows that :E,~ e LALRV(S)
and so LALHV(S) is inadequate. This contradiots the
premise that G is LALR.

Case 2 : X -I Y. Since ({X,Y1,rM,NJ) is a maximally
chained pair and C is constrained to be a simple chain
set, there must be some Z whioh is an intermediate for
this pair. Without loss of generality we ma, assume
that Z is a maximal intermediate. There are three sub-
cases to eo~sider, depending on the identity of Z.
Sub-case (al : Z • X. Because Z is an intermediate,
we have Y __- Z. But if X -I Y and Z • X this beoomes

Co

Y ...: Z and so there exists W El V such that Y --r W ~ z.
Now E· (B _..,(3 ., u ] e VI (cry) and this implies (by a

.-

straightforward but tedious argument which we omit)
that (W_' Z., u ] El V1 (6 Z). Because X • Z, we have
cfZ • ax ··e' and so [W ..... Z.,u) a'Vl(s'). Now :r e Vl(e)
'and Vo(S) • VO(e'). It follows that both ~ and
[w -- Z.,u] are members of LALRV(e). These two item~
must be. distinct (because one involves a chain prod-
uction while the other does not) and so they are in
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conflict. Thus LALRV(e) is inadequate and this contra-
dicts the premise that G is LALR.

Sub-case (b) : Z = Y. The analysis of this case
proceeds exactly 8S in the case above.

Sub-case (c) : Z , X, Z ~ Y. In this case we have
x ...+ Z·and Y ..+ Z and so there exist U,W e V such thatCo Co

x .... u - Z and Y ~ W .. Z. Now because
Co c:. Co Co

..!:l == [B -..(J ., u] e Vl (c5Y)1t fpllows that
[w ... Z.,u] e V (dZ). Similarly, because
~== [A~o(.,u] e Vl(lX), it follows that
[u -... Z.,u] e V ("'Z)and because ~ == [B .....p .,w) e
Vl(~Y) it follows that [W -- Z.,w] e Vl(IZ). Now we
have [W -- Z.•,.,A] e NO(JZ) (\ HO(~Z) and iZ --r 7TH - r' ,
lZ _..;ftM-e andCFVO(r)=CFVo(~·). Hence, by
Lemma 4.21, it follows that VO(oZ) • VO(~Z). This
imp11es that [w .. Z.,u], [U'" Z.,u] e LALRV(JZ)
and since these 1tems are d1stinct (for otherwise U.W
and Z would not be 8 maximal intermediate), they are
in conflict. Thus LALRV(YZ) is inadequate and th!s
contradicts the premise that G is LALR.

In all cases we have derived a contradiction and
so we conclude the theorem. 0

• I

The condi tiona that (c.c) has Property A and thst
C 1s simple are sutficient to guarantee that (G,e) is
CFLALR, given that G is LALR. However, they are not
necessary conditions and examples may essily be construoted
to demonstrate this point. Some constraints on both G
and C are~rta1nly necessary, though, as tbe following
two grammars demonstrate.'
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s --- a P u I (Grammar G13)
a Q v I
a B a I J

b P w I
b Qui
b A b I

P _,. x
Q _,. Y

.x - AI
,B

Y - AI
B

A - a
B - b

This grammar is LALR. When tbe non-simple chain set
C13::: {X -- A, X ~ B, Y - A, Y - sI is
chosen we obtain a cs-grammar (G13,C13) Which is not
CFLALR.(Observe that G13 is ~ -~ree and therefore
(G13,C13) bas Property A .•l

The next grammar demonstrates tbe necessity ot

some constraint similar to Property A.

x -
Y -
C -
B --

S --..... aYbl
a X I,
B X b I
bY
C
C
J,

b

(Grammar'G14)

, .

This grammar is,LALR and the chain Bet {B ~ b} is
certainly simple. However, the cs-grammar (G14,{B~bJ)
does not have Property A and 1s not CFLALR.
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We have argued previously that CFLR(l) cs-
gram~ars without ~operty A are unusual, if not
pathological, and unlikely to occur in practice. Non-'
simple chain sets may surely be regarded likewise and
so Theorem 6.26 is sufficient to ensure that CFLALR
parsers can be substituted successfully for LALR parsers
in pract1c'e.

We note in passing that, ss'with all the other
classes of grammars considered, there exist CFLALR
grammars which sre not LALR. However, the class of CFLALR
and LALR languages are easily seen to be co-extensive •

.---=-- We now consider methods ot testing tor the CFLALR
propertY'snd for constructing CFLALR parsing tables.
In theory, solutions to these problems are provided
by Definition 6.22 itself for we cen simply construct
the CFLR( 1) stateset in the usual way a.ndthen combine

•
all CFLR{l) states having identical cores, thereby
producing the CFLALR stateset. Th1s can then be tested
tor adequacy, thereby providing a solution to the
problem of testing for the CFLALR property. Given an
adequate CFLALR stateset, the corresponding parsing
tables can be constructed 1n the usual way.

The difficulty' with this approach lies 1n 1ts
method tor constructing the CFLALR stateset; sinoe
this involves constru~ting the CFLR{l) atateset tirst,
the method runs straight into the difficulty which the
approximate CFLR(l) parsers are designed to avoid -
namely the impracticability of constructing such very
large ob~ects.
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_,.--------
Fortunately, a modification ot the CFLR(l) stateset

construction algor1thm permits CFLALR statesets to be
bu11t directly. Instead of first generating all the
CFLR(l) states and only then combining those which bave
the same cores, the modified algorithm combines states
with identical cores as they are generated. In doing so,
it may enlarge a state whose successors have already been
evaluated, and so these successors must be re-evaluated
in case they too are to be enlarged. This means that the
amount ot work performed by this modified algorithm 1s

,.....,........~--------.likely to remain comparable to that involved in
constructing CPLR(l) statesets, even though the state-
set 1tselt remains CFLR(O) s1zed throughout the
computation. In practice as much as an order ot

magni tude more ettort may be required to construct a
CFLALR stateset rather than a CFSLR one. The mod1tied

.algorithm tor constructing CFLALR statesc ~. i. F.I formally
defined as follows.
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(cf. Algorithm 3.47).
Evaluat~on of the CFLALR stateset for (G,C).

\

Input : The cs-grammar (G,C)

Output: The CFLALR stateset for (G,C).

Method; The stateset is built up in the eet-valued
.variable S. States added to Shave m_rker
flage attached to them and are.unmarked when
first added. Unlike the algorithm tor the
CFLR{k) case (Algorithm 3.47), states can
be changed after being added to S; when a
state is changed, 1ts mark is erased in
order to force its successor states to be
recomputed.

begin
set S • lCFV1(~)1;
while S contains any unmarked states do-select an unmarked state·~ in S and mark it;

.t2£ each X e V..9.S2

compute ::r • CF-Gar01 ( 6. ,X);
.u there exists reS such that

CORE{ r ) • CORE( :l:) .1Wm
J-' r ~:r then replace r bY'

r v ~ and erase il8mark

...

. ,

. ,

end1t
els$! add X to S end!t

endt'or
endwhile;
Snow contains the CILALR stateset for (G,e)

end. Cl-
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Since 1t is not obvious, we now prove the correctness
of Algorithm 6.27.

THEOREM 6.28

Algorithm 6.27 correctly computes the OFLALR stateset
~or (G,O).
Proof. First note that a straightforward deduotion from
De~in1tion 6.22 yields

CFV1(eX) S; CF-GOT01( l1 ,X) ~ OFLALRV(eX) .

whenever X eV and OFV1(e) c; l1 ~ CFLALRV( a). Toen,
by an induction on the total number at different

states that have been placed in the variable S, it
,can be shown that any state 6 present in S;at alzy
instant must satisty

OFVl (e)' S; 6 s CFLALRv(a)

*for some e e V. Since only a finite number ot such
states exist, Algorithm 6.27 must terminate. For
each ct-viable pretix 9, S must contain a state l1.
on termination such that OFV1(a) s 6.' s cFLALRv(e).
(To suppose otherwise leads to an immediate oontradiction
- consider the shortest e tor Which no 6, exists).
Now 'CFV o{e) = CFVO(JA:) implies 6, = 6#1. (because
they have the same core) and so 6e 2 U CFV1(a),

that is CFLALRV(9) •

,Since we also have . 6, S cFLALRv{e), it follows that
4,= OFLALRv( e) and the correctness at the

algorithm is proved. 0
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In common with all algorithms tor construoting
LR(k) - type statesets, the worst-case complexity ot

Algorithm 6.27 is exponential in the size ot the input
grammar. This is an inescapable consequence ot the tact
that the cardinality ot such statesets can be
exponential in the size ot the grammar. (Recall the
tamily of grammars EXP(n) ot Section 2.,.) Now in order
to build parsing tables, we have to tirst construct the
appropriate stateset and so there is no alternative but
to sutter this exponential complexity. But when we wish .
only to· test whether a grammar is in a certain class,
we have seen tor the CFLR(k) and CFSLR oases that
algorithms ot only polynomial complexity are available.
In particular, we have seen that the CFLR{l) property
can be tested in time O(n3), where n is the size ot the
grammar, while CFSLR can be' decided in time O(n 2).
Since the CFLALR property is intermediate between

.CFSLR and CFLR(l), it might be expected that ittoo
should be decidable in low order polynomial time.
Surprisingly, it seems that it cannot. Certainly no
such algorithms are known, and material in Hunt et al.
(1975) suggests that LALR testing is a very hard problem
indeed. An intuitive explanation ot this phenomenom is
that the CFLALR state CFLALRv{e) depends, not just on

, e itself, but upon all those ~
.have the same core as CFV lee).

Further ~vidence that CFLALR is a rather complex,

whose CFLR{l) states

ill-behaved property is provided by its behaviour ~ith
respect to the post-pass and table conversion algorithms
developed (tor the CPLR(k) case) in Chapter 4. Remember
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that in the CFLR(k) case, the post-pass construction
ot Section 4.1 generates precisely the same CRLR(k)
tables as those constructed normally, while the
QCFLR(k) and SQCFLR(k) constructions produce tables
which cover the true CFLR(k) tables. Now although the
CFSLR method exhibits the same behav10ur as CFLR(k)
with respect to these construct1ons, the CFLALR method
does not. In general, the chain tree parsing tab!es
which can be rormed trom LALR tables are not the same
as CFLALR tables constructed d1rectly. The reason tor
this in that no result Similar to Theorem 3.43 1s
.8va1lable in the CFLALR case. That is to say, 1t is
not necessar1ly true that

CFLALRv(e) = OF-STRIP ( { LALRV( r )I p --r e) ).
In tact, not only may these sets be d1tterent to one
another, but either may be adequate while ~he other 1s
not. Th1s may be demonstrated by examples.

Consider the tollowin, ,rammar.
S - a Z b 1 (Grammar G15)

X e
Z - X I

d c
X - Y
Y - d

and take {Y ~ d} as the chain set. For convenience,
denote the set CF-STRIP({LALRV(/A) 11" -..: e) by
PPCFLALRV(e) (for lost lass ClLALR). Then for
(G15,{Y. d}) we have:

CFLALRV(ad). {rX .... Y.,b], [z - d.c,bl},
which is adequate, and
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~PCFLALRV(ad) = CF-STRIP({LALRV(ad),LALRV(aY»))
= [X - Y., b, c], [Z - d. c, b]

which is inadequate.
The reverse situation m~ be demonstrated using

the grammar (G14, {B _..,b) which was introduced
earlier. Here we have :

CFLALRV(bC) = {[y" C.,v\,b], [X -- C.,-A.,b j}
which is inadequate, and

PPCFLALRV(QC) = CF-STRIP( {LALRV(bC),LALRV(BC)})
•1[Y ... C.,.A ], [X - C., b 1 J

which is adequate.

_.----_.
Now the post-pass method to~ const~uoting CFLR(k)

tables depends upon the identity
CF-STRIP (ITEMS(QCFV(e») = CFV (e)

which allows CFLR(k) states to be recovered trom QCFLR(k)
states. We can certainly detine quasi CFLALR states in
the same spirit a8 QCFLR(k) atates, that 1. I

QCFLALRV(e) = { NAMEOF(LALRV( P » , fA -.r e)

and it is easy to see that
CF-STRIP (ITEJ4S(QCFLALRV(e») = PPCFLALRv(e).. ,

But, as the examples above clearly demonstrate,
PPCFLALRv(e) does not necesssrily equal CFLALRV(e).
Therefore, the post-pass method does not, in general,
enable CFLALR tables to be construoted trom LALR tables.
However, although PPCFLALRv(e) may not equal CFLALRV( e),it
1s a'perfeotly good 'approximation to the CFLR(l) state',
CF'V1 (e). In tact, this 1s true of all approximation
tunotions.
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THEOREM 6.29

Let i be an LR(l) approximation ~unction. Then for
each e e »", CF-STRIP( (i(V1 (p» I f' -{ e J ) i8

'an approximate 'CFLR(l) state for e.
PROOF. This result follows straightforwardly from
Definition 6.6 and Theorem 3.43. We omit the details. Cl

Thus, when applied to LALR tables, the post-pass
method of Section 4.1 will produce a set of approximate.
CFLR(l) tables, although not necessarily the CFLALR
tables. If the approximate tables so produced are
adequate, then they are valid, but their adequacy is
not related to that of the true CFLALR tables. For
example, the post-pass method will deliver inadequate
tables for the CFLALR grammar (G15,{Y ... dJ)
adequate tables for the non - CFLALR grammar (G14,{B .....b}).

The algorithms given in Chapter 4 for converting
,LR(k) tables directly into QCFLR(k) or SQCFLR(k) tables
may be adapted straightforwardly to convert LALR tables
into QCFLALR and SQCFLALR tables but it can be seen that
these will cover, not the true CFLALR tables, but those
produced by the post-pass method. (We conjecture that
i~ (G,C) has Property A, then the SQCFLALR tables are
the same as those produced by the post-pass method).

We conclude that although the techniques ot Chapter
4 do provide methods for producing chain free parsing
tables trom LALR tables, their theoretical appeal is
defin1tely less in this case than tor the CFLR{k) and
CFSLRcas es,
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6.5. Optimising CFLALR Parsing Tables,

We now consider the problem ot applying the
optimisation technique ot Chapter 5 to CFLALR parsing

; tables. The method ot optimising CFLR{k} tables depends
'upon a result (Theorem 5.8) which shows that whenever
q is a parsing state and X and Yare symbols such that '.

then the value ot g(q,Y) is a valid
substitute tor that of ,g(q,X). Section 6.2 showed that
the same result holds tor certain CFSLR tables and so
the optimisation method extends straightforwardly to

,those tables. Unfortunately, no simple result of this
type is available in the case of CFLALR tables. We
demonstrate this by example. Consider the following
grammar.

1 S - x A x 1 (Grammar G16)
2 z A Y I

( : 3 x a s I
4 'z b z
5 A - al
6 bl
7 c

and take c16 = {A ..... a, A ... b 1 as the chain set.
Th~ cs-grammar (G16, C16) is CFLALR and its CFLALR
tables are shown in Figure 6.7.
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STATE CF-ACTION FUNCTION CF-GOTO FUNCTION
No. J. a b c x r z a b c x Y z A S

1 sh sh 2 3
2 sh sh sh 4 S 6 S
·3 sh sh sh 7 8 6 7
4 sh sh 9 10
S sh 9
6 7 7
7 sh 11
8 sh sh 11 12..

9 1
10 3
11 2
12 4

Figure 6.7: The CFLALR Tables tor (G16.C16),

It we chose to optimise these tables using the
optimising function which has F(A) = a and is the identity
elsewhere, then we should substitute the value of g(2,a),
that is 4, for that of g(2,A). But this substitution is
invalid because the error action f(S,Y) is accessible on A
- making the substitution will allow the invalid string
xcy to be accepted. More complicated situations can be

contrived where the action corresponding to f(S,Y) is not
even an error. We shall seek a subolass of the CFLALR

thesegrammars in which / unfortunate circumstances do not arise
and whose tables can be optimised sucoessfully by the

.method of Chapter 5.

Since we know thet CFSLR parsing tables can be
optimised, and that CFLALR tables are only slightly different
to CFSLR tables, we shall define a class ot grammars which
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have SLR-like behaviour in the "locality ot symbols
involved in chain productions" in the hope. that this
will provide a subclass of the CFLALR grammars with
the properties we desire.
DEFINITION 6.30
When G is a grammar and X e V, we say that G is ~
in the logality ot X if SLRV(9X) is adequate for each

'"e e V • When C is a chain set tor G, we say that (G,C)
is SLR in the locality ot all chains to Y it G is SLR

-.in the locality of all X such that X --: Y. 0

Betore proceeding further we wish to demonstrate
another complication that can arise when attempting
to optimise CFLALR tables. In the CFLR(k) and CFSLR

cases we know (Lemmas 5.6 and 6.18 respectively) that..when X and Yare symbols such that X ~ Y and
p ,q and r are parsing ~ates such that q = g(p,X)
and r = g(p,Y), then for each u e V;l either
t(q,u) = f{r,~) or f{q,u) = ERROR. In the CFLALR case,
however, this may not be so - as the following example
shows:

1 S __.,.. x A x I (Grammar G17)
2 yAy I
3 x a z
4 A - B
5 B - si
6 b

Grammar G17 is LALR and· (G17,{B -...an i8 CFLALR. Its

CFLALR tables are shown in Figure 6.a.
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STATE CF-ACTION FUNCTION CF-GOTO FUNCTION
•.

No. A a b x y z a b x s z A B S
1 ah sh 2 3
2 ah ah 4 5 6 7
'3 ah ah 7 5 8 7
4 4 ah 9
5 6 6
6 ah 10
7 4 4
8 sh 11
9 3 . '

10 1
11 2

Figure 6.8 : The CFLALR Tables for (G17, fB _. a}).

Optimisation of these tables requires the value of
g(2,a), that is 4, to be substituted tor the value of
g(2,B), that is 7. Now f{7,Y) = REDUCE A. B while
~(4,y)= 'ERROR. After substitution, therefore, strings

,
which originally caused the non-error action f(7,y) to be'
inspected will now cause an error to be declared. It
might app~r that this corrupts the behaviour or the
parser, for valid strings, might now be rejected. In fact
this is not so. We will show that the original action
(i.e. r(7,y» is never encountered following a shirt from

!

state 2 during the parsing or valid strings. Consequently,
the substitution of g(2,a) tor S(2,B) cannot affect the
parsing or valid strings, it merely causes certain invalid
strings (tor example Xby) to be rejected earlier.

We may now prove the main lemma of this section.
Notice that this result is Similar to Lemma 6.18 except for
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the 1ntroduction ot case (1ii) which is needed to cope
with the situat10n illustrated above.

LEMMA6.31 (ct. Lemmas 5.6 and 6.18)
Let G be an ERFC grammar and let C be a chain set tor
G such that (G,C) 1s CFLALR and has Property A. Let

. X,Y e V be such that X -:' Y and let G be SLR in the~

10ca11tyof all cha1ns to Y. Let T • (Q,so,g,t) be the
CFLALR tables tor (G,C) and let p,q,r e Q be such that

*1q ,::g(p,X) and r == g(p,Y). Then for each u e VT either

(1) f{q,u) == t{r,u) or
(11). (a) .f(q,u) == ERROR and

(b) u _ FOLLOW{X) or
(111) (a) t(r,u). ERROR and

(b) the value ot f(q,u) is never inspected
following g(p,X) during the parse ot any
sentence in L(G).

PROOF. It X • Y the result is triv1al, so assume that
X ~ Y. Suppose f(q,u); f(r,u) and that neither has the
value ERROR. We must have p • NAMEOF(CFLALRV(e» tor some

IIIe e V and so q == NAMEOF(CFLALRV(9X» and
r == NAMEOF(CFLALRV(6Y». We then have f(q,u) •
ACTION(CFLALRV(6X),u) and f(r,u) • ACTION(CFLALRV(9Y),u).--_._ ..-.__ ..._-- ..

Now from Theorem 6.23 we have
CFLALRV( ex) ~
CFLALRV(9Y) S

CFSLRv(ex) and
CFSLRV(ey) .

and from Theorem 6.10 ·we obtain
CFSLRv{ex) c- .CFSLRV( 9Y) •

It follows that the value of ACTION(CFSLRV(9Y),u) must be
that ot both t{q,u) and f(r,u) and since, by hypotbes1sJ



these are different, it follows that CFSLRV(ey) is
inadequate. Hence, by Lemma 6.14, SLRV(~Z) is inadequate
for some 11 ....:- 9 and Z ...:Y. This contradicts thet" c Co

premise that G is SLR in the locality of all chains to
Y and so we conclude that one of f(q,u) and f(r,u) has
the value ERROR. We consider the two cases separately.
Case 1 : f(q,u) = ERROR. Suppose that u e FOLLOW(X).
Then the same argument may be used as in the proof of
Lemma 6.18 to show that SLRV(~Z) is inadequate for some

• •,.,.~ e and Z. -.r Y. (We can use this argument even though
G may not be SLB because the requirement that G be 3LH
in the locality of all chains to Y ensures that G has
SLR-like behaviour in all those states which are
considered by the proof of Lemma 6.18.) The inadequacy
of SLRV(~Z) contradicts the premise that G is SLR in
the locality of al~ chains to Y and so we conclude that
u , FOLLOW(X) in this case.

Case 2 : f(r,u) = ERROR. Suppose the value of f(q,u)
is inspected following g(p,X) during the parse of some
sentence x e L(G). Then at the time when f(q,u) is
inspected, the parse stack will contain ex and the
unconsumed input will. be z for some e and z such that

d S..... ""l:z = u an -. exz -- x. Since X -- Y it follows that
5

eyz is a sentential form of G. Now we must have
NAMEOF(CFLALRV(ex» = q and 80 NAMEOF(CFLALRV(9Y» • r.
But f(r,u) = ERROR and so eyz cannot be a sentential
form of G. From this contradiction we conclude that
f(q,u) ie never inspecte4 under these circumstances.D
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Finally we achieve the result which permits optimisation
of certain CFLALR tables.

THEOREM 6.32 (cf. Theorems 6.20 and 5.8)
Let Gbe an ERFC grammar and let C be a chain set for G
suoh that (G,C) is CFLALR and has Property A. Let T =
(Q, so,g,f) be the CFLALR tables tor (G,C) and let p e Q
and X,Y e V. Then provided G is SLR in the locality ot

all chains to Y, the value ot g(p,Y) i8 a valid
substitute tor g(p,X) whenever X ...",."'" Y.c

PROOF •. Note that because of Theorem 6.23, Lemma 6.16
is true of CFLALR tables aa well as CFSLR ones. Lemmas
6.17 and 6.19 are certainly true of CFLALR tables and
Lemma 6.31 is very similar to Lemma 6.18. Therefore, the
present result follows, just like Theorem 6.20, from the
argument used to prove Theorem 5.8. A small amount of
extra care is needed in order to take account ot

possibility (iii) in Lemma 6.31 but the details are
obvious. D

For completeness, we restate Theorem 6.32 in terms
of the conditions which must be satistied if CFLALR tables
are to be optimised with respect to an optimising
function F.
COROLLARY 6,33

Let F be an optimising function for (G,C). Then the CFLALR
tables for (G,C) may be opt1mised with respect to F prov1ded :
(1) (G,C) is CFLALR,
(11)
(111)
(1v)

(G,C) has Property A,
Cl is ERFO, and
G is SLR in the local1ty ot all cha1ns to F(X)
whenever F(X) ~ x.
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PROOF. Optimising the CFLALR tables for (a,c) with
respeot to F means substituting the value ot g(p,F(X»
for that of g(~,X) in eaoh parSing state p and for eaob

symbol X e V. The oonditions given in the statement of
the oorollary are just those neoessary to ensure that
Theorem 6.32 guarantees theae substitutions to be vslid. 0

It we return to the grammar (G16,C16) whose CFLALR
.tables were shown in Figure 6.7 we see that G16 is SLR
in the locality of all chains to b (though 'not in the
locality ot all chains to a - SLRV(xa) is inadequate).
Thus,although these tables cannot be optimised with
respect to theo~timising function which has F{A) = a,
Corollary 6.33 ensures that they oan be optimised with
respeot to the full o~timising function which has F(A)= b
and is the identity elsewhere.

Because of the number and the strength of the
conditions in'its statement, Corol~ary 6.33 can hardly be
considered an elegant result. However, this chapter is
mainly concerned with practicalities, not with elegance
(although it is a pity that we cannot have both) and
Corollary 6.33 seems a reasonable compromise between
Simplicity and utility. Certainly all of its conditions
may be tested easily, and all except (iv) may surely be
expected ot any civilised LALR grammar. Furthermore,
because chain productions mainly ocour in well-behaved
portions of grammars (such as those whioh define arithmetio
expressions) it is likely that even oondition (iv) ot the
corollary will be satisfied by most programming language
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grammars. We conclude that optimised CFLALR parsing
tables (OCFLALR tables for sbort) may be constructed
for most LALR programming language grammars and that
these tables may b.eexpected to contain fewer states
than ordinary LALR tables.

Finally we note that, ~ust as in the CFLR(k) and

CFSLR cases, OCFLALR ~ables may be construoted direotly
by simply replacing the lool? t'.t2£ eacb X e V A9 "
in Algorithm 6.27 by one which reads
"for eaoh X e. ~ MI ••
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6,6. OCFLALR Parsing Tables and the Further Postponement
of Error Detection,

Just as witb CFSLR tables, usetul reductions in the
amount of space needed to represent CFLALR tables are
made possible by applying further weak postponement ot

error detection to the tables. When T = (Q,so,g,t) are
the unoptimised CFLALR tables tor (G,C), the weak post-
ponement (q,u, A -0() is valid whenever A # Sand
f(q,u) = ERROR. These are exactly the same conditions
as those which apply to unoptimised CFSLR tables. Now
also as in the CFSLR case, the further postponement ot

error detection interacts with the substitutions
performed when optimising CFLALR tables and so we need
results which guarantee the validity of certain
combinations of optimisation and further postponement of
error detection tor the case of CFLALR tables. Throughout
this section we suppose that the validity ot the OCFLALR
tables tor (G,C) with respeot to the optimising function
F is guaranteed by Corollary 6.33. Our first result is
exactly similar to one presented earlier tor the CFSLR
case.

THEOREM 6,34 (ct. Tbeorem 6.21)
Let T = (Q'~o,g,f) be the OCFLALR tables tor (G,C) with
respect to the optimising tunction F. The weak postponement
(q,u,A ...ct) is valid it r

(i)

(ii)
(111)

A ~ 5,
t(q,u) = ERROR, and
u , FOLLOW(F(A) ) •

. '
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PROOF. Because the ERROR actions in CFLALR tables
-include all those of the corresponding CFSLR tables,
this result may be proved by exactly the same argument
as that used to prove the corresponding result tor the
CFSLR case (Theorem 6.21). 0

In OCFSLR tables, weak postponements ot the torm
(q,u,A .....0<.) _where u e FOLLOW(A) are pOintless because
the value of f(q,u) must be REWCE A ..... t:J(. already. This
is not the case in OCFLALR tables and so these tables
contain larger "dark areas" - areas in which postponements
might usefully be pertormed but where their validity cannot.be guaranteed by Theorem 6.34. For example, Figure 6.9

-shows the tully optimised CFLALR tables (FOCFLALR tables
for short) for (G17,fB-. a}). (The unopt1m1sed
CFLALR tables for this grammar were shown in Figure 6.8.)

- ----------------

STATE CF-ACTION FUNCTION OF-GOTO FUNCTION
No .. A a b x r z a b x s z A B S
1 ah ah 2 3
2 ah sb 4 5 6 4
3 sb sh 7 5 8 7
4- 4 Bh 9

I 5 6 6 ..

6 ah 10
7 4 4
8 sh 11
9 3

10 1

11 2

,,--~,---,"..,..._ ._- "--~,,,

Figure 6.9 : The FOCFLALR Tables for (G17,{B .. a).
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The full optimising function for this grammar has
F(B) = a and is the identity elsewhere. Figure 6.10
shows the same tables after applying all the further
postponements of error detection which Theorem 6.34
guarantees to be valid. (The reductions introduced by
the postponement are shown circled 1n Figure 6.10).

STATE CF-ACTION FUNCTION CF-GOTO FUNCTION
No. IY a b x y B, a b x s z A B S
1 sh sh 2 3
2 sh sh 4 5 6 4
3 sh sh '7 5 8 7
4 ® (4) ® 4 sh 9
5 ® ® ® 6 6
6 eh 10
7 @ 0 CD 4 4 <D
8 eh 11
9 3

10 l'

11 2

Figure 6.10; The FOCFLALR Tables for(G17. {B - a3)

atter App11cati2n s( a Va,id P2stponement Set.

It would be nice it we could apply the postponement
(4,y, 4) to these tables, but unfortunately production 4
is A.--- B· and y c FOLLOVI (F(A» and so Theorem 6.34
does not ensure the va11d1ty ot this postponement. Howe.er,
its va11dity 1s ensured by the following result •

•

I.
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THEOREM 6. 35

Let T = (Q,so,g,f) be the OCFLALR tables for (G,C)
with respect to the optimising function F. The weak
pos tponemen t (q,u,A ...0( ) i8.valid if :
(1)

(ii)
(iii)

A rI s,
f(q,u) = ERROR, and
u e FOLLOW (A ).

PROOF. We have to show that all three conditions of
Definit10U 6.2 are 8at1st1ed. Tbe argument used in the
proot of Theorem 6.21 shows that conditions (1), (1i)
and (iii.) of that def1n1t1on are satisfied; we will
only consider condition (111b) bere. Tbat is, we must
prove that whenever p e Q is such that g(p,o< )= q,

tben f(g(p,A) '':1) = ERROR. 'Let T' • (Q' ,so' ,g' ,t') be
the unopt1mised CFLALR tables tor (G,C) and suppose that
p e Q is such that g(p, 0( ) • q. Then p is also s state
in Q' and s(p,A} • g'(p,F(A)}. Now certainly t'(g',(p,A),u)
= ERROR (tor otherwise t(q,u) ~ ERROR} and so, by Lemma
6.3l,'either t'(g'(p,F(A»,u} • ERROR also, or
u I FOLLOW(A). (Remember A ~ F(A).) Therefore, if
u e FOLLOW(A) we must have f'(g'(p,F(A»,u) • ERROR
"and because S' (p,F(A» • S(p,A) it follows that
f'(g(p,A),u) • f(g(p,A),u) • ERROR and the proof is
complete. 0
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In combination, Theorems 6.34 and 6.35 allow the.
validity of the postponement (q,u,A ....0( ) to be deter-
mined whenever u , FOLLOW(F(A» or u • FOLLOW(A). Thus
the "dark area" where these results are ot no help is
given' by DARKAREA(A) = FOLLOW (F(A» \ FOLLOW (A) and
this is exactly the same as in the CFSLR case.
Consequently, the remarks made in Section 6.3 to the
effect that few usetul postponements are likely to occur .
in dark areas apply here also and so we are confident

------- --- -------- -- --- , 'that the full benetits ot both optimisation and the
turther postponement ot error detection are simultane-
ously available in the case ot CFLALR paraing tables.

To bring the technical content ot this thesis to an end
we note that the results ot both this and the previous
section can be extended without difticulty to apply, not
~ust to the CFLALR method, but to all CFLR(l) approx-
imations Which are detined by an approximation tunction
is satisfying i (CFVl(9» ~ CFSLRV(e) tor all e e V~
This includes the PPCFLALR method, and also the chain
tree generalisations ot the methods ot Korenjak, (1969)

and Pager (1977).
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6,7. Summar;y:

.
The real aim of this thesis is to develop chain

free parsing algorithms for use in compilers. The CFLR(k)
parsers are unsuited to this task because the corresponding
class of·grammars is toorestrictive when k = 0, while
the parsing tables are too large when k ) O. The ordinary
LR(k) parsers sutfer from the same problem but modifications
to the basic LR(l) method have been developed which yield
small, fast parsers for most programming language grammars.
In this chapter we have considered similar modifications
to the CFLR(l) method.

The fundamental notion employed here is that of
"approximate" CFLR(l) parsing tables. These are produced
by first introducing extra REDUCE entries into the action
func~ion, so that the similarity between difterent states
1s increased, and then replacing groups ot similar states
by a single compOSite state. The error deteotion afforded
by approximate CFLR(l) tables is slightly inferior to that
of proper CFLR(l) tables but i8 still aoceptably good and
very much better than that ot most other bottom up parsing
methods.

Two methods for producing approximate CFLR(l) tables
have been studied in detail. We call them the CFSLR and
CFLALR methods and, as their names are intended to suggest,
they are the natural chain free generalisations ot the well
known and sucoessful aLi and LALR parsing methods resp~ot-. ,

ively.
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It was shown that it G is SLR and C is a chain set

for G, then subject to very mild additionsl conditions,
(G,C) is sure to be CFSLR. It seems that CFSLR tables
are rather larger than ordinary SLR tables but this
disadvantage is easily overcome because 'the optimisation
technique·ot Chapter 5 extends to CFSLR tables (again,
subject to mild conditions). Fully optimised CFSLR tables
for programming language grammars are invariably smaller
than their SLR counterparts. Considerable economies in
the space required to represent SLR and unoptimised CFSLR
tables are made possible by allowing selected REDUCE
entries to replace certain ERROR entries in the action
function. In the case ot optimised CFSLR tables, this
"further po~tponement ot error detection" interacts with
the substitutions performed during the optimisation and
can cause the parsing tables to become invalid. A slight
restriction on the postponements that may be applied is
sufficient to prevent this occurrence while retaining
most ot the benefit of the technique.

The CFLALR method is more powerful than CFSLR but
is more complicated both theoretically and practically.
As in the CFSLR case, we are able to show that it G is
LALR then, subject to mild cond1t1ons, (G,C) is sure to
be CFLALR and its CFLALR parsing tables may be opt1mised
and then subjected to the further postponement ot error
detection. The cond1tions which ensure that CFLALR tables
may be optimised satell are a little less natural than
those for the CFSLR case and slightly more difficult to
check, but are probably still sufficiently m1ld to be useful
in practice.
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Although both CFSLR and CFLALR yield CFLR(O) size

parsing tables, the etfort required to construct CFLALR
tables remains comparable to that tor the CFLR{l) case
whereas constructing CFSLR tables is only slightly more
complicated ~han constructing CFLR(O) tables. Further-

, more, the CFSLR property can be decided in time o(n2.),
where n is the size ot the grammar, while it seems that
the CFLALR property cannot be decided in less than
exponential time. The techniques ot Chapter 4 may be
used to convert SLR parsing tables into (tables which
cover) CFSLR ones but they perform rather difterently
in the LALR oase, produoing chain tree tables whioh,
though valid, are not necessarily related to the proper
CFLALR tables.

Both the CFSLR and CFLALR methods yield parsers tor
programming languages wbioh are suitable tor practical
exploitation. They are taster than their SLR and LALR
counterparts while probably ocoupying lesa space. We
believe that the advantages ot the CFSLR and CFLALR
parsers are such that they should substantially replace.
other methods used in current praotice. The CFSLR method
is the simpler and in many ways more attractive et the
two but the greater generality ot the CFLALR method may
be an imp~rtant practioal asset.
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CHAPTER 7.

CONCWSIOU

In this tinal chapter we wish to summarize the
main conclusions to be drawn trom our work, to discuss
its relationship to previous work, and to suggest topics
tor tuture research. The discussion will be rather
.intormal and we hope this will assist the reader who
has not studied the technical development ot the previous
chapters in detail.

The introduction 01' the CFLR(k) grammars ia the
toundation ot our work. Since, by definition, these
torm the largest class 01' grammars Which can be chain
tree parsed trom lett to right, it tollows that no
technique for eliminating chain productions trom ordinary
LR(k) parsers can achieve greater generality than the
CFLR(k) chain tree parSing algorithm. The secure theoretical
basis 01' our construotions enables a thorough investigation
01' their properties. In particulsr, it enables us to prove
that it the grammar.G is LR(k), then tor aQV chain set
C in G, (G,C) is CFLR(k). Observe that no arbitrary
'restrictions are placed on the value of k, nor on the torm
01' the grammar G, nor on the chain productiOns that may
appear in C. Furthermore, the crLR(k) parsers retain the
excellent error deteotion Ofta(k) parsers and only minor
modificationssre nece.sary to caU •• an ta(k) parser
generator to prOdUCe orLi(k) pars.rs.
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A CFLR(k) parser for a typical programming lsnguage

grammar may be as muoh as 2, times taster than a
conventional LR{k) psrser but untortunate17 the CFLR(k)
parsing tables will usually be lsrger than the LR(k)
tables. ~his is mostly due to the presenoe ot redundanoy
within CFLR{k) parsing tables whioh may be removed ~y
a simple optimisation. The optimisation removes not only
states (i.e. rows) trom the parsing tables, but also
those symbols (i.e. column~) which appear as the lett
parts of chain produotions.

Application of this optimisation does not impair the
quality of the parser in any way and its effeotiveness is
such that it reduces the size ot CFLR{k) tables to
below that of their LR(k) counterparts in all except the
most extreme of pathological cases.

Our proof of the va11dity of our optimisation technique
requires that the cl&8.s of grammsrs considered is
restricted to those possessing "Property Alt. We do not
presoribe direot methods of test1ng tor this rsther.strange property, instead we give a series of essily
tested condit10ns which are suffioient (though not
necessary) to ensure the property. These conditions
require that the grammar is LR(l) and so they effectively
constrain application of the opt1misation technique to
the case k • 1. Although ungainly, this restriction is
unlikely to cause praotioal difficulties because the

j case k • 1 is the only one su1table tor practical
explOitation and 0017 very rarely will an LR{l) grammar
fail to satisty our sufticient conditions tor Property A.
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Truly practical chain tree parsers may be obtained
by modifying the OFLR(l) construction to yi'ld what we
term" approximate " OFLR(l) parsing tables. Two
approximation techniques have been studied in detail,
we c8l.l them the CFaLR and CFLALR methods. They are
the natural chain tree generalisations of the highly
successful aLR andLALR parSing methods and are
applicable to large subsets of the OFLR(l} grammars
while yielding only CFLR(O} size parSing tables •.

Because of the secure theoretical foundations
underlying our constructions, we are able to prove
that most ot our results concerning CFLR(k) parsers
extend to the eFaLa and CFLALR methods. Specifically
we a~e able to prove that if G is aLR then, subject to
certain mild conditions,we have I

(i) any chain set C in G may be chosen in the
certain knowledge that (G,C) will be CFSLR,

(ii) the CFaLR parsing tables fo~ (G,O) may be
optimised, and

(1ii) extra REDUCE entries may be introduced into
the optimised CFSLR tables tor (G,e) in order
to permit applioation of established techniques
tor representing SLR tables in a highly CD mpaot
torm.

These results ensure that compact CFSLR pal'sers
may be constructed tor most SLR,programming lsnguage
grammars. The resulting parsers will be much taster than
ordinary SLR parsers and probably smaller too. We suggest
the tollowing as a sate and systematic recipe tor



construoting a CPSLR parser tor a grammar G.
(1) Check that G is SLR. It it is not, then modity 1t.
(2) Cbeck that G is ERiC ( Det1n1t1on 6.11). It it i.

not tben mod1ty it and return to step 1.
(3) It G contains null nonterminals (nonterminals

'generating gply the empty term1nal etring) then torm
the grammar G' ot Oorollary 4.20 and obeok that G'.
is SLR (or LR(l». It 1t 1e not, then modity G and
return to step 1.

(4) Seleot a obain set C 1n G.«G,c) 1s sure to have
Property A and to be CFSLR).

. ~

(5) Construot a (tull) optimising tunction F tor (G,C) •

. (6) Construot the optimi.e~ OFSLR tables tor (G,C) with
respeot to F. .

(7) Caretully (uee Theorem 6.21) apply whatever turther
.postponement ot error deteotion oan be usetully

, exploited by the ohosen teohnique tor represent1ng
the tables and encode the table. oompaotly.

The CFLALR'method behave •• im11arly to CFSLR but its
•greater genera11ty 1. ott.et by the oomplex1ty ot the

method tor generat1ng it. par.1ng tables and by a .light
complication 1n the cond1t10ns wh1ch ensure the validity ot
the opt1misation techn1que 1n th1a caae. The tollowing
recipe w111 safely de11ver a CFLALR parser tor tbe grammar G.

(1) Check that G 18 LALR. It it i. not, then mod1ty it.
(2) .Check tbat G 18 IRPC ( Detinition 6.11). It it i8 not

thenmodit7 it and return to 8tep 1.
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(3) , If G contains null nonterminala then construct
the grammar G' of Corollary 4.20 and check that
G' is LALR (or Li(l». It it is not, then modify
G and return to step 1.

(4) Select a simple chain set C in G' (Detinition 6.24)
( (G,e) is sure to have Property A and to be
CFLALR).

(5) Construct an optimising function F for (G,e) and
check that the conditions ot Corollary 6.33 ere
satisfied. It tbey are not, then eitber modity
F and repeat tbis step, or modity G and return

to step 1•
.: (6) Construct tbe optimised CFLALR tables tor (G,e)

witb respect to P.

'(7) Caretully (use Tbeorems 6.34 and6.3S) apply
whatever turther postponement ot error detection
can be uaefully exploited by the chosen tecbnique
tor representing the tables and encode the tables
compactly.

In conclusion,'we believe tbat the teohniques devel-
.oped here provide methods tor the automatic construction
ot parsers tor programming laosuages wbioh surpass all
known competitors in al~ ma~or respects.
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7.1. Comparison with Previous Work.

Tbe,first publisbed tecbnique for eliminating chain
productions from LR(k)-type parsers was that of Anderson
(1972) wbich subsequently appeared, in a more accessible
torm,in Andersonet al.(1973). Because tbe researcb that
led to this ,.thesisgrew out of an attempt to understand
Anderson's tecbniques more fully, the relationsbip between
his work and our own may be explained most clearly by
giving a (somewbat idealized) historical account of our
researcb. We bope tbe reader will forgive ,tbis indulgence
(tor such it seems) and that he will find it interesting.

Anderson's technique for eliminating chain productions,
1s to modity tbe method ot constructing the atatesets
trom which LR parsers are produced.(We use LR as a blanket
term to denote all LR(k) - like metbods, including LR(k)
itself, SLR and LALR). It 6.. is an LR state for some
string e, tben tbe La .tate tor ex i. computed by applying
a "GOTO" tunction to II and X I GO'l'O (~,X) will be
the LR state tor ex.The prec1se torm of the GOTO function
depends upon exactly wbich LR method is being considered
but all such funct10ns m81 be expressed as the oomposition
ot two Simpler runot1ons I NEXT and CLOSURE. NEXT computes
the nuoleus ot the state tor ex by taking all those items
trom fj, in which ,tbe dot precede. an X and move. tbe dot
over the X :

NEXT(~,X) • {fB - p, X',a.a' u] I [B .. (3, .X(CJ1' U 1 e ~ 1.
.,

CLOSURE adds to NEXT(6.,x) all those 1n1t1al 1tems wh10b
are needed to complete tbe LR state tor ex. Anderson's method

'.. 'replaces these conventional NEXT and CLOSURE tunctions by
"chain free" variants &
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OF-NEXT and OF-OLOSURE. OF-NEXT cUtters trom NEXT in
that it takes alf those items from I:l in which the dot
precedes a symbol which derives X by 8 sequence of chain
productions and moves the dot over thst symbol. Thus

OF-NEXT(6,x) • HB -,s,Y.P.t' u ]103 ",6, .'YP~'u] c~, Y of xj ,

OF-CLOSURE is like ,ordinary OLOSURE except that it discards
all those items whioh involve chain productions .Anderson' s
justification of these techniques was based upon informal
arguments and the research Which led to this thesis was
originally uridertaken with the primary aim ot attempting
to prove their oorrectness rigorously. Anderson showed
that certain grammars could be parsed by his moditied LR
parsers, though not by conventionsl LR parsers. Conversely,
he exhibited an SLR grammar Which gave an inadequate
stateset when certain chain produotions were eliminated.
Anderson proved that this latter circumstance could not
arise with .A -free grammars and he conjectured that it
oould not arise at all in the LR(k) and LAta cases. The
secondary aim otourresearch was to investigate these
conjectures and to'enquire into the relationship'be~ween

,
the grammars whioh could be parsed by a partioular LR
method, and those whioh could be parsed by the same method
with chain productiOns eliminated.

During the oourse ot this researoh it became clear
that little progress Was possible so long as Anderson's
method was regarded as a modifioation ot conventional
LR parsing -·i t 'bad to be regsrded as an independent
parsing technique, similar to LR"but not direotly
reducible to· it:nor derivable trom it. The turning pOint
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in our understanding of Anderson's method oame with
the realisation that it had a theory which ran
parallel 'to that of LR but from 8 difterent starting
point. The key to real understanding was to (attempt
to) forget the finishing point (i.e. Anderson's method)
and to find the starting point and then develop the

.theory. The search for the starting pOint caused us to
investigate the notion of chain-free parsing and to
introduce the CFLR(k) property. Having established this

.foundation, the development of the theory was conceptually
straightforward (though at the time we found it

.'technically difficult). The outoome ot this development
was the CFLR(k) parsing algorithm and its approximations,
CFSLR and CFLALR (which we refer to collectively as eFLR),
and the gratifying "discovery" that these are exaotly

.the same as the parsers produoed by Anderson's method.

Before proceeding to disouss the work of other
authors, we tirst wish to summarize the attraotive features
of the basio CFLR methods (and therefore of Anderson's
methods also) :

,(i) The methods are oompletely genersl : to eaoh
LR method there oorresponds a CFLR method •

•There is no restriotion to only the LR(l) and
SLR cases.

(ii) Apart from the requirement that the os-grammar
(G,C) has an adequate·CFta stateset, there is
no restriction on either.
(a) the form of the grammar G ( A -rules and

null nonterminals are not exoluded), nor
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(b) the ohain produotions in the set 0 (In

pa~tioular, ohain productions may have
terminal right parts snd difterent ohain
pr~duotions may share the same left part.)

·(11i) The applioation otthe further postponement ot

error deteotion in the interest of achieving
economies in the representation ot the parsing
tables may proceed exactly as in the ordinary LR
methods.

The single (but substantial) disadvantage of these methods
1s that their parsing tables are usually considerably
larger than,those ot the corresponding ordinary LR method.

All published work on the elimination of chain
productions from LR parsers which appeared subsequent to
that of Anderson has relinquished, to a lesser or (usually)
greater extent, the attractive teatures listed above in
order to reverse the growth in table size whioh the eFLR
methods incur.

The technique of Aho and Ullman (1973b) is restricted
to the case ot LR{l) and SLR parsers and excludes grawnars
oontaining null nonterminals and chain productions with. .
term1nal right parts. Furthermore, tull elimination ot chain
productions 1s only guaranteed wben no pair ot chain
productions share the same lett part and no tecbniques for
safely applying tbe'furtber.postponement ot error deteotion



are proposed. (Indeed, no mention is made of the faot
that the further postponement of error deteotion
oan oorrupt these parsers). Despite these drawbaoks,
Aho and Ullmants teohnique has one outstanding advantage
over the CFLR methods - it invariably oauses the
parsing tables to beoome smaller when ohain produotions
are eliminated. It was this observation which prompted
us to investigate the differences and similarities
between the CFLR methods and those of Aho and Ullman.
The investigation led to the development of the
optimisation technique for CFLR parsers which is

presented in Chapter 5. The d1scovery that this
opt1misation technique interacted with the further
postponement of error deteotion led to the development
ot the results_presented in Seotions 6.3 and 6.6 whioh
are largely suooessful in resolving the ditficulties
oaused by this 1nteraot1on.

We oontend that the d1ffioulties and restriotions
associated with Aho and Ullman's teohnique are due to
its failure to distinguish the issue of eliminating chain
productions from that of optimising the resulting parsers.
It seems clear from our separate treatment of these issues
that the restriotions sssooiated with Aho and Ullmants
method stem from the 1mplio1t optimisation whioh it
performs, not from the eliminat10n ot cha1n product1ons
1tself. (It is 1nterest1ng to note that whereas we
requ1re the ERFC property 1n order to opt1m1se CFSLR
tables, this property is apparently not requ1red by Aho
and Ullman's method tor eliminat1ng cha1n produot1ons from
SLR tables. However, the1r Lemma 7 i8 false unless the
grammar is ERFC).
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The gains that tollow from our separation of these
issues are :
(i)

(ii)
(iii)

The restrictions on chain sets are removed.
,Null nonterminals may be admitted.
The LALR case can be handled as well as LR(l)
and SLR.

(iv) It is guaranteed that certain columns can be
deleted from the GOTO table •

.(v) The further postponement ot error detection is
handled satisfactorily.

Unlike the eFLR methods, which build their parsing
tables directly, Aho and Ullman's technique is presented
as a method for modifying existing LR(l) or SLR parsing
tables. Demers (1975) showed (in the LR(l) csse) that
tables equivalent to those produced by Aho and Ullman'a

Ca.n .
methodLalso be generated direotly. Basically, Demers'
method uses a moditied NEXT function, whicb we may call
D-NEXT (D for Demers), witb the form:

D-NEXT( Ll,x) II: {[B.. ,s,Y.I'",'u] I(B:--", .YP ..,u] e Ll,
... ... JX --: Y or Y ~ X •

Essentially, this tunction trests alike sll those symbols
which are related by ohain productions in any way. Our
technique for optimising CPLR tables is rather similar
.except that it is a little more careful in the selection
ot the symbols which are to be treated slike. It we have
x .,. ...

-"'c. Y and X ~
•

Z , then our optimisation technique
may treat X the same as ~ ~ y or Z whereas
D-NEXT will treat X similarly to botb Y and Z. This
lack ot selectivity causes difficulties which Demers
avoids by precluding different chain productions from
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having the same lett part. In this restricted case,
Demers' method is basically equivalent to our method

,~, "

tor constructing tul~ optimised eFta(l) tables
directly.

It was the relationship between Demers' method
and that ot Aho and Ullman which prompted the investi-
gation into the relationship between CFLR tables'
constructed directly and those tormed by moditying LR
tables which is reported in Chapter 4.

Pager (1974) presents a method tor eliminating,

chain productions trom LR(l) parsers which is similar
.to that ot Aho and Ullman ~xcept that it removes the
constraint that no pair ot chain productions share the

•
sama lett part. The method seems to be equivalent to our
method tor constructing tully optimised 8QCFLR(1) tables.

Backhouse (1976) considers Pager's method trom a
ditterent viewpoint while Lalonde (1976) presents a
method for applying Pager's method during the construction
of the ,parsing·tables, r ather than subsequently as in the
original method. 'Lalonde's technique seems to be similar
to our method tor constructing FOCFLR(k) tables directly •

•

80isaloo - 80ininen (1977) presents a method similar
to Lalonde's formulation of Pager's method but observes,
correctly, that cUftioulties arise in the LALR'case and
also when the further postponement of error detection is
performed. He then modifies the construction to avoid
such ditficulties but in doing so may tail to completely
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elim~nate all reterenoes to ohain produotions. Thus,
while Soisalon-Soininen's construction produoes correct
parsers, it may tail to achieve the tull benefit ot

eliminating7 chain productions totally. Again, it seems
to be a failure to separate the issue ot chain
elimination from that ot optimisation which causes the
deticiencies of the technique.

As Soiss1on-Soininen (1977) observes, Joliat (1976)
merely re-presents an elementary technique of Amerson
(1972) tor partially eliminating chain productions trom

- .LR parsers. This teohnique appeared in the open literature
in Anderson et al.(1973) and is of limited appeal
because it eliminates only some references to chain
productions.

Clearly, our work is related to that of these
earlier investigators-and owes much to them. We believe,
however, that our approach represent. the fir.t rigorou •

. ,

and reasonab17 complete treatmeut ot the top1c.

,

•
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1,2. Suggestions tor Future Research.

We suggest tour areas where tuture research appears
protitable. The tirst concerns our extensive use or
"Property A". Because the requirement that (G,C) has
Property A is"only a very milO restriction in the cases
ot practical interest (namelY, CFLR(l), CFSLR and·
CFLALR), we have used this property wherever it is
convenient to do ao. This requirement is a minor
irritant'trom the practical viewpoint and inelegant
theoretically. It is interesting to enquire to what
extent Property A is necessary to those results Which
make use ot it. We certainly believe Theorem 5.8 to be
true in its absence, although Lemma 5.7 is not. By using
more sophisticated versions ot Theorem 5.3 and Lemma 5.7,

we believe it possible to prove Theorem 5.8 given only
that G is LR(k). We also believe that Property A can
be dispensed with as a separate requirement in all results
concerning CFSLR (notably in Theorems 6.15 and 6.20) s1nce
we suspect that (G.C) must have Property A it G 1s SLR
and ERFC. It true! th1s result might just enable Corollary
6.33 to dispense with Property A also. Because ot the
behaviour ot Grammars GB and G14, we believe that(some-
thing like} Property A reslly 1s necessary in Theorems
4.23 snd 6.26.

'r
Footnote. This result is true - see Addendum on page 388.
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OUr second proposal is that it would be interesting
to enquire whether our techniques can be applied to the
development ot chain tree versions ot other parsing
strategies. However, there 1s 11ttle prsctical motivation
tor this since other bottom-up methods are not competitive
with LR methods, While chain productions sre less of an
issue w1th top-down schemes.

The third topic we wish to propose tor investigation
is a little more speculative and concerns the work of
Earley (1975) and Aho et al.(1975). Rather than eliminate
chain productions from parsers, these authors propose
techniques which avoid their introduotion altogether.
They suggest using an ambiguous grammar'to specify the
basic form of the language concerned, coupled with a set
of rules Which may be used to resolve the ambiguities.
Por example, the language generated by grammar G3 is more
concisely specified by the ambiguous grammar t

s ___,. ]I

]I __... E+E
, ' E*E ~ I ;

,(E)
X

The ambiguities in th1s grammar may be resolved by the
three rules :

'. is lett associative,
+ is left associative, and
• has hisher precedence than +.

•
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.A determ1n1st1c parser may be constructed trom th1s
descr1p~1on by t1rst build1ng an La parser tor the
amb1guous grammar (th1s parser w1ll, of course, be
inadequate) and then resolving the conf11cts w1th1n
the pars1ng tables by us1ng the d1sambiguat1ng rules •

•The advantages claimed tor this approach are twofold.
Firstly, it provides a more tlex1ble and natural
method tor descr1b1ng syntax than convent1onal grammars,
and secondly, the resulting parsers are smaller and
taster than convent1onal ones (because they contain no

.chain productions). We do not dispute that these
advantages are worthwhile, but1t seems to us that
resolving the conflicts of an inadequate parser ..in
this way 1s something of a "black art" involving ad-hoc
manual 1ntervention.,Now 1t turns out that the parSing
tables produced by this teohnique are exactly the same
as those whioh result from tirst disambiguating the
grammar by introducing appropriate ohain produotions and
then construotina an optimi.ed OFLR par.er tor th1.
amended grammar.

We wish to propose that a more secure method ot

uti11sing the desor1ptive teohnique advooated by theae .
authors would be to develop wara of convert1ng the1r
desoriptions into oonvent1onal grammars. Since this
approach involves transforming one desoription of a
language into another, it ahould be easier to estab11sh
its correotness than that ot a teohnique wh10h involves
modifying a parser tor the language. Once a conventional .
grammar. has been obtained, a small, tast parser may be

.produced using tully optimised eFLR construotions.
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Provided the disambiguating rules do not alter the
language generated by the ambiguous grammar (sometimee
they do - consider the rule " + is not a ssociative If)

then it seems to us that the correctness ot applying
optimisation and the turther postponement of error
detection to these parsers may be guaranteed independently
o~ the usual conditions.

Our tinal suggestion tor future work is to advocate
the construction ot a parser generator using our
techniques and to investigate its pertormance and that
of its parsers empirically. It these parsers pertorm as
well as we predict, then we hope that they may be used
in reel compilers betore too long.
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ADDENDUM

We present here a useful theorem that was

discovered too late to be·1ncluded in the main body

of the thesis.

THEOREM

Let G be ERFC and SLR and let e be a chain set for G.

Then (G,e) has Property A.

PROOF. Let eX and f3 be viable prefixes of G and

*let f ~V be such that eX -r f' and f3 ~ p. Weneed

to prove that ~ and p m~ differ on only their final

symbols. The result is trivial if ~ = P so suppose

that 0( r! ~ and let e be the longest commonprefix

to both 0( and p. Then we can wri te 0(, f3 and e in

the form 0< = ex~, p = ey& ~ = "2 Z/L where X r! Y,

X~ -;," ZJA and YtS-~ ZlA • Since G is SLR, it is

certainly LR(l) and therefore, by Theorem 4.17, we

must have r- _Wr.A • If p. = Jv there is nothing to prove

so suppose fA , j" • Then there exists Q ~ VN such

that p ~ Q -; .A. Wenow distinguish three cases •
...Case 1 : Y -- X. Because eX is a viable prefix there
Co

* Yrmust be some x e VT such that S ~ cl x , Using the

relations above, this derivation m~ be extended to

give . ~ ~S _ eex = 9X2Sx _,.. SXux eXQx ..... SXx.
IC It r It "

Thus (Q-.A, len{9X» is a handle of exx and so

[Q .... vt .,u] e SLRV{eX) for all u e FOLLOW(Q).Now if..
Y ~ X and Y , X there must exist W e V such that

...
y --: W-: X and since p 1s a viable prefix there exists

* ...y c VT such that S ~ fl y. We then have
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S -i p y = 6Yoy it" 6YJAY -;,"" eyQy --; eYy ....;. 6Wy ~ 6Xy

and so .[w - x., v J e SLHV( ex) for all v e FOLLOW(W).
But note that 3 ~»- eyQy ....:ewQy and therefore,
since G is ERFC, FOLLOW(W) 2 FOLLOW(Q). Hence, for any

w e FOLLOW(Q) we have both [Q .... A.,w], [W - X.,w] e

SLRV(eX). These items conflict and so contradict the
hypothesis that G is 3LH •..Case 2 : X -'! Y. This case is exactly similar to.the
previous one.
Case 3 : X~y,y -I:."'x. Here ({X,Y},{zl) is a maximally
chained pair so let R be a maximal intermediate for
this pair. Then there exist distinct U,W such that

'"X -"(. U --c. R and
Y _"*W - R... ..

Using the argument from Case 1 above, it is easy to see
that [U -- R.,u ],[W - R., v] e 3LRV(6R) for all
u e FOLLOW(U) and v e FOLLOW(W). Also as in case 1,
because G is ERFC,we may deduce that FOLLOW(U) 2

FOLLOW(Q). and FOLLOW{W) 2 FOLLOW{Q) and hence, for any

w e FOLLOW(Q) we have both [U - R.,w J, [W - R.,w] c
3LRV(eR) and since these items are distinct they are
in conflict and so contradict the hypothesis that G is
3LR.

Thus in all cases the supposition that ~ , A
has led to a contradiction and so we conclude that p

(and hence l and d ) is the empty string and the theorem
is proved.O
This result removes the need to .demand· Property A as
a separate requirement in all our theorems concerning
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the CFSLR property. This simplifies the statements of
Theorems 6.15 and 6.20 and allows the deletion of
step (3) of the recipe for constructing CFSLR parsers
which was given on page 368.


