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ABSTRACT

A method of syntactic analysis is developed which
is believed to surpass all known competitors in all major

respects.
f

The method is based upon that associated with the
LR(k) grammars but is faster because it bypasses all
reduction steps concerned with 'chain' productions. These
are freely selected productions which are considered
semantically irrelevant and whose right parts consist of
Just a single symbol. The parses produced by the method
are 'sparse' in that they contain no references to chain
productions - they are termed 'chain-free' parses,

The CFLR(k) grammars are introduced as the largest
class which can be Chain-Free parsed from Left to Right
while looking k symbols ahead of the current point of the
parse. The properties of these grammars are examined in
detail and their relationship to the conventional LR(k)
grammars is'explored. Techniques are presented for testing
grammars for the CFLR(k) property and for constiructing
chain-free parsers for those grammars possessing the
property. Methods are also presented for converting
ordinary LR(k) parsers into chain-free parsers.

CFLR(k) parsers are more widely applicable than
their LR(k) counterparts, are faster and provide the same
excellent detection of syntactic errors. UnfortunatelyAthey
also tend to be rather larger. A simple optimization is
presented which completely overcomes this single dis-
advantage without sacrificing any of the advanteges of the
method. ' '

These theoretical techniques are adapted to provide
truly practical chain-free parsers based on the conven-
tional SLR and LALR parsing methods. Detailed consideration
is given to use of 'default reductions' and related
techniques for achieving compaét representations of these
parsers. The resulting chain-free parsers are not only
faster than their ordinary counterparts, but probably
smaller too. We believetheir advantages are such that they
should substantially replace other parsing methods currently
~used in programming language compilers.
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CHAPTER 1.

INTRODUCT ION

At the heart of every moderﬁ compiler there lies a
parser. The performance and quality of the parser
strongly influence those of the compiler as a whole.
Therefore the parser needs to be good; in particular it
should be small, fast, and able to detect syntactic
errors as soon‘as possible. Nowadays, parsers are not
constructed by ad=hoc manual methods, but ere produced.
by (automated) perser construction slgorithms. In the
attempt to produce good parsers, these algorithms usually
sacrifice generality.and restrict the class of grammars
to whiéh they may be applied. When evaluating such
algorithms it is necessary to consider the extent of
their applicability as well as the quality of the parsers

~which they produce. Also important are the time and
space consumed by the algorithm and by any ancillary
algorithms which may be used to test whether a given
grammar 1s acceptable to the main parser construction

algorithm,

Prominent emong parser construction algorithms is
thet associated with the LR(k) gremmars of Knuth (1965).
"(The IR(k) grammars sre those which csn be parsed from
Left to Right while looking k symbols ahead, where k is
a natural number which parsmeterises the method). This
method is of great theoreticsl interest because of its
elegance and power but founders in practice because 1its

parsers are too large, However, modifications of the



IR(k) method have been developed which mitigate this
problem while rétaining most of the’advantages of the
baslc technique. The most important of these are the
SLR and LALR methods of DeRemer (1969,1971) end Ander=-
son (1972). They are smong the best methods currently
aveilable for producing parsers for programming languages;
while other methods can produce parsers of comparable
speed and size, few can match their error detection or
thelr generality, and no other method competes with
their excellence on all four of these counts simultane-~
ously. (See, for example, the theoretical and empirical
comparisons by Anderson (1972) and the empirical study
by Lalonde (1971).)

Not all the steps of a parse are significant to the
process of translation; parsers would go faster if they
could ignore parse steps associated witb'productions
lacking such 'semantic' significance. Much attention has
been focused on the problem of modifying LR(k)-type
parsers so that they do just that in the important specilal
case where the productions to be ignored are of the form
A -—» X where X 1s a single symbol, Productions of this
type are called 'single' or 'unit' or, as we shall prefer,

'chain' productions.

Among thbse who have proposed techniques for
eliminating chain productions from'LR(k)-type parsers are
Anderson (1972), (see also Anderson et al, (1973)) Aho and
Ullmaq (1973v), Pager (197M), Demers (1975), Backhouse (1976),
Lalonde (1976) =and Soisalon-Soininen (1977). The methods
of these authors have limited aesthetic or’theoretical

appeal and suffer from a variety of difficulties in



practice, Their deficlencies are discussed in detail in
Chapter 7. These methods are not without merit or
utility however: measurements by Anderson (1972) and
Joliat (1973) have shown that bypassing chsin productions
can double the speed of an SLR parser for a conventional
.programming language end increase the speed of its

compiler as a whole by about 15%.

This thesis continues the investigation of the
problem of eliminating chain productions from LR(k)-type
parsers but unlike previous authors we do not take the
basic LR(k) parsers as given, nor do we seek, at least
initially, to modify them directly. Instead, we look at
the problem afresh and consider the issue of producing
parses from which 2ll chein productions have been
eliminated s an independent topic in its own right.
These parses are a special case of the 'sparse parses'
of Gray and Harrison (1972); we call them 'chain free'
perses, By analogy with the LR(k) gremmars, we introduce
‘the CFIR(k) grammars as the largest class of grammars
which can be Chain Free parsed from Left to Right while
~ looking k symbols ahead. Techniques are presented for
testing grammars for the CFLR(k) property and for
constructing chain free pasrsers for those grammars
possessing the property. The relationship between the
IR(k) and CFLR(k) grammars is éxplored end methods are
derived for converting LR(k) ﬁarsers into chain free
parsers. An optimisation is introduced which substante
ially reduces the number of states in a CFLR(k) chain
free parser. The effectiveness of this optimisation is
such that our chain free parsers are not only much faster

than their LR(k) counterparts, but usually smaller too.
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These CFLR(k) techniques are then subjected to
modifications in the spirit of the SLR and LALR
méthods, thereby producing techniques which we term
the CFSLR and CFLALR methods, It 1s shown that
standard methods for reducing the space required to
represent SLR and LALR parsers can, with a little care,
be applied successfully to CFSLR and CFLALR chain
free parsers, In this way chain free parsers can be

produced which are suitable for practical explolitation.

We claim several aedvantages for our materisl over
previous work in this'field. Our methods have the virtue
of complete generality and are founded upon a sound and,
we submit, elegant theoretical basis which others lack.
At the same time they retain all the benefits of earlier
methods end shirk none of the difficulties that may

arise in practice,

In summafy, ﬁhile LR(k)-type methods may fairl&
be said to be smong the very best for producing conven-
tiénal parsers for progremming languages, we believe
that our CFLR(k) techniques offer worthwhile improvements
and should substantially feplace them and other methods

used in current practice.

Briefly, the structure of this thesis is as follows,
The rest of_this firstvChapter 18 concerned with basic
definitions and an exposition of the ordinary bottom=-up |
parsing strategy. This is followed, in Chapter 2, by a
detailed account of the standard LR(k) theory. None of
this material is original; it is included becausé no

existing work structures the material in the manner we

require to support our subsequent developments, Chapter 3
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introduces the nofion of chain free parsing and defines
the CFLR(k) prOperty; Theorems are presented which
relate this property to the conventional LR(k) property.
Methods are glven for testing for the CFLR(k) property
and for constructing chaln free parsers for grammars
possessing this property. The performance of these chain
free parsers is exsmined theoretically. Chapter 4 is
concerned with the problem of converting ordinary LR(k)
parsers into chain frée parsers, It is shown that the
conversion process may generate chaln free parsers which
are different (and inferior) to those produced by the
method of Chapter 3. In Chapter 5 the presence of
redundancy within CFLR(k) chain free parsers is revealed |
and an optimisation is presented which exploits this
redundangy in order to reduce the size of CFLR(k) chain
free parsers, Chapter 6 extends our CFLR(k) techniques
to the SILR and LALR methods and explores some lssues of
practical concern, Our conclusions and compmrison with
previous work are“given in Chapter 7. Each chapter,
except this and the final(one, ends with a summary. The
reader may find it helpful to examine these summaries;
fogether with Chapter 7, before reading the thesis as

a whole,

Finally, a word of encouragement to the reader:
although this thesis contains a substantial amount of
rather severe formalism, much of its length ié due to
the presence of examples snd informal explanations which
are intended to sweeten the bitter pill of an unrelieved

technical development,
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1ede Sets, Relations, Functions and Sequences,

We assume familiarity with the conventional
terminology and notation of elementary set theory,but
in order to preclude misunderstanding we briefly
review the form in which the notation will be employed

here,

Braces ( { and }) are used exclusively for sets,
Set hembership is indicated by the symbol e and the
empty set is denoted by f. The cerdinaslity of a set A
is written as |A| while the powerset of A is written 2A.
When A andB are sets we denote their union, intersection,
set difference, and cartesian product by A vB, A N3,
A\B and AxB respectively. Set inclusion (of A within

B) is written as A € B or, when the inclusion is strict,

as Ac B,

Any subset of AxB is called a relation between
A and B; when © is such a relation we usually prefer to

write aéb instead of (e,b) e O, The inverse of O is
denoted by 01 and is defined as the relation between

B and A given by

o' = {(v,8) | (a,0) e o} .
When © ¢ AxB end W ¢ BxC are relations, their
composition is written O¢ and is defined to be the

relation between A and C given by

8¢ = {(a,c)| adb and by c for some b e B},
When © ¢ AxA we say that © is a relation on A and the
operations of composition and union sre used to define

further relations on A as follows ¢
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(a) e® = f(a,a), a e A},‘

(v) o - 9% for each natural number n,
+ _ U n

(c) s _n>°9 , and
* U n

() ® =pso °

The relation 9"' is called the transitive élosure of O

while 9* is called the reflexive transitive élosure of O,

Note that 6° is equal to the identity relation on A while
ol is equal to 8 itself,

We assume familiarity with certain elementary
properties of relations and in particular with the way
in which an equivalence relation imposes a partition on
~ its domain, We also make use of directed graphs as a

means of representing relations,
Functions are considered as single-valued relations;

mappings are functions which are total.When f is a
function from A to B we express the fact by writing
f:A - B, When f is a partisl function and a ¢ A is
not in the domain of f£,it will usually be convenieat to
suppose that £ (a) has the special value ¢ (read es

'undefined').

We also need some notation for sequences, which are
defined as ordered lists of objects taken from a set, Ve

write sequences in angle breckets thus: {831, 855 «ee ’8p D e

The same sequence may also be written more concisely as
m ‘ :

<31> {=1 ° We sometimes need sequences in which the

subscripts are arranged in descending order: we

abbreviate the sequence {a a soe a
<m' m-l’ ‘ ’ l> by

writing <ai>iim . Concatenation of sequences is

indicated by the operator & ., Thus <al’ 850 a3> ®

(a v 8 denotes the sequence {a a a a a_y.
41850 1 <1’ 2’ 83 8 8



The length of a sequence is simply the number of objects

it contalns; the sequence of zero length is called the

null sequence, -
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1.2. Alphabets, Strings and Languages.,

An alighabet is a finite, non-empty set of objects
called symbols,., A string over an alphsbet A is a finite

list of zero or more symbols taken from A (written without
- any intervening punctuation marks) where each symbol is
permitted to occur many times. The string consisting of

zero symbols is called the empty string end is slways

denoted by N .. The length of a string « is denoted by
len (¢ ) and is defined as the number of symbols in o« |,
where ea‘ch symbol is counted as' meny times ss it occurs.
For example, & , @&, ab, and aba are all strings over
the alphabet {a,b] and we have len(A) = O,

len (8) =1, 1len (ab) = 2 and len (aba) = 3.

When «« and g are strings, their concatenation,

written as xg, is the string composed of the symbols of
o followed by the symbols of g . For example, if

o0 = aba and g = ab then «g = abaab.,We say that a
string oi is a substring of another string g if there
exist two further strings ¥ and & such that g = ¥ud .
If ¥ =W then « is called a prefix of @ , while if
§ =& we say that « is a suffix of B o+ Wheno 18 @
string and n is a natural number we use the following
‘notgticn to permit the convenient naming of certain

frequently used substrings of o ¢
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(1) n:« denotes that prefix of « with length
min (n, len ( « )))

(11) ot:n denotes that suffix of < with length .
min (n, len (o« )), and

(111) n/o< denotes that suffix of ¢ with length
. - max (o, len. (s )-n ).

Informally, n t« and otn " respectively denote the
first n symbols and the last n symbols of o while n/«
is the string that remains when the first n symbols of

¢ are deleted.

The set of all strings over an alphabet A is denoted
* , : _ :
by A, Subsets of A" are called languages over A,

‘Languages which do not have W\ as a member sre said to be

W- free, The W - free language AT is defined by :
t= A"\ A} |

When n  is a natural number, two frequently used

‘languages over A sre defined by :

(1) A" = { « ¢ A" | len(x)=n}  ana

® .

(11) 2" = §{ o e A" | len(x)¢n},

That is, A" contains all strings over A which have

length n, while A*® conteins all strings with length at

most n.‘ Céi‘e is sometimes needed in order to distinguish

‘languages such as A° which consist of :just the empty

‘ string from the empty language 7,

. Since 1lesnguages are sets, the set operations of
funion, intersection and séy;ay be applied to languages.
The operation of concatenation can be applied to languages
as well as to strings: if Iﬁ. and L2 are. languages then

their concatenation, denoted by Lle, is the language
defined by LIy = {up |« ¢eL , p el,].
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The positive cldsure L+ and the simple closure L*

of a language L are defined as follows :

(1) 1° = {Al,
(11) I+l = I1°L for esch natural number n,
1+ VU n '
(111) ¥ = VY17, end
»* - U n
(iv) L = = nyo L

That 1is, Lt 1s the language composed of the concatenation
of srbitrary members of L , while L" = L* u {4].

Note that the slphabet A and the language A denote

the seme set, Thus each alphabet is also a language over
itself, Our definitions ensure that the interpretations

of A*, A" ana AP are consistent, independently of whether
A is'regarded as an alphabet or as a language. For this
reason it is unnecessary to distinguish between the alphabet
A and the language Al. Similarly, we do not usually
distinguish between the symbol a and the alphabet {a},
Thus we may speak, for eiample,,of the language a bt -

this is understood to denote the language f{a}*§ b}+;

We sometimes need to refer'to the language formed by
taking all prefixes of length n from the strings of some
other language. We provide for this by extending our
existing notstion as follows ¢ if L is & languasge and n is
a natural number, then n:L. is the language defined by

ntl = fnte¢|o e L},
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1.3, Grammers,

Since languages may be infinite, we are interested
in finite techniques ror epecifying them. For our
purposes the notion of a gresmmar, and in particular of

a context free grammar is eSpecially important in this

regard, A context free grammar is a 4 - tuple

= (Vg» V1, P,S) where V, and V, are disjoint alphabets

end S is a distinguished member of Vy. Symbols in Vi and

Vo

while 8 is called the goal symbol., The union Vﬁ \)V& is

are called nonterminals and terminals respectively

called the vocabulary of G and is conventionally denoted
. . ) . L . .
by V. P is a finite relation between Vﬁ and V and menmbers

of P are called the pfoductions of G, Wnhen (A,8) 1s a

‘production, we call A 1ts left part and © its right part.
‘The degree of a prodnetion q is denoted deg'(g) and is
defined as the length of the right part of q. Productions
of degree zero are'called\h-rulesj gresmmars containing

no WM=-rules are said to be W -free,

In future, the simple term grammar should alweys
be understood to mean-a context free grammer and if we
| say only that G is a‘gramnar, without specifying it further,
then 1t is to be underetoed that G has the form
6= (Vy»VpoP,S) and that V will be used to denote Vi uVp .
‘Fufthermore, in order to avoid excessive qualification
we adopt e strict convention regarding the naming of
strings and symbols related to sueh a grammar, Our

convention is the following
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(1) A,B,Cy..s -  denote members of Vs

(11) a,b,cy..e  denote members of Vs
(111)  z,¥,X,...  denote members of V,

(iv) =,8,85.0+ denote members of V*, and
(v) Z,¥,Xs+e.. . denote members of VT*'

Also, p and g will usually denote members of P while
kym and n will denote hatural numbers, These conventions
should alwaeys be assumed to hold except where it is

explicitly stated otherwise,

Before describing how a grammer 1is used to define a
language we need one more definition., When G 1s a grgmmar

and « , P € V*, we say that o directly derives p

(with respect to G) snd write o -°->',a i1f and only if
there exists a production (A,0) e P and a pair of
strings ¥,8 ¢V such that

o =YAS and p = ¥0§.

We Wite —— rather than —> - when the identity
of G is clear. The interpretation of o -’IB is that . g
can be constructed from o¢ by replacing in o @an
occurrence of the left part of some production by its
corresponding right part. Clearly -» 1s a relation on v*
and we note in passing that P § — » 80 that a
production (A,8) may also be written es A = ©. This latter

- form will be preferred in future., The closures ="

2

and -> of -~ are pronounced " strictly derives"

end"derives" respectively,
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We are now sble to define L(G), the language generated

bythegrammarGas: L(G)-{x eVT S - x7?,
Members of L (@) are called the sentences of G. Languages
which can be génerated by context free grammars sare

called context free languages, Not all languages are

context free.,

When G is a grammar, 1t is usually convenient to
require that no members of V, nor of P, are redundant
for the purpose of generating sentences, Grammars which
satisfy this requirement are said to be reduced. Formally,
a grammar is reduced if end only if for each X e V
there exist strings o«(,p ¢ V' and x e Vp  such
that § =" «Xg - and X —- x . There is a
straightforward algorithm (see Hopcroft and Ullman (1969)
Theorems 4.2 and 4.3) to determine whether a given
grammar is reduced or not. Furthermore, a grammar which
is not reduced can be easily modified so that it becomes
80, without changing the language which it generates
(provided the language is not empty).

When we wish to specify a particular grammar for the
purpose of illustration,we will do so by listing Jjust its
set of productions, The‘nonterminal and terminal
vocahularies of a gremmar specified in this way are
implicit in the 1list of productions, ﬁy convention, the
goal symbol of the grammar is assumed to be the left part
of the first production appearing in the list, We
abbreviate sets of productions which share the same left
. part by use of the metasymbol "|" (read as "or"), For
example, A - x] y| 2 is a shorthand for the three

productions A - x , A - 'y and A = gz,
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We will use the following grammsr for demonstration

purposes throughout the rest of this chapter :

s -> B
A v—;  ha |
W
B ~ B
o .

It can be seen that this grammar generates the language

]
a b+o \
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1.4, Derivations,

When two strings o4, 8 ¢ VY are related by o >*g,

we can always find)(nét necessarily uniquely) a sequence
< Y, >‘.T° of strings in V™ such that

= Y, * Y, ey .. = na N Ym =@
Such a sequence is called a derivation of,g from o.
If mention of o« is omitted, so that we speak of simply
- "a derivation of @ ", then & derivation of g from S, the
goal symbol of the grammar, is to be understood. In many
epplications the sentences of a grammar are considered
to convey some "meaning" and our interest in derivations
is due to the fact that the meaning of a seuntence is

usually defined as a function of its deri#ation(s)-from the
gosl symbol. In general a sentence will possess more

than one derivation and this can complicate the determin-
ation of its meaning. In our example grammar, for

instance, the sentence ab has the following three distinct

derivations

(1) {8, 4B, Ab, Aab, ah),
(11)  <s, 4B, AsB, Asb., ab) , 8nd .
(111) {8, 4B, AsB, 8B, ab),

However, all three of these derivations correspond to
the following "parse tree" (a concept which we do not

define formally).
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/\ '
/\

W .

In order to avoid aifficulty caused by the existence of
several derivations which all correspond to the same parse '
- tree (and which are therefore conéidered to differ from

one another only trivally) it is usual to introduce a
canonical form for derivations, We shall be concerned with
"right-canonical" derivations v?hich, along with two ofher

restricted types of derivation, we now proceed to define,

Recall that when o, g8 ¢ v satisfy o¢ —>» g
then, by definition, there exist strings ¥,5e v and

a product:lonA => 0 in P such that «x = ¥AS§ and
B = 366, We say that o directly right-canonicallx

deriveSp and write o - p in the special caese that

§ e VT"; and we say that. o directly empty-free-first
derives 5 and write o => p  1in just the case thét
30 # W - Thus a right-canonical derivation step
differs from an ordipary one in that it must be the

right-most nonterminal in o¢ that is replaced to form B

én empty-free-first derivation step is one which precludes

the application of an w-rulg to the leading symbol of o,



18

In the case that both of these conditions obtain

simultaneously, we say that o< directly right- canonically

and empty-free-first derives,a and we write ot prop s

Thus — = —_— N =3
R/EFE . R arf

" "

For convenience we use the hyphenated prefix " r-
'to stand for "right canonicslly" or "right canonical" as
the context demands. Thus the closures - —=* and -
are pronounced "strictly r-derives" and "r-derives"
respectively., Similarly we use the prefixes "eff-" and -
"reff-" to stand for "empty-free-first" and "right-

canonically and empty-freezfirst".

We illustrate these relations using our example
grammar. Given below (Figure 1.1) are four pairs of
strings and we indicate the relations which hold between
each pair by a tick (relation does hold) or a cross

(relation dces not hold).

- == =
(1) ABA, BA Vv x g X
(11) Ab, b v /S X X
(111) ABA, AbA X 4 X
(1v) ABA, AB v v v )

Figure 1,1, Some Pairs of Strings from the Example Grammar
and the Relatiorgwhich hold between them,

‘When <, B ¢« V¥ are related by . =4 -—z;:*/, there
must be some sequence of strings <Ly> n " (again, not
Vicseo

necessarily unique) such that

0(3\’}01‘4)'—',‘9/,—:.-,1 -%\}l"-,—"\l)"‘P'
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Snch a sequence 1s called an r-derivation of £ from o.
It is easy to prove that if x e VT* and < e V.
satisfy o -»* x, fhen they also satisfy
= -—:"' X. Therefore every sentence of G possesses
én r-derivaetion and in general each r-derivation will

R correspond to several ordinary derivations. For
instance, we earlier exhibited three derivations of the
string ab with respect to the exsmple gremmar. Only
one of these derivations, namely (S, AB, Ab, Aab, adb)

is an r-derivation., We may define eff-derivations and

reff-derivations in a similar manner but note that not

all sentences of a grammar need possess eff or reff-
~derivations. (For instance, the sentence ab has no
eff-derivation - and therefore no reff-derivation,with
respect to our example grammar).
We close this section with the definition of two
functions which will be needed subsequently. When G is 

'a grammar, o« € V"l eand k is a natural number, we define @

G o .
FIRST, (o) = { kex l X e vT* and o - x}
: , and
G . ' *
EFFy () = fkix | x e V, andu«— x}

We will omit the éuperscript @ and /or the subscript k
from the names of these functions when their identities
are clear, It can be seen that FIRSTg(o() ~ contains the
- prefixes of length k to all terminal strings which cen
be derived from o, while EFFi(o() captures all those
members of FIRST& (¢ ) having derivations which do not
involve applying an W -rule to the leading symbol of a
string, '
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1.5. Ambiguity.

Wé have seen that the number of distinct derivations
| possessed by a sentence may‘be reduced by considering
" only those which sre r-derivations., Even SO,certain
grammars possess sentences with more than one r-derivation.
Such grammars are usually considered unsuitable for the
purpose of speéifying the syntax of programming languages
(although we will weaken this assertion later ) and are

said to be ambiguous. A gresmmar is unambiguous if it is

‘not ambiguous; that is if each of its sentences has
exactly one r-derivation. Note that if a gremmar is both
unambiguous and reduced, then it 1is not just its sentences'
which have unique r-derivations; the r-derivation of P
from o¢ will be unique for eny «,3 & ‘al such that

ot ' 4. It should also be noted that some (and

for our purposes, pathological) languages can be

generated by ambiguous grammars but not by unambiguous

-ones, These languages are cslled inherently ambiguous and .

we shall not consider them further,
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1.6, Further Notation Concerning Derivations.

~ When two strings aré related by « -> g8 we
often wish to be able to indicate explicitly the produc~
tion which is involved in the transformation of ol into
£ and also tﬁe position at which it is applied. We
| provide for this as follows. Suppbse that o = NKAS
and @ = ¥8§ and that A - 6 ¢ P. Let the production.
A —~ © be called q and let m = 1len (¥ ). Then we say

that " o directly derives s by applying production g

at position m" and we write o< —(q,m}= s . Similarly,

we may write
]

(1) o —q,m)p g . if m/fp e Vp,
(11) ¢ —{qym)s p | , if m>» 0, end
(111) o —qm)=p if both m/e ¢ Vy and m> O,

Using our example grammar we have, for instance,
ABA ~A->N, O)—> BA,
Ab —A-p, oy b,
ABA —(B-=~>1Db, 2)= AbA, . end
ABA —(A->N, 2)> AB,

REFF

When q € P and m 1is 8 natural number we éall the pair

(q,m) & derivation step (or more usually, simply a step)

in G. It may be seen that for each step (q,m) in G,
*
—(q,m}> 1is a relation on V and in fact

T — = m
(q,m) 1s & SLm>
"step in G
Analogous results hold for the relations. —>, ==, and.
Sm—

rerr *
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If we have a derivation Q = ¢ Y. >‘:' in G
there must be a sequence of derivation steps -
R = {(q;,m;)),., - such that
%.—(q‘Qm,)'_’ \'/. _-(qa'mz)—’\}’z s o ¢ \k"..-(q."m'n)_’ \I’“'-

We say that the sequence R is an explicit derivation

of , <from ¢ and, in order to distinguish it from
R,we will henceforth call Q an lmplicit derivation,
Explicit and implicit r- , eff - and reff-derivations
are defined in an exactly similar manner, Note that in
general the cofrespondence between explicit and implicit

derivations is many to one, However, in the case of

explicit and implicit r-derivations the correspondence is
one to one, Furthermore, when o ~q,m)= 5 , the
values of m and p can be deduced unigquely given only -

the values of q and X . This is becsuse in r-derivations
there is only one place at which a production mey be

- applied. It follows that the component steps of an explicit
r-derivation R = <(qi,m;)>‘.:“ of v  from Y,

- can be deduced uniquely given only the identity of the
string ¥, end the sequence of productions R' = (q,)."

[ ¥}

This sequence R' is cslled a parse of ¢, from ¢,

We have now seen that the explicit and implicit
f-derivations and also the parses in G ere in one to one
correspondence; they are really just slternative notations
for the same concept, None is redundsnt though; each has
its particuler uses, When Q is s parse (or one of the

equivslent notions)of p from « , we may indicate this
fact by writing a(-{b}ﬁzlg,
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To illustrate these ideas we use our example
grammar and the sentence aabh; « This sentence has the

following implicit r-derivation.‘

{S, AB, ABb, Abb, Aabb, Aasbb, aabb ),

the following explicit r-derivétion

{(s>48,2), (B~Bb,3), (B=b, 2 ),(A - A8,2),
(A=12,2), (A=a, 0)),

and the following parse,
{8 —> AB, B > Bb, B=+b, A —> Aa, A -~ As, A=A,

Given any one of these sequences we can reconstruct the

other two,
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1.7. Parsing;_

Given a grammar G and a string x e Vb* , the
problem of deciding whether x is a sentence of G is

called a recognition problem for G. An algorithm which

ysolves all recognition problems for G 1s called e
- Tecognizer for G. The problem of deciding not only
whether X 'is a sentence of G but alsoc (in the case that
- 1t is indeed a sentence) of specifying each of its
parses 1is called a parsing problem for G. An algorithm

., which solves all parsing problems for G is called a

parser fér G,

Parsers and methods for constructing them are

} ihterestihg objects of study in their own right and are
of praétical concern because of their application in

}the construction of compilers fdr programming languages.,
Most ﬁodern compilers are of the "syntax directed”
variety. This means that the process of compilation

(or more generally, of translation) is largely controlled
by the structure (that is to‘say, the parse)rimposed

upon the source program by the gfammar which defines the

. syntax of the language concerned, Typicdlly, each
production of the grammar has certain "semantic actions"
‘associated with it and the totai compilation process is
effected by composing these sctions in & manner determined
by'the parse of program bging compiled. A parser there-
~fore lies at the heart of every modern compiler and the

- properties and quality of this parser will strongly
 influence those of the complete compiler, For this reason,
algorithms for constructing parsers have received

' considerable attention and meny such algorithms have been

proposed,
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From among the many questions which may be asked
about a parser construction algorithm we select the

following as being particularly important :

(1) o whet class of grammars can the algorithm be
applied?

(11) To what class of langusges can it be applied?

(111) = How long does it take to test whether a grammer
is in the required class?

(iv) How long does it take to generate a perser?

(v) How complicated 18 the algorithm - is it feasible
: -to construct the parsers by hand?

(vi)  How fast are the parsers produced by the algorithm?
(vii) How big are they?
(viii) What quality of error detection do they provide?

Of course the importance attached to each question will
depend upén the intended application, We shall be concerned
with the "LR(k) parsing algorithm" which is a parsing

method applicable to thq class of grammars possessing the
so-called LR(k) property. The LR(k) parsers perform so
excellently in certain respects (notably in their generality,'
their speed, and the quality of their error detection)

that they serve as a yardstick by which other methods may

be Judged, |

Precise discussion of the LR(k) parsers asnd grammars
.neceésitates the use of considerable formslism. While this
provides for exactitude it also tends to obscure the
basic ideas and motivations, For this reason we now
introduce the fundamental ideas behind the LR(k) parsing
elgorithm in a different and somewhat more leisurely
fashion to that which 1is usual., It is hoped that this
extended discussion will enasble the gcquisition of sufficient
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intuitive 'insight to support the rather_severe‘formalism

of the later chapters,

The IR(k) parsing algorithm is a particular example
of a general class of algorithms known collectively as
- "bottom up" persing methods. The concept of a "handle"
is fundamental to algorithms of this type. A derivation
step (q,m) is said to be a handle of a string 8 whenever
there exists a second string « such that o¢ —(q,m)—; 4

Next we define an r-sententisl form (abbreviated rsf)

of a grammar to be a member of the set {o¢ ¢ v | s o},
The ambiguity of a grammar is related to the uniqueness

of the handles of its rsf's as the following theorem shows,

THEOREM 1,1

Let @ = (Vs Vips P, S) be a reduced gremmer in which
S -»* 8 does not occur. Then G 1s unsmbiguous if and
ovnly if each rsf of G 'has‘ but ‘a single handle, except
S which has none, OO |

This result may be proved by elementary means and allows
us to spesk of the handle of each rsf of an unambiguous
gremmer, We now introduce some additionsl terminology
concerned with handles,

If (q,m) is the handle (which we suppose to be
unique) of @, then g is called the handle production,

m is called the handle gosition,‘and the strings m:g

and m/P are respectively calle d the ‘left and right

gontexts of the handle, If production ¢ is A - © then

£ can be written in the form 2 = ¥6x where len(¥©)=m,
. This occurrence of © within g 1is called the
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handle .phi-ase of p. The sct of replacing the handle
phrase of a string by the left part of its handle
production is known as reducing the string (by its
handle ). Reducing a string p by its handle (q,m) will
yield the unique string o« which satisfies o¢ —q,m)}=p,

If, with respect to some unambiguous reduced

grammar we have @

L

S‘=\;/. -(é,.m,)-» Y, ~(qm =y .. yAq,,m Iuy, =X

then (q_, m, ) is clearly the handle of the sentence x’

Knowing this fact we can reduce x and thereby obtain

the string Y., - The hendle of vy,  is (qr_.,mr_,)
and so reducing ¥, ., in tur‘n yields the string Yoy .

If we continue in this way we will eventually arfive at
the goal symbol S and the sequence of handles found.
during this p'_ro‘dees will be <(qi , 0 )>,'

[ 2 of
Just the explicit r-der«ivatiion of x in reverse order,

- which is

This is the basic strategy underlying the bottom up
parsing.method. The following algorithm describes this -

method more exactly,
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ALGORITHM 1,2

Bottom up parsing algorithm

Input An unambiguous grammar G and a sentence
'x e L(G) which is to be parsed,

Output : The explicit r-derivation (in reverse order)
of x with respect to G.
Method ¢

1. Set B = x.

2. Repeat steps 3 and L4 until g = S,

3. Determine the handle of s and | output it.
L. Reduce @ by its handle and let the result

replace g. [

‘Notice that we give no indication of how the handle
‘might actually be determined in step 3 of this algoxj.i.thm
- this is because we are presently concerned only with
the overall form of the strategy employed. Notice also
that the algorithm is not a true parser since it sssumes
.that its 1input x 15' known beforehand to be a sentence

of the gremmar concerned, These issues will be resolved
later, Observe that the algorithm must terminate after
executing a finite number of stepé since each execution -
of step 3 outputs a different stepof the r-derivation of
ic, and every r-derivation in an unsmbiguous grammar 1s
finite. (A sentence can possess an r-derivation of infinite

length only if it possesses an infinity of r=-derivations.)

If we imegine a parse tree for the input sentence
drawn in the conventional manner with the goal symbol at
~the top, then Algorithm 1,2 essentially enunerates the
nodes of this tree form the bottom to the top. This

is the origin of the name "bottonm up"’ used to describe
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the algorithm,

As 1t sténds'Algorithm 1.2 is not{weil suited to
computer implementation., Even if somejmethod were prese—
cribed for finding the handle in step 3, the manipﬁlation
required in Step 4 would remain decidedly inconvenient.

It is possible, however, to modify the basic bottom up
-approach so that the reduction of strings may be performed
more economically. In this modified form the method is
known as the 'shift-reduce" bottom up parsing algorithnm.
The 1idea behind'this new method is to work through the
input sentence, one symbol at a time, remofing'symbols
from the input and placing them onto a stack (usually
called the "parse staék"). This pfocess continues until
the handle phrase lies wholly on top of the stack. At

this point the input string must be reduced and this is
easily accomplished by first '"popping" .the handle phrase
off the stack and then "pushing" the left part of the
handle production onto it. It is an elementary, though
 to this algorithm crucial,property of r-derivationsthat
after this has been done the string formed by the
concatenation of the new steck contents and the.so far
unconsumed input is such that its handle position is
e;ther at, or to the right of, the point of concatenation,
This means that the entire process can be performed
repeatedly until the parse is complete., It can be seen
that this method is composed of two primitive operations;
at each step we either move a symbol from the input string
to the stack (we say that a symbol is "shifted" onto the

steck and so this operation is called a shift move) or we

replace a handle phrase lying on top of the stack by the
left part of the handle production. This latter operation
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18 called a reduce move, It is from these two types of

 "move" that the shift-reduce bottom up psrsers get their
nane,
The decision as to which is the appropriate type

of move at e}ach step is determined by a parsing action

function., If « denotes the contents of the stack and

z the unconsumed input et some particuler point, then
the parsing action function f(o¢,2) yields the value
"SHIFT" if a shift mdve is correct or the value "REIUCE
qQ" if s reduce move involving production q is reguired.
This lest means thet deg (q) symbols are to be
~discarded from the top of the stack and the left part
of production q i§ then to be pushed onto it, We now

give a precise deséription of this algorithm,
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ALGORITHM 1.3

Shift - reduce bottom up pansing algorithm,

Input : An unambiguous grammar‘G end a sentence x e L(G)
wvhich is to be parsed, .

The parse of x with respect to G (in reverse order),

Output

Method ¢ We use z to represent the unconsumed input and
o¢ to represent the parse stack. The top of the
stack is assumed to be to the right.

1, (Initielise) Set x =W and 2z =x,

2. . .  Repeat step 3 until xz = S..

3. Evaluate f£(« ,2z) and execute whichever of

sub~-steps (a) or (b) is appropriate.
(a) Ir f£(oc,2) = SHIFT then remove the first
symbol from z and push it onto the parse stack.

(b) I f(e¢,z) = REDUCE q then output g, pop
deg (q) symbols off the parse stack and then
push the left part of production q onto it.[

The precise bebavidur of Algorithm 1.3 cléarly depends upon
that of its action function and in order to establish the
correctnéss of the algorithm it is therefére necessary to
specify this function more complétely. Now we have seen

from the discussion prgceding its introduction that Algorithm
1.3 18 intended simply as a more convenient forhulation of
the basic bottom up parsing method given in Algorithm 1.2.

We can indicate this correspondence more exactiy as follows,
Let p;‘ denote the contents of the variasble s in Algoritha
1.2 immeidately before the i'thvexecution of step 3; also

let «, and 2z, denote the contents of the variables « and
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z in Algorithm 1.3 immediately before the 1'th
execution of sub-step 3 (b) in that algorithm. Then

the intention is to maintain B equal to the
concatenation o¢; 2, end this implies that the action
function of Algorithm 1.3 must satisfy the following

condition.Whenever oz 1s an rsf of G whose handle

(q.m) satisfies m » len () we must have @
f (x,2) = REDUCEq if m = len (&), and
f (¢,2) = SHIFT ifm > len ().

Given that this condition is satisfied, it is easy to
see that the correctness and finite termination of

Algorithm 1.3 follow directly from those of Algorithm 1.2.

Notice that we ere only concerned about the value
of the action function in the case m ) 1len (). This
is because Algorithm 1.3 always maintsins its parse stack
o« 80 that its contents are a prefix to the left context
of the handle of <z . We say that the parse stack always
contains a "viable prefix" of the grammar. More precisely

a string o« 18 a viable prefix of G if and only if there

| is some string‘g such that 093 is an rsf of G with a
handle (q,m) satisfying m ) len (o). The set of all
vieble prefixes of G is denoted VPG. Plainly the domain

of the action function in Algorithm 1.3 is contained within

the cartesian product VPG X Vh*.'

If we wish to construct practical persihg methods
based upon Algorithm 1.3 then we must propose methods for
determining the correct values of the action function. One
possible approach is to relinquish the generality of this
Parsing method and to seek specisl classes of grammars whose

ection functions have a particularly simple form. This
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might be done by requiring, for example, that the value
of f(o<,z) - be uniquely determined by Just the last
few symbols‘of o« and the first few symbols of 3z,
Several practical parsing methods are essentially of |
this type. A generalisation of this idea is to partition
the domains of each of the arguments to the action
function into a finite number of equivalence classes

and. to require that all members of each equivalence class
yield the same function value, The previously mentioned
technlque of considering Jjust a few symbols from each of
the arguments is merely a particularly simple way of
imposing these'partitions.

No matter how thié rartitioning is performed, it
1effective1y reduces the domain of the action function to'
the cartesian product of the two finite sets of .
equivalence classes, If we redefine the action function
so that it operates on the.equivalence classes of strings,
" prather than on the strings themselves, then the.domain

of the action function becomes finite and so its values
may, in principle, be tabulated. By doing so we can reduce
~ the determination of the correct move at each step of

- Algorithm 1.3 to a straightforward (and potentially very
fast) table look-up operation. Observe that in order to
look up the value.of the function f(x,z) 1t is first
necessary to determine the equivalence classes which

the arguments « and 2z belong. when the equivalence
vclasses‘are constructed on the basis of conéidering only

" a tew symbols from each argument this determination is,

of course, trivial, In fact, virtually all .parsing methods
of this general type do treat the second argument, that is
the unconsumed 1nput,‘in this simple fashion, Typically
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they will consider Jjust its first k symbols, where k

- 1s a fixed natural number which parameterises the
method, These methods are sald to employ a k symbol
"lookahead", However, certain methods (and the LR(k)
parsers are among them) while employing a k symbol

© lookahead in’order to partition the second argument

- to the action function, do not partition the first
ergument (that is the set VPG) on the same simple basis
but ere rather more subtle, With these methods it
becomes non-trivial to discover the equivalence class

- to which a given viable prefix belongs.

‘Th;é difficulty can be eircumvented by imposing
additional coustraints upon the way in which ve? 1is
~partitioned. Let Q be the set of equivalence classes o
_into which VP is partitioned (these clssses are called
ststes ) and let EQUIV : VPG-} Q be the function which -
meps viable prefixes into their corresponding equivaleneé
classes. If o« and g are visble prefixes of G such

that EQUIV (o< ) = EQUIV (£) end if X e V is

such that both oX and AX are also viasble prefixes,

then we shall require that EQUIV («X) = EQUIV (gX).

- Not all partitions will satisfy both this constraint and

‘that attendant upon the correct behaviour of the action
function; some grammars may fail to possess any satis-
- factory partitions at all. However, when the condition

' above_&g satisfied we may construct a parsing goto

" function g : Q x V =>» Q as follows, Whenever o< € v*
and X € V are such that both o« end oX are viable
prefixes, we define

g(EQUIV(e<), X) = EQ@IV(xX).
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The conditibn given above is simply that necessary to
ensure that g is truly e function (that is it is single-
valued)., Note that g is a partial function, when &« 1is
a visble prefix but «X is not,the value given to
g(EQUIV(ox ), X) is unimportant. Since its domain is
finite, the values of the goto function may be tabulated,
just like those of the action function, |

‘The goto fuhction is employed in a modified version
of Algorithm 1.3 in the following manner, Another stack,
called the state stack 1is maintsined in pérallel with

the parse stack,. Each position in this second stack
records the state (that is to say, the equivalence class)
to which belongs the string lying below the torresponding
position in the parse stack. Whenever symbols are popped
off the parse stack the same numbér of states are dis-
carded rrom the top of the state stack. When a new symbol,
' say x, is to be pushed onto the parse stack, the top
element of the state stack is.first inspected. This state,‘
say 8, will be the equivalence class to which thevcurrent
parse stack contents, say o ; belong. (Thet is to say,

8 = EQUIV (¢ ),) The goto function is then applied to s
and X in order to yiéld g(s,X) - which is}the equivalence
class to which the new pearse stack contents «X will belong.
The symbol X is then pushed onto the parse stack and
g(sy X) 1s pushed onto the state stack, thereby maintaining
the required correspondence between the contents of the

two stacks,

In this way we arrive at a '"table-driven shift-reduce
bottom up parsing méthod using k symbol lockshead" ( we
will say simply a "table driven parser" in future). The
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precise behaviour of a parser of this type'is'determined
by the value of k (that is the amount of lookshead )
employed, the way in which the viable prefixes of the
grammar are partitioned into states, and the values
which ere given to parsing action and goto functions.

In order to start the parser offlwe_will also need to
know the state to which the initiél parse stack.
contents (that is the empty string,/ ) belong. Ve may -
collect all this information together and say thaf it

comprises the "tables" which "drive" the parser.

Specifically, we will define a set of parsing
tebles (using k symbcl lookshead) as a L-tuple
T=(Q,s°,g,f),where'é
(1) Q is a finite non-empty set of parsing states

(these are the equivalence classes into which
ve® 1s partitioned), ‘

(11) s, is a distinguished initial state,
(111) g : Qx V- Q '1s the parsing goto function, and

(1v) £+ Qx V'K actions % 1s the parsing
action function where ACTIONS®?, which is the set
of all possible psrsing asctions for the grammar G,
is defined by '
AcTIoNs® - {ERROR, SHIFT} . {REDUCE q | q e P},

Notice that,in order to provide for error detectlon,we
have now enlarged the range of the action funcfion‘to_ ‘
include an ERROR action., However, this provision may be
insufficient to ensure that all errors are detected (it
depends upon the particular tables and value of k
employed). For this reason the detailed specification of
the table driven parsing method given below includes
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additionél efior detection facilities., Full discussion

of the detection of invalid inputs is postponed until

later,

 ALGORITHM 1.4

‘Tgble driven parsing'algorithm'using,k symbol lookahead.

Input

Output

Method

1.

2.

3.

e

(2]

Aset T=(Q,8,8ZFf) of parsing tables for
G and the string x ¢ v; ~which is to be
parsed,

Ir x e L(G) then the perse of x (in
reverse order), otherwise an error indicetion.

(Initialise) Empty the parse and state stacks
and then push s, @ onto the state stack, Set
2 = X. : 4

Repeat'step 3 until either acceptance or
rejection occurs. (In the latter case the
algorithm halts with an error indication).

Determine the current lookahead string u= k:z
and set 8 equal to the state currently on top
of the state stack., Look up £(s, u) and
execute whichever of sub-steps as. (v) or

(c) 1s appropriate, |

() 1If £(s,u) = SHIFT do the following : |
(1) if 2z = A then reject the input xand
halt, otherwise

(11)remove the first symbol, say a, fromz;

(111) look wp g(e, 8) ;

(1v) 1 g(s, a) is undefined then reject
the input x and halt, otherwise

(v) push a onto the parse stack and g(s,a)
onto the state stack., | ‘
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(b) Ir £ (s, u) = REDUCE q then output g
. and do the following @

(1) If the parse stack contains fewer
than deg (q) symbols then reject the
input x and helt, otherwise

(11) ‘remove deg (q) symbols from the
parse stack and the same number of
states from the state steck (note that
the state stack is always one longer
then the parse stack)

;_ (111) . set A equsl to the left part of
production q;

. (1v) if the state stack now contains
just the single state s, and A = S
and 2 =A then accept the input x
. and halt, otherwise s ‘

(v) set r equal to the state currently on:
top of the state stack ;-
(vi) look up g(r,A);

(vii) ir g (r, A) is undefined then reject
the input x and halt, otherwise

(vi11)  push A onto the psrse stack and
g ( r, A) onto the state stack.

() 1 £(s, u) = ERROR then reject the input x
' snd halt, O

Observe that in order to execute parts (1), (11) and
(111) ofstep 3 (v), Algorithm 1.4 requires to know the
degree and left part of each production. In practice this
| information is provided by a pair of additional tables

which augment the parsing tablea proper,

Notice also that the contents of the parse stack are
never consulted by Agorithm 1l,4; only the state stack is
really necessary., However, for both theoretical and practiceal

reasons it is often useful to retain the parse stack.
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“On'itsvown, Algorithm 1.4 is not a complete parsing
algor}thm since its piecise behgviour'is determined by
‘the particular sét of parsing tébles;used fo drive it.For
this réasﬁn we do not usuélly consider the properties of
Algorithm 1.4 independently of a particular method for
cénstrueting 1ts‘tables; We will examine the conditions
necessary to ensure the correctness of the algorithm}
shortly, but first we will consider én example of a |

parsing method of this type.

We will use the familiar example‘érammar which hes
v“been‘uged throughout this chapter. For use within persing
tables it is convenient to give each production of the

- grammar a number, We reproduce the example grammar below
with numbers written alongside the productions to which
they refer,

1. .S v AB

2, A = As|

3 N
4 B e=Bb| .

5 R

A set of paraing tables for this grammar using 1 Symb°1
yrlookahead are shown in Figure 1 2. We will not indicate
how these tables might have been constructed; this topic
is considered in Chapter 2.
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STATES ACTION FUNCTION GOTO FUNCTION
N a b a] b A B S

B 3 3 2

2. sh sh 3 L 5

3. . 2 2

1&. j. 5 | 5

5. l 1l sh 6

6. |u | |u

Figure 1.2, Parsing Tables for the Example Grammar

In Figure 1.2, thé parsing states are represented by
integebs. By convention, the initial state is always |
supposed to be state 1, The entries in the action function®
portion of the table are to be interpreted as follows :’
sh means SHIFT, a number means REDUCE q where q is the
production with that number (e.g. L4 means REDUCE B - BD)
and a blank means ERROR, In the goto function portion of
the table a blank means "undefined". Now consider the

~ behaviour of Algorithm 1.4 when driven by the tables of
Figure 1.2 and presented with the input string abb,
Initially the parse stack will be empty and the state
stack will contain Just the initial state 1. The first
lookshead string to be determined is a (remember we are
using 1l symbol lockahead) and so £(1,2) is inspected.
~This ylelds the value 3 which mesns REDUCE A =W\ .

. Since the degree of this production is zero, no symbols
are popped off the stacks and so 1 remains the current

state. The left part of the production, that is A, now
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needs to be pushed onto the parse stack and so the
value of g( 1,A) is inspected in order to yield the
identity of the corresponding state. We find that

- g(,1,A) = 2 ahd so 2 1s pushed onto the state stack
while A is‘pushed onto the parse stack. The parser
then inspects f(2,a) and obtains the value SHIFT. |
This means that the symbol a is removed from the input
string and pushed onto the parse stack while 3 (the
value of g(.2,a)) is pushed onto the state stack.
Coutinuing in this fashion,the psrser will trace out

the s equence of moves summerised in Flgure 1.3.
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SYMBOL STACK STATE STACK | UNCONSUMED | = ACTION
" CONTENTS - | CONTENTS | INPUT
TS I |  abb REDUCE A -\
A | 1,2 | awv | sHIFT
ae | 1,2,3 ~bd | REDUCE A - Ae
A SR I V- “wb | sHrFr
s | n2,4 | b REDUCE B~ b
AB | 12,5 1 v SHIFD
am | 1,256 | M | RepUCE BB
3 |25 | WA REDUCE S —= AB
B N and
ACCEPT
Filgure 1 _The behaviour of Algorithm while persin

the string abb using the tables of Figure 1,2,

It can be seén from riguré 1.3. that the string abb is éccepted
by the parser énd that the sequence of p?oductions output

during the reduce moves is {A—>AN , A -~ As, B — D,
B — Bb, S -» AB " which is indeed the correct parse

(in reverse order ) for the given input.

We will now exemine the conditions which the parsing
tebles T = (Q,s8, ,&,f)  must satisfy if they are to drive
 Algorithm 1.4 .correctly.We have elready mentioned some of
these conditions but we collect them all together here for
convenience, First recallithat the states in Q are intended
to be the equivalence classes into which the viable prefixes

of G are partitioned. In order that every vigble prefix may
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:belong to some state and thst no state be redundant we
must require that the function EQUIV: VB° —s Q
whidh‘takes‘viaﬁle prefixes'intb their corr¢3ponding
‘states be ajéurjeétiveAmapping. In order that the goto
function fulfills its role correctly it must satisfy
g (EWIV (¢ ), X) = EQUIV (xX) whenever o e VP® and
X€V are such that =X € VP®, And in order to ensure
’that the goto function is truly a function we must

require that whenever o(,7 € VPG

and X € V are such
‘that
(1) EBEQUIV (x) = EQUIV‘(,@) and
(1) oX, Ax e vB°
then | EQUIV (o< X) = EQUIV ( p X).

- These conditions are all straightforward consequences of
the purposes for which the goto function is used. Notice
‘that the function EQUIV which features prominently in

the statements of these conditions is not 1tself included
in the parsing table, This is because, in practice, 1t

is never constructed explicitly; it is merely = convenient

theoretical device,

| Finally’we need 1o examine the-cbnditiéns which\the
action function must satisfy. Observe that the basic moves
»of Algorithm l L4 are essentially the same as those of |
Algorithm l 3 and that the present action function differs
from the earlier one.only in that 1ts arguments are
equivalence classes of strings rather than the strlngsv
theméelves.vConéequently the cbnditions which ensure the
correctness of Algorithm 1.3 lmmediaﬁely yleld the follow-
ing conditions for the action function of Algorithm 1.k.

Whenever oz 18 in rsf of G whose handle (q,m) satisfies
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m 3 len(ox ) we must have ¢

£(EQUIV(e ),k:z) = REDUCE q if m = len(e ), and

£(EQUIV(e¢ ),k:2) = SHIFT  if m > len(e ).

The conditions gbove are those which are hecessary
and sufficient to cause the parsing tables T = (Q,s,,&,f)
to drive Algorithm 1.4 correctly when its input string is
a valid sentence.of the grammar, But if the algorithm is
to be a true parser, it must not only psrse sentences
correctly, it must slso reject all inputs which are not
valid sentences, However, we will not provide conditlions
upon the parsing tables which guarantee this detec- -
tion of . invalid. inputs . since conditions of this sort
depend crucially upon how early during the processing of
invalid inputs we wish rejection to occur. Instead,
whenever a method for constructing parsing tables is
proposed, we will expect an argument to be provided which

demonstrates that all invalid inputs will be rejected,

We have now reached the end of this rather long
section and have barely mentioned the supposed subject
matter of this thesis - the LR(k) grammers snd parsers.
These are discussed at length in Chapter 2 but their
'importance will become apparant'when we state that the
IR(k) grammsrs are the largest class of grammars which
can be parsed by the table-driven method of Algorithm 1.4
using k symbol lookahead, Furthermore, a set of parsing
tables of the type we have described can be mechanlcally

constructed for any LR(k) grammar.
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'1Q8 Classes of-Langggges and their Recognizers.

In the previous section we indicated that in the
interests of efficiency and simplicity we are willing .
to consider pérsing methods which are applicable to only
a subset of the context free grammars, It is natural to
sﬁppose that such restricted classes of grsmmars may be
capable of genefating.only a subset of the conteXt free
‘1anguages. Lateb on we shall be concerned to characterize
these classes of lgnguages and will seek to do so0 in
‘terms of the élasses’of "deterministic" and "strict
deterministic" languages which we shall define shortly.
We shéll'alao need to use the properties of "regular? |
languages and of "finite eutomata". Our treatment of |
these topics will be rather terse, For a full discussion
of most of this materisl see the book by Hopcroft and.
Ullman (1969). : | '

When A 1s an alphabet, the regulsr languages (also

‘_called the regular sets or regulsr events) over A are

| defined recursively as follows ¢

(1) @ is a regular language over A,
(11) {A} 18 a regular language over A,

(114) {al] 48 a regular language over A,for all a ¢ A, and

(1v) if P and Q are regular languages over A, then so are
(8) PVQ:

(b) PQ, ana
(¢) P,
(v)  Nothing is e regular language over A unless it 1is

80 by virtue of (1) to (iv) above.
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It cen be shown that the regular lenguages are
precisely thosé which can be generated by context free
grammars when certain restrictions are placed on the
form of productions which may be used., Thus the regular

languages are a subset of the context free languages

and can, in fact, be shown to be a proper subset.

The regular iahguages may also be characterised
as the class of languages which can be recognized by
finite automata. Formally, a finite automaton is a
aystem M = (.Q, q,,FI,8) where Q is a finite
non?-empty éet of states, q, | e Q 1sa distinguished
iﬂ&ﬁé&l.éﬁgﬁs. F ¢ Q 1s a set of finel states, I is

the input alphabet and §: Q x I —» Q 18 the transition

function. A finite automaton may be pictured as a
control unit equippéd with a reading head which can
fead symbolskfrom a linear input tape in a sequentiél,
left to right manner. The symbols on the inpuﬁ tape are
chosen from the‘alphabet I. At én& instant the control
unit may assume one of the states of Q; initially it is
in state q, end the read head is poaitiéned over the
left most symbol oh the 1nyut'tape. The interpretation
of 5(q, 8) =p for p,ge Qand a ‘¢ I is that M,
currently 1n’state‘q and scanning the symbol a, moves‘
its read head one symbol to the right and goes into
state P. ' '

The type or automata defined above are actually
known as the determinis &;g finite sutomata (DFA for short)
A related class of sutomata are known as the nondetermin-
istic finite automsta (NFA for short) and these are
distinguished from the determiniatic variety by their
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‘ability to assume several states simultaneously. The
formal definition of an NFA differs from that of a

DFA only in that the value of J&(q,e) is allowed to be
‘a (possibly empty) set of states rather than Just a
 single state, This meens that in an NFA, § : Q x I - 29,
We shall in fact be mainly concerned with extended
NFA's (ENFA for short) which are NFA's augmented with
the additional capability to change stateé without ,
consuming input, In an ENFA, § :Q x (Iv{A]})—> 2Q.
Since DFA's and NFA's are special cases of ENFA's, we.

shall now concentrate on ENFA's,

In order to define the behaviour of ENFA's we -

introduce the notion of an instantaneous description -

(abbreviated to ID). An ID is a pair (qg,oc) where aq

is (one of) the current states of the control unit and
x € I'is a string of symbols writtean on the input .
tape starting in the position currently under the read
~head and extending to the right., A move of an ENFA 1is
denoted by the rélation ~ on ID's. For p,q,r ¢ Q,
a e I andope eI we define (g,8c¢ )l (p, o)
if. p e §(q,a), eana (p) + (rg) '
if r e8(qy N ). We are principelly interested in the .
reflexive transitive closure |-' of |~ . The interpre-
tation of . (G ox) b (p,A ) "~ is that, starting
from stete q with input =< , the ENFA will be in state
p (among possibly several others) after reading all the

symbols of o« , We use ,p—' to extend the domain of

.
§ to Q x I by the definition :
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e )= foe @l @) =* (o,0)).
Thus §(q,¢) is the set of all states which the ENFA
can reach by starting from state q and reading the string
< o« A string o € I' 4g accepted by the ENFA if
Sla,,x) AP # @ , that is if the automaton
can reach a final state when started from the initial
state with input of . The langusge recognized by an ENFA
M is’denoted by T (M) end is defined as the set of all

strings accepted by M,

Despite seeming to be more powerful devices, ENFA's
and NFA's recognize exactly the same cless of languages
as their deterministic counterparts, that is the regular
sets. The concept or.nondeterminism is an important one,
however, and we shall meke use of ENFA's is some of our
later constructions, We will often represent particular
ENFA's pictorially by means of "transition diagrams®”, |
These are simply directed grasphs in which nodes represent
states and an arc lsbelled a is drawn from node q

to node p if p e &(q,a).

Earlier we defined the context free languages &s
those which can be generated by context free grammars,
They may also be characterized as the class or‘languageg
which can bé'recognized by nondeterministic pushdown
sutomata (NPDA for short), An NPDA is basically an NFA

sugmented by a second tape which can be both read and

~written by the device and which is used as a pushdown
store or stack, Unlike the case with finlite sutomata,
the deterministic veriety of push down sutomata are less

powerful than their nondeterministic counterpaerts. The
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‘class of languages which can be recognized by a determ-

inistic .pushdown sutomaton ( a DPDA for short) is
" called the deterministic languages, These are a proper

subset of the context free languages but are probsably

more interésting and important theoretically and better

suited as models of programming languages than the

"larger class, One reason for this is that the determin-

- istic languages can all be recognized 1n-11hear tine

| by conventional (i.e. deterministic) models of computation.

Although it is not known for certain that the recognition

problem for general context free languages is of non-linear

complexity, the best algorithm‘khown sd far runs in
| '  nlog,7

deterministic time proportionsl ton wvhere n is

the length of the input string. (See Valiant (1975)).

The final class of 1anguages‘whiéh we need to |
1ntyoduce are the strict deterministic lan es., These |
are the languages which éan be éecogniéed by "empty store"
‘on a DPDA, ?hey may slso be dgfined as the cleass of |
prerix-freeldeterministic 1énguages.f(A language L is

prefix-free 1f both o¢ -and 3 in L impliespg = A. )
This cless of lesnguages has been extensively studied by
Harrison and Havgl (1973,1974) asnd we shall find it
useful for the purposé of charactérizing further classes

- of languageé.
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CHAPTER 2,
THE. LR(k) PROPERTY

In this chapter we introduce the LR(k) grammars
and languages and discuss their properties together
with those of the assocliated parsing algorithm. Our
main concern is8 to present a thorough yet straight-
forward development of these topics, thereby laying a
secure foundation upon which to base the extensions
and modifications which are the subject matter of

later chapters,

In the néxt chapter we will construct a theory
which is a true generalization of the one to be
discussed here, Much of the development in that
chapter will parallel that in this one - in this way
we hope to make clear the relationship which exists
between our new theory and the established theory from
which it is derived. The rather considerable length of -
the present chapter is due to the need to introduce and
state carefully all results which have counterpearts in
the generalized theory. This is necessary not only for
the purposes of comparison end analogy, but also because
many proofs in the next chapter depend upon these

:'results from the standard theory.

Our treatment of the standard ILR(k) theory

"__tollows approximately that to be found in the original

paper by Knuth (1965) and the standard work of Aho and
Ullmen (1972a) although slight changes in both treat-
ment and notation are necessary in order to support our
subsequent extensions, We also include material from
other sources, notably Geller and Harrison (2973),

Harrison end Havel (1973,1974) and Hunt,Szymanski and

.. Ullmen (1974,1975), e
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Because we are primarily interested here in the
general flow of the development, rather than its
detalls, most results are stated without proof but
are provided with explicit references to sources in
the literature where proofs may be found., However,some
results are proved here in full even though similar
proofs are availsble elsewhere. The reason for this is
that modirfied versions of these proofs will be used to
establish more general rasglts in the next chapter.
The proofs given in this present chapter are structured
8o that these later modifications are supported most

naturally and easily.

We begin by considering a definition of the LR(k)
- grammars and briefly discuss its relationship to
alternative definitiouns,
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2.1, The LR(k) Gremmars and Languages.

~ Enuth (1965) introduced the LR(k) property in
order to characterize those languages which are
"translatable from Left to Right with bound k",

' That is the class of languages with the property

that "if we read the characters of a string from

left to right, end look a given finite number (i.e.
k) of characters shead, we are able to parse the
given string without ever backing up to reconsider

a previous decision" (op.cit., page 607). In other
words, the LR(k) property attempts to characterize
the languages which can be parsed deterministically
using k symbol‘lookahead.lor course, a given language
may be genergted by several different grammars, and
the difficulty of parsing ita strings ﬁill usually
.depend critically upon the pafticular grammar with
respect to which the parse is required. For this
reason, the LR(k) property is defined as a property of
grammars, and not of languages directly.

As a first attempt at the formalisation of this
notion, we may take the following definition which 1s
paraphrased from Kouth (op.cit., page 610) s 'a

_gremmar 1s LR(x) if and only if any handle is always
uniquely determined by its left cbntext and the first k
symbols of its right context'. Now when « is an rsf with
a handle (p,m), the string which comprises 'its left
context and the first k symbols of its right context' is
given by (m+k)s« . Using this fact, the previous
definition may be re-expressed more formaily as follows
a grammar is LR(k) 1f and only if whenever « and p ere
rsf's with handles (p,m) and (q,n) respectively such
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that (m+k):x= (m+k)sps , then (p,m) = (q,n). This
is the basis of the following precise formal
definition, due to Harrison snd Havel (1974).

DEFINITION 2.1

Let @ = (V,, V;, P, S) be a grammar and k a natural
number. Then G is IR(k) if and only if the following
conditions are satisfied,
(1) G e reduced end S+'S does not occur in G, and
(11) wheneverx and g are rsf's of G having handles
(p,m) and (q,n) respectively, such that
n/8 € V; and (m+k):o = (m+k):P , then

necessarily (p,m)=(q,n) ' '

A language is said to be LR(k) if it is generated
by some LR(k) grammar.(

Before discussing the details and implications
of this definition we will examine two illustrative
examples,

Consider first the grammar whose productions are @

S —e aAc
A — DAD| (Grammar G1)
b
' This gremmar generates the language {abzmlc | ny 0}

and is not LR(k) for any k. This is because, for
each k > 0, we can construct the pair of derivations :
§ = ab¥av¥e ——(A~b, ke2)w atP¥tlc

S ‘{ﬁbk*lAbk‘*lc —{(A~+Db, k+3)= ab2k+3c .
It is easily seen that the handles of the rsf's eb’X+lg

and ab®*3 violate condition (i1) of Detinition 2.1.
From the point of view of parsing, the problem with

this gremmar is that having read the partial string ab®,
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no definite information sbout replecing the last b
is provided by the next k symbols; we must wait
until the symbol ¢ is encountered, On the other hand,
the gremmar : ' |

'S == aAc '
A - %bbl (Gremmar G2)

which generates exsctly the same language as G1, is
LR(0). These examples clearly show that LR(k) is a

property of the grémmar,anot of the language alone,

Three points concerning Definition é.1. deserve
mentiﬁn. Firstiy, the requirement that the grammar
be reduced is made simply ror mathemstical convenience.
This restriction should cause no practicalidifficuities
since any grammar may easily be amended so that it

becomes reduced without changing 1its essential structure,

_nor the lenguage which it generates, Secondly, exclusion .

of derivations of the form S —'S is necessary because
certain ambiguous grammers would otherwise be

admitted -~ the grammar
S—-’SIG‘

Qduiﬁ sévghhamﬂiéﬁoﬁa iR(b;ﬁéfammar~f6§%;;é;§1e. Geller
end Harrison (1973) report that Salomaa (1973) first'
noted that the production S « S should not be allowed
in LR(k) grammars, while they attribute the exclusion

of all derivations of the form S-'S to S. Grehanm.

Our definition of the LR(k) property esdmits no
ambiguoua grammars, This fact is established in the
following theoren,
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THEOREM 2,2

If G is an LR(k) érammar, then it is unembiguous.
PROOF. Becsuse we stipulete that 8 —" S cannot ococur
in any ILR(k) grammar, S can have no handle, Obviously
every other rsf of G possesses at least one handle,

but because G is LR(k), it is immediate from part (i1)
of Definition 2,1, that no rsf can have more than one
haudle, Thus every rsf of G has exactly one handle;
except S, which has nohe. The conclusion of the theorem

then follows directly from Theorem 1.1. O

The third point we wish to make about our
“definition of the LR(k) property concerns the condition
‘m/s e V# which appears in part (i1) of Definition 2.1.
As noted by Harrison and Havel (1974), this condition
1s absent from certain rival definitions (for exsmple
that of Salomsa (1973)) and can be shown to make no
~difference to the class of grammars defined in the case
k>0, When k = 0, however, omitting this condition.
causes the unnecessary exclusion pr all grammsars
containing W =rules, For example, contrary to our

natural intuition, the grammar

, S - Sal»/\l

“would faill to be LR(O) even though it can be parsed
without lookshead., As well as reducing the class of
gremmars defined in the case k = 0, omitting the
condition m/8 ¢ Vi also causes mathematical

difficulties when k = O,

Since we have argued for the retention of the
condition m/a ¢ Vr 1in Definition 2.1, 1t may be

wondered why we do not also include the similar condition
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nfoc e V;. ‘The reason is that this new condition is
‘not independent of the others and may, in fact, be
deduced from them. For technical purposes this result
is useful in its own right and provides the following

lemma,

LEMMA 2,
Let G be a grammar and let « end p be ref's'of G with
hendles (p,m) and (q,n) respectively such that

*
m:x = m:g . Then n/x e Voo

PROOF. Bgcéuse (p,m) 18 a handle for o< , we have
mfx e v, Siﬁilarly, the fact that (q,n) is a handle
for g provides n/,g e V; . Clearly, if n 32 m then the
conclusion of the 1'eimna is satisfied immediately. .
Suppose, on the other hand, that n < m, Certainly o
contains no nonterminals to the right of the m'th

position. But also, becguse miox = m:s and njs e V;,

neither can it contain any nonterminals between the

n+l'st and m'th positions., Thus n/x e V; eand the lemma

is proved. O
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Although the LR(k) gremmers have been extensively
studled, several different definitions have been
emp}oyed. Not»ali 6: these definitions are equivalent
to ours (we have already seen that this is so in the
cese of Salomaa's definition) and so we briefly mention
- two of the major alternatives, Definition 2.1, differs
from the formal definition used by Knuth (1965;pagé 610)
in that it does not use endmarkers. Essentially, Knuth's
definition requires that the grammar be augmented by the
addition of a prcduction. S8' — 8 .1 where S' is a new
goal symbol andl is a special endmarker symboel, Geller
and Harrison (1973) show that this definition 1s
equivslent to ours when k> 0 but that it reduces the
class of grammers (though not the class of languages)-
considered in the case k=0, Aho and Ullman (1972&)/dérinc
the LR(k) gremmars differently again. They»augment the
grammar with a production S' - S where S' is again a
new goal symbol. Geller end Harrison (1973) elso show
v‘that this definition too is equivelent to ours when
k > O but that it reduces not only the class of grammars
but also the class of languages considered in the case

k=0,

In summary, from among the several rival definitions
of the LR(k) property, we have chosen in Definition 2.1.
the one which yields the largest class of unembiguous

grammars,

Now that we have aéreed upon a definition for the
LR(k) grammars, we may proceed to explore tneir'propertiea.
First we will examine the generative power of these
grammars. That is to say, given a value for k, we will.
ask how extensive is the class of LR(k) langueges. We
begin with the following result,
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THEOREM 2.4

If G is an LR(k) gremmer, then L(G) is a deterministic
language. 00 o

This theorem is due to Knuth (1965). Its proof depends
upon the existence of a parsing algorithm for the

: LR(k) gfammars (which we present later - see Section
'2.5) which can be implemented on a DPDA, Thus we see
that not every context free language is an IR(k)
langusge; rather; the LR(k) languages are some subset
of the deterministic languages. Since it is clear from
Definition 2.1 that every LR(k) gremmar is en

LR(k + 1) grammar, it follows that every LR(k) languege
is also an LR(k+ 1) language. We would therefore like
to know exactly how closely the extent of the LR(k)
languages approaches that of the LR(k + 1) languages,
and also how closely it approaches that of the
deterministic languages., These questions are largely

resolved in the following theorem,

. THEOREM 2.5

Every deterministic langusge 18 generated by some
IR(1) grammar, [J | | *

This result is also from Knuth (1965) but that source
'does not present a rigorous proof. The first :complete
end reasonsbly direct proof was givén by Harrison and
Havel (1974).

Theorem 2.5 tells us that the class of LR(k)
languages is not enlarged by taking velues of Xk great-
er that 1. In combination with Theorem 2.4 it also tells
us that when k%1 the LR(k) languages are co-extensive
with the deterministic languages. Theorem 2.5 cannot
be sharpened from ILR(1) to LR(0) because the LR(0)
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languages are known to be a proper subset of the
deter&inistic languages. The LR(0) languages may
be chafacterized, however, in terms of the strict
deterministic languages a8 the following theorenm
(which is due to Geller and Harrison (1973)) shows.

THEOREM

L is an LR(0) language if and only if there exists

a palr of strict deterministic languages Ll‘and L

*
such that L = L1L2. N

2

In conclusion, these results show that the
LR(k) languages are closely related to the
'deterministic 'la_nguages. In particular, when k 21,
the two classes Are eqﬁivalent. This is encouraging
from a‘practical roint of view because it indicates
that the LR(k) grammars have sufficient power to
describe the syntax of programming languageé. It is
also one of the reasogs'why the LR(k) grémmara ere
80 interesting £rom e theoretical viewpoint for, to
éuote Knuth (1965) again, it suggests that "the LR(k)
condition is a natural analogue, for grammars, of the

deterministic condition, for languages."

In the following sections we will examine
methods of testing grammsrs for the LR(k) property,
and of parsing the LR(k) grammars.



60

2.2, Testing for the IR(k) Property - Part 1.

The concept or an LR(k) grammar is of little
practical use unless we can find an algorithm to test
whether or not a given grammar possesses the LR(k)
pioperty. It 1s iy no means obvious that such an
algorithm should exist, for the definition o; the’
LR(k) property giveﬁ 1n.Der1n1tion 2.1 involves
_-quantitication over the (possibly infinite) set of
all rsf's of the given grammar. Our first result 1is

somewhat disheartening.

THEOREM 2,7

The problem of deciding, for a given grammar G,
whether or not there exists a k such that G is LR(k),

is recursively unsolvable, O

The proof of this‘theorem 1nyolve§ a reduction to a
modified form of Post's Correspondence Problem, and
is due to Xnuth (1965),

This result is not, of course, the disaster 1t
~may seem, for in practice we are not concerned with

whether or not a grammar is LR(k) for some k, but
rather with whether it is LR(k) for a particular,

predetermined, value of k, When stated in this torm,

the problem becomes solveble,

THEOREM 2.8

Given a grammsr G and a natural number k, there is an

algorithm to determine whether or not @ is LR(k).O

In fact, there are three distinct aslgorithms for
solving this prodkem, Two of the methods are from Xnuth
(1965), while the third is due to Hunt, Szymanski and
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Ullmen (1974,1975). The three methods are distinct,
yet related, and each has its own particular merits,
Since there 1s an obvious algorithm to determine
whether a grammar satisfies condition (1) of Definition
2.1, we will only concern ourselves with methods for
testing condition (11) of that definition. Accordingly,
we will assume for the remaindqr of this section, and
throughout the next two, that G=(V,, V,,P,S) is a
" peduced grammar in which 8 =S does not occur, end
that k is a fixed natural number, X

The first method wh;ch we preseunt 1s ono’or those
due to Knuth. Its chief virtue lies in the ract‘that
it provides a proof of Theorem 2.8 with a minimum of
additional technicallapparatus. For this reason it 1s
the method most commonly guoted when it 1s’requ1red to
demonstrate the decidability of the LR(k) property for
purely theoretical purposes, (See, for example, the
books of Salomaa (1973) and Hoperoft and Ullman (1969).)
Our construction is a variation upon those employed in
;these references and since the practical detalls are of
little interest we omit them. We require one additional
definition, '
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DEFINITION 2.9

Let L be a symbol not in V. ,(Thia eymbdi will be used
‘a8 an 'endmarker' and will be reserved for this
purpose for the rest' of this section.) For each
production q¢ P we define the set of strings Rg (d),
called the LR(k) contexts of q, as follows @

R;‘;' (a) = {(m+k) :/;.Lk |s 18 an rsf of G with
a hendle (q,m)}, O

' That is, for each rsf s of G which has a handle involving
production g, we include in 'Rg(q) that prefix of g
-extending as far as the k 'th symbol of the right context
of the handle. If the right context should be less than
" k symbols long,then it is first augmented by the
addition of a suitable number of endmarkers, This use
_of endmarkers is essential to the argument used in the
proof of the next result, which expresses the LR(k)
property in terms of the sets Rg(q).

LEMMA 2,10

G is LR(k) if end only if, for eny p,q ¢ P, ot € V'L’
and ué Vil ot Rg(p) and ocu ¢ Rg(q) 1mply p=q
and u =, o |
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PROOF, We prove the result first in the 'if' direction.
Suppose that § andy are rsf's of G with handles (p,m)
and (g,n) respectively, such that

nhe € VF o (1)
and (m+k): 0 = (m+k) sy (2)

" and sssume that o« ¢ RF(p) end xueR¥(q) imply p=q and
u=W . We must show that these imply (p,m)=(q,n). Define
o= (m+k): &L and g = (n+k):¢_l_"‘- . Then « ¢ RS (p)
and 2 ¢ Rf(q). We now distinguish two cases according
to the relative ﬁagnitudea of m and n,

ase 1 :t m<n, in this case (1) end (2) imply that p=eu
for some u € V 2 and 80 the hypothesis provides p=q and

u:-:»/\/ . But n-m = len(u) and 80 u=W\ 1mplies that nzm end
we conclude (p,m) = (q,n) as required,

Case 2 ¢t m>n, From (2) and Lemma 2,3 we obtain n/« ¢ Vi
and this result, taken together with (2) and the condition
m)>n, implies that o« = pu for some ue VO, Agéin the
hypothesis provides p=q snd u=/t and the‘cbnclusion (pom)=
(q,n) follows as before and completea the proor in the
'1r' direction. = -

‘.wVe now t\.ilrx‘i"té the" 'only if' direction. Subpoee that
G is IR(k) and that for some p,de P, x € Vi* endu ¢ V.
. we have o< € R‘:(p) and ou € RS(q). We need to prove that
p=q and u=A . Now °<‘G Rf (p) implies there is some rsf §
of @ with e handle (p,m) satisfying (m+k): 81" = o¢,
Similerly, ou ¢ RS (q) implies that there is an rsf ¢
of G with a handle (g,n) satisfying (n+k):yL’ = xu, It
follows from these observations that m/y ¢ V¢ . and
(m+k):0 = (m+k):y and therefore, since G is LR(k), that
(pym) = (q,n). Hence p = q and (since len(u) = n-m) -

u=§) and the lemma is proved., []
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The reader who doubts the necessity of using end=-
markers in Definition 2.9 should consider the follow=-
ing grammar ¢ ‘

§ - Sa o | (Grammar G5)
-8 - a
Take k=1 and it 18 easlly seen that
| (8 ~ Sa) = {Sal ,Seal
and o ?5 (S -~ a) = {al , s8]
and hence, by Lemma 2.10, that G5 is IR (1). If the

endmarker- were absent, however, we should have

. ngs (s~ sa) = {8a,Sa2a}
and then in Lemma 2,10 we could take p=g= S -~8a,
« = Sa and u=a and thereby conclude, incorrectly,

that G5 1s not LR(41),

It may seem that the reformulation of the LR(k)
property which is provided by Lemma 2.10 does not
constitute much of an édiance; 1t sti1l involves |
properties of potentially infinite sets. The crucial
result in this development is provided by the next

lemma,

Lemma 2.11}

If q 15 a production in P then ng(q) 1s a regular
Bet. e . - : . ) , .
FPROOF. The proof of this result depends upon the

construction of a right linear grammar QgKQ) =

ViV T P’y 8') such that L(Qk(q)) =R (q) To say
that Q,gq) is right linear means that the right parts
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of all the productions in P' ére constrained to be
strings in V;© v Vi* V. . Right linear gremmers are
well known to generate only regular sets. (see, for
example, Salomaa (1973), Chapter I1 Theorem 5.3).
Recall the convention that 1 represents the end-
marker symbol and that 1 is assumed not to be a member

of V. The grammar Qg(q) 18 defined as follows ¢

* k
(1) VN = {[A,w] l AeVy, w e k:VT_L 1,
(11)  vp = Vg vV pv{Lll,
(111) P' = 'Pl Q P, where P, and P, ere die;oinj.

sets of productions given by ¢
P = {[A,w] - X [B,v] IA»KB& is = prod-
uction in P end v e FIRST (Sw)}

P = {[c,w] - Ow | C -~ © is production qY,
(1v) 8" = [s, 1% ],
It is clear that Q g(q) 1s right linear and hence
L (Qg(Q)V ) is a regular set, It remains to prove that
L (Q g(Q)) = Ri(q). To do this is sufficient to show
that Qg(q) contains the derivation

[s,1“] = Y [B,v]
if and only if G contains the derivation
- s —=* yBx |

for scme X ¢ V' eatisfying v = k: xl* . This result

may be establishod by straightforward 1nductions upon the
1engths of the derivations involved, We omit the details,. [

~ Note that, in general, the grammar Qk(q) will not be
reduced, However, this ‘does not affect the utility of the
construction in any way. Note too that it'ia only the set
of productions P, which changes as q ranges over the

productions of G,
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Armed wifh Lémmas 2.10 and 2.ll_wé‘may now prove
Theorem 2,8 i |

PROOF OF THEOREM 2.8 - FIRST METHOD

By virtue of Lemma 2.10 we need to prescribe &
method whereby we can determine :
(a) for each production q in P, whether or not there
exist o« e V' andu e V,;J_‘ with u # 4 such
- that both o e ’Ri(q) and ocu e Rg(q).

(b) for each (ordered) pair of distinct productions
p and q in P, whether or not there exist o € v
and u e V;Jf such that o e Rg(p) end ou e RG(q);'

Now, if Ll and L2 are languages, the guotien t of L1 with
respect to L2 is written Ll/‘L2 and is defined by :

, such that xy ele},

A}

(In reading the formulee that follow, assume that the

Ll/”L2 = {x | there e;ists y el

quotient operator has higher precedence than intersection,)
Using this notion, test (a) above may be restated as tﬁe
problem of deciding, for each q in.P, whether the language
Sg(q) defined by >\ | _
sg(a) = Bi(a) / (Vg L™ u Vp1™) A Ej(a)
is empty or not. Similarly. test (v) reduces to the
problem of deciding, for each pair of distinct productions
P and g in P, whether the 1anguage Tk(p,q) defined by :
Tk(p.q) = By p(a) / Vo o” nR (p)

is empty or not.
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Now all the sets appearing in the definitions of

Sﬁq) and Tg (p,q) are regular. (Recall Lemma 2.11.)
Furthermore, the regular sets are closed under the
operations of union and intersection (see Hopcroft end
Ullman (1969), Theorem 3.6) and quotient (op.cit.Theorem
9.13). Hence, the sets Sg(q) and Tg(p,q) are regular,

and because the proof of Lemma 2,11 1s constructive, as
are the proofs of the other results cited above, it is
in principle possible to construct finite sutomata which
recognise these sets, Since there is a well known algorithm
(op;cit.,Théorem 3.11) to determine whether the language
recognized by a finite automaton is empty or not, we may

conclude the theorem, O

We end this section with an example which 1llustrates
some of the i1deas that have been introduced here. Ve will
use the Grammar Gl which, it may be remembered, has
productions :

8 —= 2aA
A gAb |

We take k = 1 and construct the grammar Q?’ (A - b).Let

G
Qit (A~ b) = (V},V4,P',8') . Then

Vi = {s,L1[s,a], [5,0], [s,e], (o, L], [A,a), [A,0], [4,c},

s' = [s,1],

vy {s,A,8,b,¢,1}, ana
P' = Pl v P2 where
P, = {[s,1] — ala,c]
[Aye] — v[a,b] .
[4,0] — v[a,b] } + some useless productions,
P2 = {[Avb] — bb, |
(4,¢] —=be ] + some useless productions.
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It is easiiy seen that this grammar contains the
derivations :

[S, .L]"a- [Ay c] .
[s, Ll-a[A, ¢] — ab[4,1] — &bbd [A,b] — abbyvd

ab[A,b] —~ abbb , end

and so abbb and abbbb are both members of Rgl(A—) b).
Hence, by taking o¢ = abbb and us=b in Lemma 2.10, we
" discover that Gl is not LR(1).

'~ The algorithm for testing for thé LR(k) proper%y ,
which is indicated in the proof of Theorem 2.8 is not
well suited to practical use. In the next section we
will derive &a practical algorithm for testing grammars

for this property.
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2.3. Testing for the IR(k) Property - Part 2,

We have seen one method of testing for the IR(k)
property; now we present another, This method 1s also
due to Knuth and is of interest becesuse, in the case of
grammars whiéh gre LR(k), the construction may be
extended ﬁo provide a parser for the grammér concerned.
Before describing the method, we need several new
definitions which are fundemental to this and subsequent

developments,

DEFINITION 2,12 |

An I.R(k)v item for G is a pair @ [B'-bp..ﬁ,,v] swhere
B—~pp, € P and v e V7 . The set of all IR(k)
items for G 1is denoted Ig. 0

That 18, an IR(k) item consists of a production from P
with a dot placed somewhere in its right part (we assume
that the dot i1s not in V) and a terminel string up to k
symbols long. Items in which the dot appears at the extreme
left of the right part of the production (i.e. those in
which B8, = A )are called initisl items; those in which
the dot appears at the extreme right (i.e. p, =) ) are
called final 1teﬁs while those items which are neither
initial nor final are called intermediate, Note that any

non-initial LR(k) item ean be written in the form

T [B-~ BX.f;,V ] where X e V. The symbol X which
precedes the dot is called the amssociated symbol of
the iten,
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DEFINITION g,;}‘.
A pair of distinct LR(k) items for G are said to be in
conflict (on lookahead u)‘ if they have the form
[A=+o¢,,u] .  end [B -’-/3,.,9,,'v] respectively and
satisfy u eEFFk(sz)
Observe that one of the items in a conflicting pair must
be a final item, If the other item is final elso (i.e.
if in Defiunition 2,13, Wwe have /32=,/1} ) then we say
that we have a "reduce/reduce" conflict; otherwise we
have a "shift/reduce" conflict. The reason for this
terminolow will become apparent when we come to
describe the LR(k) parsing slgorithm. We note that en
obvigus algorithm exists to test whether or not a given
pair of items are in conflict. |
It is the idea of a "valid" IR(k) item which is

particularly important,

DEFINITION 2,14

When § € V', the LR(k) item [B ~>,.6,,v] 18 8aid to
be yalid for § (with respect to G and k) if and only
if there 1s a derivation |
| S —-ffXBx — ‘(ﬁp,x

in G with 0 =%p, , and v = ktx. O

Observe that if there is an LR(k) item which is velid
forf, then 8 must be a viable prefix of G. Conversely
every viable prefix possesses at least one valid LR(k)
item. Observe too that if there is a non-initial LR(k)
‘item which is valid for @ , then O # / and the
assoclated symbol of tha\t item must be equal to the last
‘symbol of § . Thus all non-initial LR(k) items which are

valid for a given viable prefix share the same associated

symbol,
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DEFINITION 2,15

When 6 ¢ V', the set of all LR(k) items which are valid
for © is called the LR(k) state for O end is denoted by

Vg (6). We usually drop the sub and superscripts and write
simbly .v(e) when no ambiguity is 1likely. The set
consisting of the LR(k) states of all the viable

prefixes of G is called the LR(k) stateset for Gand is

denoted byvsg. Note that V() is non-empty if and only
if 6 1s a viable prefix of G. Hence | .

sg = | V) £p|eev'].O
We now define thei'adequacy' of LR(k) states and state-
sets, This notion is the key to the algorithm we’are
seeking.

DEFINITION 2,16

An LR(k) state (or indeed any set of LR(k) items for G)
is adequate if and only if it contains no pair of
conflicting items, The LR(k) stateset for G is adequate
if and only if each of its component LR(k) states is
adequate. States and statesets which are not adequate

are sald to be inadequate, [J

The LR(k) property is closely related to the adequacy
of LR(k) statesets, Before we can prove this fact, we

~need another lemnma,

Lemma 2,17

Let xa@ be an rsf of G with a handle (q,n) satisfying
n 5> 1len (o), Then there is a non-final LR(k) item
[c = ¥%.%,v] which is valid for « with'
EFF, (p) ¢ EFF, (¥, v).
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PROOF. Since up 1s an rsf of G with a handle (q,n),
there must be an explicit r-derivation D= <(qi . n;)>‘:‘

of xg from S with (q.,n, ) = (g,n). Let {q,;)‘,:. be the
corresponding implicit derivation, Clearly there exists

t in the range 1< t<r such that n, - deg (g,) ¢ len ().
(Teke t=1 for example, sincey,= S we must have n,- deg(q,)
= 0. ) °~ Now choose the largest such t. We will show
that len (x) ¢ ny. This relation is certainly true when
t=r (because len (<) ¢ n by hypothesis) so assume that
t.{ r and suppose, for the sake of deriving a contra=-
diction, thet len («x ) 2 n, . Because D is an r-derivation
we bave n, , = deg (qul) § By for all i in the range
l1¢i<rand so if t < r and len () ) n, this gives

B, - deg (qy,y) < len (x)

which contradicts the cholce that t be the largest integer

with the prescribed properties, Hence we conclude

ny - deg (q, ) ¢ len (o) < ny. (1).

We now have the derivation

8 —‘7: \Pt-l .(qt’ nt)"a Y, "'7: =<8 (2)

and the choice of t ensures that ni - deg (q:l) >. len (o¢ )

for all 1 in the range t < 1 ¢ »r and so 1t follows that
', hes the form Y, = (@ where 8 séiiafies e -;;g:/s.

Let production qt be C —» Y. Then y, may also be
written in the form ¥, = o¥x where . len(c¥) = n,.

The inequalities (1) then become
len (&) ¢ 1en () ¢ len (&%)
and so ¥ can be written as ¥ = ¥,¥, where len (c3¥)) =

-~

len (< ),
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Now Y, = x0 = o¥, ¥, x and the
construction ensures that c¥, = o, ¥,# W  and
‘X_,x = & , Therefore, the derivation (2) may be written
as '

S—.'ch -‘-‘_a'x,xg" )
and 80 when v = kix it follows that  [C—=Y¥,.¥,, V]
is a non-final LR(k) item which is valid for .
Recall that we have Y¥,x = © and 6 —=" so that
.

¥,x —> 2. It then follows that EFI«‘k(P) c EFFk(xav:)

asrr =

and the proof is complete, (I

'We can now give the theorem on which our second method

of testing for the LR(k) property depends,
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THEOREM 2,18

G 1s LR(k) if and only if 1its LR(k) stateset is adequate.
FROOF,  To establish the result in the 'if' direction
we take its contrapositive, That is, we suppose G 1s not
LR(k) and prove that its LR(k) stateset must contaein an
inadequate state,

Now if G is not LR(k) there exist rsf's < and g of G
with handles (p,m) end (q,n) respectively such that

mfs ¢ Ve, | - (1a)
| (m+k)tox = (m+k):ga, S | (1v)
and (psm) # (ayn). (1¢)

We distinguish three cases according tc the relative
magnitudes of m and n,
Case 1 : men, Let production p be D& and let q be
E—>e . Also let © = meex and let u = k:x where x is
the string satisfying « = 0x. Then it follows from (1a)
and (1b) that @ has the form @ = Oy vwhere y also
satisfies u = k:y, Beceuse (p,m) is 2 handle for
1t follows from this comstruction that [D+&.,u] 1is a
valid LR(k) item for ., Similarly, because (q,n) is a
handle for @ , [E—e.,u] is also valid for 6.
But when m=n, (1c) can only be satisfied if p # Q.
Consequentiy, since they are distinct, the two items
D—+S8.,u] end [E~~o,u] are inconflict and so

v () is insdequate,

ase ¢ m<n, Again let production p be D-=S and let
© and u be defined as in the previous case., As before,
D=5, ,u] 1s valid for © and (1a) and (1b) imply that
2 = ey vwhere u = kiy, Now because (q,n) is a handle
for 8y and n > len (6), Lemma 2,17 implies that there is
a non-final IR(k) item [C - ¥,.¥,, V] which is valid for
® with EFR (y) s EFF,(¥,v). It follows that [C.=13¥,.%,,v]
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conflicts with [D-+§,,u] and since both items are
valid for 6, this means that V(6) is inadequate.

ase z m>n, In this case the construction and
argument proceed exactly as in the case above, but with
the roles of p and ¢, m end n, and o« and g8 inter-
changed. Also, Lemma 2.3 provides nfx ¢ Vi which is
needed in place of (1a).

ile now prove the contrapositive of the theorem in
the' only 1f' direction. We suppose that S,‘ is inadequate
end proceed to deduce that G cennot be LR(k). Now if s¢
is inadequate there must be some viable prefix © of G
such that V(o) contains a pair of conflicting items, say
[D>s§.,u] and [C— X,.Xz,v] For conflict to occur we
must have u€ EFF,‘ (%,v). Because [D—& .,u] 1is velid
for © there must be a derivation in G with the form.
08— pubx —— péx |
where ué =6 and um kix, Let x = péx , m= len (8),
and let the production D-»& be called p. Then (p,m) is
a handle for o« and we have}

(m+k):ox = Ou. | o - (2)
similerly, since [Cf'-‘&,.!,,v] is al.s'o valid for ©, there
is o derivafion in G with the form

S ——..YICy———»lexzy' | (3)
where 0 = "%, and v = kiy. Now we have u & EFF L (Yyv)
end theretrore also u € EFF LY, y) and sc there exists
z € V such that X,y -—. 2z and u = k:z, We now
distinguish two cases according to the number of steps

in the derivation ¥,y —3 z,
Rerp
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Case 1 : ¥,y =2z (i.e. no steps at all). If we let
the production C—+~% ¥, be called q and let len(n¥¥,)"
= n then (3) implies that (q,n) is a handie of n%Y,v.

But n¥,= © and X;y's z and 80 (q,n) is a handle for

6z . Since len (6) = m and u = k:z, we also have

(m+k)ze2 = ou (4)
and n/ oz e V;_ (5)

Now if G were LR(k), the facts that (p,m) is a handle
for o  eand (q,n) is a handle for 6z , combined with
(2), (4) end (5), would imply that (p,m) = (g,n). We
now show that tﬂese béndles must be distinct and hence
that G is not LR(k). If (p,m) = (q,n) then obviously
p=q and m=n., Observe that n = m + len (Xz) and 50 m=n

implies ¥, = A which in turn implies u=v (since o
u ¢ EFF, (¥,v)). We now have p=q, ¥,=4 and u=v. But this

means that the two items [D—=§.,uland [C—Y,.Y,,V] are -
the same and so contradicts the hypothesis that they

are in conflict, Thus we conclude (p,m) # (q,n) and
‘therefore that G is not LR(k).

Case 2 ¢t ¥,y —' z (i.e. at lesst one step), Since the
derivation contains at least one step, we may distinguish

the last and write

-
By TRerp e —{q,0) RExp Z.
Note that since this a reff-derivation we must haeve n > O.-
Combining this derivation with that of (3) gives
» of \ -
S 7 ¥,%,7 = n¥e —q,n+len(nd,) = ¥z
. end because ¥, = 6, lea (6) = m and k:z = u this
provides
S —=' o¢ ---(q,m‘l:).)-t‘t 0z '
~and 80 (¢,n+m)is a handle for 6z . The results (4) ana

(5) will follow exactly es in the previous case and then
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the supposition that G is IR(k) will require that (p,m)
= (q,n+m). But this is clearly impossible if n > O and
so we conclude that G is not LR(k) and the proof of the

theorem is complete. O
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Given e gremmer and its IR(k) stateset, we can certainly
test the stateset for’adequacy and thereby determine
whether the gremmar is LR(k). Thus in order to furnish
an alternative method of testing for the LR(k) property,
it only remains to prescribe an algorithm for counstruct-
ing LR(k) statesets. To this end, we begin with a new
definition, '
DEFINITION 2.19
When A is any set of LR(k) items for G, we define its

~ closure, denoted CLOSURE G( A) , recursively as the
smallesﬁ set satiafying i

CLOSURL (4) = Auf[A—b . X u] Ithsre exists en item
G
[B»p,.‘Apa,v] € CLOSUREKé A) where
A—>o¢ e P and u e PIRST(B,v)}
end when X e V we define

NEXT'(A,X) = [D- §,X.8,,w] | [D~&,.x8,w] e A},

It 15 clear that the functions CLOSERE and NEXT ere |
computable.‘We defi-:iefualwthird function by their composition
thus ¢
G G G
GOTO, (8, X) = CLOSURE  (NEXT . ( A, X)).
As usual,we will omit the sub and superscripts from

these functions when the meaning is clear. []

The algorithm for constructing LR(k) statesets is besed
on the following theorem,

THEOREM 2,20
Let 8 ¢ V' and Xe V. Then ' V(6X) = - GOTO(V(8),X).O

A proof of this reénlt is provided by Aho end Ullman
(19722, Theorem 5,10)
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Implicit in this proof are certain properties of
the functions CLOSURE and NEXT which are useful in
themselves (and from which Theorem 2 20 may be deduced
directly) In order to be able to state these properties
conveniently, we partition the items making up an LR(k)
state into two groups, called the 'mucleus' gnd the
'completion' of the state. The basic idea is that the
nucleus of sn LR(k) state conteins all and only the non-
initial items in the state; any remaining items form the
completion of the state. The formal definition is slightly
complicated by the need to deal with the state -V (W)

as a special case,
DEFINITION 2.21

The nucleus of the LR(k) state for © is denoted by
Ng(e) and is defined by :
@) NA) = {[s~.x,A4)] 5w e Pl
(11) and when 6 # ) |
N;(8) = {B>p.p,v] e Vo(0) | g, # L.
The completion of the LR(k) state for © is dénoted

by C(6) end is given by :
cS(0) = vi(e) \ 1),

,When the meaning is clear, we drop tbe sub and auper-
scripts and write simply .N(6) and c(e).

Note that when © #M we have, as a consequence of
its very definitiom, that N(6) € V(o). It is easy to
prove that this relationship.rdmains t:ue.wben e=4
We may now state the properties of the functions NEXT and
CLOSURE alluded to eariier. |
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THEOREM 2.22

Let ¢ V' and X ¢ V. Then

(1) N(ex) = NEXT (v(e),X), end
(11) V() = CLOSURE (N(e)). O

At last we can present the algorithm for constructe
ing LR(k). statesets. We start off with ‘just asingle state
(1.e. V (A)) end 8dd states to the stateset until we
determine that no more should be added. Note that during
execution of the algorithm a tabulstion of the function
GOTO,(AX) may be produced for sll states A in the state-
set and all symbols X e V. This tabulation will be needed
later when we come to construct parsers for the LR(k)

gremmars,

ALGORITHM 2,23
Evaluation of the LR(k) stateset for G.

Input ¢ Tge Gremmar G = (VN'VT’P’S) and a value for k.
Sk = the LR (k) stateset for G. |

Output

Method : The stateset is built up in the set-valued
varieble S, A marker flag is considered to be
attached to each LR(k) state placed in S; states
are 'unmarked' when first added to S.

begin

compute V(A )eand set S = {V(A )} 3

Yhile S contains eny unmarked states do
select an unmarked state  from S and

mark it; ,
for each X e V gg

compute = = GOTO(A,X);

if = 4 ¢ and = is not in 8 then

: add = to S endif
endfor '

endwhile;
sgt Sg =8
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| Thé correctness of this algorithm follows directly from
Theorem 2,20, It is plein that the elgorithm will
terminate after & finite number of steps, provided that
the stateset 1s finite; clearly it is finite for it 1is
no 1arger thad the powerset of Ig - which itself 1s
- finite,

We now have an alternative algorithm for testing
for the ILR(k) prOperty, when k is fixed,
PROOF OF THEOREM 2.8 - SECOND METHOD

Construct the LR(k)\stateset for G using'Algofithm 2.23
and test it for asdequacy. By virtue of Theorem 2,18, G
- will be LR(k) if end only if no inadequacies are found, [I

Of course we may save ourselves a certain smount of

- wasted effort in the cese of grammars which sre not LR(k)
by testing each new LR(k) state for adequagy before we
8dd 1t to S§ in Algorithm 2,23. The enumeratlon of S
may be abandoned as soon a8 an insdequate state is
encountered. With grammers which sre LR(k),however, the

enumeration must proceed to the very end,

We illustrate some of the ideas introduced in this
section by proving once again that the grammar Gl is not
LR(1). We use Algorithm 2.23 to comstruct the LR(1) state-
set for G1 and display the result in Figure 2.1. We
nunber each state in the stateset and tabulate the function

GOTO by referring to states via their npumbers.



STATE LR (1). STATES GOTO
NO.
NUCLEUS COMFLETION Alalv]|e
1 (5= .alc; W) 2
2  [s=>aite,w] [A—>bav,J] 3 4
. . [A-—) oboa _
3 [s at.c, W) 5
L [A—b.4b, ] [A—.bab,G] 6 7
[a—v.,d] [A—.51)
5 [s—atc., W]
6 [A—1va.p,d] 8
7 (A~ boan, Y] [A—>.tav,b) 9 7
[A—b.,b] (A= .b,1)
8 [A->bm.,d]-
9 [a—>va.b,q] ‘10
10 [A—bav.,b)

Fi e 2.‘1 The LR(1) Stateset and GOTO Function for
Grammar Gi,

We see that state 7 is inadequate because it conteins the

conflicting items [A - b,, b]

and [A -~ .b, b]

others. It follows that grammar Gi is not LR(1).

among
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Although the procedure we have described does
provide a practical test for the LR(k) property, it
has one important drawback: it‘may take an unasccept-
-ably long time to make its decislon, In order to be
more precise'about this topic we need to introduce the
idea of the "complexity" of an algorithm,

Once we have an algorithm for solving a particulsar
probkenm, it is natural to enguire into the efficlency
of the algorithm; that is the amount of time and space
it consumes when solving instances of the problem. So
thet we may achlieve a measure of independence from the'
detalls of the implementation of the algorithm, and also
from the precise model of computation involved, we
usually choose to express thsee guantities as functions
of the size of the input to the algorithm. Here we are
mainly concerned sbout the time taken by an algorithm

to process an input of a given size in the worst case.

Accordingly, we define the time complexity of amn algorithm

to be that function f£(n) which is the meximum, over
all inputs of size n, of tﬁe time taken by the algorithm,
If, for example, an algorithm processess all inputs of
size n in time which is bounded above by c.n?, for some
constant ¢, then we say that the complexity of this
algorithm is 0(n?) - pronounced "order n®* ", An

elgorithm is said to be of polynomisl complexity if its

time complexity is O(p(n)) for some polynomial p, while
it is said to be of exponential complexity if its

complexity is OCEQ(F)) ~ for some polynomisl q.
Algorithms of exponential complexity are unattractive

because, as the size of the 1nput'1ncreases, the time
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taken by the algorithm grows so explosively that 1t
raplidly becomes unacceptably large. |

The inputs to the algorithms we are presehtly
considering are descriptions of grammers which are to
be tested for the LR(k) property. (We are éupposing the
value of k to be fixed beforehand.) Therefore, if we
wish to examine the complexity of these algorithms, we
must be more precise about what we mean by the "size"
of a grammar,

Now any description of a grammar must enumerate,
in some form or othér, fhe productions of the grammar.

vConversely, éésuming certain reasonable conventions, a

grammar may be completely specified by just its set of

productions, ACcordingly therefore, we defide the size
of a grammar to be the space required to list its
productions, assuming that each symbol in the grammar's

vocabulary occuplies just one unit of space, Thus we have ¢

DEFINITION 2,2l |
Let G = (Vy » V., P, S) be a grammar, Define the size of G,
denoted SIZE (@) by - |
o SEE(@) = 3 (s gegl)).OT
Observe that if SIZE (G) = n, then |V| = O(n),|P| = O(n)
snd |17 | = o(ak*l),

Now the problem with our second method of testing
for the LR(k) property is that it requires the construction
and examination of every LR(X) state in the IR(k) stateset
of the grammar concerned., (At least it does when tﬁe
.grammar is LR(k).) Since the processing of each LR(k)

state must occupy at least one unit of time, it follows

that if there exist any families of LR(k) grammars in
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which the cardinality of the IR(k) stateset grows
exponentially with the size of the gramﬁar, then
~Algorithm 2.23 will have exponential complexity.

Such families of grammars do exist, One such was
found by John Reynolds and was reported by Earley (1968).
When n is a positive integer, the n'th member of this
family is denoted by EXP(n) and is defined by the

following production schema @

8 — A, (Lg 1< n)
Ai-cJAi (1€ 1, $n, 1#3%)
A, =~ e,B, (1< 1< n)

A - a, (1€ 1< n)

B, -~ cJBi”; (1€ 1,5 < n)

B, - &, (1€ 1< n)

For esch n > 0, the grammar EXP(n) is LR(0) and 1ts size
is 0(n). However, the cérdinality of the LR(0) stateset
for EXP(n) 1s 0(n.2P). Since, for any grammar G and'any
k>0, the cardinality of the LR(k) stateset for G is at
" least as great as that of its LR(0O) stateset, this
family of grammars demonstrates that our second method
of testing for the LR(k) property is of exponential
complexity for all values of k.

In the next section we consider a method of testing

for the LR(k) property which does not suffer from this

disadvantage,
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'2.4. Testing for the LR(k) Property - Part 3.

We have seen that our second method of testing for
the LR(k) property is of exponential complexity. In
contrast, the first method we presented can be shown to
have polynomial complexity. By combining techniques from
each of these two methods it is possible to derive a
practical slgorithm which tests for the LR(k) property in
time 0 (n 3k+3), where n 1s the size of the grammar under
test. By refining the technique, Hunt et al., (1974) SAOWGG
that the complexity of this algorithm can be reduced to
0 (n 2k*2) and by means of additional refinehents they
showed (1975) that it can be reduced still further - to
only 0 (n ¥*2), We shall present the 0 (n>5*>) algorithm
since it embodies most of the principal ideas without
requiring too extended a}deveIOpment.

Central to this third algorithm is the comstruction
of an extended finite state automaton;'The states of this
automaton correspond to the LR(k) items of the grammar
under test while its input alphabet is the vocabulary of

the grammer, Its construction is formally defined thus :
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CONSTRUCTION 2.25

When G =.(VN,VT,P,S) is a grammar end Xk is a natural

numﬁer, define the ENFA Mg = (Q,q,,F,I,§) &s follows :

(a) Q=TIyufal,
" (b) F is irrelevent,
(c) I =V, and
(d) §, the transition function is given by :
| (1) 8las ) = {[s ».x,M]|s > ¢P},
(11) when q is of the form q = [A = 6,.B0,,u]
with B e VN, then |
$(a, W) = {[B> .'a,v] \ B-»p e P and
| v e FIRSTk(qu)},
(111) when q is of the form q = [A - ©,.X6,,u]
with X e V, then
§(a,X) = {h - o,x.8,,ul}. O

‘ : - G
It may be seen that the type (1i1) transitions of M

perform the role of the function NEXT used in the
previous section : for each LR(k) item A and each X ¢ V
we have S( A, X) = NexT( {A}, X).

- Similarly, the type (11i) transitions effectively perform
the CLOSURE operation. Consequently, when the domain of
) is extended to Q x I* in the usual way, we obtain
the following result

LEMMA 2,26

Let 6 ¢ V', Then in Mi we have 8(q,,0) N Ii = Vg(e)- a

‘This lemme may be proved formelly by & straightforward
induction on the length of ©. (The intersection with
fi is needed‘simply to discard the start state q..)
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It follows from Lemma 2,26 that we could use Mi
to evéluate Sg ‘:vli’ we éo wished - but this would be to

#Q advantage, since it is the size of Si which causes

our previous algorithm to have exﬁonential complexity.
Instead, we shall seek to compute fhe set PAIRSi which
ie defined as follows :

DEFINITION 2,27

‘PAIRSi = {(A!E).I Aand = are LR(k) items for G such

both A, = e vi(e) for some © e V*}.D

That is to sgy, PAIRS& contains all pairs of LR(k)
items which are simultaneously valid for some viable
prefix of G, Clearly, as & corollary to Theorem 2.18,
we have :

THEOREM 2,28

G is LR(k) if end only if pAIRsf; contains no inad-

equate members, O

Observe that the cardinelity of PAIRSY 18
polynomiel in the size of the gremmar G (it is 0(n?*2))
and so we avoid the problem that was the downfall of
our previous algorithm,

Now given any ENFA M = (Q,q,,F,I,§) we may
define the set STATE-PAIRS(M) to be the set of all
pairs of states which are simulteaneously accessible -
from the start state, That is :

DEFINITION 2,29
STATE-PAIRS(M) = {(rya) e Q x Q | there exists 6 ¢ 1
' such that both Pyq € 8(q,,0)}. 0O

Then, by virtue of Lémma 2.26, we have

LEMMA 2, 30

G

'PAIRSk

= STATE-PAIRS(MD) A 1D x I}, O
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Thus, in order to arrive at a new method of testing
for»thé IR(k) property, ell we need is asn slgorithm for
evaluating the set SZ‘ATE-PAIRS(Mg). It is, of course,
perfectly possible to give an algorithm which will
eveluate STATE-PAIRS(M) for an arbitrary ENFA M. However,
we are only interested in spplying the algorithmlto auto-

' mata of the type given by Construction 2.25 and by
exploiting the particular form taken by these sutomata we
can obtain a specialized algorithm which is more efficient
then a fully general 6n¢.

Our algorithm will use the fact that the nondeterminism
in the automaton Mg is of a restricted form; although &
given state may have several W -transitions, there is at
most one transition defined on a symbol other then A . If
a state g does have a iransition defined on & symbol from
V then, since this symbolvmust be unique, we may unamblg-
uously refer to it as the 'OUTSYM' of q. Stetes which have

only M-transitions may be said to have an undefined
OUTSYM. Formally, we define QUTSYM as a function thus :
DEFINITION 2. 31

Let q be a state of Mi . If q = q, (the speciel start
state) or 1f q 1s a final LR(k) item then OUTSYM(q)=¢
'(i.e. 'undefined' )., Otherwise q can be written in the
form q = [A - ,.X6,,u] and in this case we define
OUTSYM(q) = X.;(the that X is the unique symbol such
that §(q,X) # 4.) O '

We may now present an slgorithm (which is a
slightly adapted version of one due to Hunt et al,
(1974)) for evaluating the set STATE-PAIRS(C).
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t

ALGORTTHM 2,32
Evaluation of STATE-PAIRS (mg),‘ :

Input @ The ENFA Mg = (Q,qo,F,I,J ).

Output : The set STATE-PAIRS (Mg).

Method : The set STATE-PAIRS (mg) will be built up in

a |Q]x |Q] bit matrix celled PAIRS, which is indexed

G
k

PAIRS [p, q] will contain 1 if and only if (p,q) e
STATE-PAIRS(Mg). A stack, called STACK, is used to

by the states of M, ‘. When the algorithm terminates,

contain backlogged pairs (p,q); that is those pairs of
states for which PAIRS [p,q] = 1 has been found, but
‘whose successors have not been exsmined. Initially, PAIRS
"conteains all zeroes, and STACK is empty.
‘procedure INSERT(p,q);
if PARS [p,q]= 0 then
PAIRS [pyq] ¢ = 1;
push (p,q) onto STACK

endif
end INSERT;
begin comment main algorithm;

| INSERT (q.,8.);
1. while STACK is not empty do

2, - pop (p,q) from STACK;
3. for esch q' e &(p,N\) 40 INSERT(p,q') endfor;
L. for each p' ¢ &(q,N) do INSERT(p',q) endfor;.
5. . set X = OUTSYM(p) and Y = OUTSYM(q);
6. £ XA ¢ end Y £ ¢ and X = Y then
| INSERT( & (p,X), 6 (q,Y))
endif |
endwhile

-endo D
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It should be clear that Algorithm 2.32 computes STATE=-
PAIRS(B,&&) correctly. Now let us consider the complexity
of the algorithm, We will examine the amount of work
charged to each of the numbered steps. Since no (ordered)
pair of states is ever stacked twice, steps 1,2,5 and 6
will have work amounting to at most 0(|Q|2) charged to
them, In the worst case, steps 3 and 4 will be executed
once for every peir (p,q) e Q@ x Q. Or to put it another
way, these steps will be executed at most | Q] times for
each state peQ. Thus the total work performed in each
of steps 3 and 4 1s . o(|Q] . I%lé(i”/\')l ) - that
18 the cost of traversing each of the " W - transition
1ists" | Q| times, Thus the total cost of Algorithtm
2.321s O (|q]|® « le] . ptetg(p"A')l)

Now conaic_!ver the cost of applying Algorithm 2.32 when
‘the size of the gremmar G is n. We will have :

Rl = 0@y , and at worst
p%lé(pn/\)[ =.O(lQ|2) = ,o»(n2k+?),

Consequently we have ¢

THEOREM 2,33

Vhen G is a gremmar and SIZE (@) = n, the cost of applying |
_Algorithm 2,32 to ¢ 1s o(adk*3) O

Ve can now give our third proof of Theorem 2.8

PROOF OF THEOREM 2,8 = THIRD METHOD

Construct h&? and apply Algorithm 2.32 in ordef to compute
STATE-PAIRS (M7) . Then use Lemma 2,30 to construct the set
VPAIng and test each member of th‘is set for adequacy. |
By virtue of Theorem 2,28, G will be IR(k) if and only if
PAIRS’& conteins no inadequate member, We claim that the

overall running time of this testing proceduré is dominated
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by the time taken by Algorithm 2,32, Thus the complexity
of this third method of testing for the LR(k) property

is 0(ﬁ3k+3);, where n is the size of the gremmar under

test. O

In order to illustrate these ideas, we once again
show that grammar Gl is not LR(1l). The state - diagram
of Mgl 1s given in the following diagrem, Figure 2.2.
Note that we omit states which cannot be reached from

the start - state,

‘*- Sv.aach])  —{la~.v,c])

‘ | | B . ." L. " N
y : | b
A v b 1
‘. ¢S*ak-c.M) g(fA-b.Ab.c] "' (A~ .bAb,b]
(fs-—u.c.m]) ; (fA~vA.b,c] [A-b@ﬂu
. o - -

. (= vav.,c)) A= bA.b,b)

b
([A-obAb..‘b])

Figure 2,2 : The Trensition Diagream of mg’l _ the ENFA

Corresponding to Grammar Gl when k = 1.
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It may Dbe séen fhat the input string abb takes the
automaton Mgl from the start-state to the set of states :
{lA = .bAb,b], [A ~ b.Ab,b], [A — .b,b], (A = b.,b]}. Thus, in
perticuler, both [A —.b,b],[A~1b.,b] ¢ PAIngl and since
these items conflict, it follows that Gl is not LR(1).

The improved algorithm of Hunt et al.(1974), which
has complexity 0(n®%*2) , is similar to the onme described
in this section but constructs the autbmaton'qg rather
more carefully. The dominant factor in the complexity of
Algorithm 2,32 is the o(n?k+2) term due to the number
of # - transitions in &f . At the expense of edding
& number of special states to the automaton (but not so
many that the totsl number of states rises gbove Q(nkfl) ),

the number of W =~ tfansitions may be reduced from
O(n?k+2) “to- O(nkfl) . Using this modified form of
automaton, the cost of applying Algorithm 2.32 is
‘reduced to O(n?k*z).

The fastest known slgorithm for testing the IR(k)
property,also due to Hunt et al.,(1975), works slightly
differently., Instead of constructing a single automaton
M;S which 18 then used to find all the conflicting pairs
of LR(k) items, this method constructs many seperste
sutomata. Each sutomaton is used to find those pairs of
LR(k) items which are in conflict for a perticulsr look=-
ahead string. The cost of epplying Algorithm 2.32 to
each individual sutomaton is o(nz) , and since there
sre  |Vi¥| = o(n¥) aifferent look-ahead strings to
consider (and therefore .0(nX) separate automata), the

overall complexity of this method is o(nk+2),
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2.5. Parsing the IR(k) Grammars,

Now that we know how to test'whether a grammar is
IR(kb,'we may proceed to descéibé a method for parsing
the LR(k) grammars. The method is‘one.of those modelled
by Algorithm 1.4 eand is distinguished from other such
methods by the particular form of‘its parsing tables,
These are known, naturally enough, as 'ILR(k) parsing
tables ' and the parsing elgorithm which results when
these are used to drive Algorithm 1,4 is known as the
'LR(k) parsing algorithm'. |

Recall that a set of parsing tables for Algqrithm
1.4 ere a Y~-tuple T = (Q,s,,g,f) where Q is set of
parsing statés, 8, 1s a distinguished iﬁitial state, g
is a parsing goto fﬁnction,‘and £ is a parsing action
function. Thrdughout this séction we ﬁill suppose that
G = (Vﬁ, Vs P,S).is an LR(k) grammer and we will show
that, given G, its LR(k) stateset, and a tasbulation of
1ts GOTO function (bot-."nv provided by Algorithm 2,23), it
is always possible to construct a set»of parsing tables
to drive Algorithm 1.4 correctly.

In order to do this, it is necessary first of all to
construct a suitsasble setrof parsing states Q - and to do
this we need to partition the viable prefixes of G into a
sgt of equivalence classes and then take each of these
equivalence clsassses to correspond to a parsing state in Q.
The technique which is employed in LR(k) tables is to
essign viable prefixes’to the éame equivalence class 1if
they share the seme LR(k) state, That is a pair of visble
prefixes, say © end ¢ , belong to the same class if (and

only if) .V(e) = V(y). In other words, the parsing states
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in Q are identified with the LR(k) states in Sy. Under
this construction, the LR(k) states for G may be regard-
ed as names for equivalence classes of VPG and it

should be clear that this conétruction does provide an
acceptable way of 1mpo$ing a finite partition over VPG.
There is one smell, but vital point here, however, which
must not be overlooked. The pérsing states in Q are
assumed to be simple objects ﬁearing no information in
themselves, whereas the LR(k) states in Sg are complex
objects, being composed of IR(k) items, end carry a
considerable information content, Thérefore we do not
identify the set Q with Sg directly; instead we identify
it with a set composed of the names of members of Sﬁ ,
where names are supposed to be simple objects bearing no
information other than their own identity. This distinct-
ion betwéen LR (k) states and their names 1s not entirely
frivolous and will §rove significant during constructions
which eppear in  Chapter 4. In order to make this
notion of naming precise and uniform, we introduce the
following definition

DEFINITION 2,34

Let X be any finite non-empty set. Then NAMES(X) is an
alphabet with the same cerdinality as X snd NAMEOF 4 @

X - NAMES (X) is assumed to be a fixed bijection teking
members of X into their'names'., We also ellow the
function NAMEOF, to be applied to arguments which are not
members of X and in this caese the function velue is always
'undefined'. When the identity of the set X is clear we
omit the subscript from the function NAMEOFX. By

convention, we always assume that distinct sets X and Y

give rise to disjoint alphabets NAMES(X) and NAMES(Y). O



96
We may now describe the construction of the parsing

tables which drive the LR(k) parsing algorithnm,

CONSTRUCTION 2,35

First we need a subsidiary definition. Let A be any set
, ,, . . ,

of LR(k) items for G and let u e VTk. Define the value

of the function ACTION ( A,u) to be 2.

(e) SHIFT 1 A contains an item (B ~f3,.625V]
where g,#4# &and u e EFFk(/szv)

(v) ” REIUCE q 1if A contains the item [A— o< .yu}where

| | | " A= i production q,

(c)l . ERROR if neither case (1) nor case (ii) applies.
'Note that ACTION(A,u) will be multi-valued if (and only
if)the set A is inasdequate. Nowwe cen give,the main
construction, |

The LR(k) parsing tables for G are denoted ‘Sy Tg and are
given by T = (Q,8,, g¢) where :

(1) Q= NAMES(Sg ),
(11) 8, = NAMEOF (v(J\,) )»
(141)  for each A s.k and X e V,
| g(NAMEOF (A),X) = NAMEOF(GOTO(A,X)), and
(1v) for each A'e Sk end u e VT ’
£(NAMEOF(A'), u) = ACTION(A,u). O
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Note that fhe empty set @ is not a member of Si and
fherefore, according to Definition 2.34, NAMEOF(Z)
is undefined., This meens that if GOTO(A,X) = &
then, by part (iii) of the definition above, the
value of g(NAMEOF( A),X) will be undefinéd. This is
intentional and is consistent with the generel notidn
of parsing tables given in Section 1.7 where, it mey
Vbe remembered, the parsing goto function g was
expressly permitted to be a partiasl function, The
action function f must, in contrast, be total and it
may be seen that pert (iv) of the definition above
 ensures that this is so. Also note that because G is
required to be LR(k) it follows from Theorem 2.18
that every LR(k) state in Si must be adequatg. It is
this propérty which ensures that the persing action
function is truly a function; that is, it is single-
valued. If G were not LR(k) then we could still

G put f(ﬁAMEOF( A),u) would

k
be multi-valued for some A e Sg and u e V;k - 1t

construct the tables T

A contained a shift/reduce conflict on lookehead u,
then the value of f(NAMEOF( A),u) would be simul-
teneously both SHIFT‘and'REDUCE q for some production
Q. Similarly, in the case‘of‘a reduce /reduce con-
flict, the function value would be both REDUCE p
end REDUCE q for dissimiler productions p end q.
These observations explain the choice of terminology

‘used for the two types of conflict that cen occur,
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Before discussing the theoretical properties of
the IR(k) parsing aigéfithm, we will work through an
1llustrative example. For this illustration we will
use & rather more realistic grammar than those encount-
ered previously. The prodﬁctions of this grammar are
liSted below ¢

S — E

E —E+T| (6rammar G3)

7 | L
T + P|

P

P — (B)|

X

N VM EWN
1

Gremmar G3 is a model fragment from a conventionsal -
'ALGOL-SO type programming language grammar. It generates
a language consisting of simple arithmetic'expressions
'involving the two operétofs, + and *; énd a single operand
X. The grammar causes * to have higher precedence than + |
and parentheses are available to override.the normal ordér
of evaluation, Using Algorithm 2,23 the LR(1) stateset

- end GOTO function for this grammar may be computed and the
result is diéplayed in Figure 2.3, Note that collections
- of LR(1) items whi¢h differ from one anbther only in
their second components are sbbreviated by’writiné them
as single 'compound' items, Thus, for example, the

three items [T - .pP,)] , [T — .P,+] endfl — Ps"']
are combined and written as [T — ,P,),+,*] . The LR(1)
states appearing in Pigure 2.3 are assigned integer namés
(the "state number') and4entries in the GOTO portion of
the table refer to states via their numbers., Strictly
'Speaking, this means that it is really thé parsing goto
function g rather then GOTO which is displayed in the
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figure, C'.learly,the' distinction between GOTO end g 18

rather a fine one, existing only for expository rather

than practical reassons, and no real confusion is caused

by the form df presentation used in Figure 2.3.

l;m o LR(1) STATES G0TO
e NUCLEUS =~ COMPLETION E|T|P|({X])}*]+
1' [S'- oE’}v] [E".E"‘T' .*] E"OT }'Q*‘] 2 3 4 5 6
[T, T*P A, +, % «) [T"‘oPo '+'.]
[Pw.(E)yd,+,9 P=.X ohote ¥
2|[S+E.,A] E~E.+T\A,+] : 7
3[[(E=Toghy+] [T=To*Poh,4,* ] 8
4 [T‘P.'*’+"] .
5|(B=CE)Ay+y*) [E= BT )+]  [E~.T,0,¢] gpofrrfr2 b3
[T"oT*Pv io*o ] P' v“‘v ] .
. [P"O(E)y 9"’!‘] w" Xy )ty *]
6 [P-‘x.’&|+"]
7{[E=-E+,T,h,+] [P, T*P,0,+,%] [T-.PJ\ +, % 14|4|5]|6
: P (E)Aeer®] [BmoXodots¥]
"l [P~ P A, 4,4 [Pl (E)h,+, %] [P X, 4,4 15{ 516
9 [P*(E-)!‘A!*v’] E“E-*To )9"‘] . - 16 17
10[(E=T.,),+] [T=7.#P,),+,*] 18
11 [T"‘Poo)v'*o'] ) <
12| [P~ (.E), )y +,*] [E-'.E+T. ,+] . [E=.T,),+] .| [19[10]11 {1213
. TP, ), +,%] [T .P, ),+,"]
[P"-(E)v v"’v'] E" X, v“"]
13 (P" 09)0""‘] -
14| [E~E+T.,b,+] [T=T.*P, N, +,-] 8
15| [T ~T*P, 4,4+, %]
‘16 [P"(E) v* "".] . .
17| [E~E+.T, ), +] %P .'r'p. s +o% [T =.P, g,»,,*l 20[11{12 |13}
-, E) "',*] (Pw.X, )y+,%
18 [T"T’opy)p*"] ~ [P=~.(E), )y+,%] [P =.X, )v"’v’] 21)12413
19 [P"(E- )e )i*v*] [E‘E-"’T' )v"] 22 17
20| [E=E+T.,),+] [t=1.*P,),+,*] 18
21 [T*T*P-v)v*v*]
22| [P+ (E)ey )o+y*]

Figure 2.3, .

The LR(1) Stateset snd GOTO Function

forGrammar G3

It can be seen from Figxire 2.3 that no inadequacies

are present in the LR(1l) stateset for G3 and so the gz'ammaf

is IR(1). The parsing tebles T @3

1

may therefore be

constructed and these are giveh in Figure 2.4. using the
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conventions for displaying parsing tables which were
established for Figure 1,.2.

STATE ACTION FUNCTION GOTO FUNCTION B
NO. |WA | (J X )l *] + | S|E| TP (| X] ) * +
1 shish| 2| 3| 4| 5| 6
2 1l sh ' ' 7
3 3 sh| 3 |- ’ 8
4|5 5[5 |
5 sh|sh 9/10(11]12{13
6 7 T 7 ‘
1 shlsh| | 14| 4| 5| 6
8 sh|{sh ' 15| 5] 6
9 sh| - |sh , 16 17
10 3ish}] 3 ‘ 18
11 5| 5| 5
12 sh|sh 19/10(11}12{13
13 T 717
14 2 sh| 2 8
15 4 41 4
16 6| . 1 6|6
17 sh|sh 20[11/121(13
18 sh|sh leajazlrs
19 ~lsn| len | | 22 17
20 2lsh| 2 18
21 41 41 4
22 6{ 6| 6

’ .- . G X
Figure 2.4 @ Q;s- the LR(1) Parsing Tables for Grammar G3.

In order to illustrate the behaviour of tte LR(k)
parsing algorithm we disploy in Figure 2.5. the various
moves executed by the LR(1) pérser for G3 (that is to say
Algorithm 1.4 driven by the tables of Figure 2.4) while
processing the string X*(X+X),.
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KOVE | SYMBOL STACK STATE STACK UNCONSUMED | ACTION
¥NO. CONTENTS CONTENTS INPUT
1 (W 1 X*(X+X) SHIFT
2 | x 1,6 *(X+X) REDUCE P=~X
31]1P 1,4 *(X+X) REDUCE T-P
4 | T 1,3 #(X+X)  |SHIFT
5 | e 1,3,8 (X4X) SHIFT
6 | T#( 1,3,8,5 X+X) SHIFT
T | Te(X 1, 3,8,5,13 +X) - REDUCE P=~X
8 | (P 1, 3,8,5,11 +X) REDUCE TP
9 | Te(T 1,3,8,5,10. +X) REDUCE E—~T
10 | =(E 1,3,8,5,9 +X) SHIFT
11 | T*(E+ 1,3,8,5,9,17 x) SHIFT
12 | T*(E+X 1,3,8,5,9,17,13 | ) i.REDUCE P=~X
13 | T*(E+p 1,3,8,5,9,17,11 | ) REDUCE T-~7P
14 | T*(E+T 1,3,8,5,9,17,20 |) REDUCE E - E+T
15 | T*(E 1,3,8,5,9 ) SHIFT
16 | T*(E) 1,3,8,5,9,16 "5 'REDUCE P~ (E)
17 | TP 11,3,8,15 A REDUCE T - T*P
18 | T 1,3 A REDUCE E~T
19 | E 1,2 AR REDUCE S—~E
’ and ACCEPT

Figure 2.5, : The Behaviour of the IR(1l) Parser for

is accepted by the algorithm and, anticipating results which

Greammar G}‘with Input X*(X+X),

From Figure 2. 5 we see that the input string X*(X+X)

are given shortly, we claim that this means that the string

is a valid sentence of Gfammar G3. By inépecting the

'REDUCE® entries in the "ACTION" column of Figure 2.5 we

cen construct the parse tree shown in Figure 2.6.
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*— B —E—0

e
~

54 — P — 3
+ —t‘i;"d

HN——r—=
HN—H—

‘PFigure 2.6, : The Parse Tree of X*(X+X) with respect to
' ' Grammar G3,

For comparison, we display in Figure 2.7 the behaviour

of thls parser when presented with the invalid input X(X+X).

MOVE | SYMBOL STACK | STATE STACK | UNCONSUMED | ACTION
NO. | CONTENTS CONTENTS INPUT

1 . 1 X (X+X) SHIFT

2 | X 1,6 (X+X) ERROR

Figure 2.7: The Behaviour of the LR(1l) Parser for GrammarG3

with input X(X+X).

From this figure we see that the input X(X+X) is
rejected by the LR(1) parser for G3 at the esrliest
possible moment,.thaﬁvis as soon ass the substring it has
seen so far (i.e. the two symbols "X(") falls to be a

- prefix tQ any vaiid sentencerof=G3. | |
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Fortified by this exsmple, we now turn to a theoret-

‘ical examination of the properties of the LR(k) parsing

algorithm; The following theorem assures us that the
algorithm performs correctly when presented with valid
input.

THEOREM 2,36

The LR(k) parsing algorithm parses all sentences correctly.
PROOCF. In the discussion which followed the introduction
of Algorithm 1.4 we deduced conditions which its parsing
tables must satisfy if the algorithm is to parse sentences
correctly. In order to prove that the LR(k) parsing
algorithm performs properly it is therefore necessary to
prove that its parsing tables Tu = (Q,8, ,g,f) satisfy
these conditions,

First note that,since the grammar G is supposed to be
IR(X), its LR(k) stateset can contain no inadequacies and
so the parsing action function f of Definition 2.35 is
single-valued. Next we must comnstruct a surjective mapping
EQUIV : VP®— Q and show that :

(1) EBWIV(A )= s,
(11) whenever 6, ¢ e VP and X ¢ V are such thet

(a) EQUIV(e) = EQUIV(¥ ) and
(b)  voth 6X, yX e VP% then
' EQUIV(eX) = EQUIV( V¥ X),
(111) whenever 8 ¢ VP and X ¢ V are such that 6X e vp¢
“then  g(EQUIV(e),X) = EQUIV(eX), end finally

(iv) whenever 6x is an rsf of G with a handle (q,m)
satisfying m > len(6), then the value of
f(EQUIV(6),k:x) is :

(a) REDUCE ¢ 4if m = len(8), &nd
(v) SHIFT if m > len(0).



104

Now in the cease of LR(k) parsing tables we can
~construct & suitable function EQUIV by the definition

- EQUIV(®) = NAMEOF(V(S6)).
Then, since Definition 2,35 specifies that
s, = NAMEOF(V(W )), we see that condition (i) above is
satisfied immediately by this comstruction. Condition
(i1) is equaily obvious and to establish condition (1ii)
it is only necessary to note that Definition 2,35 giveé
g(NAMEOF(V(6)),X) = NAMEOF(GOTO(V(6),X)) and that
Theorem 2,20 gives V(6X) = GOTO(V(6),X). Hence
g (NAMEOF(V(®)),X) = NAMEOF(V(6X)) as required.

In order to prove the final condition (iv),
suppose firast that m = len(6) and let production q be
A-~o« , Then since (q,m) is a handle for 6x there mus%t
be e derivation in G with the form S —' pAx — pox
where p = ©, If we put u = k:x then this derivation
implies that the item [A-»o¢.,u] is valid for © and
therefore f(NAMEOF(V(6)),u) = REDUCE q as required. On
the other hand, if m > len(6), then we mey use Lemma
2.17 to see that V(6) must contain a non-final item
of the form [B*A.p,,v] with EFF(x) ¢ EFF(g,v). Since |
x is a terminal string, we have EFF(x) = {u} and so
£ (NAMEOF(V(6)),u) = SHIFT as required to complete the
proof. O o

Not only does the LR(k) parsing algorithm parse
sentences correctly, but it does so in linear time,

THEOREM 2, 37

The number of moves made by the LR(k) parsing algbrithm
while parsing a sentence of length n is O(n). O

This result is proved by Aho and Ullmen (1972e, Theoren
5.13),
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Note that Theorem 2,37 expresses the running time of the
IR(k) parsing algorithm in terms of its own primitive
operatioﬁs, not of time directly. However, 1t is clear
that each move made by an LR(k) parser can be performed
in.fixed time by any reasonable model of computation and
so the total time taken is indeed linear in the length
of the input. The only workspace used by the LR(k) parsing
algorithm is that needed for the parse and state stacks
and since no individual move can add more than one symbol
to each of these stacks 1t follows from Theorem 2.37 that
the space used by the algorithm is also linear ;n the
length of the input..

' All that remsins now is to examine the ability of
the LR(k) parsing algorithm to detect end reject all
.those inputs which are not valid sentences of the grammsar
concerned. It can be seen from the description of
Algorithm i.u that there are five situations in which the
LR(k) parsing algorithm cen reject its input. These are
when | |

(1) The unconsumed input is found to be empty during a
shift move (part (i) of sub-step 3 (2)),
(11) the parsing goto function yields an undefined value

during a shift move (pert (iv) of sub-step 3 (a)),

(111) The symbol stack is found to contain too few
symbols during a reduce move (part (i) of sub-step

3 (v)),

(iv) the parsing goto function yields an undefined value
during a reduce move (part (vi) orf sub-step 3 (b)),
and

(v) the parsing action function ylelds the value ERRCR
(sub=step 3 (¢)).

There is a fundsmental difference in the error detection

behaviour of the LR(k) parsing algorithm between the cases
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k>0 and k¥ = 0. The LR(0) action function can never have
the value ERROR and so all error detection in the LR(O)
parsing algorithm is performed in the first four of the
situations listed asbove., (Actually, situation (1ii)

cannot occur with any LR(k) parser. ) When k > O, however,
not only is ERROR in the range of the action function,

but it can be shown that E.Ji syntectic errors are caught
by this mechanism, This means, incidentally, that the
efficiency of the LR(k) parsing algorithm may be improved
wvhen k> 0. by removing from Algorithm 1.4 all those testis
which are concerned with detecting situations (1) to (iv)
above. We shall concentrate our attention on the case k> 0
and in the next lemma we specify the circumstances in which

the LR(k) action function has the value ERRCR.

LEMMA 2.38
Let k > O and let Tg_ = (Q,s, ,g,f) be the LR(k) parsing

tebles for the grammer G = (Vy, V, ,P,5). Also let ¢ Ve
a visble prefix of G and let x € VT* be a string for
whichall y e V,; such that 6y 1is an rsf of G satisfy
k:x # k:y. Then f£(NAMEOF(V(8)),k:x) = ERROR.

PROOF. Let u= k:x and suppose that . £(NAMEOF (v(e),u) =
SHIFT. Then according to Definition 2.35 there must be
some non-final IR(k) item [B —~p£,.82,7 ]} ¢ V(8)

such that u e¢ EFF(/SJV). Now because [B -'/9.-/33,‘3']

is valid for © there must ’be some derivation in G with the
form 8 — MBz - up,mz with pp, = 0 snd v = kiz,
Then, since u ¢ EFF(p,v), we also have u ¢ EFF(p,z )

and this means that there exists y e Vi such that @2 =" y
and u = key. But because 64,2 is an rsf of G, this mesuns
that 6y 1is also an rsf of G and since u = k:y this

contradicts the hypothesis that no such y exists., We



107
conclude that £ (NAMEOF(V(®)),u) # SHIFT, A similar
argument-shows that £ (NAMEOF(V(e)),u) # REDUCE q for
any q € P" and so it follows that value of the function
can only be ERRCOR and the lemma is proved, O

This result will Se used shortly to prove that,when

k >0, the IR(k) parsing slgorithm rejects all invalid
inputs as soon as possible, Before we can do this, it
is necessary to be more precise about what we mean by |

'as soon as possible',

DEFINITION 2.39

Let G = (VN’ Vs P,S) be any gremmar asnd let x ¢ V; be

such that x £ L(G). Then the error position in x (with

respect to G) is denoted by EP® (x) end is given by

EPG(x)alen(i)-fl where y is the longest prefix of x for
. . |

‘which some z € Vn can be found such that yz e L(G). We

- will omit the superscript G and write simply EP(x). when
no ambiguity can resuilt., O

We claim that the error position is the first point
during a strictly left to right scsn at which it is
possible to determine that astring is not a valid sentence
of the grammar concerned. This is becsuse all initial
substrings which do not extend as far as the error position
are prefixes to valid sentences of the grammar and there-
fore provide no basis for rejecting the string. Note that
this is not the same as saying that the symbol in the
error position is "wrong" or that the error was committed
at that point. Consider, for example, the following string

which 1is intended to be an ALGOL60O statement :
If X<Y then Z2:=0;else2:=1;
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Our experience of ALGOL60 allows us to assert with sone
certainty that the error in this supposed statement is
the presence of the semi-colon preced&n% the else. How-

ever, the string up to and including the semi-colon is

a valid ALGOL60 statement and so no error can be pro-
~ claimed during a left to right scan until the else is
enéountered. The symbol else occupies the error position
in this string because it is the first point at which
the error can be detected, even though it is probably

neither the source, nor the location,of the true error.,

When we spesk of the sbility of the LR(k) parsing
algorithm to detect errors "as soon as possible" we
mean "as soon as the symbol in the EP(x)'th position is
examined" and we claim that this is the best performance
which can be reasonably required of a left to right
parsing algorithm. Since the LR(k) parsing algorithm

 ~ looks k symbols shead and advances down the input string

E by one symbol Each time a shift move is made, stating

that the algorithm detects errors "as soon as possible"

is therefore the same as saying that it rejects an
invalid inpuf, X say, on the move following the EP(x)-k'th
- shift move; that is as soon as the symbol (1f any) in
 the EP(x)'th position comes into view. We will now prove

~ this property of the LR(k) parsing algorithm.
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THEOREM 2.40

Let k > O and let x ¢ V; be a string such that

x ¢ 1(G). Then the LR(k) parsing algorithm rejects

X on .

(1) the.first move if EP(x) £ k, or

(11) the move following the EP(x)-k 'th shift move if
| EP(x) > k. ..

PROCF, 'Supposé that EP(x) ¢ k. Then there can be no

y ev L(G)' such that k:x = k:y and so, by virtue of
Lemma 2.38, we have £ (NAMEOF( V(W )), k:x) = ERROR,
Since the initial state of the LR(k) paréing algorithm
is s, and s, = NAMEOF(V(/\ )) , this means that x
will be rejected on the first‘moye made by the algorithn,

Now consider the case EP(x) > k. We can write x in
the form x = yz where len(y) = EP(x)-k sand the definition
of EP(x) means that there can be no w e Vg with k:2 =
ksw such that yw ¢ L (@) but there must be some ‘v ¢ V;
with (k=1):z = (k-1):v and yv e L(G).',' Consequently,

" until it has made its EP(x)-k'th shift move, the LR(k)
parsing algorithm has no way of knowing that its input is
in fact yz (ie.x) rather than the valid sentence yv.
Certainly therefore, the algorithm cannot reject x before
it has made its EP(x)-k'th shift move, Immediately after
that move the parse stack will contain some viable prefix
© such that & — y and the lookshead string will be

»

w = k:2z, Now there can be no w ¢ VT such that 6w is an

rsf of G which also satisfies k:w = k:z, for if there were,
then yw would be a sentence of G - contradicting the

observations made earlier concerning the non-existence of
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such a w, It follows, again from Lemma 2.38, that
£ (NAMEOF(V(®8)) ,u) = ERROR and since the state on top
of the state stack at this time must be NAMEOF(V(g))
it follows thét the algorithm will reject x on its

next move. O

" As we remarked earlier, the error detection of the
LR(0) parsing algorithm is rather different to that of
the case k > O discussed sbove, Because the LR(0) parser
uses no lookshead, it is not until it has committed
itself to a move that this parser is able to inspect
the next symbol of its input string. In spite of this,
LR(0) parsers do detect and reject all invalid inputs,
though not.quite a soon as, say, an LR (1) parser would.
Although we shall not prove it, it can be shown that when
an LR(0) parser is presented with an invalid input string
x, 1t will always halt and reject the string either during
or before making its EP(x)'th shift move. This means that
an LR(O) parser may make some moves, but only of the
reduce type, after an LR(1) parser presented with the
same input would have halted, but will itself halt and
declare ERROR before making another shift move.
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~2.6. Summary

By virtue of their very definitiom, the LR (k)
gremmars are the largest class which can be pérsed
deterministically from left to right. This gives them
an immediate theorectical appeal which is helghtened
by the discovery that tﬁey generate exactly the
deterministic languages (at least they do when k > 0).
~ Altbough the LR(k) property is undecidable in general;
we have seen three different slgorithms.for deciding
whether a given grammar is LR(k) for some psrticular,
predetermined, value of k. The method of Section2.2
though conceptually straightfoward and useful for proving
Theorem 2.8 was not developed sufficiently to yield a
practical algorithm. The methods of Sections 2.3 and
2.4 both yield practical aslgorithms but the former
suffers from the disadvantage that its worst-case comp-
‘lexity 1s exponential in the size of the grammar under
test. However, it seems that for conventional programming
language grammars the size of the LR(k) stateset grows
only linearly with the size of the grammar (see Purdom
(1974)). Thus the poor worst-case performance of this
algorithm is unlikely to be a §§rious drawback in
practice. As far as we know, the efficient algorithnms

of Section 2.4 are untried in practice.

A parser for an LR(k) grammar is easily counstructed
from its LR(k) stateset. The performance of these parsers
is superior in many respects to almost all other bottom
up methods. One of the great advantages of the LR(k)
parsing algorithm over most of its rivals is the fact that,

when a reduce move is called for,an LR(k) perser knows
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imnediately which production is to be used in the
reduction. In contrast, most other bottom up methods
know only that a reduce move involving some production
is required, and must spend time examining their parse
‘stacks in order to discover the identity of the
production to be used., The LR(k) parsing algorithm is
therefore, in general, faster (that is it has s smaller
constant of proportionality) than other linear-time
parsing methods,

Furthermore, the ability of the LR(k) parsing method
to detect syntactic errors at the esrliest possible moment
is vastly superior to the error detection facilities
arforded by other bottom up methods. Although, @s we have
seen, the "error position" Within a syntactically incorrect
string is not necessarily the point at which the error
was committed, it is almost certainly the best place to
which to direct the user's attention, and it is also the
point at which the contents of the parse stack may best
be used to enable the automatic generation of meaningful
diagnostic messages and to initiate automatic error

recovery procedures.

The price paid for the generality, speed, and
excellent error detection of the LR(k) parsing method
is in the great size of the tables which drive the
parser, It is ultimately the cardinality of the LR(k)
stateset for a grammar which detérmines the size of its -
LR(k) parsing tsbles snd this value grows dramatically
with increasing k. Although LR(O) statesets are quite
modest in size, the LR (0) gremmars are too restrictive
" to be userul in practice, The LR(1) gremmars, however,

appear sufficiently general to model thesyntax of most
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conventional programming languages. Those  programming
language grammars which are not LR(1) are gquite likely

- to be ambiguous or to present other difficulties to a
human reader. Practical confirmation of the utility of
the LR(1) gremmars is provided by the fact that many
more restricted classes of grammars have found wide-~
spread and successful application. Sadly, though, the '

; LR(1). parsing algorithm founders in practice because its
parsing tables asre intolerably large - the LR(1l) state-

the size

set for a grammar/of ALGOL60 will contain many thousands
of stetes and will give rise to parsing tables requiring

tens of thousands of machiune words for storage.

Fortunately, methods derived from the LR(k) parsing
algorithm (or, more precisely, from the LR(1) algorithm)
have been found which reduce the space required by the
parsing tables to acceptable proportions, while retaining
»almost‘all the advantages of the basic slgorithm. These

methods are discussed in Chapter 6,

There 1s one parsing method which does outperform
the LR(k) algorithm in one important respect. This is the
"operator precedence" method of Floyd (1963), snd while
it is applicable to ounly a very restricted class of
grammars and affords appalling error detection facilities,
it 1s  very fast indeed. T he reason for this is that the
operator precedence method does not really parse accord-
ing to the original grammar at all, but parses with
respect to an abbreviated "skeletsl grammar"'. This enables
1t to bypass completely many of the reduction steps uneeded
by counventional parsing algorithms, Since matters are
arranged so that these bypassed reductions asre without

semantic significance, the "sparse parses' produced by the
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operator precedence method sre Just as acceptable for
the purpose of translation as ordinary psarses. In the
next ;hépter we shall generalize the LR(k) property so
that the LR(k) parsing slgorithm too may bypass certain
reduction steps, theréby obtaining a considerable gain
in parsingISpeed, without sacrificing any of the other
attractive properties of this parsing method,
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CHAPTER 3.

THE CFLR (k) PROPERTY

In order to motivate the subject matter of this
chapter, we invite the reader to consider the parse
tree shown in Figure 3.1 which displays a derivation

~in the programming languege EULER (Wirth and Weber,
(1966)). '
/EXPR-\
VAR~ | CATENA
1

DISJ

I
CONJ

CONJ=-

A ,

NEGATION
RéLATION
N céoxcn
' CHOICE-
'SJM
k-

TERNM

N

r
|
B

Figure 3.1 : A Derivation from EULER.
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The only productions involved in this derivation which

have any semantic significance are ¢

EXPR- —= VAR + EXPR-
VAR- —= A

'PRIMARY — VAR

A —= A

" —3B

Consequently, the "sparse parse tree" of Figure 3.2 is
Just as satisfactory for the purpose of translastion as

that of Figure 3.1.

/EXPR-\

‘IIAR- l | PRIMARY
"i e T VAR-
| |

I
A
l
B

Figure 3.2: A Sparse Parse of the Generation in Figure 3.1.

However, the tree shown in Figure 3.3 is not a satisfactory
replacement for that of Figure 3.1 because some derivation

steps with ‘semantic significance have been omitted.

A/ EXIPR- \B

L

Pigure 3,3 ¢ An Unsatisfactory Sparse Parse of the
' Generation in Figure 3.1,
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A conventional parsing algorithm for the language
EULER would,of course, produce the parse corresponding to
Figure 3.1. In pafticular, an LR(k) parser (or any other
shift-reduce bottom up parser) WOuld require 3 shift
moves and 23 reduce moves in order to produce that parse,
Of the reduce moves, only 6 involve productions with
semantic significance; the other 17 (i.e 74% of the total)
are of no interest for the purpose of translaetion and
the proportion of the parser's effort which is expended
onf{hese moves may be considered wasted., It would be very
interesting and useful therefore, to seek parsing
algorithms capable of producing the "sparse parse' of
Figure 3.2 directly. We would expect such a 'sparse

parser" to be very much faster than a conventional parser.

Becsuse the IR(k) grammars and their associated
parsing algorithm are generally very attractive, it is
with them that we shall concentrate our searchfa sparse
- parsing techniques, Before proceeding further we ueed to
formalise the notion of 2 sparse parse. Following Gray )
and Harrison (1972) we suppose that, independently of
context, a production either does or does not have
semantic significance, Accordingly we make the following
definition,

DEFINITION 3.1

Let G = (VN’ VT,P,S) be a grammar and H¢ P. If x,8 ¢ 'al
satisfy o(—-:'p and D = <(qi, m1)>121 ~1s en explicit

derivation of 3@ from o then the H-sparse derivation

corresponding to D is :

Dy = <(qi. m, ) | q, e H> ey

Naturally, when D is an r-derivation, Dy 1s said to be an
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H-sparse r-derivation and P,» the Hzosparse parse

corresponding to D,is defined as the sequence of

productions which appear in DH ; that is ¢

n
PH=<‘11 | q ¢ H>1=1.

The intended interpretstion here is thst the productiouns
in H have semantic significance while those in P\\H do
not. An H-sparse derivation is the subséquence of an
ordinary derivation which contains only those steps which
have semantic signficance., Note that,unlike the case with
ordinsry derivations, different sentences may share the

same sparse derivation.

We wouldllike to discovéf shift-reduce bdttom up
parsing algorithms which ignore the productions in P\ H
totally. However, it is difficult to see how this can be
accomplished in genersl. In perticular, if any productiouns
in P \ H have degree other than 1, then ignoring reductiouns
by these productions will surély cause the parse stack to
have the "wrong length" during the subsequent activity of
the parser, If we undertake only to ignore productions
of degree 1, then this difficulty at least does not arise,
This is because the parse stack in the shift-reduce bottom
up parsing method has the same léngth botn before and
after reduction by productions of degree l. Productions of
degree 1 and without semantic significance are called
"chain" productions (because théy partake in lbng chains
of reductions such as that from PRIMARY to EXPR- in
Figure 3,1). We make this notion precise and introduce
some additional terminoclogy in the next definition,
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DEFINITION 3,2

Let G = (Vﬁ,VT, P,S) be a grasmmer. The production
A—= O0eP 1is said to be a chain production if

(1) it has no semantic significance, and

(i1) A # s and len (8) = 1,

Vaen C ¢ P is a set of chain productions, we say that
C is a chain set for G and the pair (G,C) is called a
chain specified grammar, or cs—grammar for short., If
we define H é P\ C, then the H-sparse derivations in

G are more couveniently called the chain free derivations

- in (G,C). Similarly the H-sparse r-derivations and H-
sparse parses in G will be called the chain-free

r-derivations snd chain free psrses respectively. [

Thus & chain-free derivation is & subseguence of an
ordinary derivation from which all steps involving chaln

productions have been deleted,

In futuré we will often sbbreviate "chain-free" to the
hyphenated prefix "cf-"; Chain-free r-derivations will

be called cfr-derivations., When D is a derivation in

G we will denote the cf-derivation in (G,C) correspondihg
to Dby D,p . Observe that Definition 3.2 requires
that no chain production has the goal symbol‘as its left
part. We make this stipulation because it 1is a simple
Way to ensure that no sentence in L(G@) has a null .
cf-derivation. This is convenient for techunlcal reasouns,

Note that this is the only condition which we place on

chain productions. In mrticuler, we do not exclude chain
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productions whose right parts are terminal symbols,
nor do we preclude sets of chain productions which

share the same left part.

Since we have now retrested from our original
objective, which was to find a fully general sparse
parsing technique,'in favour of a lesser gosl, namely
the discgverj of a chain-free parsing method, we
should enquire whether the likely benefits remsain
worthwhile., In practice it seems that programming
language grammars contain relatively few chsin
productions, For example, an ALGOLW grammar containing
183 productions has but 13 chain productions; that
is about 7% of the total. However, the'ffequency of
occurrence of chain productions within grammars is
not the real issue., What really matters is the freqﬁency
with which chain productions sppear in derivations,

If chain productions tend to occur in the "heavily
used" portions of grammars then they may well appear
in derivations with considerably greater freguency
than their comparatively infrequent appearance within
Srémmars might suggest. This does indeed seem to be
the case, for‘within‘a programming language grammar

. chain productions are typically used for two different
purposes, both of which concern poftions of the
grammar which are likely to be heavily used. Firstly,
ﬁhey are used to collecf togéther several syntactic
categories under a single headihg. In ALGOL60O for

example we have @
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(STATEWENT) —> CUNCONDITIONAL STATEMENT)|
' {CONDITIONAL STATEMENT) |
<{FOR STATEMENT) .

Secondly, they are used to enforce precedence asmong the
operators in expressions. In the case of Grammar G3 for
instance, the productions E~T and T - P are chain
productions which csuse parenthesized sub-expressions

' to be evaluated before unparenthesized ones and also -
cause the operator * to have higher precedence than +.

It is especislly this second use of chain productiouns
which causes them to occur disproportionately often in
derivations. Measurements by Anderson (1972) on several
ALGOLW programs showed that, on average,707% of all the
préductiona appearing in derivations were chain productions
(even though chain productions accounted for only 7% of
the productions in the grammar)., When an ad-hoc method
for bypassing reductions by chain productions was
incorporated, Anderson found that the parsing phase of

the ALGOLW compiler was speeded up by almost 50% and that
lotal compilation time was reduced by about 15%. Further
evidence is provided by Aho and Ullman (1973b) who report
a private communication of Horning relating to experiments
at Toronto which showed that the parser in the XPL
compiler was speeded up about 2% times when reductions
involving chain productions were bypassed. Since compllers
are usually well constructed and carefully optimised
programs, these improvements are to be regarded es very
substantial and worthwhile. It is worth noting thatalmost
all the productions without semantic significance in

programming language grammars do turn out to be chain
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productions; and those semanticless productions which
are not chain productions do not seem to occur all
that frequently in derivations., In summary, chain-free
parsing is likely to retain slmost all the benefit of
fully general sparse~parsing and this benefit 1is

considerable.

There have been several attempts to modify the
LR(k) parsing algorithm so that it bypasses reductions
by chain productions. We have already}referred to the
work of Anderson, that of Aho and Ullman (1973b) is
also notable., These methods suffer from certain
wractical disadvantages and because of their ad-hoc
nature they provide no theoretical insights into the
nature’ and properties of cf-parsing. In contrast,we
shall seek to construct LR(k)-type chain-free parsers
from_"firsf principles" in the hope of obtaining both
a better ﬁndérstanding of the underlying processes and

also a better chain-free parsing method.
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3.1, Bottom up Chain-Free Parsing.

Ve begin our invéstigation of chain-free parsing
by modifying some of our existing concepts in order
to take account of chaiﬂ productions. First of all we
must revise our idea of syuntactic ambiguity.Consider

-

- the following grammar :

S —= A
A —s A (Grammar G4)
A —= X

This gramamsr generates the language {x]} and plasinly
it is an émbiguous grammar; in fact its single sentence
has an infihite number of r-derivations. However, if
A~ A is a chain production, then all the r-derivations
of x yield but a single cfr-derivation, namely

<(S "A,l)', (A - x, 1)). For the purposes of
translation it is only the cfr-dérivation which is
.significant, and since this is unique, the gremmar is
"as good as" unambiguous. Accordingly we will now
consider a grammar to be ambiguous only if some of its
sentences possess more than one chain-free r-derivation.

The next definition makes this notion precise,

DEFINITION 3,3

The chain specified gremmar (G,C) is cf-unambiguous
if and only if every sentence in L(G) has a unique

cfr-derivation., O

The next result is an obvious corollary to this definition.

THEOREM 3.4

(@,C) is cf-unambiguous if G is unambigucus. [J
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The next candidate for revision is the concept
of a "handle". Recall that the handle of an rsf is
effectively thé last step to appear in an explicit
r-derivation of that rsf., By analogy, we msy provision-
ally‘define the "chain-free handle" (or "cf-handle" for
short).of an rsf to be the last step appearing in
someVexplicit chain-free r-derivation of the rsf.
Associated}with tﬁe concept of a handlé was the idea
of "reducing" an rsf. Remember that reducing an rsf -
meant replacing its handle phrase by the left part of
its handie broduction. We may suppose, by analoéy,that
'ef-reducing" an rsf means replacing its cf-handle phrase
by the left part of its cf-handle production. The
general bottom up parsing algorithm (Algorithml.2 )was
expressed in terms of these two primitive operations =
‘f§nding the héndlelof an rsf and then reducing the rsf.
We may tentatively construct a bottom up chain-free |
parsing algorithm by replacing the terms "handle" and
"peduce" in Algorithm 1.2 by "cf-handle" and "cf-reduce"

respectively. Let us see how this works in practice.

We will use the grammer G3 given in Section 2.5
and will cho‘oserc3 = {E-»T,T>P,P—+X] . as the
chaln set, Suppose we wish to cf-parée the sentence
X+X*X., . The explicit r-derivation of this sentence
is ¢ | |

{(s~=E81) , (E=B+1,3) , (T—T%P,5),
(P —~x,5) , (=p,3) , (P—=X, 3),
(E—m,1) , (r=p, 1) , (P=X, 1)),

.
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- The first step of our proposed bottom up cf-parsing
algorithm requires that we find the cf-handle of

X+X%X, IASpection of the r-derivation above reveals

that (T~ T*P,5) is the cf-handle of this senteﬁce.

We should now cf-reduce the string X+X*X, that is

to say we should replace its cf-handle phrase by the
~left part of its cf-handle production. A problem now
arises because we have not specified the notion of a
cf-handle phrase sufficiently precisely. If (T=T*P,5)
were the ordinary handle of some string, we would expect
that string to contain the right part of the handle
préduction, that is T*P, as a substring occupying the
3rd,4th and 5th symbol positions and that occurrence of
T#*P would be the handle phrase, Here, however, we find

the string X*X in the position where we would expect to
find the handle phrase. However, X*X is derived from

T*P by a sequence of chain productions so let us suppose
thet the correct interpretation of "cf-handle phrase"
here is the substring X*X. Then, suppressing any doubts
thet this may occession, it seems that to cf-reduce

X+X*X we should replace the substring X*X by the symbol
P (that is the left psrt of the cf-handle production).
This operation yields the string.X+T and the proposed
‘ef-parsing algorithm now requires us to find the cf-handle
of this new string. But at this point everything collapses
in disarray. The string X+T is not an rsf of the grammar
and so we cannot spesk of its r-derivation, let alone 1ts
cfr-derivation or its cf-hendle, We must re-examine our

constructions.
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One dubicus aspect of our failed cf-parsing attempt
was the interpretation of '"cf-handle pﬁrase“ and the
way in Which we cf-reduced the string X+X*X, But this
is not the real cause of our failure. The true roots
of the problem lie in the notiouns of rsf's and r-derive-
tions, for these sre inappropriate to the cf-parsing
context. As presently defined, a cfr-derivation is a
subseguence of an r-derivation. This means that not only
are non;chain productions constrained to be spplied
right - canounically, but so too are chain productions,
Surely there is an inconsistency here. We profess no
interest whatsoever in chain productions and do not care
to be told whether they sre used or not; it must be
| unnatural, therefore, to require, as we do sbove, that
when chain productions are used then they are used right-
canonically. Either we care about chain productions or

we dofnot. We should not take a middle course,

We escape this dilemma by defining a new type of
derivation (called s "rorc-derivetion") in which non-
chein productions must be used right canonically while
cha;n productions are allowed to be used "anywhere",.This
is the import of the next definition in which we also
consolidate some of our earlier provisional definitions

and introduce sundry other related concepts and notations.,
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DEFINITION 3.5

Let (G,C) be a cs—-grammsr. If ¢, ¢ V' have the form
X = ‘KA&‘ and 2= ¥XJS where A - X e C then we say
that o« directly chain derives @ (with respect to
(6,C)) and write * -z + Clearly - 1s a relstion on

V¥, We use it to define further relations on V' as

follows :

(1) v 2 A B
(11) Tone = TR Y %o
(111) = = ==\ .

These relstions are pronounced ‘'directly right-
canonically chain derives' ('rc-derives' for short),
'directly right-casnonically or chain derives'(' rorc-
derives ' for short), and 'directly right-canounically
ghain free derives' ('rcf-derives' for short) respect-
-

ively. Their closures are denoted by —", —

Regte

etc. in the usual way.

When A — © is production g, x = ¥AS, g =¥64,

and m = len (¥0) we extend our previous notation and

write ¢

(1) X ~{q,u}—= g if q e C,

(i1) o ~{q,m}—=p  1f qgeCond § e V.;.,
(111) «—-(q,m)——‘-;c,e if geCor § ¢ V,I., and
(1v) « <q,m}==p if qge P\Cand & ¢ Vg,

- Observe that if o(—(q,m);;,s then q € C implies

ol —(q,m)—: 4 and q e P\C implies o —(q,m)}—» /3,

When o¢ 7£p there must exist a sequence of strings
<“‘/i> i:O and sequence of reductions D = <(qi’mi )>i:l

such that o = \PO-(qL,ml)-;;-; Vi -(qz,mz)f-;;\yz oo
e Ve Hpo iy, = p.
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The sequence D is called an explicit rorc-derivation of

p from o¢ (with respect to (G,C)) and we may write
o —{D}—>=p . We define explicit c- , rc-, end ref-

derivations similsarly.

The rorc-sentential forms of (G,C) (called rorcsf's

for short) are the members of yhe set {u e,V* l s-—:‘o(}

Rone

YWhen § is a roresf of (G,C) there must exist further

roresf's o« and B and a derivation step (q,m) such
that : :
S — o(-(q,m)-T;/; .._i" b

Rone

snd then (q,m) 1s said to be a cf-handle of ¥ . Note

that we will have m/P e V;, m//3 = m/¥, and len(/s) =
len(¥ ). . Provided that (g,m) is the only cf-handle

of ¥ we can unambiguously refer to q as the cf-handle

production of ¥ and to m as the cf-handle position in ¥ .

Also the strings m:¥ and m/¥ may be called the left

and right contexts of the df-handle of ¥ respectively.
If production:q is A- © then «,3 and ¥ cen be written
in the form « = §Ax, B = §6x and ¥ = ppx where .

~len(§6) =m, & - =nd 6 ¢ . The substring @ of
% is then called the cf-handle phrase of ¥ . The act
of replacing the cf-handle phrase of a rorcsf by the left

part of its cf-handle production is known as cf-reducing

the rorcsf. It can be seen that cf-reducing ¥ above
yields the string pAx. Observe that this string is also
a roresf of (G,c).O | |
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The definitions above asre crucial to all the
developments which follow. In these developments, the
- rorc-derivations and rorcsf's will fulfill the roles

~ previously occupied by r-derivations snd rsf's.,

' Similsrly, the notion of a cf-handle and the operation

 of cf-reduction will replace those of handles and of

~ ordinary reduction. The vital property of rorcsf's is

o that they are closed under the operation of cf-reduction,

e Observe that when the chain set is empty, these notions

" of rorcsf's, rorc-derivations and cf-handles etc.,

~ revert to the corresponding "old" notions of rsf's,
fr-derivationa and ordinary handles., Thus the new theory
-~ which we are comnstructing is a true generalisation of

" the established theory.

There is one concept, the most fundamental of all,

which is still bound to the old ideas. As defined by

 _ Definition 3.2, a cfr-derivation is a subsequence of sn

r-derivation, and we have discovered that r-derivations
are an insppropriate notion in the cong;xt of cf-parsing.
- It seems likely that cfr-derivations should be redefined
. es the chain-free derivations corresponding to rorc-
“derivations. Happily this redefinition is unnecessary
'}‘fOP 1% is equivalent to the original one. To prove this
importént fact we first need a technical lémma which
'says, in effect, thet all the steps in a rore-derivation
»lf;which sre not right-canonical can be pushed to the tail
‘end of the derivation. S



130

LEMMA 3 6
Let (G, C) be a ce-grammar. If «,% ¢ V satisfy o — ¥

Aene
and D is an explicit rorc-derivation o ¥ from « then
there exists B8 e V" such that o — B —'%.and,

[ 3 [
furthermore, there is an explicit r-derivation E of P

Al

| from such that Dcf = ch.

| PROOF. The proof is by induction on the leungth of
the derivatién D. The basis of the induction is the case
where D contains no step‘s at all and is trivisl. For
the inductive step we assume the result to be true of
all rorc-derivations containing n steps ( n20) and
then suppose that D contains n + 1 steps., We can

" distinguish the last step in D as (g,m) snd write
D=D'e _<(q,m)> where the derivation D' contains n

"steps. For some & ¢ V' we will then have
: ,
(o3¢ —{D ]—;:‘ ) —-(q,m)-z“&.

Applying the inductive hypothesis to the derivation D',
I ‘we deduce that there exists"p ¢ V* and an r-derivation

cg = Doz 800

o —{E' = p ? 6—(q.m)—~ X.

N »There are now two cases to consider eccording to whether

E' of p from o such that E!

or not q is a chain production.

_'Caee 1 : q e C. Then we have 6-(q,m)-—‘6 a.nd so,:-»‘é

We may define E = E' end g = and the inductive step

;ia complete ror this ‘case,
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Case 2 : q e P\ C, Then we have ¢§ —(q,m)—> ¥ and so

acr
we can write § and ¥ in the form § = nAx and ¥ = méx
where A'—> © is production q a.nd~len(~qe) = m. Since we
also have p "9 it follows that we can write u = oBr
where c---.-Q ’ B-—» A and 7r—> X, Since x e VT" -> x
implies 7T -z x. Also, because B ¢ VN, B - A implies
B —= A. Therefore there exist explicit rc-derivations
'E* and E’ such that

B = e&Brw —{E’}—&anx —E? J= s Ax.
We also have '

cAx —{(q,m)> c6x —>"'qex =Y.

Hence, if we define E by E = E' ¢ E* ¢ E’ e {(q,m)) and
p by g =o6x, then we have « —{E}+ B ¥ as required
and it only remains to verify that ch = Dcf . Clearly

we have E = E' E2 e E;f e {(q,m)» and since

cf cf © cf

E? and E? are rc-derivations, we must have that both

| E:f and E;f are null sequences, Thus E of = Eéf ® <(q,m)>.
]

But we also have D _, = Dcf e {(q,m)) and Elp = D p.

It follows that E'cf = D‘:f and 80 the inductive step -

and the proof of the lemme are complete. [

The result we seek is & siraightforward corollary to.

this lemma,
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COROLLARY 3.7

Let (G,C) be a cs-grammar. If x e L(G) and D is
~an explicit rorc-derivation of x from S then Dcf is
& cfr-derivation of x from S,

PROOF. We have S -—[D}-—R-;‘-; x and so by the
preéeding lemma there exists < eV and an
explic;t r-derivatibn E of « from S such that

. “ ‘ *
Dog= E,pands —-[E]—z « —3x. Since x ¢ Vp

cf
and o< — X we must also have o —*x and 80
there exists an explicit rc-derivation F of x from «.
ﬁ'e now ha;‘re | -
s —E}— o {Fl—=x

and if wé derihe"EF = E ¢ F we see that EF is an
explicit f-derivation of x from S. The corresponding
 efr-derivation is .EF = E,p © F,p+But F 1s an

"rc-derivation and so For is the null sequence. It

:' Arollows tha‘t EFcf = ch an‘d‘since we know that ch =

Deg 1t follows that EF , = Dcf‘and henge thet Do
. 1s indeed an explicit cfr-derivation of x from S. o

Another useful léorollary' of Lemma 3.6 is the followling

. -pesult. .
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COROLLARY 3.8

r ¥ .18 a rorcsf of a cs-grammar (G,C) with a cf=-
handle (q,m), then there exist x,8 € V* such that

5 < Agmle p "7,

PROOF. By definition, if ¥ 1is a reresf of (G,C)
with a cf-handle (gq,m) there must exist & and ,§ € V*

- such that

* ' -
S = o Hqml> g %,
In other words, there is an explicit rorc-derivation
" Dof ¥ from S such that (q,m) is the last member of
Do o (To see this, note that > EC > . ) |
: *
Therefore, by Lemma 3.6, there exists u e V and an

' explicit r-derivation E such tbat E., =D and

s —Elspr — 5.

. since (q,m) is the last member of the sequence Der

and Dcf = ch . » We may write E in the form
E = B' e <(q,m)> e E?
 where the sequence E* 1s sn rc-derivation. (That is
. to say E% is the null sequence). Clearly, there
exist «, g € V* such that A o
| S —E'}lm w<q,m)m p —E > p T ¥
and thus we have - : :
e U
‘and the result is proved. [J

--Before returning to a re-examination of the bottom up
cf-parsing slgorithm we_'prov‘e en important result which
' relatavs cf-ambiguity to tbé uniqueness of cf-handles,
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~ THEOREM 3,9 (cf. Theorem 1.1)

Let @ = (VN, vT, P, s)_ be a reduegd gremmar in which
S =" 8§ does not occur and let C be a chain set for
. G. Then (@,C) 1s cf-unambiguous if and only if every
rorcst of (G,C) has exactly one cf-handie, except s

- which has none.‘

PROOF., - We prove the result in the "only if" direct-
ion ‘by showing that if any rorcsf has two distinct
cf-handles then (G,C) is cf-embiguous. Let = be a
rorcsf of (G,C) with a pair of distinect cf-handles (p,m)
end (q,n). There must be two explicit rorc-derivations
D and E of « from S such that (p,m) 1s the last memben
of D, and (q,n) is the last member of E., . Since
(pym) # (q,n) it follows that D o # E g+ Now because G
is reduced, there must be some X e ug such that
§ o(-1:X s 80 let F be an explicit r-derivation of
x from e« , Then if we define DF = Do F oand EF = Ee F
. 1t follows that DF and EF are both rorc-derivations of
:x from S. By Corollary 3.7 this means that both DFcf

and EFcf are c¢fr-derivations of x from S. But we have

DR, = D, e F end
EFs = Egp © Fop

and since D,, # E,p , this implies that DF # EF.
Hence the sentence x has two distinct cfr-derivations
and so {@,C) is cf-smbiguous and the proof is*complete‘
for the "ounly if'" direction.

For the proof.in the "if" direction we show that
if (G,C) is cf-asmbiguous, then some roresf of (G,C) has
a pair of distinct cf-handles, Suppose that (G,C) is

- cf-ambiguous, Then sdme sentence x ' ¢ L(G) possesses
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a pair of explicit r-derivations D snd E such that

Dcf # ch « Three cases need to be considered,

Cese 1 D, = Qle E . for some non-null
sequence Q. We will show that this case is impossible,
We have 8 —{E }= x and since no chain production
may have S as its left part this means that the first
member of the sequence E 1s the same as that of the
_subsegqguence ch’ ._erthei-more, this first- member has.
the form (S o« ,len( e« )) where S-=»ec e P, We can
therefore write Eéf in the form ch=u<(s ~,len(>))> e R.
Since Dop = Q ° E,r Wwe can partition the sequence |
'D and write |
.D=D" e ((S»u,len(u))) e D’
‘where Dgp = Q and Dgf - R. Clearly there exist
¥, 3 ¢ V* such that ’

S —{p'}— ¥ —(5 >« ,len(w) )= § < D* I x.
. It follows that ¥ has the form ¥ = Sz for somez e V;.
Now define D*® by D® = <(‘s >w,len{«))) o D and we
have Sz —{D’]—= x. But we also have S —{E}5x
-and ch = 'D:f . This implies 2 =\ and so -
s —p'}%¥ vecomes s —{D'}= S . Now D o= Q
‘and Q 18 not null., Hence S —' S , But this contradicts
the requirement that S —»7S. does not occur in G and

so we conclude that this cése is impossible.

Case 2. &+ Eyp = Q e D,¢ for some non-null
sequence Q. This case is symmetrical with Case 1 and
‘may be shown by the same argument to be impossible,



. Case 3 Neither Case 1 nor Case 2 obtains. In

| . this case, since Dcf # ,ch_ we must be able to write

| Drand E in the rorrq

D =D e {(pm)) eD ,  eand
E = E’ e {(qn)) e E
where p,q ¢ P\ C, (pm) # (q,n) ‘and Dcaf = Ec’fv .
There will exist «,3,¥,§ e V' such that .
S ——-[D']-——R-o(—(p,m)‘—c: V- ——[D‘]—;x a.nd.
s —'}=%¥ —(q,n)* é‘—{E’ }= x.

. Now although Dgf‘ = E:f » 1t is not necessarily the
case that D? = ‘E® and so we cannot be sure that
B =9J . However, by a straightfoward induction on

the length of the sequence sz (we omit the details)

it can be shown that there exists 6@ « V* such that
both @ —=*¢  and J =" g . We therefore have

S —pmlz p—r 0

and ' Sé-{ x—(q,n)-‘—‘; d -—{-‘e and so we see
' that © is a rorcsf of (G,C) with a pair of distinct
 handles (p,m) snd (q,n). This completes the proof in the

"1£" direction snd so we may conclude the theorem. O

We saw earlier how our first attempt to formulate
a bottom up ecf-parsing algorithm broke down due to an
inadequate definitional‘ fresmework., We have now repaiéed

y,_these: deficiencies snd may proceed ‘to re-present the

, algori thm,
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ALGORITHM 3,10 (cf. Algorithm 1.2)

" Bottom up cf-parsing algorithm,

Input @ A cf-unambiguous cs-grammar (G,C) and a

' sentence x € L(G) which is to be cf-parsed.

‘Qutput:  The explicit cfr-derivation (inAre#erse order)
~ of x with respect to (G,C). '

‘ ’Megggg:'

1. set « =z

2. Repeat steps 3 and 4 until o = § (S 1s the
R goal symbol of G).

3, Determine the cf-hendle of o and output 1it.

4L - Cf-reduce X by its cf-handle and let the

result replece x o O

The close similarity between Algorithms. 3.10 and 1.2

should te noted, The present algorithm is in fact identical

-~ to Algorithm 1.2 except that cf-handles have been
substituted for handles and the operation of cf-reduction

~ has replaced that of ordinary reduction. Unlike that of

. Algorithm 1.2, however, the correctuess of Algorithm 3.10
is not at all obvioue}and must be established by a :ormal‘

proof. This we proceed to do.

* _(THEOREM 3.11

Algorithm 3.10 terminates after a finite nnmber of
repetitions of steps 3 and L end its output is the correct

efr-derivation (in reverse order) of the input sentence x,
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PROCF, Let r be the number of times that steps 3
_and 4 ?f Algorithm 3.10 are executed (note that r will
be infinite if the algorithm fails to terminate) and let
. (p,sm;) be the cf-handle found during the i'th
. execution of Step 3?;:1’ the algorithm and let o¢, denote
‘the contents of the string « gafter the 1'th execution
of step 4. Let &, = x. Since x ¢ L(G)and (G,C) is
cf-unambiguous, there is a unique exp.licilt cfr-derivation
D= ((qi,n; )>.::3 of x from S. Note that for convenience
~we have numbered the steps in D 1n the reverse of the
normal order. Let <\.}r > and < ch);; be éequences of
_rorcsf 8 of (G,c) such that |
S =y g Han )y, ¢ —(q,_,, .. )-o\p,_a-. .
cer =, ~q,,m, = ¥ Tp=x

and let t be the minimum of & and r. Observe that since
"no chain production has S as its left part, we in fact
have 8 = \};’ a=<}“. Ve wil;. prove that foxf ‘alll i in the
range 0€ 1 §€¢ we have Y, —,;’*.,(; and for
+1$1< % wehave (p;, m;) = (g; , n;). The proof is

by induction on i. For the basis we merely observe that

vV, = @, and @ = o = x and s0 . "o,
For the inductive step we suppose that for some i in the
range 0 £ 1 < t we have Y, —=" «;  and proceed
to prove that t}/m = «;,, end (p,,m,) = (qw By, e

By construction we have

; L)
S —;:;c ..u % ¢0¢-1—(qt+l’n¢“ )-’ \P

Acr

and by the inductive hypothesis we bave ¢, —" ;.
Therefore (q‘.m» ‘:‘,)' ié the cf-handle of of, o Algorithn
) 8s the cf-handle of «; and

Y

3,10 finds (p_ ,m
" simce (G6,C) is cf-unambiguous this means that (q;,,v;,,)

and vy,

[¥%

= (?,-,,,m“, ) as required. Now we can write ¢
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in the form ¢ = p Ax and . = u6x where

A-> 9 1is production q,, and len (f‘e) = n,, . And since

‘P:: —"t* 0<.;. we can write «; in the form o = Féx

where p —" [ end © == & , The act of
cf-reducing» x; clearly ylelds the string X, = pAXx
and we see immedistely that ¢‘."-,:“ ., Since
Yo % P

result required to complete the induction.

we therefore have 4/“ -—fc(;“ which 1is the
1] .

We prove that Algorithm 3,10 terminates by demon-
strating that r ¢ s, Suppose that 1r > s, Then from the
forgoing induction we know that ¥, -,:' o, o But y, = S
end no chain production has S as its left part. Therefore
o, = S and so Algorithm 3.1Q terminates aftep step L4 has
" been executed for the s'th time. We conclude that r¢s
"I_t remains to show that r = s, Suppose that r < s ., This
implies that o, = S and hence that y, —* 5 . But if

' »'_r < 8 we have § —'*\P,_ end therefore S —" s. But (G,C)

1s cf-unsmbiguous and so it cennot be that § =S in G,
' We conclude that r = s and hence that Algorithm 3.10 is
. a correct Aéf.-par'aing algorithm. O |

Let us now return to our abortive attempt to cf-
K ~ parse the string X+X*X . with respect to (G3, C3).
Observe that, as far as it went, the method employed in
that attempt wes consistent with Algorithm 3.10. The
- cf-handle of XeX*X . 18 indeed (T - T*P,5), and

-»its c¢f-handle phrase is indeed X*X.. Therefore cf-re-
duction of ,jl_.XA+X'fX." yields the lstring *xfm- ss before,
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-We previously gave up et this point because X+T

"~ 1s not an rsf of the grammar. We now know that X+T

is a rorcsf snd that the algorithm msy proceed. A
rorc-derivation of .X-t»T. is -
{(s->E, 1), (E-E+L,3), (E-1T,1).
(r=p, 1), (P+X,1))

and so we see that its cf-handle is (E-oE+T,3).‘Ihis ,
' means that when . X+T is cf-reduced it yields the
‘single symbol E. One more iteration of step 3 of
Algorithm 3.10 gives the last cf-handle of the parse,
‘namely (S - E, 1) and after cf-reducing E to S the

7, algorithm terminates. The cfr-derivation found by this

process is of course the correct one :
{(s=~E 1), (E-E+T,3), (T=~T*P,5)),

Just as Algorithm 1.2 can be developed to yield
the shift-reduce bottom up parsing method of Algorithmv
1.3, so Algorithm 3,10 méy be recast as a shift-reduce
method. We do not reproduce the development in detail )
since it exactly parallels that in Section 1.7. It is
easy to see that the parsing method of Algorithm 1.3.
becomes a cf-parsiug method on simply substituting en
appropriate chain-free parsing sction function for the

ordinary action function f.

Note that this modification of Algorithm 1.3 depends
crucially upon the fact that chain productions have

- degree 1 and hence that the length of the parse stack

is not disturbed by felling to make reductions involving

chain productions,
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Recall that Algorithml.3 demsnds that the grammar G

be unambiguous and that when o¢ denotes the contents
of the éarse stack and x denotes the unconsumed input
- then o(x must be an rsf of the grammar whose handle |
(q,m) satisfies m > 1len (o¢ ). Also the parsing action
function must satisfy .
~ f(«,x)= REIUCE q 1if m= len( ),'
and f(¢t,x)= SHIFT ir m> len(c ).

To produce a cf-parser from Algorithm 1.3 we simply
require that (G,C) be of-unsmbiguous, that o(x be a
roresf of (G,C) whose gf-hsndle (p,n) satisfies .
~n 3 len(x) and that

f(o¢,x) = REDUCE p if n = len (),
and f(o ,x) = SHIFT if 0 > len ().

The places where the cf-parsing requirements differ from

the ordinary ones are underlined.

In‘the ordinary shift-reduce parsing algorithnm,
the strings that could appear in the parse stack were

- called the "viable prefixes" of the grammsr. Their

.. counterparts in the chain-free shift-reduce parsing

method are naturally called the ‘chain free viable

~ prefixes", They are defined as follows :

' DEFINITION 3.12

A string o € V¥ 15 a chain-free visble prefix for

T (g,c) ( a cf-via re .x for short) if end only if

‘there exists ge V* such that =@ 1is a rorecsf of (e,c) -
with a cf-handle (q;m) satisfying m > len (« ). The set
of all cf-visble preﬁxes for (G,C) is denoted . |

by CFVP(G'C) o
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. When the chain set C is empty, the cf-viable prefixes
of (G,C) are just the ordinary vieble prefixes of G.

From Algorithm 1.3 we earlier developed the general
form of a "tasble driven bottom up parser using k R
symbol lookshead"™ which was modelled by Algorithm 1.4,
‘Remember that this latter algorithm requires that the
"visble prefixes of the grammar be partitioned into a .
finite number of equivalence classes and that 1s precise

behaviour is governed by a set of parsing‘tables of the

- form T = (Q,s,,8,f). In an identical fashion we can

derive table-driven of-parsing methods of the same type.

_ To model these methods we retain Algorithm 1.4
:1completely unchanged but drive it with s set of cf-parsing
tables insteadvof with ordinary parsing tables, As with

" ordinary tables, cf-psrsing tables will consists of a set
Q of states, an initial state s,, and a pair of functions
£ and g_Which are the action and goto functions respect-
ively. Whereas in ordinary tables the states Q are the
names of the equivalence clasées into which the viable
prefi;es of the grammar are psrtitioned, in cf-tables it

is the cf-viasble prefixes which sere partitioned and

assigned to the statesin Q. Also, in cf-tables the action
function £ will né#er have the velue REWUCE q when q is

a chain production since the intention 1s that all such
reductions are bypassed. Following the specification

- of Algorithm l.h we deduced conditions which ordinary
parsing tables must satisfy if they aré to drive the
algorithm correctly., These conditions extend to the case
~ of cf-parsing tables in a natural menner and we incorp-

orate them into the formal definition of a set of cf-
parsing tables as follows : '
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DEFINITION 3.13
Let (G,C) be a cf-unambiguous cs-grammar where

G = (Vy,Vp,P,S) and let k be a natural number, A set

of cf—parsingtables {using k symbol lookahead) for
(G,C) is a 4-tuple CFT = (Q,8,,8&,f) where :
(1) Q is a finite, non-empty set of cf-parsing states,

(11) s, e Q is & distinguished initiel state,

(ii1) g : Q x V-~ Q is the cf-parsing goto function, end

(iv) £ :Qx V;k -~ CF-ACTIONS(G’C) is the cf-parsing

action function, where CF-ACTIONS(G+C) is the set

of possible cf-parsing actions for (G,C), that is:
cF-acrIons(®€) - {ERROR, SHIFT} v fREDUCE q|q e P\C},
For these tables to drive Algorithm 1.4 as a correct cf-
'parser, there must exiat}a surjective mapping
cP-EQUIV : cFVP{®'C) w q such that :
(1)  CF-EQUIV(A ) = s, , |
(ii) whenevef é énd y are cf—viable prefiies and
X e V such that ,
~(a)  CP-EQUIV(8) = CF-EQUIV(y ) and
(b) both 6X and WX are cf-viable prefixes
» . then CF-EQUIV(6X) = CF-EQUIV(yX),
(114) whenever 6 end 6X are both cf-viable prefixes
| : fhen 'g(CF-EQUIV(B),X) = CF-EQUIV(6X), and |
(iv) iwhenever 6x is a rorcsf of (G,C) with a cf-
hendle (q,m) satisfying m ) len(@), then the
- value of f(CF-EQUIV(6),k:x) is : |
(a) REDUCE q if m = len(6), and
~(b)  SHIFT if m Y len(e). O

~'To 1llustrate these ideas we show in Figure 3.4 a set
of cf-parsing ;ablea for the cs-grammar (G3,C3) using 1
symbom.lookahgad, Although we do not care to explain
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yet how these tables were constructed, we claim that

they satisfy all the conditions of Definition 3.13.

éTATE CF-ACTION FUNCTION CF-GOTO FUNCTION
No. || (| x| )] |+ |S|EjT|R|(]x]|)]|*]+
l - sh|sh 21213}2
2 1 sh|sh i 4|5
3 sh|sh 6|16|3]|6
4 sh{sh T3
‘ 5 sh|sh 813
6 sh|sh|sh 914 1|5
7 a| al 4| 4
8 2 2|sh] 2 4
9 6 6| 6] 6
Figure 3.4 : Cf-Parsing Tables for (G3,C3) using

1 Symbol. Lookahead

In Figure 3.5 we display the moves made by Algorithm 1.4

when driven by the tables of Figure 3.4 and presented

with the input string X*X+X.

MOVE | SYMBOL STACK | STATE STACK | UNCONSUMED | ACTION
NO. | CONTENTS CONTENTS INPUT
1 | N 1 X*X+X SHIFT
2 | x 1,2 *X4X SHIFT
3 | X» 1,2,4 X+X SHIFT
4 | x=*x 1,2,4,7 +X REDUCE T -»T*P
5 | T 1,2 +X SHIFT '
6 | T+ 1,2,5 X SHIFT
7 | T+X 11,2,5,8 Iy REDUCE E - E+T
8 | E 1,2 A REDUCE S-E
end
ACCEPT

Figure 3.5 : Behaviour of Algorithm 1.4 when Driven by

the Tables of Figure 3.4 and Presented with Input X*X4+X.




145

Inspection of the reduce entries in the actioh column
of Figure 3.5 shows that the correct cf-parse, namely
<8 = E,E ~ E+T,T = T*P ), is output by the algorithm.

The motivation behind the introduction of the LR(k)
grammars was to capture and explore the properties of
the widest class of grsmmars for which bottom up
parsing tables using k symbol lookahead can be constructed.
- The next step is naturally to extend this idea by
attempting to characterize thosé cs-gfammars which can

be cf-parsed from left to right using k symbol lookahead,
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3.2 The CFIR(k) Property.

The essential property of LR(k) grammars is that any
handle is uniquely determined by its left context and
the first k symbols of its right context. This property
was givén precise expression in Definition 2.1 and some
alternative formuiations of the property were briefly

considered and rejected in Section 2.1 .We now define
| an analogous property for c¢s-grammars.We say thaﬁ a
‘cs-grammar is CFLR(k) if every cf-handle is uniquely
determiﬁed by its left context and the first k symbols
of its right context, We define this ﬁfoperty more

‘exsctly as follows :

DEFINITION 3,1k (cf. Definition 2.1.)
-fLet (G,C) be a cs-grammar snd k a natural number. Then

)(GaC)vis CFLR(k) 1f and only if the following conditions

if(i) G is reduced and S —' S does not occur in G, and
(11) whenever « and p sre rorest's of (G,C) having
| cf-handles (p,m) and (q,n) respectively snd |
satisfying}mﬁs ) V; and (m+k):q<= (m+k)qg ’ then

necesssrily (p,m) = (q,n).

We say that G is CFLR(k) if there is & chain set G for G

. such that (G,C) is CFLR(k). A language is CFLR(k) if 1t

. 1s gemerated by some CFLR(k) grammar., O

" This definition is the natural chain free generalisation
of the LR(k) property (Definition 2.1). Observe thet when
:f the chain set is empty, the CFLR(k) property degenerates
* into the LR(k) property., Thus the CFLR(k) property is a
"‘true’generaliaat;on of thé LR(k) property : to every LR(k)
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grammar G there corresponds the CFLR(k) cs-grammar

' (Gtﬁ) )

A property which is needed to establish certsin
results concerning CFLR(k) gremmars is the following.

LEMMA 3,15 (cf. Lemma 2.3)

If o and 8 are rorcsf's of a cs-grammar (G,C) end have
cf-handles (p,m) and (g,n) respectively such that

mix = m:@, then n/x e V;. / -
PROOF. . This result may be proved by the samé argument
as that used in Lemma 2.3, O |

- Now let us look at some simple examples. The grammar
 Gi4 given at the beginning of Section 3,1 is ambiguous and
'is therefore not LR(k) for eny k. However G4 is CFLR(O)
1 {A — A]‘is taken as the chain set, This is easily

| seen to be 80 because (G4, {A-~A} ) possesses only
three rorcsf's namely, S, A, and x. The goal symbol S

. bas no cf-handle, while A and x have cf-handles (S- A,1)

© . and (A - x,1) respectively. Clesrly these satisfy the

- CFLR(O) property. This example plainly shows thst the
" CFLR(k) grammars include some that are not LR(k), nor .
even unambiguous, Note however, that although G4 is

ambiguous, (G4, {A - A} ) is cf-unambiguous. This is no

. accident; just as all LR(k) grammars sre unambiguous, so

U all CFLR(k) ¢s=grammars are cf-unambiguous.

. THEOREM 3,16 = (cf. Theorem 2.2)

- It (G,C) is a CFIR(k) cs-grammsr, then it is cf-unambiguous."

PROOF : This result follows from Definition 3.14 and
Theorem 3.9 by just the same argument as that used to

establish the corresponding result (Theorem2.2) for the
LR(k) grammars, O | |
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‘ Ambiguous grammars are not the only 6nes which may
~ fail to be LR(k) and yet be CFLR(k) with respect to

' certain chain sets, Consider the following greammar ¢

8 = ay| " (Grsmasr G5)
ax |
A - a8
This grammar is LR(1) but not LR(0O). Intuitively, the
‘reason for this is that having seen the symﬁol a, it is
impossible té decide whether or not to reduce it to A
without inspecting the next symbol, Grammar G5 is CFLR(O),
however, if {A -» a] is taken as the chain set. This is
"because the decision which needs lookahead to resolve it
- during an ordinary psrse just does not occur during s
cf-parse since the reduction ceusing the difficulty is s
chain production. Thus the grammar can be cf-parsed without

lookahead and so it is CFLR(0).

We'have now seen two examples of non~LR(k) grammars
which become CFLR(k) when suitable chain sets are chosen.
Naturally we should now ask whether any LR(k) grammars
fail to be CFLR(k) for certain chein sets., This gquestion
is answered below and provides an importaent snd interesting

theoren,

We shall prove thet if G is en IR(k) Grammer and C
‘1s gny chain set in G, then (G,C) is CFLR(k). The proof
is quite lengthy and difficult. First we need a lemma
concerning LR(k) grammars which is rather similer to a
result quoted (but not proved) by Geller snd Harrison
(1973) and which they call the "Extended LR(k) Theorem".
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LEMMA . 3 17

Let G = (VN,VT,P.S) be an I.R(k) grammsr with o4, p e '

-and X,y e V‘I‘ such that .

(1) S _-{«x,
BRSO e T A
(141) &% —< @ and
(4v)  kix = kKiy.

Then S ———a}: LY.

PROOF, = The proof is by induction on the number of
steps in the r-derivation of g from ok . The basis is
the case where there are no steps at all,that is to say
when o = p, end the conclusion of the lemma is trivial

in this case,

For the inductive step, assume the result to be true
whenever the number of steps is n (n»0) and then
- | net

~ suppose that, A e—=a , We may distinguish the last
step in this derivation as (p,m) snd then for some TeV"®

| o« —= ¥ ~{p,m)}= 8. (1)
It then follows from (i) that
| S——-;-o(x—%\(x —p,m)—= gx
and so (p,m) is the handle of pXx. Now (1) implies
| }}‘that m & len (p) end that n/p e Vp. Therefore
| n/py- e_; V; "' and we also have, by virtue of (iv),
' that (m+k) 3 px = (n+k): gy. Because G is LR(k)._it
must follow from these obser\_raticns that (p,m) is also
~ the handle of BY and so we have
| 5 = ¥y <pal A (2)
~ Now (1) gives < —& ¥ , (2) gives 8 —=' ¥y and we

still have (i) and (iv). Therefore we may apply the
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inductive hypthesis (to o¢ —" ¥ ) eud conclude that
S —=° «y,which is the result needed to complete the
" inductive step and the proof of the lemma. O

We also find it convenient .to' introduce a concept of

. "3distance" between strings in a cs-grammar,

- DEFINITION 3,18

~ Let (G,C) be a cf-unambiguous, reduced cs-grammar. If

X, 3 € V"' satisfy o —»=.  then define the

-distance from o "to 2 to be the number of steps

- “in the cfr-derivation of g from«x .0

Note that the requirements that G be reduced and that

- {(a@,C) be cf-unambiguous ensure 'thaf the idea of cf-

~ distance is well defined, Note too thet if & —'pg

then the cf-distance from « to & is zero. -And observe
~ - -

that 1f = v.z‘r*a thep the cf-distance fr‘om ot

to ¥ 4is equsl to the sum of the cf-distances from

to @ end from 5 to ¥ .

‘We may now state and prove en important theorem.
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THEOREM 3.19

Let G be LR(k). Then for eny chain set C in G, (a,c)

" 1s CFIR(k).

PROCF, Because it is LR(k), G must be reduced and

S —»' S cannot occur in G. Also,by Theorem 2.2, G

'xlnustv be unambiguous. Let C be any.chain set in G. Then

~ (@,C) is cf-unambiguous by Theoren 3.4. These observations
~4'!71.11 be needed in the proof.

Now in order to prove that (@,C) is GFLR(k), we
' '.,‘.s‘xippose that « and p ere rorcsf'é of (G,C) with
f-handles (p,m) and (q,n) resgectively such that :

Vn/p € V,r _ | (1a)
and (m+k) s o¢ = (m+k):p | (1b)
" and proceed to sbdw that (p,m) = (qyn).

It (pym) is a cf-handle for o(l » then by Corollery

3.8 there exist ¥,§ ¢ V* such that
S-—#X‘(D:m)-‘ 5—’- . (2) ,
Owing to the definition of the relstion —» we must have '
"m/é' e V;- - and so we mey write é = pux and « = Ox
~where m = len(p) = len() end p == ©. Ve may
therefore rewrite (2) as :
§ = ¥ Apml= px =5 ex. (3)

 Since G i1s reduced, there must exist 2 e V; such

‘that © —' Z. Let the cf-distence from © to z be d,
Because H —» © and © -«- 2 we must also have
o —J' z . &nd the cr-distance from ® to z must be

oa 8lso (this is beceuse the cf-distance from P to o 19

. zero)., We may now extend (3) to give s

S — ‘6~(p,m)-» PX > zx, (4)‘

acp
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We also have that (q,n) is a cf-handle for g

and 80, again by Corollary 3.8, there exist Qe v
such thaf | .

‘S—-i'e —(q,n)—-’:'v-:',g. (5)
From (la) and (1b) it follows that @ has the form g = 6y
where y e V;  satisfies  k:y = k:x sand since we
already have © =% z  , it follows that T — zy.

We can therefore extend (5) to give

S —:‘ e -(q,n)-;:‘,r .._;; zy. (6)

Note that the cf-distance from 7 to 2y is again d. (This
- is because the cf-distance from m to 6y is zero, and the

cf-distance from O to zis d.)

L

Now (Lt)vgﬁres S —=" ux

¥,
and (6) gives s --;"'zy
and we know that H -.: z end that k:x = kiy.

' Therefdre Lemmaﬂj.l? gives S -—-:“ M}y and so we obtain

S - Ay — vy, ' (7)

From (L) we see that the handle ofl px. is (p,m). Recell

that m = len(u ) snd kix = kiy. It follows that

n/py e V; ‘and that (xvn+k).:px‘ = (n+k) :py.

Therefore, since G is ‘LR(k), ‘the handle of uy | mbst be
v(p,.m) also, Thus for some & e v",(7) becomes

S -7: & ~pym)= py -c:: zy. (8)

| But then both (6) and (8) are r-derivations of zy .

‘ Since G 1s unambiguous there can be only one r-derivation.
ep zy and so (6) and (8) must simply be different ways

of writing this unique r-derivation. Let <(q‘ , O )>.,:. be

| the explicit r-derivation of zy from S and let < ¥, )7

" N ]

~ be the corresponding implicit derivation. From (6) and (8)
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it follows that there exist 1,J in the range 1l < i,j € r

such that

(from 6) . (a,, m;) = (qyn), Y., = ey W = T and( )
- %)

(from 8) : (QJ s ms) = (p,m) ‘_V‘_. =9, Y =Hry.

Remember that our goal is to show that (p,m)=(g,n). Ve
csn do thiskby showing that iéj.'Clearly exactly one of the
relations i=j, 1< J and 1 > J must be true, Suppose first
that i< J. Then we have
oy =y Yo, <apemdm ¥, = 9,

Substituting S for , , 2y for Yy, and using the identities
from (9) gives 3

S —-f T s ~(p,m)}—= py -:" zy. (10)
Now we know that p e P\ C (since (p,m) is the cf-handle
“of o¢ ) and so it follows from (10) that the cf-distance

© from i to zy is at least one greater than the cf-distance

o . from uy to zy. But this is not so, for both these

cf-distances are known to be d, From this contradiction

we conclude that 4 ) j. By an exactly similsr argument it

" may be shown that the supposition 1> j is also untenable

- and 80 we deduce thgt i =j. Then (9) gives (p.m) = (q,n)

and we may conclude the theorem, OJ

' }. This resullt is of great practicsl significence, for it
'_.means that the speed benefits of cf-parsing can be obtained
- (enticipating for the moment that it is possible to

construct cf-parsers for the CFLR(k) os—-grammars) without

% ‘,‘aa'c‘rificin‘g the attractive génerality of the LR(k) gremmars.
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Intuitively, the conclusion to be drawn from Theorem

3.19 seems to be that cf-parsing is easier than
ordinary parsing.thile this is gratifying, it is
hardly surprising, since a cf-parser 1s required to

B provide lesslinqumation then an ordinary parseb. The
broor of Theoren 3.19 suggests tha following general- |

~ isation.

CONJECTURE 3,20 o |
Ir (a,C) 1s a CFLR(k) cs-gremmar end C' is sny chain

'set in G such that C' 2 C then (G,C') is CFLR(k)
also., O

The obstacle to proving this conjecture seems to be

purely\onz_or .notational complexity.

While Theorem 3.19 goes some part of the way
towards relating the LR(k) end CFLR(k) properties, it
tells us nothing about those CFLR(k) cs-grammars (G,C)
where G is not LR(k). It may seem pleusible that if a

. grammer is CFLR(k) but not LR(k) then "all the places

‘where the grammar ia not LR(k) involve chein productions?
This idea certainly rits the behaviour of grammers G&
and 05 considered earlier and when expresaed more

precisely it provides the following proposition.
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PROPOSITION 3,21
Let G = (VN,VT,P,S) be a reduced grammar in which

. 8 —" 8 does not occur but which is not LR(k)., Let C
.’ be a chain set for G. Then (G,C) is CFLR(k) if and only
 if whenever « and B ere rsf's of G with handles (p,m)
and (q,n) respectively such that :

1) wp eV,

(11) (m+k)sx = (m+k):/3 and

(111) (Pom) # (q’n)
then either p e C, or qe C, or both,

" REFUTATION., While the proposition is clearly true in the
less interesting "only if" direction, it is false in the

- "if" direction as the following counter-exsmple shows,

‘Consider the grammar :

S — Ax]
B C (Gremmar G6)
A — a
B — @
and take fA—>a, B~a} as the chain set,

. This gremmar is not LR(O) and the only circumstance in

which (1), (11) and (111) above obtein is when we take
«=8 end @= ax , The handle of a is (B—~ &, 1)
while that of ax 1s (A - a,1). Both of tnesé handles
involve chain productions and so our proposition claims
that the grammar should be CFLR(0). But this is not so,
for the cr-handle of a 18 (S~ B 1) while the cf-handle:
of ax is (S8 - Ax,z) and these clearly violate the
CFLR(O) property. O
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Since Proposition 3.21 is false, we still know little
about those CFLR(k) grammars which are not LR(k). In
particuler, we do not know whether the sets of CFLR(k) and
IR(k) languages are the same, In the next section we will
resolve these questions and others by sn indirect approach

using the concept of a "cover grammar",
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Indirect roaches to the CFLR(k) Propert

The CFLR(k) propérty was introduced ss the natural
way of extending‘the'LR(k) property to the context of
chain-free parsing. It has been shown that every LR(k)
grammar is a CFLR(k) grammar and hence that every LR(k)
langusge is an CFLR(k) language. It has also been
demonstrated that some CFLR(k) grammars are not LR(k)
and we now ask whether any or all of these grammars
generate LR(k) languages. If they do, then we ask whether
it is possible to prescribe a method for constructing
1R(k) grammars for these languages directly from the
CFLR(kX) cs-grammars concerned. This investigation will
involve the use of "cover grammars" and leads on to
indirect methods of testing for the CFLR(k) property and
for cr-parsing. These methods are called indirect because
they r@duge‘the problem of testing a given cs-gbammar
for the CFLR(k) property to that of testing another grammar
(the cover grammar) for the LR(k). property. Similarly
the problem of cf-parsing with respect to the original

cs-grammar 1is replaced by that of ordinary parsing witb

respect to the cover grammar.

The notion of grammaticél covering which we shall

employ is rrom Gray and Harrison (1972) but the full

- o — e

generality or their derinition is -unnecessary in the
present context. Roughly speaking, one grammar covers
another if the ability to parse according to the
covering grammar confers the ability to parse according

: to the covered grammar by a table 1ook-up technique.
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We will show that every CFLR(k) cs-grammar is covered
by an LR(k) gremmsr. This provides the principal tool
needed for this investigation. We begin by specialising
Gray end Herrison's definition to the case of cs-

grammars covered by ordinary grammars.,

DEFINITION 3, 22
Let G = (v , T,p,s) and G' = (vﬁ, T,P;S') be grammars

" (note that these grammars share the same terminal
vbcabulary) and let C be a chaln set for G. Let h be a -
mapping from P' into P\C. For any explicit derivation

- | |
D' =<(a 4 mi)>1=1 19 @', define the .3.12.?.39 of D' under h
to be ¢ | | |
' . r

h (D ) = <(h(qi)’mi)> i=1

and observe that because the range of h is P\ C,h(D')
48 a chain-free derivation in (G,C). We say that G'

covers (G,C) under h if and only if
(1) () = n(a"), and
- (14)  for every x e L(G) ,

‘(a) if D is & cfr-derivation of x in (G,C), there
exists an r-derivation D' of x in G' such
that D = h(D'), end |

(b) 4ir D' is an r-derivation of x in G' then
u(D') is a cfr-derivstion of x in (G,C).

We say simply that G' govers (G,C) if there exists some
b such that G' covers (G,C) under h, O
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Observe thst if G' covers (G,C) under h, then any
r-derivation in G' can be converted (by taking its
image under h) into a cfr-derivetion in (@,C). This
means that parsing with respect to G' is as good as
(and as fast as) chain-free parsing with respect to
(6,C). Our next goal is to develop a method for
constructing cover grammars with useful properties,
There is a well known method for removing chain
productions from a grammar while preserving the
language generated (see, for example, Hopcroft and
Ullman (1969), Theorem L.4) and it might seem reaéonable
to seek suitable cévef grammars in this construction.
it turné.out that this will not do. hhe fesulting';-,
gremmars do not have the properties we desire and, in
~ any case, the method cannot deal with chain productions
'whose right perts are terminal symbols., We wili employ
a quite different construction. In order that this may
proceed satisfactorily, it is necessary to exclude cs=

grammers possessing e certain simple type of ambiguity.

4DEFINITI0N 2:23
The cs-grammar (G,C) is said to be chain-ambiguous if

there exist distinct productions A —> o &and A—>4g

-

1a P\ C and a string © e V' such that both o — ©
. emd g = o, O LT
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Our construction will be restricted to cs-grammars
which'are not chain-smbiguous, Note that it is
elementéry to‘decide whether a given cs-grammar is
chain~-ambiguous or not (unlike cf-smbiguity, which is
undecidable in general) and that if (@,C) is chain-
émbiguous and G 1is ré&uced, then (G,C) is cf-ambiguous,
It follows that ho CFLR(k) cs-grammar can be chain-

ambiguous.

CONSTRUCTION 3,2L

Let (G,C) be a cs-gremmar which is not chain-ambiguous
where G = (Vk,Vé,P,S). _The grammar COVER(G,C)=.
(Vg, Vﬁ.PQS) is constructed as follows ¢

Vo = {Ae Vv, | A 1s the left part of some
production in P\ C} ,

P’ = {A>0 | A ->ee¢ P\Cand
L «—= 0 in (6,C)}.
We define the surjective mapping .h ¢ P'—~ P \ C a8

follows ¢ |

i A= 0.¢ P', then h(A — ©) = A - where Ao € F\C
and o« —= @ in (@,C). |

Note that if (G,C) were chain ambiguous, . then h would not
 .'be a mapping. O

Some examplesvusing the grammars introduced in this

. chapter mey help clarify the construction. In these

.. examples we follow each produétion in COVER(G,C) by an
“indication of the production in G from which it is
obtaived (that is to say, its image under the mappingh).
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Teke Gremmar G4 with §A -~ AJas the chain set,

COVER (ag, {A= A} )is: S~A (from S~ A)

" A-=>x (from A-= x).

Teke Grammar G5 with {A —» a)as the chain set.

COVER (G5, {A~~a} ) i8:S - Ay (from S -~ Ay)
| S ~ay (from S - Ay)

S - ax (from S ;bax).

Take Grammar G6 with fA - a,B -~ al] as the chain set,

COVER (06. {A-a,n-a} ) 18:
' S = Ax

. ;(rrom S Ax)
S - ax

S -8B

i(From S - B)
S-—+a '

For a slightly more realistic example, take the

Grammar G3 with C3 as the chain set. COV&(G},C}) ia°

(frou E+E + T )

MUYy HEEE W
+ 4+ + 4+ o+
e v)

oM
+ + +
L I



(from T~T *P)

(| (from P- (E) ) -

~ As its name suggests, the grammer COVER(G,C) does indeed

cover (G,C)., We now prove this fact.

THEOREM 3.25
" Let (@,C) be a cs-grammer which is not chain-ambiguous eud
" let COVER(G,C) and h be the grammsr and mepping defined by
- Construction 3.24, Then COVER(@,C) covers (G,C) under bh.
PROOF, We state and prove two claims from which it is easy
to deduce the theorenm. _
© Qlaim1:  If © is an ref of COVER(G,C) with an explicit
( r-derivation D in COVER(G,C), then © 1s a “rorcsr ot (@,C)
"and  h(D) is a cfr-derivation of © in (a,c). |
mg;_g_t_g;_i.g $ We use 1nduction on the 1ength of the
derivation D, The basis or the induction is the case in
which D contains no stepa and in this aituation the result
is trivial., For the inductive step, assume the clainm to be -
" true of derivations containing n steps (n; 0) end Bupposa
.‘that D contains n + 1 steps. We may distinguish the last
‘step of D and write, |
. D= D' ° ((q,m))

where D' countains n steps, There clearly exists « such that
| 's ={p'}= ¢ —{q,m)}~ © 1in COVER(G,C).
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- Applying the inductive hypothesis to the rsf o and the
vderivation D', we conclude that o 1is a rorcsf of (G,C)
and that h(D') is a cfr-derivation of « in (G,C). Now
since o« «{q,m) © in COVER(G,C), we may write «
and © in the form o = pAX and @ = p¥x  where m=len(p¥)
. and A =% is production g in COVER(G,C). By construct-
| ion, we will have h(A—%)= A-~p where A-/s' ¢ P\C
and @ - %  in (G,C). In (G,C) we therefore have the_
derivétion | |

« = pAx =(h(q),nm >, PRX —s:’p“x = 9
 and so it follows that o —>. © in (G,C) end that
{(h(q),m)> 1s an explicit ofr-derivation of © from «
in (G,C). Thus h(D') e {(n(q),m))> = n(D)
is & cfr-derivation of © in (G,C) end this is the result
ngeded to completé this 1hduct1ve step and the proof of
the first c;aim. The next result is the inverse of this

one, .

Claim 2 3 If © is a roresf of (G,C) with an explicit
cfr-derivation D in (G,C) then © is an rsf of COVER(G,C)
and there is an explicit r<derivation E of @ in COVER(G,C)
such that h(E)= D. |

Proof of claim : The proof is by induction bn the length
of the cfr-derivation D. Again the basis is the case where

"D contains no steps at all and is trivial, For the

. inductive step, assume the result to be true of all cfr-

derivations containing n steps (n ) 0) and suppose that D
contains n+1 steps. By Definition 3.2, there must be some'
r-derivation F of © in (G,C) such that Fp= D, We may

iaolatg thg last step of F which does not involve a chain
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. production and write F = F' ¢ ((q,m)> e F* where

. ; [] . 2

‘qe P \ C, Fcf contains n steps and Ff is null.

. For some o,8 ¢ v we ‘will have a derivation in (G c)

. with the form :
s —F'}— ¢ Aqul= g —{Io"}-» e. (1)

rep
It >pro‘duc-tion qis A~ ¥ , we may write o, p " and ©
" in the form « = pAx, g = p¥x and © = e&x'where
" len (M):m, y->9, and \6-5;'*5. . ‘ ’

. From (1) we then obtain :

S ~{F' }-°< = pAX — eAx ~(q,n)—> e‘éx-—géxse.

<

‘ We see from Corollary 3.7 that F! is a cfr-derivation

cf
of QAx in (8,C) end since F'. contains n steps it

follows by the inductive ny;ftbesis that pAx 1s an rsf
- :or COVER(G,C) end that there is an r-derivation E' of

" pAx in COVER(G,C) such that Flp = h(E'). Also, since

A oy .is production q in P\ C and ¥ -~'s 1n (6,0),
| it follows? tna£ COVER(G,C) contains the production A =&
 end that -h(A—~g§ )= q. COVER(G,C) therefore contains
| the derivétion ,

s —[E'] - eAX ~(A-=§,m)}n odx =p.

Ir we doﬁne E=E o {A-—>&,n)) . then clearly
- n(B)e h(E') o ((h(A~s )ym)>
= P o am))
= For. |
= D.

This completes the 1nduot1ve step, the proot of the second
olaim end the proof of tne theorom. a
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By way of illustration, observe that the r-derivation

of the sentence X+X*X with respect to COVER(G3,C3) 1s
{(s+E,1) , (B = X+7,3) , (T =X*X,5)) . The

image of this derivapion under the mapping associated

with the cover gremmar is w |
{(s=~E,1) , (E -~ E+7,3) , (T ~T+P,5)) which, as we

saw earlier, is the correct cfr-derivation of this

~ sentence with respect to the cs-grammar (G3,C3).

The re;ationship bgtween a cs-grammar and its.cover -
grammar is very interesting. The properties of the cover
grammer are mirrored in the cs-grammar by the chain-free
counterparts of these properties, and vice-versa.onr
instance, it is quite easy to prove that a cs-grammar is
of cf-ambiguous‘if.and only if its cover gbammar is
embiguous in the ordinary semnse., A much more interesting .

result.br‘this type is the following.

THEOREM :,gg

1r(G,C) is CFLR(k) then covmz(e C) is LR(k).

PROOF., First observe that since (G,c) is CFLR(k) 11; 1s
also cr-unambiguoua. Thus (G.C) is not chain ambiguous
end so the cover grammar may indeed be constructed. Let

G = (VysVps P,8). Because (G,C) 1s CFLR(k), G must be

reduced and S —=* S cannot occur in G. It is easy to see
that these properties imply thet the cover grammar is
~reduced also and does not admit the derivation S8 =" §, |
 In order to prove that the cover grammar is LR(k) it remsins -
to show that whenever o and 3 are rsf's of COVER(G,C) |
with handles (p,n) and (q,n) respectively such thatmp ¢ V;
and (m+k):x = (m+k):3 , then (p,m)=(q,n).
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Now if o¢ is an rsf of COVER(G,C) with a handle
(p,m), it follows from Claim 1 of the proof of Theorem
3.25 that « 1s a roresf of (G,C) with (h(p),n) as a
 cf-handle. Similarly, if the handle of A in COVER(G,C)
1s (q,n) then ( h(q),n) is the cf-handle of 4 in (G,C),
Then, if n /g ¢ V'p end (mek)io = (m+k):3 , the CFLR(k)
property of (G,C) will ensure that (h(p),m)= (h(g),n).
It only remeains to show that p = q. Let the production
'h(p) in P\C be A - ¥ o Then sinceh(p) = h(q), the
productions p and 2 in COVER(G C) must be of the form
A-—=>§ and A - o respectively, where both ¥ -5 and
¥ o . in (G;C). Thus p end q have the same left parts
and the iengths of their éight parts are the same. Because
 (pym) is a handle of of , we can write o - pdx  where
- len(pd) = m. And because (q,n) is a handle of g, we can
~write g = poy  where len (pe)= n = m. Then since (n+k): o
= (m+k)°p we must have mix = m:g@ ,.that is pd= (:&. |
But since len (§) = len (), this 1mplies that § = o,

Thue P = q and so we may comlude the theoren. o

- A number of important conclusions may be drawn from

' Theorems 3.25 and 3,26. The first of these is :

 COROLLARY 3,27

The families of I.R(k) and CFLR(k) languagea are

: co-extensive. ‘
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PROOF., To each LR(k) grammar G there trivially
corresponds the CFLR(k) cs-grammar (G,8). Thus each
IR(k) language is a CFLR(k) language. And by virtue
" of Theorem 3,26 to each CFLR(k) cs-grammar (G,C) there

- corresponds the LR(k) grammar COVER(G,C) generating the

same language., Hence each CFLR(k) language is also an
- LR(k) language and the proof is complete. [J

_ Thus although the CFILR(k) grammars are more extensive
‘than the LR(k) grammars, the generative power of the two
- femilies is identical. Furthermore, given a CFLR(k)
grammar which is not LR(k),we can mecebnically comstruct
an LR(k) grammar generating the seme language by Just
teking the cover grammar described by Construction 3.24.

- Theorem 3.26 also indicates how table-driven cf-parsers

may be constructed for the CFLR(k) cs-grammars.

- COROLLARY 3,28.
1£(G,C) is a CFLR(k) cs-grammsr, then a table driven

. cf-parser using & symbol lookahead can be constructed

for (G,C).

- . PROOF, Because (G,C) is CFLR(k), COVER(G,C) must be IR(k)

by virtue of Theorem 3.26. A parser using k symbol look-
shead can certainly be comstructed ror COVER(G,C) and the
parses which it produces become cf-parses with respect to
(@,C) on simply taking their images under the mapping b
associated with the covering relationship. O

We have yet to prescribe s method of testing tor the
CFLR(k) property. For fixed k, (the property is, of course,
undecidable unless k is fixed) Theorem 3.26 provides a
necessary condition ror the CFLR(k) property. namely that
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~ cover grammar be LR(k). The converse of Theorem 3.26
- . supplies :the surficient:conditicn that is preseatly

©  lacking.
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THEOREM 3,29

. The cs-grammar (G,C) is CFIR(k) if COVER(G,C) is

~ defined and LR(k),

lﬁ PROOP., Note that COVER(G,C) is undefined if and
only if (@,C) is chainpambiguoué and that (G,C) cannot

be CFLR(k)in this case. Let @ = (Vy,Vp,P,S) and suppose

~ that COVER(G,C) is defined end ILR(k). Then COVER(G,C)
is reduced and does not admit’ s ="s, mis is easily
seen to imply that G has these properties also. Now
suppose that'ot end g are rorecsf's of (G,C) with cf-
handles (p,m) and (q,n) respectively and that m/s e V;‘
and (m+k):ox = (m+k):@ . In order to prove that (G,C)
| 1s CFIR(k) 1t is necessary to show that (p,m) =(q,n).

" Now by Claim 2 of Theorem 3.25 we know that o end
8 are rsf's of COVER(G,C) with handles (p',m) and
(q¢',n) respectively where h(p') = p and h(q')= q. Since
COVER(G,C) 1s IR(k), the conditions m/s e V,,

T
(m+k) so¢ = (mek) :p imply that (p',m)=(q',n) and so
g

and

~ h(p')= b(q')-from which we conclude that (p,m) = (q,n)
as required to complete the proof o the theorem, [

In combination, Theorems 3,26 and 3.29 provide a
method of testing for the CFLR(k) property. They reduce
the problem of testing a cs-grammar for the CFLR(k)
property to that of testing its cover grammar for the N
LR(k) property, and that test may be performed by any of

“three different methods described in Chapter 2. Since
Corollary 3.28 mprovides a ﬁethod for cf-parsing the
CFLR(k) cs-grammars, it eeeﬁs that all the important
- questions concerning the CFLR(k) property have been

resolved. In theory this is indeed so; in practice,

unf'ortunately, it is not,
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The objection to using these indirect techniques in

practice is that the cover grammar is usually larger,and

often ver& much larger, than the cs-grammar which it

. covers, \hereas, for example, the size of Grammar G3 is

20, that of COVER(G3,C3) is 96 - an increase in size of

almost five-fold. The behéviour of G6 indicates that

cover greammars for realistic programming language grammars

(where "chains" are typically 10 or 12 productions long)

are likely to assune sizes of breathteking proportions.In
;'ract, the size of COVER(G,C) can be exponentially larger
~than that of the underlying grammar G. To demonstrate this,

. we exhibit the roliowing family of gremmars. |

t ~ When n is a positive 1nteger, the n'th member of the

' ‘family is denoted by EXPCOVER(n) and is derined thus 3

S = X, X,X,...X,
X, - a (1L < 1<)
X; - b (1 £ 1 ¢n)

The chain set of EXPCOVER(n) is taken as

. CEXPCOVER(n) = §X,— a | 1¢1¢ nl.

;Foé example, when n = 3 we have : - |
§ - X, X, X, - - (Gremmar EXPCOVER(3))
X, =~ a|b | |
X,— a |0

| X,~ a|0b |
and CEXPCOVER(3) = \fx,-»‘-a, X,~8a, X,=~a}
The cover grammar COVER (EXPCOVER(3), CEXPCOVER(3)) is :
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§ = X, X, X3
X, X; a |
X, 8 X5]| o v
X, a a | “(from S-X, X, X, )
a X, % | o :
a X; a |
a a X3
a a a
X, b ~  (from X,-»Db )
X,—= b - (from X,» b )
X,- b = (from X,-1b ).

- The size of EXPCOVER(3) is 16, that of itscover grammar
is 38, In general, the size of EXPCOVER(n) is 5n + 1

' while that of COVER(EXPCOVER(n), CEXPCOVER(n)) is

~2n + (n*l).é“' . Thus the size of the cover grammar grows
~ exponentially in n while that of the basic grammar grows
~only linearly; ' )

This means that,even if cover grammars are tested for
~ the IR(k) property using the polynomislly time-bounded

algorithms of Section z.h,the worst-case time-complexity

. of the indirect approach to CFLR(k) testing remains

exponential in the size of the grammsr under test. The
behaviour of progremming languages is unlikely to be

~ as bad as that of the family EXPCOVER(n), but even so,
it will probably be quite bad enough to render the
indirect approach to the determination of the CFLR(k)
property unattractive, Of coﬁrse, by virtue of Theorem
3.19,the need to test for the CFLR(k) property cen be

- avoided altogether if we are content to‘restrict ourselves

to cs-grammers based only on LR(k) grammars. This
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restriction is probably acceptable in practice, How=-
ever, when we wish to actually build cf-parsers using
the indirect approach, there 1s no escaping the
necessity to construct the cover grammar end its LR(k)
parser. It is here that the large size of the cover
grammar becomes really objectionable, The LR(1) parser
for Grammar G3, for example, has 22 states, while the
m_(l) parser for COVER (G3,C3) has 73 states, Using
tﬁe indirect approach, therefore, the speed benefits
of cf-parsing are obtained at the cost of a considerable
increase in the (already substantial)size of the parsing
tables,

In summary, ﬁhe indirect approach to cf-parsing
via the ordinary parsing of cover grammars is enligh-
tening and yields important theoretical results., But
it does not yield practicsl methods either for CFLR(k)
testing or for cf-parsing the CFLR(k)‘cé-grammars.we
will now turn our attention to direct methods for
solving these problems. In the next three sections we
will construct CFLR(k) versions of the three LR(k)
tests introduced in Chapter 2. Later we will consider
the problem of consﬁrncting direct cr-paraers'ror the

CFLR(k) cs-grammars,
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3.4, Testing for the CFLR(k) Property Directly - Part 1, .

Throughout this and the two sections following we
R suppose that k is a fixed natural number, and that

e =(V »VpsPyS) 18 8 reduced gremmar in which § —" S

. does not occur, aund that C is a chain set for G.
- Additionally, in this preseni; section, we reserve the
special symbol 1 for use as an endmarker. We require

. thet 1 1s not in V.

' We begin our investigation of direct methods of

~ivtest1ng for the CFLR(k) property by adapting the LR(k)

_ test of Section 2.2, Because the method is of 1little

| Wpractical significance, we will provide only the
Ntheoretical results necessary to Justify the extension
‘of the method to the CFIR(k) context. We will omit all

'~ constructional details; the reader can supply thenm

-easily. In Section 2.2 we began by defining, for each
production q of the grammar G, a set which we called

the "LR(k) contexts" of g and which we denoted by Ri (a).
The LR(k) test developed in that section depended upon
the properties of these sets of LR(k) contexts, By

,‘analogy, for each non-chain production q of a cs- grammer

(G,C), we will define the CFIR(k) contexts of g, denoted

G,C
by CFR }i ’ )(q) as follows ¢

' DEFINITION 3,30 (ef. Definition 2.9)

~ For each production q ¢ P\GC we define
CFRéG?C) (@) = {(m+k) : 81" | g is a rorcst of
(a,C) with cf-handle (q,m)}. O
Just as the LR(k) property cen be stated in terms of
conditions upon the sets Rg (g), so can the CFLR(k)
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property be expressed in terms of the sets GFR(E’C)(q).

LEMMA 3,31 - (ef. Lemma 2.10) _

.(@,C) is CFLR(k) if and only if, for any p,q ¢ P\C,
o € V“l’k and u € V;. .I:k; X € CFRéG’C)(p) and

ocw o 0PR{®C)(q) 1mply p = q end u = .

PROOF. This result may be proved by a straightfoward

adaption of the argument used to prove Lemma 2,10, d

For typogrephical convenience we will henceforth‘
omit the sub and superscripts from names of the sets
c (¢,C) (q) and Rg (q) and write simply CFR(q) and
" R(q) . The LR(k) test of Section 2.2 depends upon the
fact that the sets R(q) are regular. We shall now prove

" that the sets CFR(q) share this property. The regular-

1ty of R(q) was established by a construction ianvolving
right linear grammars snd this construction can be
adapted quite }straightfowardly to the present situation,
~ However, a more interesting way to prove that ‘t.he sets
CFR(q) are regular is to exploit their relatiouship to
‘the sets R(q). This relationship is exposed in the next

‘ Lemma,

EM}
Let q be a production in P\C. Then

CFR(q) = {p l there exists « e R(q) such that d*g“p}.

PROOF. First suppose that @ ¢ CFR(q). Then there is some
rorcsf ¥ of (G,C) with a cf-handle (g,m) such that
p= (m+k): ¥ 1* . Now because (q,m) is a cf-handle of ¥

- it follows from Corollary 3.8 that there exist cS, p e v*

. . 3
such that S - § -_-(q,m)-;:' p = %.
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‘Thus (q,m) is an ordinary handle of u and so if we
define « = (m¥k):plk then it follows that o e R(q).
But M =¥  end so it must be that ot " .. (Note
that we are taking liberties with the use of the relation

: —{ here, since and B may include the

_‘ endmarker symbol l , which 1s not in V. However, the

- intended interpretation should be clear).

Conversely, suppose that o« ¢ R(q) and that < — g.
Then there exists an rsf ¥ of G with a handle (g,m) such
“that o = (m+k): ¥ 1" . For simplicity we will suppose
that len (¥ ) 3 m+k , so.that « = (m+k)e¥ .(If len(¥ )<
m+k then the endmarker symbol 1 will appear in o« end
: the argument that follows will be complicated by some
tedious details that are needed to take account of this
fact.) I-et x e VT be the string such that ¥ = ox.

Then since (q,m) is a handle of ¥ and X-'g we have
S-;G-(q,m);;x = XX -» @X

" for some 8 ¢ V' . Thuapx is & roresf of (@,C) with (q,m)

88 a cf-handle. Since p = (m+k): px.l_" we therefore have

p e CFR(q)

We have now demonstrated the mutual inclusion of the
two sets appearing in the statement of the lemma. It
follows that these two sets are equal and so we may

- conclude the lemma, O
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~ We may now prove that CFR(q) is regular.
LEMMA 3,33 (cf. Lemma 2,11)

Let ¢ e P \ C. Then CFR(q) is a regular set.
' PROOF. A gubstitution £ is a mapping from an alphabet
A onto subéets of B* for some alphabet B. Thus f associates
some language over B with each symbol of A. The mapping
" £ can be extended to strings in A* as follows ¢
(1) (M) = {4,
(11) . f(xx) = .'f(cx )£(x) for & e A andx e A.
' We cen further extend £ to lenguages by defining £(L) to
. be the set : . £(L) = °}e-/I‘r(o() where L is a language

‘aver A,

Now consider the particular substitution from V
_outo subsets of V' defined by :
| £(a) = {a] when a e V, and
| £{A) =X ¢ V| A "X} whenA e Vg
It is easy to see that for o« e V' we have
2 = fp e V]xTpl R
. Then,by virtue of Lemma 3.32 it follows that
CFR(q) = £(R(q)).
Now the regular sets are known to be closed under
substitution (see Hoperoft and Ullman (1969), Theorem 9,7)
and 80 the regularity of CFR(q) follows directly from
that of R(q). O | | | |
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Because bemmas 3.31 and 3.33 parallel Lemmas 2,10 -
and 2.11 exactly, a method of testing for the

CFLR(k) property may be constructed along the same.
lines as the LR(k) testing method indicated in the

~ first proof of Theorem 2.8 (see Section 2.2). This

' concludes the deri#ation of ouf first direct method

~ of testing ror the CFLR(k) property.
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3.5, Testing for the CFLR(k) Property Directly - Part 2.

We continue our 1nvestiéation of direct methods of
testing for the CFLR(k) property by adapting the LR(k)
test of Section 2.3 to this new task. Firsg we need to
develop appropriate generalisations for the notions of

LR(k) items, states,and statesets.‘All the cénétructiona
and definitions to be introduced in this section wiil
_poésess‘the property that they become equivalent to the
. correspdnding ones from Section 2.3 when C, the chain
"‘set, is empty. Thus the.new constructs‘méy truly be
~counsidered as genefalisations of the old ones,

We begin by aerining the CFLR(k) items for (G,C) to

be the same as the LR(k) items for G except that items

| iuvolving chain productiona are exclﬁded.‘

DEFINITION 3,34 (cf. Definition 2.12)

A CFLR(k) item for (G,C) is a pair [B——ﬂ,,p,,v] where
B—~pp, ¢ P\Cend v ¢ ‘v;". The set of all CFLR(k)
items for (G,C) 1s denoted cml(f’c). O

 Because CFLR(k) items are also LR(k) items, we may
speak of initial, intermediate, and trinal CFLR(k) items
in Just the same way as with LR(k) items. It is useful
to have a name tor those LR(k) items which ere not
" CFLR(k) items; we will call them LR(k) chain items.

Observe that no chain item is intermediate,

(@,C)

Next we introduce a function CF-STRIP) from sets -
of LR(k) items to sets of CFLR(k) items as rollows :



179

DEFINITION 3,35

‘Let A be a set of LR(k) states ror G. Then ‘
{&0C)

or-stRIE*C) (o) 1= A ORI,
We usually omit the sub and superscripts and write this
function as simply CF-STRIP, CF-STRI?( A) mérely discards
all chain items from A and retains the CFLR(k) items.
It wi;l prove counveunlent to allow CF-STRIP to be applied
to arguments which are not simply sets of Lﬁ(qk) items,
but sets of such sets (such as sets of LR(k) states)., In
thié case we require that CF=-STRIP first form the union
of the components of its argument. That is, when M is
contained in the powerset of Ig, define

CF-STRIP(K) = CF-STRIP (\_J A).O
AeM

Now we generalise the notion of 'valid' LR(k) items,

DEFINITION 3,36 - (ef, Definition 2.14,.)

When 6 e V¥, the CFLR(k) itenm [B--/s',Pz",v].iB sald to
be cf-valid for © (with respect to (G,C) and k) if and only
if there is a derivation
: N |
e SBX == ¥ @x — Of,X
in (G,C) with v = k:x. 0.

The notions of LR(k)_ states and statesets are generalized

straightforwardly.
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DEFINITION 3,37 . (cf. Definition 2.15)

When @ ¢ V', the set of all CFLR(k) items which are
cf-valid for 0 is called the CFLRSk[ state tor O aund is
denoted by

(e,cC)
CFV) ?7/(8) or, more briefly, by CFV(0). The set

Kk
consisting of the CFLR(k) states of all the cf-viable

prefixes of (@,C) is called the CFLR(k) stateset for
(,C) and is denoted by chl(:G’c). Note that CFV(8) is
non-enpty if and only if 6 is a cf=viable prefix of
(@,C). Hence :

cps:f‘e'c) = {CFV(e) £ 4 I CI ‘v"} . 0

The idea of pairs of LR(k) items being in "conflict"
(see Definition 2,13) applies unchanged to pairs of
CFIR(k) items and, just as with LR(k) states, we say
that a 'cm(k) state is "adequate" if and only if it
contains no pairs of conrlicting items, Similarly, a
CFLR(k) stateset is said to be.adequatc if and only 1if
each of its component states is adequate., The CFLR(k)
property is related to the adequacy of CFLR(k) statesets
in exactly the same way es the LR(k) property is related
to the adequacy of LR(k) statesets. Before we can prove
‘this genergiisation of Théorem 2.18‘we first need to

generaliae’nemma 2.17.
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LEMMA 3,38 (cf. Lemma 2.17.)
"~ Let %@ be a rorcsf of (G«,_C) witih a cf-handle (q,n)
» satisfyihg n > len(x). Then there is a non-final CFLR(k)
~item [C=¥,.¥,,v]  which is cf-valid for « with

~‘EFFk(p) ¢ EFF, (%yv). ‘
 PROOF, = This result is proved by a generalisation of
" the argument used to prove Lemma 2.17. The generslisation

- 1s not completely straightforwerd and so we present 1t

in full.

Suppose that «@ is a rorcsf of (G,C) with & cf-
" hendle (q,n) satisfying n ) len(x). Then it follows
from Corollary 3.8 that (q,n) is the ordinary handle
of some rsf u of G sstisfying p —» «x3 . This latter
relation implies that p has the form m = «’8’  where
«'—="o and g’ ="p . Note that len (x) =
len (=), Let D = {(q;,n, )}, be an explicit r-deriv-
' ation of <3’ from 8 with (q.,n,) = (q,n) and let {y, ):o
" be the correspounding implicit derivation. Clearly there
exists t in the range 1 € t & r such that both
“ 'né - deé(qe) < len (o) and q, ¢ P\C. (Teke t =1 for
example; we must have n, = deg(q, ) = O and since the
left part of production q, is S, q, cannot be a chain
production); 'Now choose the largest such t. We will show
\that len (=) < he "« This is true by hypothesis 1if
t = ry 80 assume that t ¢ r and sﬁppose, ror the sake
' of contradiction, that len (x ) 3 'n, . Let 8 be the
" least integer in the range t < 8 & r such that q € P\ C.
. (Such an s must exist because g = qend g, € P\C |
"since it figures in the cf-handle of «¢3,) Because D is

'an x‘-derivatioxi we have 3
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n,, - deg(qe") < n,

1., - degla,,) ¢ n,,, g (1)
ng, - d;g(q‘ ) < ng., g

 and, by construction, for i in the range t ¢ 1 ¢ 8 we

have q; e C - which implies deg(q;) = 1 for i in this

renge. It therefore follows from (1) thaft | |
ng - deg(q,)< n;,¢n,, ¢ ...¢mn,, <0,

and so the supposition that 1eny(o<) > n, implies that

n, - deg(q,) ¢ len(x). But this contradicts th‘e'choice

| that t be the largest integer with ‘the prescribed
properties. Hence we conclude
n, - deg(q,) § len(x)< m,. (2)
We now have the derivation |
S - \K_,-(q‘,ne);?’ Ve = ot " ol (3)
and the choice of t ensures that either n; - deg(q,)>

It follows that |, has the form y, =u«'0 where o”—" «’
and ® =" 8’ | Now let production q, be C—=% . Thean

(1]

Y, can also be written in the form Y, = s§x where
)1

len(c¥) = n.. The 1nequalitiea (2) then become

v

len(s ) ¢ len(«) < len(oX)

11l ow.

and we can therefore rewrite ¥ as § = ‘6 X{ where
. N < u a
len(ozs) = len(x ). This gives c¥=x" , ¥ ;4 Jv and
oid so L VI W TH Al
¥,x = © and so (3) provides
s \\[ ' " .). Bul v Lhic
. 3-—-; G‘Cx-“-cxxxad)’x—"dhaX.
e L“i’ut.ct “scrib
It follows when v = kix that [C ~ %,.%,,v ]is a non-
Livs, cotteln
final GFLR(k) item which 1s cf-valid for « . Since we also
tu, )
have 8 = ¥, X and 0 - ¥4’ it further follows that Lx = e
Lo VL i ‘Wution
and so we rinally conclude+that EFF, (F) < EFFK(‘d_,v) and
Ul

Y,
the proor is complete, (I

- chivied L chsure: ’ g = el

..) or.q‘.,w_«“,,1‘01f‘u11 T TR S
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‘Now we can generalize Theorem 2.18.

THEOREM 3,39 = (cf. Theorem 2.18)
(@,C) is CFIR(k) if and only if its CFLR(k) stateset
is adequate,

' PROOF.  As with the preceeding lemma, the proof of
=  this result is based on the argument used to prove the
corresponding result-in the LR(k) case, The proof in the
'if' direction is based upon Lemma 3.38 in just the same
-~ way as the proof in the 'if' direction of Theorem 2.18
‘is based upon Lemma 2.17. The details are straightforward
" and we omit them.

 We establish the result in the only if' direction
 by proving its contrapositive, Suppose ‘that the CFLR(k)
stateset for (G,C) is inadequate., Then there is a cf-
.viable.prefix e of (G,C) whose CFLR(k) state,CFV(®),

. containe a pair of conflicting items, say [D-ﬂ-ézﬁll
and [C—~%,.%,, V]. For conflict to occur we must have
u e EFF, (%,v). Now if [D—~&.,u] is cf-valid for
6, there muet be a derivation in (G,C) of the form

§ == pDx —4;‘-‘ péx' -’5' ex

Rore

where u = k:x. Let « = 6x, m = len(®) and let

" production D —= § be called p. Then (p,m) is a

 cf-handle for o« and (m+k):ot = Qu, Similerly since

[c— 3%,.%,,v] is cf-valid for © also, there is a
derivation in (G,C) of the form ,
S --o 7Cy - vz‘d ‘f,y :e\d,y, (1)

 with v = kzy. Now we have u ¢ EFF, (¥,v) and therefore

also u ¢ EFF, (¥,y). Hence ¥,y —» 2  for some:
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z € Vg satisfying u = k:.z where it may be that some,
‘all, or none of the steps in the eff-derivation of z
| ~ from .Xay, : ilnv’olve chain productions, We distinguish

;‘two cases, | |
Case 1: ¥,7 —» z. In this case we can extend
(1) to obtain | |

S = 0y — 74X,y —{ ez .

~ Now let production C - %, %, ‘be called q and define
. a= lea(mY¥,Y,) ~and 8 = 62 , Cleerly (aq,n) 1s a’
' cf-handle for g aund we also have W3 ¢ V'; and
. (mek)s f = ou. | |

" - This latter identity gives (xn+k) X = (m#k):p  and
| so if (G,C) were CFLR(k) we should nave to have (p,m) =
(q,n). We show that this is impossible and hence that
- (a@,C) is not CFLR(k). Suppose‘(p,m) = (’q,n). Obviously
this igplies p = q end m=n. Nowns=m+ 13:1(‘6‘2 ) and
som=n implie.s 3, =W ‘and therefore u ¢ EFFk(K,v)

.'implies u = f. We now have p = q, ¥, =) and u = v and

. so [D-—~ Jru] = [C— ¥,.%,,v]. But this contradicts the
hypothesis that these items are in conflict ( and are
 therefore distinct). We conclude that (p,m)# (g,n) end
o therefore that (G,C) is riot"CFLR(k).

Case 2. '\6;)’\ -\{ 2. . In this csse, any erff-
derivation of z fronm, Kay must involve at least one
non~-chain production. Also, sincé z 18 a terminal string,
%, Y — 2z implies ¥,y -—i z, We may therefore
distinguish the last non—chain step in this rerr-dcrlvauon

as (q,d) and write
| e Agyirs & — =

R¥FF

\63}' “Rers
where ¢ ¢ P\ C and’ (sinoe this 18 a refr-derivation)
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J> 0, We can append this derivation to (1) and thereby .
obtain .

'S o3 oy == 6 ~(q,3+len(6)) 6 - oz
~ Now put n = J + len(8) eand 8 = 0z and 1t follows that
 (q,n) is a cf-handle for g - . We again have m/s ¢ Vqp
'and,_‘ since u = k:z, (m+k):ox = (m+k):@. But then,since
len(0) = m and j > O, it follows from n ='J + leun(9)
" that m £ n. Therefore (p,m) # (q,n) and so (G,C) is not

CF'I.R(k)‘ in this case either and the proof is complete.

 Given a cs-grammar (G,C) end its CFIR(k) stateset we

can‘easily test the stateset for adeguacy and thereby
determine whether (G,C) is CFLR(k). All we need now is
‘an algorithm for computing the CFLR(k) stateset corres-
pouding to a given cs-grammar.'We will develop such an

- algorithm by comstructing appéopriate generéiizétibns

of the function CLOSURE, NEXT and GOTO which were intro-
.i' duced in Definition 2219‘and then use these to generalize
' Algorithm 2,23 |

DEFINITION 3,L0 - (cf. Definition 2.19)

Waen A 1is any set of CFLR(k) items for (G,C), its chain
- free closure is given by the definition
CF-CLOSUREk(G'c) (A) = cr-swnxpie'c) (cLosurcEg(A))
-and when X ¢ V we define '
CF-NEXTI({G’C) (4,x) B:YE"/X‘ NEX'I‘g (A,Y) and

.

(a,C)

@,C
3 CF-GOTOI((G’C)(A,X) = CF-CLOSURE, (CF-NEXT( ')

L)

As usual, we omit the sub and superscripts from the names

of these functions whenever possible, [
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'Because these new functions are defined in terms of
the functions CLOSURE and NEXT, we can establish their

| propertiés directly from those of these‘familiar functions.

- ~ First we need to distinguish the 'nucleus' and the
h"completion' of a CFIR(k) state. As in the ordinary

‘ LR(k) cese, the nucleus of a CFLR(k) state contains all

h the nonpinitial items rrom the stete, while the 1nitial

1tems comprise the completion of the state,

 , DEFINITION 3,41 (cr..Derinition 2.21)

 The pucleus of the CFLR(k) state for @ is denoted by
| 'cFNIiG?C) (6) and defined by :

(G c)

(1) ' CFN k (A)”Nk(h)v

—— ..._.“4_.._._..‘._ . — [P,

(n) | " and when © £ &,
orn({6:C€) . ¢ [B--,s,.p,,v]e crv®s c)(e)lmllv}

" The ¢ omgletion or the GFLR(k) state for e is denoted by

L CFC£G'G) (o) and is given by @

cpcl(za’c)(e)‘ = cwie’c.) (o) \ cmf‘G’C) (e)

[T ' Whenever possible we write nuclei and completions as

. simply CFN(6) and CPC(8) respectively. O
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Next we relate QFLR(k) states and their nuclel to ordinary
IR(k) states and nuclei. We do this in an important theorem

. which 1s estsblished as a corollary to the following lemma.

 LEMMA 3,12
- Let © € v*. hen the CFLR(k) item [(B—>pg,.3,,V] i8 cf-valid
. for © if and only if it is valid in the ordinary LR(k) sense
~for some p € 'v*«satiafying p == 8.

- PROCF. For the proof in the "if" direction, suppose that’
[B~p,.4,,v] 15 valid for p and taat p "8 . By
_ the definition of a valid LR(k) item we have that G contains

. a derivation of the form

| where \6/3, ja and v = k:x. Since [B-—ﬂ,.pz,v] is required to-
_g;;be a GFLR(k) ‘itemwe bave B=>gg, ¢ P\C, and since
B 6 ‘the derivation above yields -
. S ,-*' XER-—b“X/BAQJC ._:A epzx.’
From this it follows immediately that [B=>4,.8,,V]is cf-
'jvalid for © and the proof is complete for this direction., -

For the "only if" direction, suppose that [B-»4,.8,,V]
is cf-valid for 6. Then (a,c) cbntains a derivétion of the

S = ¥BxnT pAE =5 Opx
where v = k:x, Let the production - B-»p4,s, - Dbe called g
- and let n = len(e/:,).' B § rollows‘ that (g,n) is a cf=handle
- for the rorcsf - 6B8,x  and hence, by Corollary 3.8, there . .
. exists an rsf o« . of G such that of -» 68,x and
(g,n) is e handle for o . Clesrly, o( ~c8n be written -
- in the :orm, X = Sﬂ'ﬂ‘x' where é'p, —=* ) and 80
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- G must contain the defivation.

S —-»- d Bx — 3/3,/9,1!.

Now put p = 5}& . and it follows 1mmediately that
 p — ©  and that [B—g,.s,,v] 1s valid for p.O

'Lét <] eV.Then

(1) CFY(G) CF—S’I‘RIP({V(P) "‘ - 9}) and
(11) cFN(0) = CP-STRIP({N(p) | " 03 ).

.PROOF.' These results are immediate consequences of the
“‘préceéding lemma. Note that the statement of this theorem
~employs the notational trick of allowing CF-STRIP to be

_ applied to sets of sets of LR(k);tems (see Definition

»3.35). Note also that these results are true whether or

not © is a cf-viable prefix of (@,C); in the case that

@ is not a cf-viable prefix, all the sets appearing in

' ‘the statement of the theorem are empty. D

Next we present two lemmas which expose the properties

of the functions cr;-NEx:r and CP-CLOSURE.

E: | (cr Part (1) of Lemma 2,22)

Let 8 e V' and X e V. Then cw(ex) = CF-NEXT(CFV(G),X)

.~ PROOF. By part (ii) of Theorem 3.43 we have
CFN(6X) = CF-STRIP( {.N(¥)| ¥ —> ox})

[3

.. which may be rewritten as

. CFN(SX) = CF-STRIP( {N(,,y)[ p—=6,Y '..:5 x} ) (1)
 Then from part (1) of Lemma 2,22 we have S
 N(pY) = NEXT(V(u), Y) - - (2)
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and using (2) in(1) gives
cmv(ex) CF-STRIP( { NEXI( V(p)Y) | p 9, Y- Xx}). (3)

The preperties of CF-STRIP and NEXT clearly allow (3) to

 :«be rewritten ss

cm(ex) Y\Jx NEXT(CF-STRIP({V(,;) | ,.1 - e}), Y) (4)

and part (1) of Theorem 3.43 gives -

“cF-sTRIP( § V(p ) | p =" 0}) = cFv(e).
Using this iq(h) gives
 centex) - fgx - NExe(cFV(e), Y) | - (5)

~ and by Definition 3.40, the right band side of (5) is just
" CF-NEXT(CFV(8),X) from which we conclude the lemna. (]

. LEMMA 3,45  (cf. Part(11) of Lemma 2.22)

 Let © e V', Then CFV(e) = CF-CLOSURE(CFN(®)).

' ' PROOF. By part (1) of Theorem 3.43 we have

CFV(8) = CP-STRIF( { V(p)| p == ©}) - )
and by part (11) of Lemma 2.22 we have |
| V() = CLOSURE(N(u)). (2)
Using (2) in (1) gives

CFV(8) = CP-STRIP( { CLOSURE( N(}))| p = o3 ). (3)

Now only non-final LR(k) items can contribute items other
than themselves to the CﬁOSURE operation, and all chain
items which appear.in the nucleus of an LR(k) state must be
final items, (This is because N(WN ) contains no chain items
at all, and when p*wh, N(p) contains only non-initisl items-
and a chain item which is non-initisl must be rinal), Hence,
for ey M e V' we have ..
CP-STRIP(CLOSURE(N( 1)) " = CF-STRIP(CLOSURE(CF-STRIP(N(p)))).
| | (). |



190 |
Using (4) and (3) and recalling the definition of the
function CF~CLOSURE (Definition 3.40) we obtain
| CFV(B) = CF-CLOSURE(CF smnxp(}hge N(p)))e (5)

Theun using part (i1i) of Theorem 3.43 the argument of
- CP-CLOSURE in (5) may be simplified to yield
~ CFV(e) = CF-CLOSURE(CFN(e))

which concludes the lemma., O

Using these results we obtain the theorem upon which

' the algorithm for constructing CFLR(k) statesets depends.
 THEOREM ~ (ef. Theorem 2.20)

. Let ©® € V® and X e V. Then CFV(6X) = CF-GOTO(CFV(6),X).

- PROOF, This result is immediate from the two preceeding
lemmas and the definition of the function CF-GOTO. a

. We cen now present an algorithm for computing CFLR(k)
statesets. This algorithm is s straightforwsrd edaption
of the algorithm used for constructing ordinary LR(k) state-

. sets.
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ALGORITHM 3,L7 (cf. Algorithm 2.23,) "

~ Evaluation of the CFLR(k) statesets for (G,C).

‘ f'Ingu;
~ Output

‘hszin.

~ The cs-grammar (@,C) and a value for k.

;‘cps§°'¢) - the CFLR(k) stateset for (G,C).

"‘Just as 1n'Algorithm 2.23, the stateset is
built up in a set-valued variable S. Again,
'a marker flag is considered to be attached to
" -each CFLR(K) state added to S; states are
‘tunmarked' when first added to S, During
‘execution of the algorithm a tabluation of the
function CF-GOT0(A,X) méy be built up for all

CFLR(k) states A in the stateset and all
X e V. As in the LR(k) case this tabluation
will be needed during construction of the

cf-parsing ‘tables for (G,C).

compute CFV (W) and set S = {CFV(W)} ;

_t;_;lg s contains any umnarked etatcs _gg

, endfoy
dwh
set CFS
k-

 end. O

select an unmarked state A from S and mark it;

Meachx e V do

compute = = CP-GOTO(AX);

if SA P end = is not in S then add .
- Z to S endif

C

(G.c)
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In combination, Theorem 3.39 and Algorithm 3.47

- provide a second direct method ot testing for the CFLR(k)

| prOperty along exactly the same lines as the corresponding
iLR(k) test outlined in the second proof of Theorem 2.8

if(see Sectipn 2.3). Observq that the notion of the adequacy

of statesets 1s identical in both the LR(k) and CFLR(K)
?.cgses and that Algorithm 3.47 is basically idedtical to
 ,Algor1thm 2.23, Consequently, if an implementation of the
- LR(k) test of Sectibnré,B is avaiiable, it can be
f‘converted to a CFLR(k) test with very 1ittle prdgraﬁming
".etfort - all that need be done is to substitute code for

" the eveluation of the function cp-eoro 1n place of that

ftror the runction aoTo,

‘ ~Also note that when C. the chain set, is empty,the
,'CFLR(k) stateset degenerates into the ordinary LR(k)
‘-stateset and Algorithms 3. u7 and 2. 23 become identical.
} It therefore follows that the worst-case time complexity

_of this method of CFLR(k) testing is at least as bad as

" that of the corresponding LR(k) test - and that is

‘exponential in the size of the grammsr under test,

: } To cbncludé this section we disglay in Figure 3.6
the CFLR(1) stateset and CF-GOTO function for (G3,C3).

";qffSinoe no inadequacies are present in the stateset we

conclude that this cs-grammar is CFLR(1) - as it must

- be since G3 is IR(1) . Observe that whereas the LR(1)

stateset for G3 (see Figure 2.3) has 22 states, the

. CFLR(1) stateset for (@3,C3) has but 19. This reduction

. in the number of states is unusual; CFLR(k) statesets

generally contain more states than their IR(k) counterparts.
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We shall have more to éay about the relative sizes of

LR(k) and CFLR(k) statesets in Chapter 5.

STATE CFLR(1) STATES CF-GOTO
No. NUCLEUS COMPLETION SIE| 2l 2| (| x| )] »f +
1 [s=.E,A] =~ [E=.E+T,A,+)] 2| 31 3] 4|3
: lT ‘.T‘P.“ '+O’]
[P"‘O(E)o*o*o’]
2 (S~E.,A] [E~E.+T,4,+] ‘ I -]
3 | (S=E., s [E=~E,+T,A,+] 6] 95
[T=T.*P,d,+,*] : : ~ -
[ 4 [P"(.E),Aﬂ','] [E-’.E#T, v“‘] 1 8] 8 9 8

[T ‘.T*P' ""’.]

[Po o (E)y }y+,*]
[E-E+.T,Ay+] [T=.T*P,h,+,% 10{10]| 410

P"-(E).Jﬁ,*’.*]
[T>T*. P A, +,%] [Po.(E)d,+,% 1 N4
[P=(E.),h,+,* . 12 13
tE‘E."T. )'*] ’ ‘ .
{P-=(E.),4,+,%)] - - 12114113
[E«-E.+T, ;,4’] : . '
[T=T.*P, ), +,*

| =) w

bl } ’P’ '+”]

[P=o(E)y )i+,*]

10 | [E=~E+T.,h,+] . . : 6
[T T.%P4 s+, %] -

11 | [T~T*P.,A,+,%]
.12 [P"(E)o,&.#'*] :
13 [E<E+.Ty),+] [T=.T*P,),+,*] 171171 9|17

[Pe.(E), )s+s*]
. 1‘ [T-.T*‘P’ )9*"’] rP'.o(E), ),*.’] ' 18 9 18
15 IP*(E)";.*',’] - 19 13
| tE=Eam ) T , | | |
16 [?‘(E)..§,+,*] : 19{14]13
[E=~E.+T, ), +) .
(T~T.%B) )0+, %] . .

[T=~T.*P, ), +, %
18 [T=T*P.,),+,%].
19 (P=(E)ey )+,

Figure 3.6 : The CFLR(1) Stateset and CF-GOTO Function

for the cs-grammar (G3,C3).
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3.6, Testing for the CFLR(k) Property Directly - Part 3,

In this section welwiah to de&éiop a practical‘
algorithm for testiﬁg for the CELR(k) pr§perty in poly-
nomial time. The algorithm which we counstruct will be
akin to the LR(k) t?sting algorithm of Section 2.4.First
of ail we will adapt the IR(k) constructions in a
,straightfo:ﬁard manner end show that, while this approach
does provide an acceptable algorithm, it also has certain
drawbacks, We will then modify the constrmiction slightly
in order to achieve a more satisfactory solution. We
choose this'step by step approach to the final solution
because it seems more perspicuous than a direct attack.,

Recall that the techniques of Section 2.4 were basedv
upon the enumeration ot a set called PAIRSg consisting of
all those pairs of LR(k) items which are simultaneuously

| valid for some viasble prefix of the grammar. The next

definition generalizes this concept in the natural manner,

DEFINITION 3.48 (cf. Definition 2.27)

The set CF-PAIRS(G c) 1s defined L
fg-cr-PAIRs(G'c)

{(A,=)| & ana = are CFLR(k) items for (G,C) such
that both A , = e CFV(®) for some 6 ¢ V' } O

The algorithms we shall develop will exploit the
~ following result - which is an immediate‘corollary to
~ Theorem 3{39;‘.1' L . . .
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. THEOREM 3,49 - (cf. Theorem 2.28) y
@,C :
(@,C) 1s CFLR(k) if and only ir CF-PAIRS,  contains

no inadequate members, [

| | | | (a,0)
~ We now require a method for constructing the set CF-PAIRS,

‘In Section 2.u we construc’ted a nondeterministic finite
‘ automaton uk in order to enumerate the corresgonding set

: PAIRbk

we adopt a similar construction in the present casse and

.def'ine an automaton (.lli‘blkG »C) - to enable the enumeration of
. CF-PAIRSI(( G,C)
' CONSTRUCTION 3,50 (cr. COnatruction 2 25)

The ENFA CFMI(‘G’C) = (Q,q.,F I ;) is defined as rollows ::

(8)  e=1% v {a.,

(v) ‘4 F is irrelevant,
(e) I V (remember V is the. vocabulary of G), and
(a) DI d, the trensition function is given by :

(1) 8(q,N) ={[s=~.t, ]| Ssx eP],
(11) when q 1is of the form q = [A-‘ é, - B0, ,u ]
‘With B e V_ then §(q, W) = | \ |
{[B—~.p, v] B~g ¢ P and v ¢ FIRST (e u)}
‘(iii) when Q is of the form q = [A- G.XS,, u ]
' With X ¢V then &(qY) = {[A=0,X.0,, ul}

for each ¥ ¢ V such that X - Y;. -

During the more informal parts of Fhe gubsequent discussion
@,C ’
we shall write CFN rather tban CFMk . and M rather .

than Mi O
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Comparison of Constructions 2.25 and 3.50 will reveal .

that CFM differs from M only in its fype‘(iii) transitions;

“whereas in M we have §( A,X) = NEXT( {A},X) for each
ILR(k) item A and symbol X ¢ V, in CFM we have §(AX) =

- cP-NExT( § A} ,X). Since the type (11) transitions

continue to fulfill the role' of the CLOSURE functiom, it

. 1s eaeily seen that CFM possessea the fullowing progerty s

" Let 9 ¢ V. Then in CFU,

e e e o s e D3 e e e

M .+ (ef. Lemma 2. 26)
(a,C)

we have
§d,,0) A crr{®C) o cpv(®C)ig) O

This result may be proved formally by a straightforward

induction on the length of 6., From this lemma and the

definition of the function STATE-PAIRS (Definition 2 29)
. we immediately obtain the follcwing result :

[P - -

LEMMA'3.52 - (ef. ’Lemma 2.30)

\ cr-—mmsl(f' ¢) .

STATE-PAIRS(CFMI(:G’Q)) ~ (cmff'c) x CEIIS__G'C)). ]

The reader may wonder why the states of CFM comprise sall

“the LR(k) items for G when we are ultimately interested

only in the CFIR(k) items, The explanation is that the

chain items (the LR(k) items which are not CFLR(k) items)

are needed because of their contribution to the type (ii)

transitions in CFM; although of no interest in themselvea,.
they serve as intermediaries in sequences of M-transitions
from one CFLR(k) item to another. Strictly speaking, it

is only the initial chain items which are needed for this

purpose, However, it does no harm to also include the

_ final chain items among the state of CFM since they sre
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- discarded in Lemmas 3,51 and 3.52 by virtue of the

intersections with CFIQG’C)._By allowing the states of

- CFM to include all LR(k) items, the construction of

- .this automaton is kept more uniform with that of M.
.~ -We shall see later that this uniformity is useful.

| ' In order to illustrate the construction in general
- and the points raised in the last paragraph in partic-

" ular, we now introduce a simple example., We will use the

'1j;!f01;owing grammar

S —= Ax SR érammar G7)

T T EE
| x

B ~» vy

" end teke C7 = {A—~B} as the chain set. We use k=0

. " and display the transition diagrsm of CFMéG7’C7)' in

V; Figure 3.7. Note that in thié figure we omit the sgcond
."élement‘(that is the lookahead string) when writing :
‘LR(O) items. This is because the lookahead string in

N LR(0) items is always J and so there is no need to
 indicate 1t explicitly. .
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SR o ( B=-.y] y"||ﬁﬁﬁiilll’

G
Figure 3. 7 : The Transition Diagram of CFM( 7,C7) - the
EEEA Qgrgesgogdigg 3 the cs ggg mar (gz‘gy) vhen k=0,

| Observe'in Figure 3,7 that the LR(0) chain item
‘A-.B]. is needed in order to make CFIR(0) item [B ~.y]
accessible from the start state, Notice also that CFM(G7 07)
differs fi*(o;n\ Mg7 only in t’he presence of the transitien

on B from [S — ,Ax] to [ — A.x].
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Our new method of testing for the CFLR(k) property is

~ the following .

~‘Constfuct the automaton CFM and evaluate the set
'STATE-PAIRS(CFM). Then use Lemma 3,52 to produce
vCF-PAlksis’c) and test each member of this set for
“adequacy. Declare (G,C) to be CFIR(k) if no

inadequacies are found,

' The correctness of this method follows immediately from
:‘Theorem.B.QQ and Lemma 3.52. In order for it to become

‘a practicsl algorithm, we must prescribe a method for

eveluating STATE-PAIRS(CFM). Now in Sectionm 2.4 we used

 Algorithm 2.32 to perform the coireSponding evaluation,

namely that of STATE-PAIRS(M), but we cannot use this same

- algorithm here because it relies upon a property of M
3}:'wh1ch is not shared by CFM. This property is that no state

,  "1n ¥ has transitions on more than one symbol from V. It is

this property which allows us to speak of the OUTSYM of a

 state and it is used in steps 5 and 6 of Algorithm 2,32,

In contrast, stetes in CFK may have transitions defined on

many aymbols_rrom V. For example, in Figure 3.7 the state

[s - .Ax]has transitions on both the symbols A and B.
Wg will call the set of symbols in V for which a state in
CFK has transitions defined the 'CF-OUTSYM' of the state.

DEFINITION 3,53 (cf. Definition 2.31)
Let q be a state in CFMI(CG’C). Then

cx*-oumsm(q) = {xe v l' S(A;i) 91 ?f}. a
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' Note that although each state in CFM may have transitions
defined for several symbols in V, there is no non-
' "determinnism involved; for each state g and each symbol -
X ¢ CP-OUTSYN(q), there is but a single state in §(q,X).
" Thus, Jjust like M, all the nondeterminism in CFM is on
, ‘_"‘_the W-transitions end so it is only steps 5 and 6 of
©* Algorithm 2.32 which need to be changed in order to
| cope with this new type of automaton. In this way we
arrive at the foll owing algorithm for evaluating STATE-
PAIRS(GFM)
ALGORITHM (cf. Algorithm 2.32)
G c))

Evaluation of smm-mms(cmﬁ

_ Input : ' The ENPA cFuf’C’ (Qed, s FoTs 8 )e

| Output: .The set s;rATE-pAIRs(CFMl(:G’?))-

Method: The data structures end the procedure INSERT are
~ retalned unchanged from Algorithm 2.32. The output is

| i ~ represented by the bit matrix PAIRS, - |

. INSERT (g,,q,);

Lo X ~¥hile STACK is not empty do

2, pop (p,q) from STACK;

3. ~ for each q' ¢ d(p, N ) do INSERT(p,q’)endfor;
o be 7 .for eachp' e §(a, A ) do INSERT(p',q)endfor;
5. _ -meaéh}[cvgg

it X e CF-OUTSYM(p) and X e ‘CP-0UTSYM(q) then
INSERT(J(DOX)O J(Qox)) '

end

endoon

endw
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Observe that Algorithms 2.32 and 3.54 are .identical
-except that the two steps 5 and 6 in the former are
,replaced.by the single step 5 in the latter. The correct-
ness of Algorithm 3.54 should be clear from the remarks
which greceeded its introduction, so let us now consider
" its complexity. The work charged to each of its steps 1 |
0o L will be exactly the same as that charged to these.
steps in Algorithm 2.32, that is O(IQI 2) to steps 1
and 2 and O IQI. quQ ,8(@,\)\,) | ) to steps 3 and 4. Since
the numberé of states end W -transitions in CFM are the
samexés those in M, it follows that when the size of the
Tgrammaf G is n, the wofk charged to‘steps 1 and 2 in
‘Algorithm 3.54 1$‘o(n?k+2 ) while that chafged to steps
3 and 4 is 0(n3k*3);vThese'cost8 are Just‘thersamé as
those of the corresponding steps in Algorithm 2,32. How-
ever, the cost of eéch execution of'étep 5 inVAlgorithm
3.54 18 0( |I]) and so the total work charged to this
step 18 0( |Q| . |I|), Since I = V ana |V| = 0(n) the
cost of this step is therefore 0(n°%*J) ana this should
be compered with the O(n?k*z) cost of Stebé 5 and 6 in
Algorithm 2,32. Nevertheless, the overall complexiﬁy of
Algorithm 3.54 is clesrly dominated by the cost of steps
3 and 4 and so we see that this algorithm has the same
complexit&, that is O(n}k+3), as Algorithm 2.32.

We claim that just as the overall complexity of the
LR(k) test given in the third proof of Theorem 2.8 is
dominated by the cost of evaluating the set STATE-PAIRS(M),
8o the complexity of the corfesgbndihg CFLR(k) test is
dominated by the cost of evaluating STATE-PAIRS(CFU). If
this'evéiﬁafioﬁ’is éerformed ﬁsiﬁg Algorithm 3454 theﬁ the
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overall compiexity of this method of testing for the
CFLR(k) property will be 0(n3k+3). This is the same
cost as that of testing for the ordinary LR(k) prbperty-
which seems a very satisfactory result. The situation

becomes somewhat less satisfactory, however, when we

consider the more efficient LR(k) tests of Hunt et al.
(1974 and 1975).

As has béen'explained before, the method from the

2k+2) time bound

earlier ot these references obtains its O(n
by dint of counstructing a modified fofm of the automaton
M in which the number of WW-transitions is reduced rrom
O(n?k*z) to 0(nk+1). This reduces the cost ot steps 3
‘and L in Algorithm 2.32 from 0(n>**3) to 0(n2**2) and
thereby reduces the overall complexity of the Algorithm,
and hence of the entire IR(k) test, to 0(n®**2), It we
attempt to improve the efficiency of our CFLR(k) test in
- the same way, that is by reducing the number of W~
trensitions, then the overall complexity of Algorithm
3.54 will become dominated by the cost of its step 5.
Thus we would reduce the complexity of the CFLR(k) test
to only 0(n2¥*3) rather than to the target of 0(n°t*2).
The @(nk+2) LR(k) test of Hunt et al. (1975) will likewise
- yield an O(nka)'CFLR(k) test, It therefore seems
necessary to examine Algorithm 3.54 more closely in order

" to see whether the 0(n2%*3) cost of step 5 is really

necessary.

The costliness of this step is clearly due to its
- 1terative nature, Now it is apparent from the definition
. of the type (i1ii) traunsitions in CFM that trom any given

state all the non #-transitions lead to but one destination
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state. That 1s, in each state q, §(q,X) = & (q,¥)
for all X,Y ¢ CF-OUTSYM(q). It follows that the effect
of step S‘in Algorithm 3.54 can be accomplished more

~economically by the following non-iterative step :

ir (c?-wrsm(p) ~ CP-QUTSYM(q)) # # then
select any X ¢ CF-OUTSYM(p) and any
Y ¢ CF-UTsYM(q) and INSERT(S(p,X),5(q,¥))

endif

‘;"In this new step, instesd of following all the traunsitions

from p and q,we follow Jjust one representative from each,
' having first ensured that there is at least one symbol on

-which =& transitién is defined in both states,

We now}need some rapid means for testing the emptingss :
‘, of the intersection CF-QUTSYM(p) ~ CF-CUTSYM(q) and for
.jselecting the representative symbols X and Y, Now when p

is a state of CFM, its CF-OUTSYM set is empty if p 1is

either the initiai state or if it corresponds to a final

- LR(k) item, Otherwise p must correspond to a non-final

item of the form [A — ©,.X9,,u] and in this case

- cr-oursYM(p) = {Y eV | X % Y} . But CFM shares the

seme states as M and so p may also be regarded as a state
of M. Regarding it thus, we may speak of the OUTSYM of p
(recall Definition 2.31) and this will be ¢ (i.e undefined)
if p is either the initiasl state or if it corresponds

a final LR(k) itenm, Otherwise p.must correspond to a
nonrfinal IR(k) item of the form [A-0,.X6,,u] =nda
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in this case OUTSYM(p) = X. We have just proved :

LEMMA 3.55
| (e,C)

Let p be a state in CF‘Mk « Then it is also a state

. of Nﬁ-’ and

| (a) CF-OUTSYM(p) =g if end only if OUTSYM(p)zq;, and
() '.yif CP-UTSYM(p) # @ then

(1) CF-OUTSYU(p) = fx ev| cmsm(p)-»x] and 80
(11) oursyM(p) e CF-QUTSY¥(p). O

We now define an equivalence relation on the vocabulary

of G.
DEFINITION 3,56

‘Let G be a chain set for the grammar G. Define the
~equivalence reiation « on V by X<+ Y if and only 1f
there exists 2 e V such that both X - > Z and Y-’ Z D

From this definition end thé'preceeding lemma we immed-
: iately deduce the following result o

- LEMMA 3,57 N

(e c)
Let p and q be 8tates in CFMk -
GF—OUTSYM(p) a) CF-W‘I'bYM(q) # 8 1if eud only if both
(e) ouTsYM(p) # ¢ and OUTSYM(q) y!q)., end
(b) OUTSYM(p) o> orsyM(q). O
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.If a tabulation of the relation €» is assumed to ve
ewailable, then Lemma 3.57 indicates how the emptiness
of the intersection CF-OUTSYM(p) N CF-O0UTSYM(q) can be
decided at fixed cost, If this intersection is non-
empty, then part b (i1i) of Lemma 3.55 shows that the
~ representative symbols X and Y from CF=OUTSYM(p) and

CF-OUTSIM(q) can be provided by teking X = QUTSYM(p)
" and Y = OUTSYM(q).

Thus step 5 of Algorithm 3. 5& can now be replaced
by the two steps ¢

set X = OUTSYM(p) and Y = OUTSYM(q);

I£X#gand Y £¢ and X «= Y then
| - INSERT(S(p,X), d'(a,¥))

epais | ,, .

- Both these steps have fixed cost (provided a tasbulation
of <» 1s available) which is what we require. But
observe also an additional advantage conferred by this
reformulaetion of step 5 : the only non-) transitions

'noﬁ involved are those of the form &(p,X) where X =
oUTSYM(p) éndtransitiona of this type are identical in
both CFM end M, Thus,in this modified form,Algorithm

. 3.54 will use only those transitions which are common
to both CFM and M. This means that the algorithm now has
the rather remarkable property that'it evaluates STATE-

PAIRS(CFM)- directly from K. For completeness we state

| ’the modified algorithm in ruu. |
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" ALGORITHM 3,58  (cf. Algorithms 2.32 and 3.54)

Evaluation of STATE-PAIRS(CFMl(cG’C)) .

nput ¢ The ENFA MY = (Q,q,,F,I,4 ).
- Output ¢ The set STATE-PAIRS(CFMI(:G’C)).

Method ¢ The data structures and the procedure INSERT
 are retained unchanged from Algorithm 2. 32. The output.
'is represented by the bit matrix PAIRS. "

o | |

. - INSERT (q,,q,); |

1. while STACK is not empty do

2. o pop (p,q) from STACK;
3.0 for eschq'e &(p A) o INSERT(p,q') sndtor;
L. foreachp'e §(a,k) do INSERT(p',q) endfor;
5. set X = oursm(p) and Y = oursYm(q) ;
6. ,;_;X;(opandY;éq>andX<-Ym
o INSERT(G(D.X) 6 (a,¥))
endif

Observe that this algorithm differs rrom Algorithm
2.32 only in the detail of its 6th step. Algorithm 2.32 has

A XF4q and Y £ and X = ¥ then
. -INSERT(é(Pox)o d (q,Y))

| .E.!.’*Q_’;I l

- and Algorithm 3 58 differs only in that 'X = Y' is replaced
by 'X*-Y'. Therefore, whenever both algorithms are |
applied to the same automaton their complexities will be
within & conetant factor of each other. Now the rast LR(k)

teste of Hunt et al (1971& and 1975) reduce the oost of
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Algorithm 2.32 by applying it to a variant of M (or,
in the case'of the later reference, to a series of
variants) rethef than to M iﬁself. Since Algorithm 3.58

- will work Just as well when applied to these variants,

its cost, too,may thereby be reduced to only Q(n?k+2)
or 0(a®?) as desirea.

In its complete form, the basic 0(n3k+3) test - ror
he CFLR(k) property 1s the following :

ALGORITHM 3,59 (cf. the third proof of Theorem 2.8)

. Testing for the CFLR(k) property.

Input ¢ The cs-grammar (G,C) to be tested and a value
for k.

Qutput: 'Yes' if (G,C) is CFLR(k), otherwise 'no'.
iMethgd:".Tabulate the relation <~ and construct the
automaston Mg. Then Use Algorithm 3,58 to
eveluste the set STATE—PAIRS(CFMKG )y ang use

~ Lemma 3.52 to extract the set CF-PAIRS(G c),

‘Test each member of this set for adequacy and
~output 'yes' if no inadequacies are found, 'no'

otherwise, O

~ This algorithm is similar in every way to the LR(k) test
indicated in the third proof of Theorem 2.8 and, ignoring
for the moment the cost of tabulating the relation «»,
its complexity is therefore dominated by that of
Algorithm 3,58, Since this can be reduced to 0(ﬁ?+2) by
using the methods of Hunt et al.(1975) it follows thet, .

- CFLR(0) testing can be performed in time O(n?). Hence»
it is necessary that the tabulation of the relation

be performed in time O(n?),ir this is ‘not to dominate
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~ the cost of CFLR(0) testing.

<

- Now Definition 3.56 defines <> in terms of the .
relation -~ and so it seems that tabulating e
will be at least as expeusive as tabulating the
~transitive closure of -» . This seems rather
‘,unpromising since all known algorithms for computing
the traunsitive closures of arbltrary relatiouns 1gcur
cost greater than O(n?) in the worst case, Brtunately
however, the relation <=+ has special properties which
do allow it to be.tabulated within the 0(n®) time bound.
In order to establish this fact we appeal to ths
following theorem which is due to Hunt et al.(1974,
Theorem 6). | - o

~ THEOREM 3,60

‘Let & be an expreésianWhose operands are relations

‘havihg graphs with at most,# verfices and é edges each

and whoserpérators are choéen from combositioh,
 transitive closure, refleiive‘tranéitivé“éloéufe;union
and inverse. Then the relation denoted by & caﬁ be

computed in O(ve) steps. I

Now observe that the chain set C is really a
relation on V and that the graph for C has | V] (i.e.

,O(n))-vertrces aud as many edges as there are productions

1o c (i.e. at most O(n)). It follows that the product -

of the numper of vertices and the number of edges in
the graph of C is bounded by 0(n2). The following
identity is evident from Definition 3.57 :

- < =c".(cH

from which it rollo&s by Theofem 3,60 that <> can

indeed be computed in time O(n?), where n is the size of

the grammar concerned,
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3.,7. Chain Free Parsing the CFLR(k) Grammars.

In Section 3.3. we showed that a cf-parser for

a CFLR(k) cs-gremmer can be constructed by simply
building phe ordinary LR(k) parser for the corresponding
cover grammar, The disadvantage of this indirect approach
is that the LR(k) parser for the cover grammar can be
- very much larger than that for the basic grammar. For
example, the LR(1) parser for G3 has but 22 states while
‘that for COVER(G3,C3) has 73 states. Using this indirect
approagh, the speed benefits of cf-parsing are bought

at the expense of inordinately large parsing tables.

We now show how cf-psrsers for the CFLR(k)
cs=grammars may be consﬁructed directly. Recall that an
- ordinary LR(k) parser is formed by taking the basic table
driven parser of Algorithm l.4 and driving it with a set
of LR(k)parsing tables, CFLR(k) cf-parsers are produced
by an exactly analogous procedure: Algorithm 1.4 is
retained but driven by a set of 'CFIR(k) parsing tables',
These are qonstfucted from éFLR(k)Astatesets in just the
. same way as ordinary tR(k) tables are constructed from
LR(k) statesets, Their formal definition is given by the
| following construétion. |
~ CONSTRUCTION 3,61 (cf. Construction 2;55)
' The CFLR(k) baréing tables for (¢,C) are denoted CFT
1(;6'0) |

(6,0)
k

and are given by CFT = (Q,s,,8,f) where .
(a) Q= nauss(crs{®®)),

(b)  s,= NAMEOF(CFV(4)),

(o) forawl A e crs{®O) gnaxc v,

g(NAMEOF( A ) ,X) = NAMEOF(CF-GOTO( A ,X)),and
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(@) for a11 ~ A eCFSI(:G’C) and u e V;k ’

r (NAMEOF (A ), u) = ACTION(A ,u).
(The function ACTION was defined in Construction 2.35). 0

Note that, Jjust like the ordinary LR(k) case, the action
function £ in a set of CFIR(k) tebles for (@,C) will be
single-velued if snd only if (G,C) is CFLR(k). -

} We now examine the theoretical propertieé of the
CFLR(k) parsing algorithm, For the rest of this section
-we assumé that we are concerned with the CFLR(k) parser
for a cs-grammér (@,C) which 1s supposed to be CFLR(k)
';_for the value of k concerned. As we should expect, the

algorithm performs coérectly when presented with valid

input.
- THEOREM 3,62 - (ef. Theorem 2.36)

‘_ The CFLR(k) cf-parsing slgorithm produces correct chein
- free parses for all inputs in L(G). |

 PROOF. ' The conditions which a set of cf-parsing tables
must satisfy in order to drive Algorithm 1.4 correctly are
i, glven as part of the formal definition of such tebles
(Definition 3.13). These conditions sre simply the chain
free generalisations of those which ensure the correctness
of ordinary LR(k) tables, Similarly, the CFLR(k) tables
are themselves the natural chain free generalisation of
LR(k) tables, Consequently, the proof of the correctness
of the ordinary LR(k) parsing slgorithm (see Theorem 2,36)
may be adapted straightforwardly to the present case. We
omit the details, D o
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The following result shows that the algorithm runs

in linear time and space,

THEOREM 3.63 (cf. Theorem 2.37)

| The number of moves made by the CFLR(k) cf-parsing
algorithm in processing an‘input sentence of iength n

is o(n).

PROQF, It is, unfortunately, not sufficient to mereiy note
that the CFLR(k) parser for (@,C) makes no more moves than
- the LR(k) parser for G and then appeal to the linear time
result for LR(k) parsers, This is because there is no
guarantee that G ié LR(k). (Indeed there exist CFLR(k)
c8-grammars (G.C) where G possesses sentences with (ord;nary)
parses of infinite length.) Instead we appeal to Theorems
3.25 and 3,26 and note that if (G,C) is CFLR(k) then
COVER(G,C) is LR(k) and generates exactly the language
'L(@). Thus an LR(k) parser exists for COVER(G,C) and it is
clear that its moves are in obe-to-ane correspondence with
those of the CFLR(k) cf-parser for (G,C). The preseant

- theorem than follows directly from Theorem 2.37 which
guarantees the linear‘time bound of the LR(k) parser for
COVER(G,C). O '

The final theorem shovs that the CFLR(k) parsing algorithm
- retains the excelleut error detection properties of the

LR(k) algorithm.
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. THEOREM 3,6l | (cf. Theorem 2.40)

Let ¥ > O and let x ¢ v; be a string not in L(G).

Then the CFLR(k) persing algorithm rejects x on :

(a) 1ts first move if EP(x)< k, and
(b) the move following the EP(x)-k 'th shift move if
| - EP(x) > k. | |

- - PROOF, This result may be proved in a similar manner
to the previous one - by appealing to the performance

of the LR(k) perser for COVER(G,C). O

We end this section by dispiaying in Figure 3.8
the CFLR(1) parsing tables for (G3,C3) - these are
obtained by applying Comstruction 3.61 to the CFLR(1)
stateset for this cs-grammar wbich is shown in Flgure

346,
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STATE| CF-ACTION FUNCTION CF-GOTO FUNCTION
No. | ALl X] )] %l + [s|El2l P (x| )] *| +

1 sh|sh | 21 3] 3143
2|1 sh | 5
311 sh|sh 6| 5
4 sh|sh| 7188|918
5 sh|sh oj10{ 4 ho
6 shish| ' 111 4 11
7 sh sh - 12 13
8 sh|shish 121413
9 sh|sh| , 15 16 |16 | 9 [16

10| 2 sh| 2 6

11 4 41 4

12 | 6 6| 6

13 sh|sh 17 1174 917

14 sh|sh 18] 918

15 sh sh v 19 13

16 sh|sh|sh 19(14]13

17 2lsh| 2 14

18 41 4| 4

19 6| 6| 6

Pigure 3.8 : CPT{®3C3)_ 4ne cPLR(1) Parsing Tables
for (G3,C3).

In Figure 3,9 .we display the moves made by the CFLR(1)
parsing algorithm for(G3,C3) - that is to say Algorithm 1.4
driven by the tables of Figure 3.8 - while processing the
string X#*(X+X). Figures 3.8 and 3.9 should be compared with
their LR(l)vcounterparts which are shown in Figures 2.4
and 2.5 respectively.‘Observe that the CFLR(1) parser makes
less than 60% of the moves made by the Li(1l) parser when
presented with the given input,
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MOVE | SYMBOL STACK | STATE STACK UNCONSUMED | ACTION

NO. | CORTENTS . CONTENTS INPUT

1 W 1 X* (X+X) SHIFT
2 X 1,3 *(X4X) SHIFT

3 X 1, 3,6 (X+X) SHIFT

4 [ xx( 1, 3,6,4 . X+X) SHIFT

5 |X*(X 11,3,6,4,8 4X) - SHIFT

6 |x*(x+ 1,3,6,4,8,13 x) - SHIFT

T | X*(X+X" 1, 3,6,4,8,13,17 ) REDUCE E-»E+T

8 |X+(E . 1,3,6,4,7 ) SHIFT

9 |X*(E) 1,3,6,4,7,12 N REDUCE P - (E)
10 |X»*P X 1,3,6,11 W REDUCE T-+T*P
1 |7 ) 1,3 4 REDUCE S ~E

: - ~ and ACCEPT

Figure 3.9 :

Lo
i}

The Behaviour of the CFLR(1l) cf-parser

for (G3,C3) with Input X*(X+X).
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3.8, Summary

This Chapter has introduced the idea of a chain
4specified grammar (a cs-grammar), that is a pair (G,C)
~where G 1s a context free grammar and C is a set of
chain productions from G which are to be ignored during
rarsing. We have seen that, provided care is taken with
the definitional framework, the basic ideas of parsing,
and in particular the table driven bottom up parsing
algorithm, can be generalised to accommodate the notion
. of chain free parsing (cf-parsing) - a form of parsing
in which all chain productions aré ignored. The ma jor
briginal'contribution'of this thesié lies in the intro-
ductibn of.fbe CFLR(k) cs-grammars. These are the
largest:class of cé-grammars which can be cf-parsed from
- left to right while looking k éyhbols ahead or the
current point of the parse. Thie LR(k) grammars of Knuth
are included as the special case in which the chain set

C is empty.

The remainder of this chaptér has been concerned with
-exploring the properties of' the CFLR(k) cségrammars.Firat_
we examined the relationship between the LR(k) and CFLR(k)
prOpérties>and proved a significant result: if G is
- LR(k) and C is a chain set for G, then (G, c) is CFLR(k).
Conversely, it was demonstrated that there exist CFLR(k)
cs-grammars (3d,C) in which the underlying grammar @ is

- not LR(k), nor even unambiguous.

We then took a different tack and related the CFLR(k)
property of a cs-grammar to the LR(k) property of a

'cover' grammsr. In this way'we were sble to establish
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that the LR(k) and CFLR(k) languages sre co-extensive.
This approach also provided theoretical solutions to the
problems of testing for the CFLR(k) property and of |
constructing cf-parsers for the CFLR(k) cs-grammars,
However, novpractically feasibie algorithms}were provided
by these techniques because the cover grammars were
found to be very much lafger than the cs-géammars which

they qpvéred.

In order to obtain practical CFLR(k) testing and
parsing algorithms we then proceeded to generalise the
corresponding LR(k) technigues, Each of the three methods
of testing for the LR(k) property was succesfully
generalised to test for the CFLR(k) property. It was

- shown .that the greater generality of the CFLR(k) property

need notincrease the complexity of its decision procedures

above those of the ordinary LR(k) case,

-

Finally, a method was presented tor constructing
table driven cf-parsers tor the CFLR(k) cs-grammars. By
virtue of their chain free nature, these parsers are
‘fester than their LR(k) counterparts yet they preserve
the sasme high quality of error detection.iheir only
disadvantage is that they may be rather larger than
ordinary LR(k) parsers. In a later chapter ( Chapter 5 )
we shall present an optimisation that removes this

'disadvantage.

We submit that the techniques presented here are the
right and natural way to eliminate chain productions from
LR(k) parsers. Unlike all other techniques (except that
of Anderson (1972), which is fundamentally the same as our
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"own and,indeed,the source of its inspiration) ours
places no restriction oun the chain productions that
may be eliminated (save only that none méy have the
goal symbol as its left part), nor does it add to the

constraints upon the grammar: given an LR(k) grammar,

- any set of chain productions may be selected in the

secure knowledge that a CFLR(k) chain free parser can

. be constructed. -

It is also worth hoting here that the similarity
_ between the LR(k) and CFLR(k) testing and parser
uconstrugtion algoritth-is sucb.that, should an imple-
mentation of any of the LR(k) algdrithms be available,
then it may be converted into its CFLR(k) count erpart
with only very modest effort.
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HAPTER

ONVERTING LR RSERS INTO IN FREE PARSERS

Section 3.7 described the standard method ror construct-
ing CFLR(k) parsing tables. Nowwe shall reconsider this |
topic from another angle; we shall suppose that ordinary -
IR(k) parsing tables are already available and we shall
'seek to convert them directly into CFLR(k) tables.

We are concerned with this approach for two reasons @
firstly because it could be useful in practice, and
. secondly because it will enable us (in Chapter 7) to
| relate our work to'thét of Aho end Ullman (1973b)and

" others.

It will be shown that tables coustructed in this way are

~ 'not always exactly the same as proper CFIR(k) parsing

tables (in general they are much bigger) but their

performance when used to drive Algorithm 1.4 is indistine-
guishable from that of CFLR(k) tables, wWe say that these -
new tables 'cover' the true CFLR(k) tables. -

Later, we shall modify the technique in an attempt to
reduce the size of tables produced. The modification takes
the form of a simple, almost cgude. optimisation, yet is is

sufficient (in an important special case) to produce tables

. which are identical to true-CFLR(k) parsing tables,

Much of the middle section of this chapter is councerned
- with elucidating the nature and properties ot the special

 ‘03832311uded to above. This case conceruns ¢s-grammars having
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a property which we call 'Property A' and it is one
which finds constant ayplication throughout the

remaining chaptera.
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4.1, The 'Post-Pass' Method for Constructing CFLR(k)
Parsing Tables.

Although the goal of this chapter is to turn LR(k)
parsing tables into CFLR(k) tables, we begin by discuss-
ing how the availability of LR(k) statesets can essist
in the construction of CFLR(k) statesets. We do this
because the technique is 1nteresting'in its own right,
leads on}naturally to the main topic, and ensbles us to

explain some rather nice points that arise in Chapter 6.

The technique we have in mind depends upon associat-
ing with each CFLR(k) state, CFV(6), a collection of
LR(k) states given by :

COLLECTION(8) = {(V(p) # 8| p = o1
Now, by virtue of Theorem 3.46, we have

CF-GOTO(CFV(6),X) = CFV(eX) (1)
_ and by virtue of Theorem 3.43 we have | |

CFV(€X) = CF-STRIP(COLLECTION(X)) - (2)
while Theorem 2.20-givea

COLLECTION(OX) =

{6OTO( A,Y) # #| A ¢ COLLECTION(®), Y% X}
The identities (1), (2) and (3) effectively express

(3)

CF~-GOTO in terms of the functions CF-STRIP and GOTO.
Now GOTO is only marginally easier to evaluate than CPF-
GOTO and so this result would be of 1little interest
were it not for the fact that a tabulation of GOTO for
all the'arguments required in (3) is obtained as a by-
product of,tha‘construction of the LR(k) stateset
for G,
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So 1f'we have the LR(k) stateset and a tabuletion of
the GOTO function for our grammar G available we can
reduce fhe evalustion of CF-GOTO to‘a éeries of table
look-ups (for GOTO) and application of the (very simple)
‘function CF~STRIP. In this wey we cen construct the
CFIR(k) stateset for (G,C) end hence its GFLR(k) parsing .
tables,

- Having introduced the bésic‘idea, we must'now give
it a more practical realisation., In order to maintain
uniformity with later constructions (which must manipulaete -
LR(k) tables, not statesets) we shall associste with
CFV(8), not the set of sctusl LR(k) states COLLECTION(®),

- but rather the set comprised of the names of these states,
We shall call this set of names the "quasi CFIR(k) state
for 6" and we shall define a function called ITEMS to

'.w ensble LR(k) states to be recovered from their nemes. We
 ‘sha11 also define a “quasi CF-GOTO function" to fealise

8 vérsion of the identity (3) above. Finally, instead of
.. using these objects to construct the CFLR(k) stateéet
‘directly, we shall first construct a "quasi CFLR(k) state-
‘set" composed of quasi CFLR(k) states and then convert
this into the GFLR(k) stateset proper. We now give the

, rormal derinitions of these notions.
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" DEFINITION 4,1

Let Tg = (Q,8,,8,f) be the LR(k) parsing tables for G

and let C be a chain set for G. We do not require that
G be IR(k), nor that (G,C) be CFLR(k). For © ¢ V', define
chf“}fc)(e), the quasi CFLR(k) state for 8, to be the

subset of Q given by

acrvi® O (o) = {RMMEOR(V(p)) | p =5 6, V(p) # #).

| As usual, we drop the sub and superscripts and write

simply QCFV(©6) when it is safe to do so, We define QCFS(Gr c)

the quasi CFLR(k) stateset for (G,C),to be the set of all

' quasi states for (G,C) 3 QCFSIEG'C) = {acFv(e) # gle e V')

and we define QCF-GOTOéG'C), the guasi CFLR(k) goto function
for (G,C) as follows ¢ when M ¢ Q eand X ¢ Vt)

QCF- somo(‘}'c)(u,x) = {&(s,Y) £¢ | 8 ek, Y X}
(recall that ¢ means 'undefined'). We use the term
-h QCFLR(k) as an abbreviation for the phrase 'quasi CFLR(k)'.
'Finallyy'we define the function ITEMS to be the inverse
of the NAMEOF function used in defining the set Q of LR(k)

' parsing states for G : for s ¢ Q, ITEMS(s) = V(8) where

'v(8) is the LR(k) state for G such that s = NAMEOF(V(®)).
o It is convenient to extend the domain of ITEMS to sets

of parsing states (such as quasi states) s when M ¢ Q

define ITEWS(M) = f TTEMS(s), O
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We require the following Lemnma,

LEMNA 4.2 | ,
Let 6 ¢ V* and X ¢ V., Then

QCF-GOTO(QCEV(6),X) = QCFV(6X).
PROOF. We have a ' a
QCF-GOTO(QCFV(8),X) = {&(s,Y) #9|s ¢ QCFV(6),Y> X}

= {g(NAMEOF(V(p)),Y) £ ok 6,
' V(H) # ﬂ,Y-‘f'X}

= {NAMEOF(GOTO(V(H),Y)) ;e’qalp —;" é.
V(p) # #,Y -2 X}

{NMOE.‘»(.V(FY))I p = e,Y K,
V() # 4}

QCFV(ex). O

This result eusures thet QCF-GOTO has the property we
require of a GOTO-type function and consequeuntly the
following algorithm may be used to construct QCFLR(k)
statesets. Note that, as with all the other stateset
construction algorithms, a tabulation of the goto
function concerned (QCF-GOTO) may be produced during
execution of this algorithm,

LR
[URER
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ALGORITHM L,3

Construction of the quasi CFLR(k) stateset for (G,C).

The cs-grammar (G,C), and Tg = (Q’So 98rL) =

Input
the set of LR(k) parsing tables for (G,C).
. .
Qutput : QGFSé € _ the QCFLR(k) stateset for (G,C).

¢ The method is similsr to that of the earlier

=
o
‘-’
g
O
{a N
.

stateset construction algorithms. The quasi
stateset is built up in the set-valued varisble
S’; each gquasi state has the usual marker flag
attached to it and is unmarked when first added
to S,
begin
set S = {RCFV(W)! ; (note QCFV(4) = {s.})
while &S contains any unmarked quasi states dg
select an unmarked quasi state M from 8
and mark it;
Lor each X e V do .
compute N = QCF-GOTO(M,X);
if NZ Z and N is not in S then
add N to S endif

gudwhile;
set QCFSﬁG'

£gnd. O

c)
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To 1llustate this construction we show in Figure
4.1 the QCFIR(1l) stateset and a tabulation of the
QCF-GOTO function for the grammar (G@3,C3). The numbers
in the second column of this figure sre the names of
the LR(1) states comprising each quasi state, These
‘names refer to the states of the LR(1) persing tables
for G3 given iu Figure 2.4, -
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QUASI| COMPONENT LR(1) QCF-GOTO
SLAIE| PARSING STATES [ g MR R
1|1 2| 3| 4] 5|6
2 | 2 — | o
3. 2,3 87
4 | 2,34 | 8l 7
5 5 9f10{11|12|13 o
6 ‘2,394"6 : ’ 8 7
7 |7 1415 516 :
8 8 17| 5/[18
9 | 9 1 19| |20
10 | 9,10 19(21|20
11 | 9,10,11 o 19/21|20
12 12 . 22123(24(12]25 :
13 9,10,11,13 19|21|20
14 14 e 8
15 14,4 8
16 14,4,6 8
17 15
18 15,6
19 16 |
20 | 17 | 26 /27|12 (28
21 | 18 - 29(12]30
22 19 1| |20
23 19,10 31{21]20
24 | 19,10,11 31]21}20
25 19,10,11,13 31{21{20
26 20 o 21
27 20,11 21
28 | 20,11,13 21
29 21
30 21,13
3 22 .
he QCFLR Statese 34 QCF- tio
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Observe from Figure L.l that the QCFLR(1l) stateset
for (GB,C}) contains 31 states whereas the true CFLR(1)
stateset (Figure 3.6) contains only 19. Clearly, there-
fore, there is no simple one to one relationship between
the quasi and the true CFLR(1) states for (G3,C3). However,
the two sets of states garg related: provided that the
function ITEMS 1s avalilable, the quasi stateset and
QCF=GOTO function of Figure 4.1 can be converted into -
the true CFLR(1) stateset end CF-GOTO function of Figure
3,6, The CFLR(1) parsing tables for (G3,C3) can then be
built using Construction 3.61 in the usual way. The}proof
of the following theorem indicates how this trausformation .

may be performed in geuneral,
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THEOREM L4.,U4

Given the QCFLR(k) stateset anda tsbulation of the QCF-GOTO
function for (G,C), the functions ITEMS and CF-STRIP
enable the corresponding CFLR(k) parsing tsbles to be
constructed. |

'PROOF.  In order to build CFLR(k) parsing tables using
Construction 3.61‘we neéd the CFLR(k) stateset and a
tabulation of the CF-GOTO function. First we show how to
convert the quasi CFIR(k) stateset for‘(G?,C)into the true
CFIR(k) stateset,

| Let ¥ be a set of LR(k) parsing states for G. Define
the function y by  y(M) = CP-STRIP(ITEMS(M)). Then we assert
Claim 1 : for each 8 ¢ V', (QCFV()) = CFV(e).
Proof of claim : Theorem 3.43 gives |
_— CFV(8) = CF-STRIF( { V(u) | p = o] )
and ITEMS(NAMEOF(V(p))) = V{(u) for all y e V¥, Hence
CFV(e) = CF~STRIR(ITEUS( { NAMBOF(V(x)) | p — 0,V(y) # £} ))
"= CF-STRIP(ITEMS(QCFV(8))) |
. = y(QCFV(e))
and the claim is proved,

'The CFLR(k) stateset for (G,C) is gi#eﬁ by
| cps](f’c) = {CFV(e) £8 | o0cV'}
: and 80, by tbe claeim Jjust proved,
cvsff'c)a {y(qcrv(e)) £ & | 6e V)
= {y) 48 | ue QCFSI(:G’C)}.

This last identity reveals how the quasi CFLR(k) state-
set for (G,C) can be simply converted into the true CFLR(k)
 stateset using Just the function (1.e. the composition of
CF-STRIP and ITEKS).
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To éomplete the proof we must show how a tabulation of
CF=GOTO can be obtained from one of QCF-GOTO, Note that the
function \p is a surjective mapping from the set

{u eaorsl®® | ) £5]

to the true CFLR(k) stateset for (G,C). Consequently, we
cen £ind snd tabulate a right inverse function g™ for ¢,
that is to say a function y~' satisfying v (g () = A
for all CFLR(k) states A. (In general, q/" will be neither
unique nor a true inverse - but this is unimportant‘.) We
now assert | |
Claim 2 : for each A e CFSI({G’C) and each X ¢ V,

W (qcF-aoTo(y™( A),X)) = CF-GOTO(AX).
I(CG’C) and

80 there exists 8 ¢ V¥ such that ¥ = QCFV(e). Now by

_ Lemma 4.2, QCF-GOTO(QCFV(6),X)= QCFV(6X) and by claim 1

oo ettt o A+ =

aboAve, \[J(QCFV(GX))»a CFV(6X). Hence
~ y (QCF-GOTO(Y( A),X)) = CFV(ex) .
and 1% only remeins to show that CFV(6X) = CF-GOTO(d,X)
or, equivalently, that CFV(8) = A. But this is easy
since Claim 1 givesm-cf"vi(e‘) .-'-WQJ(QCFV(G)) and, by construction,b
QCFV(8) = M = Y(A). Hence CFV(8) =y (p(A) = A end tue

claim is proved.

Thus a tabulation of the CF-GOTO function can be

- produced from one for QCF-GOTO using only the functiion
~and its right inverse, 0O
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We call this approach to the construction of
CFLR(k) parsers the "post pass" method, Cleariy it is a
rather rouhdabout process and we are certainly not
proposing it as a practical method for building such
tables, The important point is that we have shown that
it can be done gnd that thé tables producéd must be
the true CFLR(k) tables. Later (in Chapter 6) we shall
encounter a situation ;n which cf-parsing tables
cons tructed by the post-pass method are difterent to B
those constructed conventionally. Consequently, the
more practical techniques to be introduced shortly will

not generalise to that situation,

~ From a practical point of view, the unattractive
feature of the post-pass method is the need to retain
‘access (in the form of the function ITEMS) to the actual
LR(k) states tor which the parsing states are merely
names. If‘we are to succee§ in our gosl of counverting
LR(k) tebles directly into CFLR(k) tables then~we‘must
assume that LR(k) statesets are discarded once the tables
" have been built and we must therefore eschew the function

IT@MS. .This is the task of the next section.,
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4,2, Quasi CFLR(k) Parsing Tables,

Oﬁr,original intention was to turn LR(k) tables
directly into CFLR(k) tables. So far we have found how
to use the LR(k) tables and stateset to ease the
construction of the CFLR(k) stateset - from which the
CFLR(k) tablés may be constructed in the usual way,

We now need to seek methods which bypass the need for

an intermediate stage involving the CFLR(k) stateset.

Theoren 4.4 has shown that there is some relation-
ship between quasi and true CFLR(k) statesets, and also
between the corresponding CF-GOTO functions., It there-
fore seems plausible that a type ot CFLR(k) parsing
table could be built using these "quasi" objects: the
- names of the quasi states could furnish the parsing

states while the QCF-GOTO function provides the goto
functioh. The difficulty is to find some way of
coustructing an action function without referring to
LR(k) items, The solution here is to realise that the
ordinary IR(k) action function provides sufficient
information to enable a “"quasi CFLR(k) action function
to be constructed: each quasi state is a set of LR(k)

- parsing states and by combining the values of the action
function for these component states, but excluding
reduces by chain productions, we form a new action
function of the required type, We define this construction

formally as follows,
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| DEFINITION 45 | .

’Let Tg = (Q,5,,8,f) be the LR(k) parsing tables for G.
| Let M ¢ ‘Q, ue V;k and let C be a chain sét for G,
 phen define the value of QCF-ACTION(M,u) - the guasi

'f cf-action function for (a,C) to ve :

(a) ° -~ SHIFT if £(s,u) = SHIFT for some s e¢ M,
(v) REDUCE q 1if g ¢ P\C end f(s,u) = RECE q
. ~ for some 8 ¢ M | N
(e) ERROR  if neither case (a) nor. case(b)
~ obtains, O

Thus equipped with a simple means for producing a quasi
 action function we can define the comstruction of gquasi

| CFLR(k) persing tables.

chSTRUCTION L,6 (cf. Coustruction 3.61)

The quasi CFIR(X) garsigg‘ bles for (G,C), denoted by

QCFTiG’C) = (Q,8,,8,f,)s are constructed as follows :
(a) Q= NAMES‘(QCFSl({G’C)),

(b) 8= NAMEOF(QCFV(A)),

(c)' for each N ¢ QCFSiG’C) end X e V,

-~ g(NAMEOF(M),X) = NAMEOF(QCF-GOTO(M,X)),
(@)  for each M e QGFSiG’C) end u e V;k ’

£(NAMBEOF(M) ,u) = QCF-ACTION(M,u). O

EAn example of thié cdnstruction is given in Figure 4.2,

which displays the QCFLR(1) parsing tables for (G3,C3).

t
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QCF-ACTION

QCF-GOTO

QUASI
STATE ~
" Noo {NL CF X)) *| + E{ T| P| (| X| )| *| +
1l shish , 2| 3| 4| 5| 6
t2 |1} sh T
3 .1 sh|sh 8| 7
4|1 sh|sh 8| 7
5 sh|sh _ 9{10(11{12 (13
6 |1 sh|sh 81 7
7 sh|sh 14{15]| 5116
8 " |sh|shj. 17| 5|18
9 |sh sh : 19 20
10 sh|shish 19121120
11 sh|shish 19|21(20
12 sh|sh 22(23124112]25
13 sh|sh|sh | 19(21(20
14 . 2 sh 8
15 2 sh 8
16 2 sh 8
- 17 4 41 4
18 4 41 4.
19 6 6] 6
20 sh|sh 26 (2712 |28
21 sh|sh 29(12{30
22 sh sh ' 3l 20
23 shlsh|sh 312120
24 sh|sh|sh 31/21}20
25 sh|sh|sh 31/21|20
26 2|sh| 2 21
27 2|sh| 2 21
28 2{sh| 2 21
29 4] 4| 4.
30 41 41 4
31 6| 6| 6

Figure 4.2 : QCFT{G3'°3) - the Quasi CFLR(1) Parsing

_ Tables for (G3,C3).
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These tables should be compared with the true CFLR(1)
tables tor (G3,C3) shown in Figure 3.8, It is clear that
the two séts of tables are not the same; the quasi tables
contain 31 states while the true ones contain only 19. Ve
assert, however, that both sets of tables drivg Algorithm
1.4 in exactly the same way., Formally we say that the

quasi tables "cover" the true ones,

DEFINITION 4.7
Let T = (Q,8,,8,f) and T' = (Q',s!,g',£") be a pair of
cf-parsing tables for the cs-grammar(G,C) using the
same amount, k, of lookahead. Let H be a mapping H: Q=+ Q"'.
Then we say that T govers T' under H if
(a) H is surjective,
(v) H(s, ) = Be s
(¢) for each s ¢ Q and X e V, H(g(s,X))= g'(H(s),X), and
(d) for each s e Q and u ¢ V;k , £(s,u) = £'(H(s),u).

We say simply that T gcovers T' if some H exists such that T
covers T' under H, Tf H is bijective then we say that T end

. 7' are egquivalent., O
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If one set of tables T covers another set T' under a
function H, then Definition 4.7 iundicates that the role of
any parsing state 8 in T is mirrored exactly by that of the
state H(s) in T'. This means that by observing only the
external behaviour of Algorithm 1.4 we will be unable to
tell whether it is being driven by T or by T'; any difference
between these sets of tables is to be found only in their
internal structure. Since H i1s surjective, there may be -
more states in T than in T', The tsbles T' are therefore
more economical than T, and so may be considered more
| desirable, but are otherwise indistinguishable from thenm,
Equivalent sets of' tables are, to all intents and purposes,

absolutely identical to each other.

We claim that the QCFLR(k) tables for any grammar

" (@,C) cover the corresponding true CFLR(k) tables, However,
- we shall not prove this fact as we prefer to postpone our
probfs until the next section - in which we introduce a
modified form of QCFLR(k) tables which contain rather fewer

states,



236
4.3, Stronz Quasi CFLR(k) Parsing Tables,

The QCFLR(k) parsing tables introduced in the
rprevious section provide a solution to the problem

of couverting LR(k) pérsing tables into chain free
parsing tables; Unfortunately, this method suffers
from the disadvantage that it produces tables which
may be substantislly larger than true CFLR(k) tables.
For this reason QCFLR(k) tables are rather unattract-
ive from a prsctical point of view, Now although it
'is possible to reduce the size of QCFLR(k) tables by
| using techniques akin to those for minimising finite
state automata,it'is much more interesting to enquire
why these tables are so much larger than true CFLR(k)
tables in the first place, and to ask whether anything
can be done to mitigate this effect at its source.

The reason why QCFLR(k) tables contain more states
then CFLR(k) tables is quite simple: it is due to the
fact that CFV(e) = CFV(p ) does not imply QCFV(e) =
QCFV{p ). Thus although the CFLR(k) states CFV(©) and
- CFV(p ) are identified in the true CFLR(k) stateset,
the quasi states QCFV(e) and QCFV(p) may be distinguished
(unnecessafily) in the QCFLR(k) Btafeset. One '
particularly simple circumstance in which this can
happen is when |

QCFV(8) = QCFV(u ) v N
where M # § 1s some set of IR(k) parsing states such
that CF-STRIP(ITEMS(M)) = #. We call such sets N "cf;
useless", Now although this is not the only circumstance

which can cause QCFV(®) and QCFV(p) to be distinguished
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unnecessarily, it is a very common one, For example, in
Figure 4.1 the quasi states numbered 14,15 and 16 are

distinguiéhed from one another ror just this reason.

It would seem a good idea to try and exclude cf-useless
sets from quasi stétes. We have to ask : |
(a) now, without using the function ITEMS cgn
cf-useless sets be identiried, and
(v) Vif‘they can be identified, does exéluding

them rrom quasi states do any harm?

The snswer to (a) is straightforward: if M is eny set of
LR(k) parsing states, then M is cf-useless if and only if
QCF-ACTION(M,u) = ERROR for all u e V;k. Furthermore,
excluding cf-useless sets rrom quasi states cannot alter
the value of the quési action function, for if M is cf=-
useless and N is any other set of LR(k) parsing states\then
QCF-ACTION(M « N,u) = QCF-ACTION(N,u)
for allu e V;k. Both of these results are trivial

deductions from the definition of the function QCF-ACTION
(Definition 4.5.).

We shall now exploit these observations and &fine
a "strong " version of our QCFLR(k) counstructions in which

cf~-useless sets are excluded from quasi states,
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DEFINITION 4.8 (cf. Definition 4.1)

Let Ti = (Q,8,,8,f) be the LR(k) parsing tables for G
and let C be a chain set for G. For each 0 e V* define

SQCFVQG'C)(G), the strong quasi CFLR(k) state for © by :

sqcrv{®®) () = {NAMEOF(V(n)) | 5 6, CP-STRIP(V(y))#4}.

Define SQCFSéG’C)

(6,C) as follows :

, the strong quasi CFLR(k) stateset for

sqcrs{®C) = fsqerv(e) # # | 6 e V'],

Finelly, define SQCF-GOTOéG’C), the strong quasi CFLR(k)

goto function for (G,C) &s follows.: when M ¢ Q and X e V,

5QCE- 60r0{® ) (u,x) = {g(e,¥) | & ¢ M, YFX, and g(s,¥)
is not cf-useless ].
We use the term SQCFLR(k) as an abbreviation for the
phrase 'strong quasi CFLR(k)'. O |

The results which wé need in order to establish the
new methdd and its correctness are provided by the

following lemmé.
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LEMMA 4.9

Let 6 ¢ V* and X e V. Then
(1) cﬁv(e)
(11)  crv(e)
(111) SQCFV(éX) = SQCF-GOTO(SQCFV(8),X).

CP-STRIP(IZEMS(SQCFV(8))),

# if and only if SQCFV(®) = g, end

. PROCF, Part (i) ¢+ It is immediate from their defin-
itions that QCFV(8) and SQCFV(8) differ only iun that
SQCFV(e) écntains no cf-useless states, Hence
CP-STRIP(ITEMS(SQCFV(®8))) = CF=-STRIP(ITEMS(GCFV(®))). The
result then follows from Claim 1 of the proof of Theorem

Llcuo

Part (1i) : The result in the 'ff' direction is immediate
from part (1) of this lemna. For the 'only if' direction
suppose that CFV(6) = @g. Then part (i) provides
CF-STRIP(ITEMS(SQCFV(6))) = # and this can only be so
if SQCFV(G) is either empty or if it consists solely of
 ’ cf-useless stiates. The latter possibility is excluded
by the definition of strong quasi states and so the

result follows,

Part (111) This may be proved by a similar asrgument to
that used to establish the corresponding result (Lemma 4.2)

for the ordinary quasi case,

Part (1ii) of this lemms indicates that SQCFLR(k) statesets
may be coustructed by a simple modification of the algorithm
for constructing ordinary QCFLR(k) statesets.
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LGORITHM 4,10 ~ (ef. Algorithm 4,3)
Construction of the strong quasi CFLR(k) stateset for (G,C)
" Input ¢ The cé-grammar (¢,C), and Tg = (Q,s,,g,f) - the set
| ~ of LR(k) parsing tables for (G,C).
Qutput : SQCFS(G c)

I e S

. Method : The method is just that of the ordinary QCFLR(k)

- the SQCFIR(k) stateset for (G,C).

case (Algorithm 4.3) but with the function
QCF-GOTO replaced by its 'strong' counterpart :
SQCF=-GOTO, O |

SQCFLR(k) parsing tsbles are also constructed in just
the same way as ordinary QCFLR(k) tables,

ONSTRUCTION 4,11 (cf. Construction 4.6.)
- The strong quasi CFLR(k) parsing tables for (G C), denoted
by SQCFT(G c) = (Q,s °,g,f) are constructed as follows :

(1) Q =‘NAMES(SQCF3£G:C))'
(11) = s, = NAMEOF(SQCFV(A)),

(111) for each ¥ ¢ SQCFS(G ©) anaxevV, | B
’ g(NAMEOF (M) x) = NAMEOF(SQCF-GOTO(M,X)),
(iv) for each M e SQCFS(G c) and u e V&k,

£(NAMEOF(M),u) = QCF-ACTION(M,u).0O

To illustrate this comstruction we show in Figure L.3
the SQCFLR(1) stateset for (G3,C3). Observe that this state-
setAcontains Just 19 states - exactly the same number as in
the true CFLR(1l) stateset for this grammar shown in Figuré

'3.6. we do not 1llustrate the SQCFLR(1) psrsing tables for
(G3,C3) since these are exactly the seme as the true CFLR(1)
tables shown in Figure 3.8. Thus in this case our "strong"
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STRONG | COMPONENT LR(1l) SQCF-GOTO

STATE No | PARSING STATES [STET ol 5[ ([ x| )] #] »
1 1 21 3] 314] 3
2 2 - 5
3 2,3 6| 5
4 5 7!1818(9]8 ~
5. 7 1oj10| 4|10
6 8 11| 4|11
7 9 | 12| |13
8 9,10 - . | - , ‘ 12{14{13
9 12 15 (16 {16 | 9|16
10 14 R N 6
11 15 -
12 16 B .
13 - 17 S 1717} 9(17
14 18 | 18| 918
15 19 S 19 13
16 19,10 1 | 19|14]13
17 20 14
18 21 ' |
19 22 )

' Figure 4.3 : The SQCFLR(1l) Stateset end SQCF-GOTO Function
: for (G3,C3). : o

‘version of the "quasi" construction has succeeded in
eliminating all the extra states introduced by the basic
method. Unfortunately, it is not always so successful: in
general, SQCFIR(k) tsbles are not equivalent to true CFLR(k)
tables, they merely coverviheh.AWe now prove this fact.,

 First we need two lemmas.
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LEMMA 4.12 '
let 6 e Vand u ¢ VTk. Then
QCF-ACTION(SQCFV(6),u) = ACTION(CEV(6),u).
PROOF. Suppose QCF-ACTION(SQCEV(6),u) = SHIFT. Then,

by Definition 4.5, SQCFV(Q) contains the neme of some

LR(k) state V(H) such that ACTION(V(p),u) = SHIFT. Now

it can be shown by a straightforward, but rather tedious',
argument that if ACTION(CFV(u),u) = SHIFT, then

| ACTION(CF-STRIP(CFV(;A))_,u) = SHIFT also. But if the

name ofﬁv(,u) is a member of SQCFV(6) it must be that

H -f' %) and'so',‘ by Theorem 3.43, it follows that .
CF-STRIP(V(p)) € CFV(6). Thus ACTION(CF-STRIP(V(p)),u) =
.SHIFT implies ACT_ION(CFV(G),u) = SHIFT and the result

is proved for this case,

The result can be established for the remaining
cases (i.e. REDUCE and ERROR actions) by similar
- arguments. O

LEMMA 4.1

Define the relation & between the SQCFLR(k) and

CFLR(k) statesets for (6,C) by :

& = {(, A) | M = 5QcFV(e) and A= CEV(0) for some 6 € V.

Then & is a surjection. | -

PROOF.  First we show that & is indeed & function, thet

is to say it is single-valued.

Cleim : M3 A and M & = implies A = =.

Proof of claim, If M & A there exists 0 ¢ V' such that
= SQCFV(6) and A= CFV(6). Hence, by part (i) of ’

Lemma 4.9, A = CP-STRIP(ITEMS(M)). Similerly, M & =

implies = = CF-STRIP(ITLMS(M)) and the conclusion

A== 15 immediate.
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It remains to show that § 1s a mapping - that is that

- its domain is the whole SQCFLR(k) stateset, and that it
is surjective - that is its range is the whole CFLR(k)
| stateset. Both these properties are trivial consequences

of part (ii) of Lemma 4.9. O

Using these result we can Jjustify our claim that
SQCFLR(k) parsing tables cover the corresponding CFIR(k)

tables.
THEOREM 4,1k L

;G’C)= Q' ,8: »8"%2") |

be the SQCFLR(k) and CFLR(k) psrsing tables respectively

Let sqcpéi"c) = (Q,5,28f) and CFT

for (G,C).
Tnen saorr{®®)  covers cm](f'c).

PROOF, First we need to construct a surjection H from

Q to Q'. Now the previous lemma has provided a surjection
. & between the statesets from which these sets of parsing
states are constructed and so we can establish H as
follows. Let s ¢ Q, Then 8 = NAMEOF(M) for some SQCFLR(k)
state M. Define

" H(s) = MAMEOF(&(M)). Because & is known to be a surjection
and the NAMEOF functions are bijective, it follows that H
is a surjection. We now prove that the SQCFLR(k) tables

" cover the CFIR(k) tables under this H.

Cleim 1: H(s,) = s].
. Proof of Claim, By Construction 4.11, s, = NAMEOF(SQCFV(4)) -
end so H(s,) = NAMEOF(&(SQCFV(4))). But & (SQCFV(4)) =
CFV(4) and,by Coustruction 3.61, NAMECF(CFV(4)) = s!.

Hence H(s,) = s! and the claim is proved,

Claim 2 : H(g(s,X) = g'(H(s),X) for sll s ¢ Q and X e V.

a-
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Proof of Claim : If 8 e Q then s = NAMEOF(SQCFV(e)) for
some 8 ¢ V' and so H(s) = NAMEOF(CFV(@)). By Construction
4.11 we have g(s,X) = NAMEOF(SQQF-GOTO(SQCFV(G),X)) and by
part (1ii) of Lemma 4.9 this gives g(s,X) = NAMEOF(SQCFV(eX)).
Hence H(g(s,X)) = NAMEOF(&(SQCFV(ex)))
| NAMEOF(CFV(ex)). (1)

Now g'(H(s),X) = g'(NAMEOF(CFV(8)),X)and = Construction3.6l
provides g'(H(s),X) = NAMEOF(CF-GOTO(CFV(8),X)) which can
be simplified using Theorem 3.46 to give

g'(H(s),X) = NAMEOR(CFV(eX)). I (2)

 The cleim then tollows from (1) and (2).
" 0
Cleim 3 ¢+ f(s,u) = £'(H(s),u) for all s e Qand u e VTk.

Proof of Claim. Again 8 ¢ Q implies s = NAMEOF(SQCFV(®)) snd
80, by Counstruction 4.11,f(s,u) = QCF-ACTION(SQCFV(®),u).But,
by Lemma L4.12, QCF-ACTION(SQCEV(S),u) = ACTIUN(CFV(8),u) and
since Construction 3,61 gives f'(NAMEOF(CFV(8)),u) =
ACTION(CFV(®),u), it follows that £(s,u) = £'(NAMEOF(CFV(8)),u).
" The claim then follows because NAMEOF(CFV(e)) = H(s).

A1l the conditions of Definition 4.7 have now been

satisfied and so we conclude the theorem. [J
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This result shows that SQCFLR(k) tables are perfectly
valid 6hain~free parsing tables, although they may be
SOmewhat.larger than true CFLR(k) tables, It is interest-
ing to enquire whether any conditions can be tound which
ensure the complete equivalence of these two types of
tables, Now it can be shown that this egquivalence holds
ﬁhen G is LR(0) - but this result is too restrictive to be
of any practical interest., From ; practicai point ‘of
view (and it is only from this point of view that the size
’of parsing tabies is of any concern), the only important
case is k = 1, Unfortunately, the requirement that G be
LR(1) is not a sufficient condition for the result we seek.
The following grammar demonstrates this point.

alb l ; (Granmar G8)

S
aB l
DAD |
bB |

A —.c

B —= ¢

C —= W

D — b

This grammar is LR(1l) but the SQCFLR(1) tables for(a8,
{D =1} ) contain 13 states whereas the true CFLR(1)

. tables contain only 12,

In the next section we define a property called

"Property A" which is sufficient to guarantee the

| equivalence of SQCFLR(k) and CFLR(k) parsing tables,We
provide results which indicate that most IR(1l) grammars
may be expected to have this property,
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L.y, 'Property A',

Ve begin with a definition.

DEFINITION 4,15

The cs-grammar (G,C) has Property A if, whenever o end
B are viable prefixes of G, the existence of

p e V* such ‘that ol-*'g C and e -v? e always implies
that o = 6K end g = OY for some 8 ¢ V. and X,Y e V.
(In other words, o and g may differ only in their
final symbols,) O

This seemingly obscure property turns out to be
extremely useful : in the next section we shall prove
that if (G,C) has Property A then its CFLR(k) and SQCFLR(k)
parsing tables are equivalent. This present section is
concerned with the problem of' testing tor PrOperty'A and
with determining how likely it is that a given grammar will
possess the property. In fact we do not present algorithms
for testing for Property A directly; instead we give a
series of easily tested conditions which are sufficlent
to guarantee the property. These conditions suggest that
Property A is possessed by all LR(1l) gramnars of the type
‘likely to be encountered in practice. Since the property
| ~will only be invoked to prove results of purely practical
Iterest, this restriction to the caese k = 1 is perfectly

',‘zacceptable.

The conditiouns we‘seex tollow as corollaries to the
next theorem., The tollowing definition is needed during the

proof and is also used in Chapter 6.
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DEFINITION L,16

Let (G,C) be a cs-grammar and let M,N ¢ V, Then (M,N)

is a maximally chained pair if each X ¢ M and esch

Y e N satisfy X— Y. A Symbol W e V is an intermediate

for such sa maximally'chained palir if all X e M satisfy
X —~ Wand 8ll Y ¢ N satisfy W - Y. An intermediate W

is said to be a maximal intermediste if no other iAnter-

mediate U satisfies U —' W, O

THEOREM 4,17

Let G be an LR(k) grammar where kK > O snd let C be a

éhain set for G.‘ Let x =6X¥ and g = éYJ be iriable

prefixes of G with X £ Y and such that tor some Z e V
-4

end p e V' both X¥-Zp end Y§ -3 Zp. Then every
x e Vp such that p —' x satisfies len(x) ¢ k.

PROCF. A.Since we have X% _-{ Zp and Y§ —"Zu, we must
have X -{ Z and Y -n; Z . We distinguish three cases

" according to whether or not X and Y chain derive each
other,

Case 1:¢ Y -—';: X. Because X # Y we must have Y —g X

end so there exists A e Vy such that Y -!; A —~ X. Now
-~ B = 6Yd is a viable prefix and so there is some & € v
such that S --; 0Y8s, Let y ¢ V; be any string such
that o -5 y (such a string must exist because G is LR(k)
‘end must therefore be reduced) and let x ¢ Vp be such
that p - x, Since: é—"p end p = x it follows that
& — x and so we have : o

§ — O¥§c - OYSy —=" o¥xy - OAXy -~  6Xxy,
Let the production A —= X be called p and let m =len(6X).
 Then it follows from this derivation that (p,m) is the

handle of ©Xxy.
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Wé now consider the stringo= 6X¥. Since «x 1is a
viable prefix of G, there exists n € V* such that «n
is an rsf. of G with a handle (q,n) satisfying n3 len (x).
Lét z e V,; be any string such that n —' z, Since
x = 6X3¥, X ..> ® and ,‘-» x, G contains the following
derivation for some v e V' ‘

S —= ¢ —{q,n)— 6X¥p — 6Kiz — OXxz. (1)
We now distiﬁguish two subcases accofding to the number of

steps in the derivation In —»: Xz,

Subcase (8) ¥n = xz (i.e. no steps at all). Then

(q,n) is the handle of 6Xxz. Suppose . len(x) > k. Then

(m+k) 20Xxy = (m+k): 6Xxz and certainly m/0Xxz e V; .

Since G is LR(k), these conditions imply that (p,m) =

(g,n) - but this is impossible becsuse we have n 3 len(x), .

len(x) = m + len(¥%), ¥~ x, len(x)3> k> 0 , and so

len(¥)> 0. We conclude that the supposition len(x)2 k is

untenable, « |

Subcase (b) : I —.: xz (i.e, at least one step). Vie

can distinguish the last step of this derivation and write
¥ "‘,‘: T—(q',n')-; XZ. Note that if n' = O then

deg(q') = 0 also, The derivation (1) above ‘then gives ¢ |

s - X3y - X —{q',n "+m}—- OXx2z

snd so we see that (q',n'+m) is the handle of 8Xxz, Now

suppose that len(x ) 3 k. As before the fact that G is

- LR(k) must imply that (p,m) = (q',.n'+m.). This can only be

.. so if n' = 0, But n' = 0 implies deg(q') = O and we Know

that deg(p) = 1 (remember that p is the production A - X).

Hence (p,m) ;! (q¢',n +m) and from this contradiction we again

conclude that. the suppositiyon that len(x) > k must be false,
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Case 2 ¢+ X —" Y. The proof in this cese is exactly

analagoﬁs to the previous one,

Case 2 ¢ X 74: Y and Y 745 X, Since we have X —{ Z
and Y - Z, (ix, Y}, {2} ) is a maximally chained
pair., Let W be the maximal intermediate tor this pair.

_ Note that W must exist and must be unique for other-
wise G would be ambiguous and therefore could not be
ILR(k). Note also that WA X and W £ Y. (If W=X,

for instance, then Y —= W implies Y -t X and this
situation is excluded in the present cese.) We therefore
have X ->:' W and Y —* W and so there exist A4,B e Vy
such that X —» A -» W and Y = B -—» W. Note that
A #B for A =B implies that A is an intermediate
which satisfies A —" W and this,contradic._ts’ the require-
..ment, tpat W be the moximal intermediate. Pictorially we
have : -

Y

Now let x e V; be any string such that — p — x, let
the production A == W be called p and let m = len (6X).
Then because < = ©6X¥ 1s a viable prefix ot G, we
see by the argument used in case 1 that,for suitable

G e v and y ¢ V; s G contains the derivation :

S — 6X¥o — OXJy -—= Xuy —= @ OXxy "
 8Axy —(p,m) 6Wxy, Thus (p,m) is the handle of
‘,t_h_e rsf 6Wxy. Now let the production B —= W be called
| ‘q. T hen from the viable prefix B = 6Yd we deduce

by a similar argument that (q,m) is the handle of the

‘rsf 6Wxz for some 2z € V;. Suppose that len(x) > k,
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Then (m+k): oWxy = (m +k): OWxz and m/6VWxz e V,; a.nd
so, from the fact that G is LR(k), we deduce that (p,m)
= (q,n).But this is not so, because A # B implies p # q.
We again conclude that the supposition len(x) 2 k is
untenable and, since all cases have been considered, the

theorem is proved. [

- Now we caun prove a series of incressingly powerful
corollaries.
COROLLARY L,18
Let G be an W ~free LR(1l) grammar end let C be a chain
set for G. Then (G,C) has Property A.
PROOF, Let o« and @ Dbe viable prefixes of G and let
e e V" be such that < =" and @ =’ e. We need

to show that o = 6X and @ = OY for some O ¢ v* and
X,Y e V. The result is trivial if « = @ ,s0 suppose
that o« # @ and let © be the longest common prefix to
both « and g . Certainly x ,3 snd p all have the
same lengfh ahd so we can write them in thé form

x = ©X3, ’p = OY$ an& P = i
where X £Y, 6 =79 , X8 Zu and YJ-{ Z .
Sipce G is LR(1l), it follows from Theorem L4.1l7 that every
X e V; such that p — X satisfies len(x) < 1, that is
x=W . But if G is A -free, this can only be so if

H = ¥=d =\ , Thusx= 6X end A = 6Y end the result
is proved. O

Results which exclude & -rules are too restrictive to
be useful in practice. The next result weakens this

constraint a little,
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COROLLARY 4,19

Let G be an LR(1l) grammar in which every nonterminal A
satisfies A = x for some x e V% and let C be a chain

set for G. Then (G,C) has Property A.

PROOF., - The proof of the previous result may be adapted
straightforwardly to the present situation. O

We call nonterminals’which‘generate only the empty
terminal string 'null’ ndnterminals.‘Corollary'h.l9
wéakens its predecessor by reﬁiacing the constraint that
G be J\-ffee by the requirement that it contain no null
nonterminals. While most progremming lsnguage grammers
are of this type, it is sometimes considered useful to
introduce null nonterminals as 'hooks' upon which to hang
semantic actions., The third and final corolliary of this
sequence indicates how greammars containing null non-‘

terminals may be tested for Property A,

COROLILARY 4.20

Let G = (Vﬁ, T,P,S) be a grammsr snd let C be a chain

set for G. Define a new grammar G' = (Vﬁ,V%,P',S) where :

Vo = Vp v {RXA l A is a null nonterminal in G},
P'=P v {A—= ¥, ' A is a null nonterminal in G},
and each .*&A is a new terminal symbol distinct from

all others, hen (G,C) has Property A if G' is LR(1).

PROOF, By Construction, G! nas no null nonterminals. There-
fore by the previous result,(G}C) has Property A if G' is
LR(1)., Now it is clear that any subgrammar Of a grammar
with Property A also has that property.The result then

follows because G is & subgremmar of G'. O
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If G is LR(1), then 1t is surely a very stru.;c
grammar indeed if'the gremmar G' of Corollary 4.20
fails to be IR(1) (Gremmar G8 is such agremmar). We
conclude that, provided G is LR(1), (G,C) is very
likely to possess Property A even if G contains null

nonterminals,

Since one symbol lookshead (i.e. k = 1) is the only -
practical choice. Corollaries 4,18, 4.19 and 4,20 are

. sufficient to ensure that results which d epend on

Property A will generally be applicable in practice. The

next section establishes one such result.
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L.5. The Eouivalence of SQCFLR(k) and CFLR(k)
‘Parsing Tables,

In tﬁis section we shall prove thet if (G,C) has
Property A then its SQCFLR(k) and its CFLR(k) parsing
tables are equivalent., The following lemma is the crux
of ;he argument and is also the place where Property A
is needed,

LEMMA 4,23

Let (G,C) have Property A and let © and p be cf-viable
prefixes of (G,C) such that CFV(8) = CFV(u). Let

,p e V' be such that - 0, g - pn and

N(@) n N(p) # g. Then V() = V(a).

PROOF. If any of agp, p eand © are the empty string |
then all of(them'are,and the result is triviel in thisA
case. So suppose o, g # A . Since LR(k) states
are uniquely determined by their nuclei, it is only
necessary to prove that N(w) = N(p). We shall prove
that - N{x) ¢ N(g). Symmetry will provide N(«)2
N(g) end nence N(«) = N(g).

Because w# , , we may write it in the form =X
where X ¢ V.Then X is the associated symbol of all the
LR(k) items in N(x) and since N(x) ~ N(g) # 4 it must
also be the associated symbol of all items in N(g) .
Thus 4 has the form 8 = @'X. Now let A be any LR(k)
item in N(x). We must show that A is in N(p) also.

There are two casses to consider,.
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Case 1 : A ¢ CP-STRIP(N(x)). Because « -« 9,

‘Theorem 3.43 provides A e CFN(6) in this case. Then
‘because CFV(8) = CFV(p), it follows that A e CFN(y).
Hence, again by Theorem 3.43,there exists § e V* such
that ¥ =" and A e N(¥). Note that X is the
assoclated symbol of A and So ¥ has the form ¥ = ¥'X.
‘We also have ¥ ":F and @ =*u @and so, because (G,C) nhas
?rogerty A, 1If ¥ >and /3 differ, it is oniy on their
final symbols, But both have X as theirfinal symbol and
50 we concl;ude that ¥ =pg. Thus A e N(p) as required.

Case 2 : A £ CF-STRIP(N(x)). In this case, A must be
a chain item, That is to say it is of the form A =
[A=X., u] where A -~ X is a chain production. Clesrly

[4 - .X,u] eV (x') and,since this is an initial
‘item, it must have been added to V(x') ‘du.ring the CLOSURE
6per_étipn. That is, ‘th’ere must be some non—final item
= =[B>7%.Céd,v]e V(x') suchthat
[A— .X,u] e CLOSURE({=}) . Furthermore, = can be
chosen to sa.tisfy 3; 3¢S ¢ P\C (i.e. = is not a
chain item) and C = A, It follows that
='= [B ~ ¥c. §,v] e CP-STRIP(V(e'C)). Now we have
®'C = x'A - x'X=x = 8

~ and so, by Theorem 3.43, we obtain =' ¢ CFV(e). But
CFV(8) = CFV(u) and so ='e CFV(p). Then, agsin by
Theorem 3.43,1t follows that  'c V(s) for some &= u.
Now o must have the form o = o'C and clearly ='e V(s)

- implies = ¢ V(e'). But = introduces [A- .X,u]during
the CLOSURE operation and so[A = .X,u] ¢ V(s').Hence
A=A=X.,u] < N(e'X)., Now note that o&'X =N and

p--,_’,;.‘» Therefore, because (G,C) has Property A, if
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c'X and 3 differ, it is only on their final symbols.
But both bave X as tﬁeir final symbol snd so ¢'X =p . .
"Hence " A--¢ N(’g) as required to complete the proof. O

‘Using this lemma we can establish the next one.

LEMMA L4.22

Let (G,C) have Property A. Then the s-urjection $ from the
SQCFLR(k) to the t rue CFIR(k) stateset given in Lemma 4.13
is injective. (Hence it is a bijection).

PROOF. Let M and N be SQCFLR(k) states and let A be a
CFLR(k) state such that M & A and N & A . Ve need to
prove that ¥ = N, Wg will show that M ¢ N, Symmetry will
provide M 2 N and hence M = N,

Now ¥ & A implies that M = SQCFV(8) and A =
CFV(8) for some 8 e V', Similerly, N & A implies N =
SQCFV(u) eud A = CFV(p) for some p e v'. First we
dispose of the case where & (or, symmetricelly s ) is the
empty string. When € =/A  we have CFV(u) = A= CFV(®) =
CFV(A) and so pu =\ elso. Immedistely this glves
_M = N and the proof is complete in this case.

"V‘.’e now suppose that 0 # W aﬁd Iz £+ . Remember
that by Definition 4.8, M and N are sets of LR(k) persing
states for G. Let s ¢ M. The Lemma is proved if we can show
that s ¢ N, Now if s ¢ M, we must have s = NAMEOF(V(x))
where o ¢ V' satisfies o — 6 and CF=-STRIP(V(x)) # &.
This last implies that CF-STRIP(N(x)) # 4 also, so let =
be any LR(k) item in cF-STRIP(N(«).). By virtue of Theorem
3.43, we then have = e CFN(8)., But since CFV(8) = CFV{p)
we also have CFN(®) = CFN(u) end so z-é CFN(p). Then
- Theorem 3.43 implies that Ze N (@) tor some s such that
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B='p. It tollows thaet CF-STRIP(N(8)) # & and so, by
Definition 4.8, we have NAMEOF(V(F)) ¢ N. we also have
X = 9,s-="u, CFV(8) = CFV(x) and N(x) ~ N(B) # £.
. The previous lemma therefore provides V(x) = V(‘@).
This mesns that NAMEOF(v(p)) = 8 and so 8 ¢ N as

.re‘quired to complete the proof. O

' Finally, we achieve the result we seek.

THEOREM 4,23

If (G,C) has property A then its SQCFLR(k) and its
CFLR(k) parsing tables are equivaleant,

 PROCF. By ;v'irtue of Theorem L4.ll,we know that the
SQCFLR(k) tables for (G;c) cover 1ts CFLR(k) tables
under the mapping H counstructed during the proof of that
theorem. This niapping H is defined in terms of the
napping & of Lemma 4.13. The previous lemma has
established that & is bijective vwhen (G,C) has Property
Av and so it follows that H is also bijective in this
case, e Theorem then foilows froxh the defini‘tion of
equivalent sets qf‘ parsing tebles given in Definition
‘y.7.0 | S
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‘ku.6. Summary.

Given the LR(k) parsing tables for a Grammar G,
an objecf called the Yquasi CFLR(k) stateset' may be
coustructed for the‘cs-grammar (¢,C). There is a
close correspondencerbetween quasi and true’CFLR(k)
statesets:.qhéin free'parsing‘tables may be
constructed for (@,C) using information contained in
its qﬁasi CFIR(k) stateset. Two methods for doing so
were presented in this chapter. The first of these
guarantees to producé the t rue CFLR(k) parsing tables
for (G,C) but requires access to the actual LR(k)
items associated with each LR(k) parsing state. This
is cslled the "post pass" method of coustructing
CFLR(k) tables, The second method requires only the
information contained in the LR(k) parsing tables for
G and does not guarantee to deliver the true CFLR(k)
tables for (G,C)., Instead it produces "quasi" CFLR(k)
tables which are often substantially larger than the
‘true CFIR(k) tables, although their behaviour is the
seme when they are used to drive Algorithm 1l.4.

A simple modification of the method leads to the
generation of "strong quasi" CFIR(k) parsing tables.

- These are similar to ordinary quasi tables but contain
fewer states : in many cases the strong quasi CFIR(k)
‘tables ere identical .to the true CFLR(k) tables. A
property of cs-grammars,called Property A, was intro-
~-duced and shown to be a sufficient condition for
guarsnteeing this equivglence. Methods of testing for
Property A were presented, These methods afe speclalised

to those cs-grammars (G,C) where G is LR(1) end indicate



258
that only very.rarely will such grammars fall to possess

the property.

The‘"strong qussi" constructions of this chapter
provide a practical method for converting LR(k) parsers
into chain free parsers. They sgould be useful in
circumstances where an LR(k) parser generator is avall-
able but not amenable to conversion to a CFLR(k) generator.
No disadvantége is likely to be incurred by adopting this

approach in the important practical case k = 1,
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CHAPTER
OPTIMISING CFLR(k) PARSING TABLES

~ In Chapter 1 we claimed the LR(k) parsing algorithm
to be one of the most attractive of all parsing methods
because of its generality, speed and excellent error
detection, We have seen that the CFLR(k) cf-parsing
algorithm is even more widely applicable, and is sub=-
s tantially faster than the LR(k) algofiihm, while afford-
" ing the same high quality of error detection., Unfortunately
however, just as it improves still further those features
“of the LR(k) parsieg'aigorithm which are already excellent,
so the CFLR(k) method exacerbates its major disadvantage
1.- it usually makes the parsiﬁg tebles even bigger.,

This clainm may surprise the reader who remembers
 that the LR(l) ‘tables for G3 have 22 states while the
.CFLR(l) tables for (@3,C3) have only 19, However, had we
“taken the chain set {E = T} instead of C3 we should
have found 23 states in the CFLR(1) tables. Now it can be
' shown that the CFLR(k) tables for (G.C) always countain
 fewer states than the LR(k) tables for G when G is LR(0),but .
in general it seems that CFLR(k) tables are usually larger
~ than their LR(k) counterparts. Thus it may be that the
speed benefits of CFLR(k) parsing are bought at the expense

of excessively large parsing tables.

All is not lost, however, for in this chapter we
' present a simple technique for reducing the size of CFIR(k)
tables which is so successful that it generally make these
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tables substantially smaller than their LR(k) counter-
parts. This optimization technigue exploits some
redundan&y that is always present in CFLR(k) tables and
so it does not degrade the performance of the parser
in any way. Thus our optimized CFLR(k) parsers have
a double advantage over ordinary LR(k) parsers : they

are not only much faster, but smaller too .

Although we shall introduce the optimisation
technique as one to be applied to existing CFLR(k)
tables, we will show later that it can also be applied
during the construction of the tables and actually

reduces the cost of their construction.

Before proceeding to describe the technique, we
must point out that although we believe that it preserves
the correctness of the CFLR(k) tables for any cs=-grammar
(G,C), given only that G is LR(k), we shall only prove
this preservation of correctness in the case that (G,C)
has Property A, Effectively, this restr;cts application
of the technique to the case k = 1 - because our
sufficient conditions for Property A (Corollaries L4.18,
iu.l9 and 4.20) are particular to this case. We make no
'apology for this restrictibn; our interest in reducing
the size of CFLR(k) tables is motivated solely by practical
necessity, and k = 1 is the only case of practical

‘concern.
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5.1, TInaccessible Entries in Parsing Tables,

We indicated earlier that our optimisetion technique
is based on the elimination of some redundancy fron
CFLR(k) psrsing tables. The redundancy concerned is
manifested by the presence of "inaccessible.entries"
within the tables. A @arsing agtion or'goto entry is
said to be "insccessible " if no input string whatsoever
cah éause the parsing élgorithm to inspect the value of
that entry. By virtue 6f their insccessibility, the
values possessed by such entries are irrelevant to the
behaviour of the}pafser.and_so they may be changed in
any wsy which provés cbnvenient. By judicious manipulation
of these entries it is sometimes possible to cause a group
of parsing states to become so similar to one another that
they may all be replacéd by & single composite state, A
detailed discussion of this general process,'at least as
it applies to ordinary LR(k) ?arsers, has been provided
by Aho and Ullman (1972b).

The problem of exploiting inaccessible entries

optimally (in the sense of reducing the number of states

"to a minimum) is similar to that of "minimising incompletely

'specified sequential machines'" - a problemiwhich Pfleeger
(1973) has shown to be NP-complete in the general case,
;Thus optimal application of the technique may well be
computationally - intractable and so approximate solutions
must be sought. Our technigue for reducing the size of

' CFLR(k) tables is of this approximate type ; although very
 :effective,it makes no claim to optimality. We speak of the

technique aé»an optimisation in only an informasl sense,
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Now although our optimisation techique will

turn out to be very simple, we must first complicate
matters & little. It is here that we part company
with Aho and.Ullman (1972b) since their notion of
inaccessibilityiis too blunt a tool for our purposes.
At present the>noti§n of inaccessibility is under-
stood to have akglobal context: an entry is either
inaccessible or it is not. We shall prefer a more
locsal interéretation : certain entries may not be

" inaccessible in the former, global, sense, but they
méy be so.when the states in which they occur are

entered on some particular symbol. An example may

- help here,
~Consider the following grammar ¢

1. S —= Xa |
2. | Yo |
3. aXa |
Le . aZb
5. X —= x
6. o Y
70' .2

y

X

(Gremmar G9)

8. Y —

9 . | Z —

" and teake C9 = {X —» x, X —~ y} as the chain set.
- The CFLR(1) parsing tables for (G9,09) are shown in

" Figure 5.1,

B In Figﬁfé 5Qi;vtﬁe action £(8,b) is not inadééssible

"1n thevglobal sense because the input string ayb causes

‘1ts'Value}to be inspected. This entry is inaccessible,
however, when state 8 is entered under a transition on

~ the symbol X, This is because .an X can only be )
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STATE | -  CF-ACTION CF-GOTO
NO. WVl albl x|yl 2 alb|x|y|z|[X]|Y|2Z2]|S
1l _[sh shish|sh | 2 314(5
2 sh |sh |sh 17181518 9
3 sh 10
4 sh| 8| 110
5 7
6 sh 11
7 sh| 9 12
8 sh 12
9 sh| 13
10 1l
11 2
12 3
13 4

Figure 5.1 : The CFLR(1) Parsing Tables for (G9,C9).

producgd by a reduction involving the production X -+ 2z
end no such reductions are performed when b is the look-

ahead string. Thus although the error entry £(8,b) cannot

. be changed, it is permissible to substitute state 7 for

state 8 as the value of the goto entry g(2,X). This
manipulation does not save anylstatés in this particular
1nstance, but it_does cause the goto entries in the column
for X to become identical to those in the column for x,
thereby permitting a more economical representation of the
tablés in storage., This’demonstrates_another benefit of
our optimisation techunique : in general we are ablé‘to
remove uot only rows (i.e, étates) from the parsing tebles,

but also columns (i.e. symbols).
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We now define formally our notioun of an

inaccessible entry.

DEFINITION 5.1

Let T = (Q,80,8,f) be a set of cf-parsing tables,
using k symbol lookahead, for the cs-grammar (¢,0).

letp ¢ Q, X € Veandu e v;k . We say that the

- action f(p,u) is insccessible on X if, when Algorithm
1.4 is driven by the tables T, no input string whatso=
‘ever can cause it to inspect the value of f(p,u) when
X is the symbol on top of the parse stack. Similsrly,
whenp € QandY e V, we say that the goto entry
g(p,Y) is inacgessible if no input string whatsoever can
cause the algorithm to inspect the value of g(p,Y).DO

. Notice that this definition uses a "local" interpretation
of inaccessibility for sctions aud a "global" one for
goto's. (This distinction is only significant in the

case of CFLR(k) tsbles., With IR(k) tables, our
definition agrees with that of Ahno and Ullman (1972b).)

Unlike Aho and Ullman (1972b), who use(their notion
. of) inaccessible entries to permit certain states to be
completely replaced by others, we shall only seek to
replace selected references to certain states by |
references to others. That is, we shall use thé presence
of inacgessible}entries'to permit us to change‘the

values of certain goto entries (not only inaccessible

| 6nes).rvawe change the value of an gccessible goto entry,
then we must ensure that the new value is a "valid

substitute" for the old,
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DEFINITION 5.2 '

Let T = (Q, s,,8f) be a set of cf-psrsing tebles for

the cs-grammar. (G,C) and let p,r ¢ Q and X ¢ V. Then
r 1s a valid substitute for g (p,X) if changing the
value of g(p,X) to r makes no difference to the

behaviour of the parser driven by these tables. O

Now we combine Definitions 5.1 and 5.2 and obtain the

theorem which underlies asll our subsequent developments.,

THEOREM 5,3
Let T = (Q,s, ,g,f) be a set of cf-parsing tables, using

k symbol lookshead, for the cs-grammar (G,C). Let

p,r € Q and X e V be such that either
(1) g(p,X) is inaccessible, or
(2) | g(py,X) = q where q ¢ Q and bofh
' }(i) for each u e VTk, either
(a) £(qyu) = £(r,u), or
(b) £(q,u) is 1naccéssibie on X,
and (i1i) for each 2 elV, either
(a) g(q,2) = g(r,2), or
(v) g(q,2) is inaccessibdble.
Then r is a valid subatitute for g(p,X).

. PROOF. The conditions satisfied by p,r and X are such

hat substitution of r for the original value of g(p,X)
is equivalent to (1oca11y) changing the values of certain
inaccessible action and goto entries, By virtue of the

very‘definition of inaccessibility, such changes cannot

alter the behaviour of the parser and the theorem follows,[d
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5.2. The Optimisation Techhique,

Our .task now is to determine the locations of (some
of) the inaccessible entries within CFLR(k) parsing
‘tables. The next two lemmas provide the results we need.
LENMA,5.4
‘Let (G,C) be a CFLR(k) c¢s-grammar, where k > O, and let
T = (Q,s_,g,f) be its CFLR(k) cf-parsing tables. Let

3 qQ € Qand u e V;k "be such that £(g,u) = ERROR,., Then

the action . f(q,u) is inaccessible on all nonterminals.

PROOF, Let X e VN and suppose that Algorithp 1.4,
" while driven by the tables T, inspects the value of £(q,u)
"when X 18 on top of its parse stack, Then because £(q,u)
.= ERROR, the parser's next action will be to declare
" ERRORend halt. Now since X € Vy lies on top of the parse
.. stack,the previous move must have been a reduce move

| 1nvolving a production with X as its left part. But when
k>0, we know from Theorem 3.64 that all errors are
 declared immediately following a shift move. The conclusion

follows, O

LEMMA 5,5 | -

~ Let (G,C) ve s CFLR(k) cs-grammar, where k> 0, and let
T = (Q,8,,8,f) be its 'CFLR(k) cr-parsing tables. Let

'q € Qand X e V be such that g(q,x) 1s undefined.
Then g(q,x) is 1naccesaiblc. |



267 -

PROOF, When Algorithm 1.4 encounters an undefined
goto entrx it halts and declares ERROR, But when k > O,
we know from Theorem 3.64 (or more accurately, from the
proof of Theorem 2,40 - which underlies that of Theorem
3.64) that all errors are detected during inspection of
the action function. Thus undefined goto entries can

never be examined., O

Next we need two lemmas which assist in the exploitation

of Theorem 5.3.
LEMMA 5,6

_ Let(@,C) be a CFLR(k) cs-grammar and let T = (Q,s, ,8,f)
be its CFIR(k) cf-parsing tables, Let X,Y ¢ V satisfy |
X -; Y and let p,q,r € Q be such that q = g(p,X) and

k

r = g(p,Y). Then for each .U ¢ ’ V,; either ¢

(1). £(q,u) = £( r,u) or
(11) £(q,u) = ERROR.

PROOF, By Construction 3.61 we must have
p = NAMEOF(CFV(8)) . for some © ¢ V" and then
q = NAMEOF(CFV(6X)) and r = NAMEOF(CFV(6Y)). Hence
f(q,u) = ACTION(CFV(6X),u) and
£(r,u) = ACTION(CFV(6Y),u).
Since X -~ Y, Theorem 3.43 provides CFV(6ex) s. CFV(eY)
and so any non-ERROR value of £(q,u) must also be a
value of f(r,u)., But f£(r,u) must be single-valued (for
otherwise CFV(6Y) is inadequate) .and so if the value of
" £(q,u) is not ERROR, then it must be the same gs f(r,u), O

It is in the next lemma that this development first

requires Property A.
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LEMMA 5.7

Let (G,C) be a cs-grammar with Property A and let
L,B € v’ be such that « -a:*p, Then whea XeV

elther

(1) CPV(xX) .= cw(Px),' or

(11) - cCFv(xx) = g.

PROOF. Suppose CFV(xX) # CFV(gX) and CFV(:X) # 4.

Because ol —» g it follows from Theorem 3.43 that
CFV(c¢X) ¢ CFV(PX). Therefore, if these two states
are different, there is some CFLR(k) item A in
CFV(FX) which is absent from CFV(>X). Theorem 3.43 then
implies that A e v(q:) for some V e V* such that
Y — gX and that ¢ —+4* oX. But because

GFV(O(X) ‘£ 4, 1t must contain some item = and 80
Theorem 3.43 giveé > e V(©) for some © ¢ v' such
that = @ —=* X, Since «—2 it follows that
@ — gX. . Now we also have ¢ —= pX, and because
(3,C) has ?roperty A it then follows that  and © can
" only differ on their f‘inalzsymbols. They may therefore
be written in the form ¢ = puY and © = uZ  where
R~ g, YTX, and z - X "

But then ¢ = uY - &X. . This contradicts
¥ —~‘ ot X, and so we conclude the lemma. O]

'~ We may now qombine Lenmas 5.4. to 5.7 with'rheorgm 5¢3.

‘and 80 obtain the crucial result,
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THEOREM 5,8
Let k > 0 and let (G,C) be a CFLR(k) cs-grammar with

Property A. Let T = (Q,8,,g,f) be the CFLR(k) cf-
parsing tables for (G,C) and let p ¢ Q and X,Y e V.

‘Then the value of g(p,Y) is a valia substitute for
“g(p,X) whenever X -= Y,

PROOF, It a(p,X) is undefined then by Lemma 5.5,

it 1s insccessible and the result follows rrom

condition (1) of Theorem 5.3. So now suppose that

g(p,x) is defined snd that X - Y, Let q = g(p,X).Then

by Construction 3.61 we will have p = NAMEOF(CFV(S)) and
NAMEOF(CFV(BX)) for some 0 e v, We must have

CFV(GX) ;é_ﬂf (for otherwise g(p,x) would be underined)

_ and since Theorem 3.43 gives CFV(6X) ¢ CFV(OY) it

follows that CFV(6Y) # #. Because g(p,Y) =

- NAMEOF (CFV(6Y)) 1t then follows that g(p,Y) is defined.

Let r = g(p,Y) and u ¢ V,* end Lemma 5.6 then provides
o1 ther £(q,u) = £(r,u) or £(q,u)= ERROR. In the former
case, condition 2(1)(a) of Theorem 5.3 is satisfied.

In the latter case, since X —» Y must imply X e Vg

(or X = Y, in which cese the Theorem is trivial), it
 follows from Lemma 5.4 that £(q,u) is inaccessible on X,
‘Thus condition 2(1)(b) of Theorem 5.3. is satisfied in

this case.,

Nowlet 2 ¢ V. Then g(q,2) =NAMEOF(CFV(6Xz))

and g (r,2) = NAMEOF(CFV(GYZ )) end so, by Lemma 5.7,

either CFv(exz) = CFV(0YZ) or CFV(exz) = #. In the
former cese we will have g(q,2) = g(r,2) - which
satisfies condition 2(ii)(a) of Theorem 5.3. In the
latter caae,i g( r,2) will be undefined and therefore, by
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Lemma 5.5, inaccessible, This will satisfy condition
2(11)(b) of Theorem 5.3.

Thus all appropriate conditions of Theorem 5.3.

are satisfied in all cases and the result is proved.,U

- Our method of optimisation should now be clear; |
We shall simply replace some or all goto entries g(p,x)
by the value some g(p,’f) where x-::Y. Note that since
this process really only involves manipulation of
1naccessible_entries, the changing of sny pérticular
g(p,x) in this way cannot affect the asaumﬁtions which
.ensure the validity of any subsequent changes. Thus
the identities of the particulsr substitutions made,

- _and the order of their application, are immaterial to

the preservation of the correctness of the taebles, The
‘issue that remains is to exploit this technique

- systematically and to maximum advantage.

The first point to note is thst waen X= Y and X ¥ Y,
“we have the option of either changing the value of
g{pyX) to that of g(p,Y) or of leaving it slone. Clearly,
we should change 1t and should do so in every state

* P ¢ Q because in this way, and only in this way, will
we cause all states which were formerly referenced only
on X (that is ell states g such that g(p,2) = q implies
%= X) to become unreferenced, These states then become -
totally redundant and may dbe renoved from the parsing

- tables,



271

This deletion of states 1s the major benefit of the
technique and the source of its motivation. However,
another faluable benefit 1s available, provided that
substitutions are performed suitably. Suppose we have
X =Y, X — ZadX # Y # Z. Then in eny
state p we can change the value of g(p,X) either to that
of g(p,Y) or to that of g(p,2).For the purpose of being
~able to delete states, it 1s immeterial which of these
substitutions is chosen. Indeed, we could choose one of
the alternatives in certain states and the other in the
remainder., But if the substitutions are performed
consistently, for instance if glp,Y) is substituted for
&(p,X) in every state p, then (and only then) will the
. columns of the goto table copreSpdnding to the‘symbola
. X and Y .becomé1idqntiéal. Oﬁly one otvthem need be'
‘.represented‘explicitly and so we obtain the double benefit
of deleting froﬁ fhevtables not oaly rowsi(i.e.states) but
. also columns (1.e. symbols).:

Accordingly we défine our optimiaétion fechnique in
terms of an-ﬁoptimising function" F :‘V -» V which is
used as rolloys : for each symbol X ¢ V and in each state
p € Q, change the value of g(p,X) to that of g(p,F(X)).
~In order that only valid eubstitutions are performed by
this process we must require that X -f? F(X) for each

X e V., If any symbol X ¢ V is not in the range of F,
then all states accessed only on X become inaccessibdble
and can be deleted, as also can the column of the goto
table corresponding to X. Obviously the maximum benefit
is obtained when the oétimising function has the smallest
range possible - since this will permit the deletion of

the largest number of rows and colunmns,
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We now define some terminology that allows precise

specification of this type of optimising function.

DEFINITION 5.9

~ An optimising function for the cs-grammar (G,C) is a

mopping F ¢ V. —= V such that X -» F(X)for each

X ‘e V. For techunical reassons we require that if X # S
then F(X) # S. (S is the goal symbol of G,) The alphabet
which is the range of F is dénoted Rp. That is ¢

Rp = { F(X) I X e V}]. We would éxpect (but do not
require) that if X ¢ RF, then F(X) = X. |

A symbol X e V is called a leaf of (G,C) if X = Y implies
Y=XorY =8, (Obviously all termi'nal sjinbols are leaves,
and so' is 8,.) Now if X if & leaf, aixy‘ optimising function
P must satisfy F(X) = X, Thus no optimising function can
have a range smaller than the set of leaves, Conversely,
whenever A ¢ VN is a non-leaf, a leaf X may always be
found such that A - X, (Provided G is reduced and no
symbol satisfies A -»* A), C onsequently, an optimising
.function c¢sn slways be féund whose range is exactly ‘the

leaves of (G,C). Since this is the smallest range possible,

we call such a fuunction a fﬁll optimising function for
(e,c). O |
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‘When we optimisé a set of CFLR(k) tebles by spplying
an optimising function F, we do so by replacing the value
of g(p,X} by that of g(p,F(X)) for each p e Q and
X ¢ V. As mentioned earlier, this operation clearly renders
inaccessible &ll stateé wnlic»:h: were formerly réferenced
ohljr.by symbols outside the range of F. We now prove‘that

all and' only éuch states become 1inaccessible,

THEOREM 5,10

Let (G,C) have Property A and let T = (Q,s,,g,f) be a
set of CFLR(k) tables for (@,C). Let F be an optimising
function for (@,C) and define a new set of tables T' =
(Q,8,,8"»£) where g'(p,X) = g(p,F(X)) for each p ¢ Q
and X e V. Then a state p e Qis accesgible from s,

in T' if and only if p = g(q,x) for some ¢ € Q and

X e RF‘

PROCF. First extend the domeins of the goto functions
gend g' from Qx V to Qx v’ in the usual wey (i.e.
define g(py W ) = p and g(p, X) = g(g(p,«),X)))and
extend the domain of F from V to V* by the definitions
F(d) =&  end F(xX) = F(X)F(X). Then by (implied)
definition, p 18 accessible from s, in T' if and only if
p = g'(s,,0) for some 6 € v'. Now note that the construct=-
ion of T' ensures that, for any 6 ¢ V‘, we have g'(s,,9)
= g'(s,, F(0)) = g(s,,F(8)). The "only if " direction of |
the present theorem follows straightforwardly from these
observations and so we now consider the "if" direction.
Suppose that p = g(q,X) where q ¢ Q and X € Rp. We must
have q = NAMEOF(CFV(@)) for some 8 ¢ V' and 80 p = |
NAMEOF(CFV(6X)). Let u = F(@). By the definition of an

optimising function we must have @ —" p  and so by -



274

virtue of Lemms 5.7, we have either

CFV(6X)

CFV(u X), or

cpv(ex) g.

Now because NAMEOF(CFV(eX)) is a state in Q (it is the
state p) we caunnot have CFV(6X) = g and so we must have
CFV(6X) = CFV( xX). This implies that p = NAMEOF(CFV(sX)),
which in turn implies that p = g(s,,pX). Now p = F(e)
and X e Rpe Therefore pX = F(éz ) for some Z e V.

Hence p = g(s,,F(62)) = g'(s,,62 ). Thus p is accessible
in T' and the theorem is proved. O |

 Supported by this result we may now safely define
the construction of optimised CFLR(k) tables in the

maunner which was informally indicated earlier,
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CONSTRUCTION 5,11

Let (¢,C) be & CFLR(k) cs-grammar with Property A and
let F be an optimising function for (@,C).Let the

" CFLR(k) cf-persing tables for (G,C) be T = (Q,s, ,ErT) e
Then the optimised CFIR(k) tsbles for (G,C) with respect

o F are given by OCFT]S:G’C)’F.-. (Q',s,,8",2') where .

(1) Q'= fsiuiemX)eq |peq Xe R},
(11) g' 4s the restriction of g to domain Q' x Rps and

- (111) £' is the restriction of f to domain Q' x vok,
. T

| - Note that ﬁhe definition of these tables depends not on
F directly, but only on its range. Consequently, the

_' tables corresponding to a full optimising function are
independent of the particular function employed : they
are, in short,unique, We call them the fully optimised
CFLR(k) tsbles for (G,C) end denote them by FOCFTL(:G’C) .

For brevity we usually write OCFLR(k) instead of

“Moptimised CFLR(k)"and FOCFLR(k) instead of '"fully
optimised CFLR(k)", O

Since av fullbptimising function can bé found
mechénically for any CFLR(k) cs-gremmsr, there seems |
"1ittle point in constructing any less than fully optimised
lCI"LR(k) tables. In the present situation this is indeed
" the case. However, in the next chapter we shall encounter
‘circumstances in which it may be necessary to consider

optimising tables to less than the full extent.
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In order to use OCFLR(k) tables, Algorithm 1.4 needs

to be modified slightly so thet 1t takes account of the
absence of all goto columns corresponding to symbols out=-
side the range of the optimising function concerned. The
only references made to the goto table by Algorithm 1.4
occur in its steps 3 (a) (1ii) and 3 (b) (vi). These are
references to g(s,a) and g(r,A) respectively, where a ¢ VT
and A.is thé‘"left part of productioh q". Tbese étépé must
be changed so that they reference g(s,F(a)) and g(r,F(A))
instead and it seems that the need to apply the dptimising
i.function duringithese steps hight slow them down.
Fortunately, this is not so. All optimising functions are
- identities when applied to arguments in'vT - 80 step

3(a) (111) need not be altered at all. The e:fect of
aitering step 3 (b) (vi)rcanjbe acpomplishéd more neatly
' and rapidly by replacingithe'idéntity of the symbol A
directly. That is, modify stép 3 (b)(111) of Algorithm 1.4
so that it;readp "set A equal to the ;ﬁage under F of the
‘left part of prpduction q". (Note that this cannot diatﬁrh

the test "?A = §" peiformed in étep 3 (b)(iv) begause of
' the requirement that optimising functions satisfy F(4) =
S only if A= 8, ) In practice, Algorithm 1.4 will determine
qut parts/by a table look-up and so the effect of the
required change can be achieved by'simply replacing the
table of left parts by its image under F.\In this way the
speed or the parser will be unimpaired. |

| To illustrate the construction we show the FOCFLR(1)
tables rcr.(Ga,CB) in Figure 5.2. There is only one full
optimising function for this grammar : it tekes E,T and P
to X and is an identity elsewhere. Thus the modified tsble
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of left parts which is required by Algorithm 1.4 will
record S as the left part of production 1 and X as
the left part of all others., Observe that theSe FOCFIR(1)
tables contain only 16 states, a's opposed to 19 in tfxe
unoptimised CFLR(1) tables and 22 in the ordinary LR(1)
tables. (See Figures 3.8 and 2.4 respectively).

STATE CF-~ACTION FUNCTION CF-GOTO FUNCTION
- No. N C 1 x1Pd)L*l+l 8] C] X)) ] +
1 sh |sh |- 31 2
2 1 sh |snl 51 4
3 sh |sh 716
L sh |sh ' 318
5 sh |sh | 319
6 sh|shlsn] - | 0] 12| 11
7 sh |sh 7 |13
8 2 shl2| 5
9 L Lk
© 10 6 6l6
S 11 sh |sh 7 114
L 12 sh |sh 7 115
13 sh sh| shl 16112 { 11
14 2 | sh|2 12
15 Li ulb
16 61 6}l6

Figure 5.2 FOCFTI(G3’03) -~ The FOCFLR(1l) cf~Parsing Tables

Lor (a3,C3),
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5.3. Constructing Optimised CFLR(k) Parsing Tebles Directly.

Building OCFLR(k) tables using Construction 5.11
involves first constructing the ordinary CFLR(k) tables
~ and then modifying them. This is wasteful and unattractive
| and 80 we now consider methods for coustructing optimised
tables directly. We concentrate first on modifying the
standard method for building CFLR(k) tables given in
Construction 3.61.

The states in a set of optimised CFLR(k) tables
are just those states from the ordinsry CFLR(k) tables
which are accessible on symbols in the range of the
optimising function F., As noted in the proof of Theorem
5.10, there are the states q such that q = g(s,,8) for
v‘aome 0 e R;. In Construction 3.61 the parsing states
correspond to the names of CFLR(k) states asnd the goto
~ function is based on the function CF-GOTO., It is there-
‘fore easy to see that q = g(s,,e) if and onmly if
q = NAMEOF(CFV(®)). Consequently, the parsing states
that remain in the OCFLR(k) tables are the names of the
members of the set {CFV(e) # & | 0 ¢ R;,} . We call
this set the "optimiéed CFIR(k) stateset for (G,C) with
respect to F", It is easily formed by modifying the
usual CFLR(k) stateset construction algorithm (Algorithm
3.47) so that a state = = CF=-GOTO(A,X) is added to the
stateset only if X e Rp. The OCFIR(k) tables may then
be formed from this optimised stateset in just the same
way as ordinary CFLR(k) tables are formed from ordinary

statesets. Thus we obtaln the following algorithm .,
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ALGORITHM 5,12

Direct construction of optimised CFLR(k) cf-parsing
tables,

Input : The CFLR(k) cs-gremmar (G,C), which must have
Property A, and an optimising function F.

Output: OCFT(G’C)’F - the optimised CFLR(k) tables for
(G,C) with respect to F.
1. | }VFirst construct the optimised CFLR(k) stateset
for (G C) with respect to F by using Algorithm
- 3.47, modified so that the loop "for X e V gdo"
| becomes "for X e Ry do". |
2 . Then build the optimised taebles by spplying

Construction 3.61 to the optimised, rather than |
to the ordinary, CFLR(k) stateseﬁ for (G,C) and
taking the domain of the second argument of the
goto function as RF rather than V. O |

Similarly straightforward modifications may be applied
to the constructioﬁs of .Chapter 4. By replacing the loop
"for X € V do" in Algorithm 4.3 by one which reads "for
X e RF.QQ", that algorithm may be caused to comstruct an
"optimised quasi CFLR(k) stateset" directly from a set of
LR(k) persing tables, This stateset may then be used to
construct the OCFLR(k) parsing tables (assuming that the
function ITEMS is available) by using the technique indi-
cated in the proéf‘of Theorem L. Alternativelyg.it may
be used ss the basis for comstructing the "optimised quasi
CFIR(k) tsbles for (@,C)". These are formed by adapting

Counstruction 4.6 in Just the same way as Construction 3.61
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18 adapted in Step 2 of Algorithm 5.12. These optimised

’quasi tab;es will perform the same as the true OCFIR(k)
tables but may be rather larger (that is to say,
they will cover the true OCFLR(k) tables),

More interesting are the corresponding "strong"
constructions based ou the techuniques of Section 4.3. In
order to form optimised CFLR(k) tables with confidence
in their correctness, the gramnar (@,C) must have
Property A - and this is precisely the property which
ensures that SQCFLR(k) tables are equivalent to true
CFIR(k) tables. Consequently the following algorithm
converts LR(k) parsing tables directly into.OCFLR(k)
| tables,

ALGORTTHY 5,13

Direct conversion of LR(k) tables into optimised CFIR(k)

tables.,

Input : The CFLR(k) cs-grammar (G,C), which must have
Property A, en optimising function F for (G,C),
and the LR(k) parsing tebles for G.

Qutput 2 OCFTéG’C)F - the optimised CFLR(k) tables for
(G,C) with respect to F,

Method

1. - First construct the optimised strong quasi
CFIR(k) stateset for (G,C) with respect to F
by using Algorithm 4.10, modified so that the
loop "for X e V do" becomes "for X e RF _C_lg".

2. " Then build the optimised tsbles by epplying

Construction 4.1l to the optimised, rather than
to the ordinary, strong quasi CFIR(k) stateset

for (G,C) and taking the domain of the

second agument of the goto function as Rp rather
than V. O
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Note that in all these cases, causing an algorithm
to produce optimised, rather than ordinary, statesets

- or tables actually reduces the amount of work performed
by the algorithm, '



282

5.4. The Value of Optimising CFIR(k) Tables.

The benfits of (full) optimisation are considerable:
in practice it seems that fully optimised CFLR(1) tables
always contain fewer states than ordinary LR(1) tables.
However, this reduction‘in the number of states does not

always occur, as the following grammar shows,

S —= 8A|  aB] aC |
DA | bB | bF | (Gremmar G10)
cA | cE | cC |
dA | GE | aF |
eD | eB | cC |
£D | £B | £F |
gdb| gEl gcl
hD | hE| hPF

A — Xa

D — Xa

B — Yb

E — T

C — 2Z¢

F — Zc

X — Y| a

Y — 2z |v

Z — ¢

Grammar GlO0 is LR(1) and has 48 states in its LR(1l) parsing
tables. The cs-grammar (G10, {X+ Y, Y~ Z}) . has Property
A (since G10 is IR(1) and W-free) and is CFLR(1l). Its
FOCFLR(1) tables contain 50 states - two more than the LR(1)
tables (the ﬁngptimised CFLR(1) tables contain 56 states),
Note that even here, since the optimised tables contain two
less éolumns (those corresponding to X and Y) than the
ordinary tables, the space required to represent the FOCFLR(1)
tables is probably less than that required for the LR(1)

tables in spite of the two extra states,
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Grammar G10 is complex and highly contrived, and
yet it is‘the smallest and simplest grammar we have
been able to find where ihe FOCFLR(1) tables contain
more states than the LR(1) tables. We suspect that all
grammars which exhibit’this‘behafiour will contain |
subgrammars similar to Gl0, For this reason we are
convinced’thét,ror the grammars likely to be eacountered
in practice, FOCFLR(1) tables will always be smaller
than their LR(1l) counterparts. Unfortunately, we have
been unable to find an attractive‘characterization of

the grammars for which this behaviour can be guaranteed,
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5.5. Summary.

Redundancy present in CFLR(k) parsers may be
exploited in order to reduce the size of the parsing
tables., The optimisation technique is very straight-
forward : 1t simply removes those columns of the gototable
which correspond to (some or all of) the symbols
that . sppear as the left parts of chein productions,
and then deletes any states which thereby become
unreferenced. Fubthermoré, the algorithms for construct-.

- ing CFLR(k) psrsing tsbles are easily modified to
produce optimized teb les directly.

Algorithm 1.4 must be chénged slightly in order
to use these optimised tables, but these changes in no

way impair the spged or error detection of the parser.

The correctness of these techniques is only
guaranteed for those cs-grammars with Property A and
this effectively constrains their application to the
case k = 1. The space savings counferred by the technique
are considersble : optimised CFLR(1) tables for
programming language grammars sre actually. smeller than

~ ordinary LR(1) tables,
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CHAPTER

APPROXIMATE CFLR(1) PARSING TABLES

The theory develoged.éo far shows that the CFLR(k)
‘chain free parsers sﬁrpass the ordinary LR(k) parsers in
generalify and speed and yet ofﬁen occupy less space.,
Unfortunately, however, it is impractical to use CFLR(k)
parsers in compilers for programming languages because
their parsing‘tablesvare intolerably lerge when useful
values of k (namely k = 1) are chosen, The same is true
of ordinary LR(k) parsers but certein techniques have
‘.been devéIOped which successfully oYercome the problem.’
in this case, Our goal now is to extend the application
of these technigues to the CFiR(k) persers and thereby
develop truly practical chéin free parsing algorithms,

In order to reduce the size of ILR(k) parsing tables
some of the benefits of the method have to be relinquished
= notably generality and the immediacy of error detection.
| Several techniques for doing so have been proposed by ‘
various authors, for example Korenjsk (1969), Pager (1970),
- DeRemer (1969,1971) and Anderson (1972). The most
'Aimportant of these methods, both theoretically and in
practice, are the SLR and LALR methods developed
independently by DeRemer and Andeéson. The acronyms
~ stand for Simple LR and Look Ahead LR respectively.
Both of thgseAmethoda'use‘one symbol 1o§kahead and are
applicable to a large subset of the LR(1) grammars and
" yet yield only LR(O) size parsing tables. For a grammar
8imilar in size to that of Algol this means tables with
about 40O states as opposed to over LOOO in the LR(1)
tebles, o
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"Aho and Ullman (1972b) have shown that the SIR
- and LALR techniques, and also some others, can be
described.in terms of two manipulations that may be
performed on LR(1l) parsing tebles., These are the
"sostponement of error detection" and the '"merging of
- compatiéle states". The first of these exploits the
,'fact that the qualipy of error detection afforded By
an LR(1) parser is so excellent that it may be
degraded slightly and yet remain acceptably good. The
technique is to replace certain ERROR actions by
REDUCE actions. When a true IR(1) parser would halt
and declare "error", a parser whose tables have been
‘modified in this way may continue to make reduce moves
but matters are so arranged that it too will halt and

declere “error" before consuming another input symbol.

The benefit conferred by the postponement of error
detection 1s that the actions in certain stateé of the
parser may be caused to become sufficiently similar that
whole groups of states msy be replaced by a single
composite state; This phaese of the process is known as

 "merging compatible states",

We shall be concerned to extend these idess to the
context of CFLR(1) parsing tables. First we need to
consider the postponement of errof datection in a little

_more detail.

Aho and Ullmsn (1972b) define a "postponement" to
be a triple : (q,u,A — o) where q is a parsing state, u
is a lookahead string, and A —- o¢ 18 a production. This
postponement is interpreted to mean that the action

4
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.' £(q,u) should be changed to REIUCE A -> « , Apart from
certain constraints which are necessary to preserve the .
correctnéss of the mo&‘ified tables, postponements of

- this type may be chosen freely. For our purposes this
notion is rather too general : we shall only use a
postponement (q,u, A-»c¢) when REDUCE A —» « is already

| , px;esent as the action on some other lookahead string in

the state gq. We call postponements of this type "weak"

~ postponements and formally define them as follows,

DEFINITION 6,1
" Let T = (Q,8,,8,L) be a set of cf-parsing tables for
(3,C). (Note that throughout this chapter we assume that
all parsing tables use one symbol lookaheéd). A wesk

postponement for T i3 a triple' (q,u,A» ) where

qQ € Q,u e V;l andA—se?. 'e P are such that

" £(q,v) = REDUCE A-» «  for some v e V.l.

Since we shall be concerned solely with weask postponements,
we often refer to them as simply "postponements"., A
postponement (q,u,A~ o) is sometimes called a "post-
ponement with A", The application of the postponemeant

(@sus A=> ) to T ceuses the action f(q,u) to become
REDUCE A —>o¢ , A seﬁ of postponements for T is called

a postponement set for T. O

We must ensure that the correctness of parsing
tables is preserved under aspplication of postponement
sets. In particuler we must ensure that only ERROR actions
are changed and that all errors will eventually be |
detected, Aécordingly we define "valid" postponement sets

as follows,
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DEFINITION 6.2

Let T = (qQ,s, y&,f) be a set of chain free parsing tables
. for (G,C). Extend the domain of the goto function g from
. QxVtoQxV bymeans of the definitions : |
. glost) =0 and
| g(PoNX) = g(s(p,rx) X)
"where p e Q, & c v and X e V.

A postﬁonement set R is _zg_y._g\for the tables T if
 all postponements (q,usA > o) in R satisfy |
o (1) A #5, |
(11) £(q,u) = ERROR snd
(111) whenever p e Q is such that g(p,o{) a q
then (a) g(p,A) is defined and
(v) £(g(p,A),u) =ERROR. O

Clearly, an algorithm may be constructed to test
~ whether a given postponement set is valid for a

: particular set of tables, Hatters are simplified when
Athe tables am proper CFLR(I) tables. '
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THEOREM 6,3

Let T be the CFLR(1) tables for (G,C). Then any post-
| ponement set for T which satisfies conditions (1) and
~ (11) of Definition 6.2 also satisfies condition (iii)

of that definition.

PROOF. This result 1s an elementary cousequence of

the definition of CFLR(k) tables (Construction 3.61)

and‘thé properties of CFIR(k) states., Note that the
| result is also true of any tableé which cover thé tiue

CFLR(1) tables (such as SQCFLR(1l) tables), U

The application of a valid postponement set

preserves the correctness of the parsing tables.

THEOREM 6.&

Let T be a set of cf-parsing tables for (G,C) and let

T' be the set of tables produced by application of a

valid postponement set to T. Then

(1) all sentences in L(G) are cf-parsed correctly when
Algorithm 1.4 is driven by T',

(11) all erroneous strings x ¢ L(G) are rejected
when Algorithm 1.4 is driven by T' and the number
of symbols consumed prior to rejection will be the
same as when Algorithm 1.4 is driven by T,

(111) if T drives Algorithm 1.4, so that all errors are
detected by encountering an ERROR action, then
T'also has this property. |
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PROOF, Part (1) is immediate from the fact that valid
poétponement sets only alter ERROR actions - and these
cannot be encountered while parsing valid sentences,

Part (1i) follows from the proofof a similar result
provided by Aho and Ullman (1972b; Theorem 4). Note that
our notion of a valid postponement set is a special case
of ‘theirs , and of course they are concerned only with

- ordinary, not chain free, parsers, However, these'points
do not affect the argument used in the proof. Part (1i1)
is an elementary counsequence of the constraints placed

upon valid weak postponements., []

Figure 6.1, illustrates the valid weak postponement
of error detection in the CFLR(1) tables for (G3,C3)
“which appeared in F;gure 3.8. We do not indicate the
postponement set uSed explicitly, but do so implicity
by putting a circle around the REDUCE actions introduced
by tbe‘postponement aeﬁ. |
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(sTaTE

CF-ACTION FUNCTION CF-GOTO FUNCTION
NO. | AL (] x] )] ]+ E{T| P ({X] )] *| +
1 sh|sh 2 31 31413/
2 1l sh ' 5
311 sh|sh 6| 5
4 sh|sh 7181 8{9]|8
5 sh{sh 10{10| 4 110
6 sh|sh 111 4 11
7 sh| |sh 12 13
8 sh|shsh 1211413
9 sh|sh 15 |16 {16 | 9 [16
10 | 2 @)|sn| 2- 6
1| 4 @)| 4| ¢
12| 6 ©)| 6| 6
13 sh|sh YAV
14 sh|sh 18| 918
15 | sh| |sh 19 |13
16 sh|sh|sh 19(14/13
17 | @ 2(sh| 2 14
18 | © 4f 4l 4
19 | ©®© 6| 6| 6
Figure 6.1 : The CFLR(1) Tables for (G3,C3) after Application

The reader may care to check that the tables of both
Figures 3.8 and 6.1 reject the invalid string "X*X)"

Pos

emne

S

after consuming the three symbols "X*X" but that the

tables of Figure 6.1 make a reduce move after this point

 before rejecting the input,
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Next we define the merging of compatible states, Our

definition is a restriction of the one used by Aho and
Ullman (1972b).

- DEFINITION 6,5

Let T = (Q,s,,8,f) be a set of cf-parsing tables for
(@,C).A partition 7T on Q is sald to be compatible 1if,

whenever p and g are in the same block of T s then

(1) for each u e V'pl, £(p,u) = £(q,u), and
(11) for each X ¢ ‘V, elther g(p,X) snd g(q,X) are

both undefined or both are in the same block of T,

When 77 is a compatible partition on Q, the tables
rormed by applying 7 to T are denoted by

T, =(Q',8,',g",£') and defined ss follows. Let [q ]
denote the block or‘ T to which the state q e Q belongs.
Then (1) a' = ffa) |aeaql, |

(11) s'= [s],

(111) © for each q ¢ Qend X ¢ V

ir X) = q and
y 8 [a].x ) = o;g(q,gc;’ )oth:rwise,
(iv) for each g ¢ Qend u e V,;l ,

([ q‘l ,u) = £(q,u).

Tables formed by applying first é wesk postponement set
end then a compatible partition to T ere called approxi-
mations to T, If the postponement set conc:erned is valig,
then the approximation is said to be valid also. Tables
formed in this wey from the CFLR(1) tsbles for (G,C) are
called epproximate CFLR(1) tables for (G,C). O
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Figure 6,2, illustrate the valid approximate
CFLR(1) tables for (G3,C3) that are produced by
applying the compatible partition {1,2,3,(4,9),(5,13),
(6,14),(7,15),(8,16),(10,17),(11,18),(12,19)} to
the tables of Figure 6.1, Observe the substantial

reduction in the number of states obtained by this

process,
STATE | CF~ACTION FUNCTION CF-GOTO FUNCTION

N ol clxD) «l«]ls]e]elp|Clx])] |+
1 sh|sh 2 | 313|413
2 |1 sh| 5
3 1] sh| sh : . 6] 5
4 | |sh|sh 78|84 8
5 shish| 91 9|4t 9

6 sh|sh ' 104 |10

7 . sh sh , 11 5
8 ' sh | shlsnh 11} 6} 5
9 |2} 2 |sh] 2 6

10 |ul- Wl 4l b

11 6 6| 6| 6

Figure 6.2: A Set of Valid Approximate CFLR(1) Tables for

. SG:.SEi!' )

Applying a compatible partition to a set of t-' ~ merely
reduces their size, it does not affect their performance
in any way. Consequently, it follows from Theorem 6.4. that
valid approximate CFIR(1) tables are perfectly good cf-
parsing tables although their error detection is slightly
inferior to that of the CFLR(1) tables, We know from
Theorem 3.64 that the CFLR(1) parser for (G,C) will reject

an ianvalid input string Xx on the move immediately

following the EP(x)-1'st shift move. A valld approximate
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CFLR(1) parser will certainly make no more shift moves
after this point, but may make some reduce moves beforé
it rejects the input:‘Th;s quality of error detection
is superior to that of all other practical bottom up
" parsing schemes and is sufficient to allow the automatic
generation of good error diagnostics and effective
automatic error recovery (see Wynn (1973)). Furthermore,
the techniqﬁe of Eve (1973) allows full CFLR(1) quality
error detection to be regained from approximate CFLR(1)

tables at the cost of a modest decrease in parsing speed,

An attractive feature of true CFLR(1) persers is
that they detect all errors during iunspection of the
action function and so it 1s unnecessary to check for
error conditions during steps 3(a) and 3(b) of
Algorithm 1.4, This is beneficial to the speed of the
parser and 1s essential to the optimisation technique
of Ghaéter 5. Part (1iii) of Theorem 6.4. ensures that
valid approximste CFLR(1l) tables preserve this property.

Two basically different classes of methods for
producing approximate CFLR(1) tables may be identified.
Methods in the first class take care to spply only yalid
postponement sets and then seex 8 compatible partition
,.containing as rew blocks as possible, These methods
guarantee to produce valid approximate CFLR(l) tables
but are complex and usually require access to the true
CFLR(1) tables. Since these tables mey be very large,

methods 1in this class are generally considered imprectical.



295

Methods in the second cless (and for the ordinary
LR(1) case these include the SLR and LALR methods) work
rather differently. In effect, these methods seek to
apply a particular partition snd so they generate &
- postponement set which, if valid, will render that
partition compatible, Clearly, the disadvantage of these
methods is that they may generate invalid postponement
sets. The utility of each suéh method depends upon the
extent of the cless of grammars for which it does generate
valid postponement sets, The great advantage of these
- methods is that they are able to produce their approx-
imate CFLR(1) tables directly, thereby removing the
' necessity to comstruct the CFLR(1l) tables first.

We shall be solely concerned with methods in the
‘second class., They may be characterized in terms of an
w"approximation function". The rollowing definition defines
this concept and shows how spproximate CFLR(1) tables
' 'may be constructed direotly. -
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DEFINITION 6,6

Let A be a set of CFIR(l) items for (G,C) and let
e
® ¢ V.Then A is an approximate CFLR(1) state for

o irf

(1) A 2 cFv. (e), end
(11)  whenever [B -=pg,.8,,v]e A then
ot (e) irB = S, then [B—=g,.4,,v ]e cFV_ (8)
| (v) it B #8, then [B—=p,.p,0u e CFV (o)
for some u & Vu.

'We sey that a function & from the CFLR(1) states for
(8,C) to sets of CFLR(1) items for (G,C) is an gpprox-
imation function for (G,C) if. a(CFvl(e)) is an
approximate CFLR(1) state for 6, tor each © e V*. When

& is such an spproximation function, we define the & -

approximate CFLR(1) stateset for (G,C) to be
G,C - |
ors{®O).  (a(crv () A8 | 0 V']

and we define the & - approximate CF-GOTO function by :
CF-GOTOéG’C) (a(cwl(e)),x) = 5(cwl(ex)).

The & - approximate CFLR(1) tables for (G,C) are given

by simply substituting the & - spproximate stateset and
CP-GOTO function for the normel steteset and CF~GOTO
function in Construction 3.61, O
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It is necessary to be sble to check whether & -
approximate CFLR(1) tables are valid epproximations

or not., The next theorem provides the necessary result.

THEOREM

If the & - spproximate CFLR(1l) stateset for (G,C) .

" 1s adequate then

(1) (6,0) ts oFLR(1) and

(11) the & - approximate CFLR(1) tables for (G,C)
are valid,

PROOF, Ir (@,C) is not CFLR(1) then its CFIR(1)
stateset will be inadequate and therefore, by virtue
bf part (1) of Definition 6.6, so will its & -
approximate CFLR(1) stateset.

Now suppose that (G,C) is CFLR(1). To each CFLR(1)
persing state NAMEOF(CFV(6)) there corresponds a & =
~ epproximate parsing state NAMEOF(&(CFV(®))). Now
(CFV(0)) is formed by adding items to CFV(®) and it
is clear that the constraints on the items which may
be so added ensure that if

ACTION(CFV(®),u) # ACTION(&(CFV(®6)),u)

then ACTION(®(CFV(©)),u) = REDUCE q where, for some

v e V21, ACTION(CFV(®),v) = REDUCE q also.

T *
Thus the actions in the parsing state corresponding to
5(CFV(8)) are equivalent to those that may be obtained
by applying a wesk postponement set to the persing
state corresponding to CFV(®). By virtue of Theorem 6.3
we ne?d only to verify that conditions (i) and (ii) of
Definition 6.2 are satisfied by this postponement.

Condition (i) is olesrly satisfied because of the
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constraint (iia) of Definition 6.6, If condition (ii) °
is not satisfied, then there must be some item |

[B~f3,.f,,v) ¢ CFV(8) with u ¢ EFF,(8,v) to which
another, distinct item [A — oc.,u] 18 added when
forming 5(CFV(6)). Clearly this causes &(CFV(8)) to
become inadequate and so we conclude that if the & -
approximate stateset is adequate,then the & ~ approximate

CFLR(1) tables are valid. O

Many different types of approximate CFIR(1) psrsing
tables inay be dqfined by choosing suitable approximation
functions. We ahall concentrate initially on the chain
free generglisatién §r the SIR method.
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6,1, The CFSLR Method, |

In this section we introduce a chain free
generalization of the SLR method. We call this the
"CFSLR" method and characterise it by an approximation
function ESLR as fo;lows.

DEFINITION 6,8

Let G - (v Vo »P,8) be a'grammer and X ¢ V. The
;g;;owseg of X in G is given by | -
FOLLOW (x) = {1:x | 5 oXx, x ¢ vTi
Clesrly FOLLOW(X) € Vp© . Algorittmsmey essily be
constructed for the eialuation-of followsets, (See,
for éxamplg, Anderson et al (1973).)
The CFSLR approximation method is defined by the
approximation function ESLR where, for each © c:V*,

we define

(CFV,(8)) ={ [B=~p,.8,»V ]| [B~p,.8,u] ¢ CFV,(6)
- and v ¢ FOLLOW(B)}

SLR

We write CFSLR rather than "8g;p - approximate CFLR(1)";
CFSLR states are written as CFSLRV(®) rather than
Bg(CFV,(8)). We say that (G,C) is CFSLR if its

CFSLR stateset is adequate; G is said to be CFSLR if
there is a chain set C for G such that (6,¢) is CPSLR.
.A language is CFSLR if it is generated by some CFSLR

'grammar. C]‘
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The CFSLR approximation function.ﬁSLR certainly
satisfies conditions (1) and (1id) of Definition 6.6.
However, it mey not always satisfy condition (iia) if

- the gosl symbol appears in the right part of a

production.(Consider the grammar S *-aSal b. )

This in turn may cause condition (i) of Definition 6.2 -
~ to be violatcd.‘The effect of this will be to force

F the reintroduétion of error checking in part (vii) of
‘step 3 (b) of Algorithm 1l.4. (Consider the invalid
string ba with respect to the érammar above), This is

| undesirablé_and may be avoided by aﬁgmenting the
grammar with a production Sf -~ 81 , where s' is a

new goal symbol and . is an (optionai) endmarker.

When the chein set C is empty, the CFSLR method
t_becomes the ordinary SLR hethod. We say that a grammar
@ is SLR ir (6,) 1s CFSIR and that a language is SIR
ir it‘is gétefated by en SLR grammar, When the chain
“set 1s empty, we talk of SLR states, rather thsn CFSLR
states, and write SLRV(6) instead of CFSLRV(8).

The CFSLR method generalizes the SLR method Just
as CFLR(k) generslises LR(k). We now ask similar
questions of the CFSLR method to those considered for
the CFLR(k) case in Chapters3, 4 and 5. How extensive
are‘the‘claases\or CFSLR grsmmars and languages compared
to those of SLR ? How can we test éfriciently for the
CFSIR property snd how cen we build CFSIR tables ? Cen
we build CFSLR tables from SLR tables by a posti-pess
construction, and can SIR tables be converted directly

into CPFSIR tables? Cau CFSLR tables be optimised in the
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sense of Chapter 57? We shall see that with respect to
these questicns the CFSIR method exhibits broadly similsar
properties to the CFLR(k) method. Not all approximatiouns
are so'wellvbehaved (as Wiil be seen later when we
consider tﬁe chain free generalizétion of the LALR
method). | |

- The first question we ask is whether the condition
" that G be 8LR is sufficlent to ensure that (a,C) is
CFSLR fér all cholces of chain set C. Unlike the corres-
ponding CFILR(k) result (Theorem 3.19) where the answer
| is alweys "yes", here we haie éhly a qualified "yes" :
We need an additional constraint upon the way in which
M —prules may be used in G, Before introducing this
-result we need to establish some technical lemmas and
theorens. The first of these expresses CFSLR states 1in
terms of CFLR(0) states. (Definition 6.8 expresses
" them in terms of CFf.R(J.) states.,)

LEMMA 6.9

Let 6 ¢ V. Then

- CFSLRV(®) = {[B~p,.p,u] |[B->p.p,0# ¢ CFV (o) and
R u e FOLLOW(B)].

PROOF. The proof is trivial and we omit it. O

Next we prove the CFSLR analogue of Theorem 3.43 -
a result which found constant application throughout
Chapters 3,4 and 5.
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THEOREM 6.10 (cf. Part (1) of Theorem 3.43)

Let 6 ¢ V'. Then
CFSLRV(6) = CF-STRIP({SLRV(u) Ip — o]).

PROOF. Suppose .[B->4,.8,,u] ¢ SLRV(p), B =44 ¢ P\C
and M —" 6, Then Lemmae 6.9 provides u e FOLLOW(B)
and [B=~g,.p, Ale VO(H). Hence, by Theorem 3.43,
[B=p.p. sh]e CFVO(e) and so, again by Lemma 6.9,
B->p.5,,u] € CFSLRV(6). Thus »

CFSLRV(®) 2 CF-STRIP( { SLRV(p) | p - 8}).
Containment in the othef direction may be established

- equally straightforwardly and so we conclude the

theorem. [J

SUNPIDUSSRIIES

We now define a property of grammars which ensures
that followsets are "well behaved" in the presence of
W -rules. Grammars encountered in practice always

seem to have this property.

DEFINITION 6.11

A grammar is empty rule followset consistent (ERFC for

short) if, whenever X ¢ V and A ¢ VN are such that
S — «xXAp and A - A , then FOLLOW(X) 2 FOLLOW(A).D

The ERFC property is needed to establish the next
result,
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LEMMA 6,12 ‘

A —————————————

If G s an ERFC grammer end © ¢ V', X ¢ V and u ¢ Voo
are such that SLRV(6X) contains an item of the form

[B=g.4 ,v] with u e EFFl(p,v), then u e FOLLOW(X).

PROOF. I1f [B-~p,.p,,V] ¢ SLRV(6X), then v e FOLLOW(B)
end [B—=4,.8,0h] ¢ vo(ex). Therefore, G contains a

derivation e | ‘
' 5 - o Bx — X B, L X (1)

%
with 6X = «3, . There are now two main cases to consider.
Case 1 : 3, #/A . Then u e EFF,(g,v) implies g, 5 wy
for some y ¢ V,;. (The possibility that u e EFF(B,V)
because @,v —* v and u=v is excluded by the
‘requirement of an eff-derivation.) Hence (1) gives

S —= 6Xgx - 6Xuyx |
and the conclusion u e FOLLOW(X) is immediate.
Case 2 : g8, =/ . In this case, u ¢ EFF,(8,v) gives
u=v, and so u € FOLLOW(B). Now if 8 =W , the identity
@3, = 6X becomes o¢ = 6X and so (1) gives S -» €XBx,
The conclusion u e FOLLOW(X) then follows from '
u e FOLLOW(B) by virtue of the ERFC property of G. If,
on the other hand, g, # 4 , then the identity 3, = oX
implies the production B-»,3, has the form B - uX and
the conclusion u ¢ FOLLOW(X) follows directly from
u e FOLLOW(B). O

We need one more technical lemnma.
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LEMMA 6,13

Let (G,C). be a cs-grammar and let X,¥,Z e V satisfy
X = Y — 2% .If u e FOLLOW(X) and SLRV(eX)# #
then [y -~ 2.,u] e SLRV(8Z).

PROQF, We use induction on thé number of steps in the

- ¢=derivation of Y from X, The basis is the case where
| there are no steps at all - that is X = Y, Since -
| SLRV(0X)#4, vo(ex) must contain a non-initial item of
the forn [B = 4, X.p, 4] and 80 [B = g.Xp,4 ] e V(0),
It follows that [Y —= .Z,A]¢ V,(6)  also and
hence that [Y — 2Z.,A ] ¢ V,(62). Beceuse u e FOLLOW(X)
g ‘a.nd .X =Y we then have [Y — Z.‘,u] e SLRV(632)

and this completes the basis of the induction. For the
inductive step, assume the result to be true whenever the
c-derivation of Y from X contains n steps (n 3 0) end
suppose X --:" " Y, Then we may distinguish the last
'step of this derivation and write X --: W — Y. By
'_ the inductive hypotheéia we deduce that [W —="Y,., u]
e SIRV(6Y). Now u e FOLLOW(X) and X — Y imply

u ¢ FOLLOW(Y) and, since SLRV(6Y) £ &, the basis of the
induction then provides [Y — 2Z.,u] e SLRV(02) ‘
and so completes the inductive step and the proof of the

lemma, OO
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We now have the technical apparatus required to
establish sufficient conditions for (G,C) to be
CPSIR, given that G is SLR. Beceuse 1t will be
required later, we present the crux of the argument

in the following lemma,

LEMMA 6.1L

Let G be an unambiguous ERFC grammar and let C be
a chain set for G such that (G,C) has Property A. If
CFSIRV(6) is inadequate, then SLRV(p) is inadequate

for some p —» O,
[

PROOF. The case © = A 1s trivial so assume 6 # W\,

If CPSLRV(6) is inadequate, then it contains a pair

of distinct items A = [B=~g,.4,v] = amd

Z= [A= ., u] such that u.e EFF.(p,v). By

Theorem 6.10 we deduce that there exist 3,8 e V'

such that A ¢ SLRV( ¥ ), = ¢ SLRV(S), ¥ == ©

and & —= O, The lemma is immediate if ¥ =J, 80

"gssume ¥ £ . Since ¥ — 6 and § = 6 and

(G,C) has Property A it follows that ¥ and d can

differ on only their final symbols, Therefore ¥, § and

. © may be written in the form ¥ = wX, & = ¢Y and

‘9 =pM where y—>'p, X =M , Y N

and X # Y. Note that Lemma 6.12 provides the results
u e FOLLOW(X) end u e FOLLOW(Y) . Now ( {X,¥},{M})

is a maximally chained pair and since G is unambiguous

there must be a unique maximal intermediate, say Q, for

this pair. We then have X - Q, ¥ - Q and Q =N,

There are three cases to consider,
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Case 1 '3 Q =X, Because X ¥ Y, Q —'.:* Y implies

X —* Y in this case. Thus X — U -> Y for some
U e V. Now u € FOLLOW(X) and SLRV(yX) # # and so
Lemma 6.13 provides (U — Y., u] e SLRV(yY). But

- SLRV(yY ) also contains the item = and this must be
distinct from (U —~ Y.,u)because it does not involve
& chain pi‘oduction. (Since it comes from CFSLRV(S).) The
two items = eand [U = Y., u] are clesrly in
conflict and so SLRV(yY) is inadequate and the lemma

is proved in this case.

Case 2 Q=Y. This case is exactly similar to the

previous one,

Case 3¢t Q.#X, QAY. SinceX =" QeandY - Q
we must have X —= U '—-; Q and Y -~ W - Q in this
case. Then because u ¢ FOLLOW( X) and SLRV(YX) # 4,
Lemma 6.13 provides [U - Q.,u] e SIRV(}Q).
Similarly we obtain (W — Q.,u ] e SLRV(YQ).

These two items must be disﬁihct (for otherwise U = W,
which contradicts the requirement that Q be a maximal
intermediate) and are therefore in conflict. Thus SLRV(yQ)

is inadequate and since V¥Q —:-‘-" ©@ we may conclude

the lemma, O

Now we can prove the main result,
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THEOREM 6,15 (cf. Theorem 3,19)

Let G be an ERFC, . SLR grammar and let C be a chain
set for G such that (@,C) has Property A. Then (G,C)
is CFSIR.

PROOF, Suppose (G,C) is not CFSLR. Then CFSLRV(®)
is inadequate for some 0 e V*, Since @ 1s SLR, it
is certainly LR(1) and therefore unsmbiguous. Hence,
by Lemma 6.14, SIRV(m) is inadequate for some M == @
But this contradicts the assu:nption‘ thai G is SLR and

so we conclude the theorem., O

The conditions that G be ERFC and that (G,C) has
Property A sre sufficient to guarsntee that (G,C) is
CPSLR when G is SLR but they are not necessary conditiouns,

The following grammar demonstrates this point.

S —= aB]| (Grammaer G11)
cx|
Bx
A — vy
C — vy
B —» zl
W
Grammar Gl1 is SLR but not ERFC (the followset of A
is (AN, 2]} while that of B 18 {A,x]}) end
yet (a11, { C > ¥y} ) is CFSIR,

On the other hand, the simple condition that G
 be SIR is not sufficient on its own to guarantee that
(@,C) is CFSLR. This point is also demonstrated by the
grammer G11, for the cs-grammar (Gll, {A — y} ) is not
CFSIR despite the fact that Gll is SLR. Although this
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exanmple demonstrates'that CPFSLR cf-parsers cannot always
‘be substituted for SIR parsers, no difficulty is likely
to arise in practiqe because the conditions of Theorem
6.15 are very mild snd almost certain to be satisfied

by SLR programming language grammars. (Property A will

be reguired anyway by certaiﬁ of our later Optimisations.)

Grammar Gll is a slight modification of one due to
Anderson (1972) whose technique for eliminating chain
productions from SLR parsers is the same as the CFSLR
method, Andérson stated and proved a weaker form_of
Theorem 6.15 in his Ph.d thesis (Anderson (1972),Theoren
A). Expressed in our terminology, Anderson's result
becomes ¢ "(G,C) is CFSLR if G is both SLR and W -free'".
Because (G,C) must have Property A if G is SLR and ¥ -free
(this follows from Corollary 4.18), Anderson's result
follows as a corollary to our Theorem 6.15. Anderson
also exhibited CFSLR grammars which are not SLR,.nor even
LR(k). Thus, Just aes in the LR(k) case, the CFSLR
grammsrs sre more extensive than the SLR grammars,
However, also like the IR(k) case, the corresponding
classes of languages sre the same, To see this we note
that results of Mickunas (1976) show that the SLR
languages are precisely the deterministic languages.

The CFSLR languages must include all SLR languages, but
must themselves be included within the CFLR(1l) languages
- and these are just the deterministic languages again,
It follows that the CFSLR languages sre precisely the
deterministic languages,

~



309

This result may also be deduced using the cover
grammar approacﬁ of Section 3,3 ¢ because followsets
are presérved under the cover grammar counstruction
(Construction 3.24) it 1is easy to adapt the proofs of
Theorems 3.26 and 3.29 in order to establish that
(@,C) is CFSIR if and only if COVER(G,C) 4is SLR.
This observation a2lso provides an indirect method of

testing for the CFSLR property.

‘Direct methods of testing tor the CFSLR ﬁroperty
mgy be found by exploiting Lemna - 6.9, The most straight-
forward techﬁiqﬁe is to construct the CFLR(0) stateset
and then conveft it into the CFSLR stateset by using
Lemma 6.9.- The CFSLR stateset may then be tested for
adequacy in the usual way. Since the cardinality of
CFLR(O) statesets can be exponential in the size of the
grammar (recall the grammars EXP(n) of section 2.3) this
method is of exponential complexity.

The most efficient method of testing for the CFSLR

(a,C) and

~ property is to construct the set CF- PAIRS
then test each pair in this set for an "SLR conflict"
where a pair of distinct LR(O) items sre said to have
an SLR conflict if they have the form [B S R
end [A=soc,, 4 ] and satisfy either

(1) B, =4  and FOLLOW(A) ~ FOLLOW(B) # # or

(11) 4, # 4  and FOLLOW(A) n EFF,(p, ) # 4.

It 1s an elementary deduction from Lemma 6.9 that (G.C)
is CFSIR if and only if no pair in CF-PAIRSéG’C) has

T A L B s
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an SIR cdnflict. We have seen in Section 3.6 that the

(@,0)
o

in time 'O(n? ), where n 1is the size of G. Since the

enuneration of the set CF-PAIRS can be performed
techniques of Hunt et al.(1974) allow a pair of LR(O)
items to be tested for SLR conflict in fixed time, it
follows that this method of testing for the CFSIR

property has complexity‘o(nz).

Just as CPSIR testing is bassed on CFLR(O).
conStructions, so 1is the-construgtion of CFSIR parsing
tables. The CFSLR stateset may be formed from the CFLR(O)
stateset by using Lemma 6.9 and the CFSLR parsing

tables may then be constructed from this stateset and

"a tabulation of the CFLR(0) CF-GOTO function by adapting

Construction 3.61 in the obvious manner. It is clear

from this construction that CFSLR tables have the same

nunber of states as CFLR(O) tables, It is more
convenient in practice to build CFSLR parsing tables
directly from CFLR(O) statesets rather than first
convert these into CFSIR statesets, This is accomplished
by replécing the function ACTION of Comstruction 3.61
with a more sophisticated function: SLR-ACTION. This

" 4is defined as follows ¢

} T
the value of SLR-ACTION ( A, u) is :

(1) SHIFT if :A contains an item [B-=p,.4,,4]
with g, #A and u e EFF (g, ),

(11) REDUCE q if A contains the item [A=>ot., W ]

. .where A-= <« is production q
end u e FOLLOW(A),

(iii)‘ 'ERROR  if neither csse (i) nor case (ii) obtains,
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It is clear that this counstruction is equivalent to
the previous oune. To illustrate the technigue we
display'the CFLR(0) stateset for (@3,C3) in Figure
6.3. Note that we omit the lookahead string when
writing CFLR(O)iitems, since it 18 always .

STATE CFLR(O) STATES CF-GOTO
Yo NUCLEUS COMPLETION SIE 2| P [([X|)|*
1 | [S=~.E] [E = .E+T] [T = .T*F] 2 13| 34| 3
2 | [s-~E,] [E=E.+T]
3 | [S+E.] [E~E.+T] » , 6
[T~ T.*P]

4 | P-(.E)] [E-—.E+T)1 [T - .T*F] 718|848

! - . .

g 5 | [E-E+.T] [T-.T*P] [P~.(E)] 9 9 14) 9

| 6 | (T~T*.P] [P=.(E) 10 {410

! 7-| P> (E.)] [E~E.+T)] 11

8 | (P=(E.)] [E=-E.+T] 11 | 6

.: (T =T, *P)]

" 9 | (E~E+T.)] [T~T.*P 6
10 | [T~ T*P.]

11 [ (P~ (E)]

o - e

Pigure 6.3: The CFLR(0) Stateset and CF=-GOTO Function

for ;oz.g:z,

The followsets of the nonterminals of G3 ere easily
computed and may be found to be as follows ¢

FOLLOW (S) = {A3, |

FOLLOW (E) = {A,+,)],

FOLLOW (T) = FOLLOW (P) = {J ,+,)s*].

Using this information the CFSLR parsing tables for
(@3,C3) msy be coustructed directly from Figure 6.3.

Vie do not display these tables here since the tables
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of Figure 6.2 are, in fact, the CFSLR tables for
(e3,C3).

We now briefly consider alternative methods for
producing CFSLR parsing tables, based upon the LR(k)
 to CFLR(k) table conversion methods of Chapter L.

We saw in Chepter & how“qnasi”CFiR(k) statesets
and CF-GOTO functions can be computed from information
contained in LR(k) parsing tables and Theorem 4.4
showed how these may be used to construct CFLR(k)
parsing tablés by a "post pass" method. It is elementary
to show that similar constructions apply to the CFSLR
case and that CFSLR tables produced by the post pass
' method are exactly the same as those of Definition 6.8.

Direct conversion of SLR into CFSLR tables may
be achieved by obvious adaptions of the methods for
producing QCFLR(k) and SQCFLR(k) tables (Cors tructions
4.6 and L.11 respectively), Just as in the LR(k) case,
it can be shown that these "QCFSLR" and"SQCFSILR" tables
cover the true CFSLR tables. Furthermore, when the
ecs-grammar concerned has Property A, its SQCFSIR
_tables can be shown to be identical to its true CFSLR
tebles. Again, this is exactly similar to the CFLR(k)

case,
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The reason why thése techniques and results
apply to the CFSLR method exactly ss they do in the
CFLR(k) éase 1s because Theorem 6.10 is sn exact
parallel for Theorem 3.43. We shall see later that
in the case of éhe CFLALR method there is no

parallel to Theorem 3.43 and that these post pass
and table conversion methods behave rather differently .

in that csese,
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6.2, Optimising CFSLR Parsing Tables,

As we have already noted, CFSLR parsing tables
contain the same number of states as CFLR(0) tables,
For a typicai programming language grammar this
amounts to several hundreds of states, as opposed to
the thousands of states in CFLR(1) tables, The SLR
tables for an ALGOLW grammar, for example, contain
328 states whereas the LR(1) tables are an order of
magunitude bigger - LOO1 stateé.'

Using a compact list representation, Anderson
(1972) found that SLR parsing tables for typical
programming language grammars could be encoded in
two or three thousand bytes, Using a different
representation, permitting rather faster access,Joliat
(1973) used between one and a half and two times as
much space as Anderson., These gquantities are suffic-
ienﬁly small to be tolerable, at least on medium and
large scale machines, but any reduction would be
welcome. Conversely, any more than a modest increase

might well be unacceptable in many applicatiouns,

Now just es in the LR(k) case, CFSLR tables
generally have more states than SLR tables, With
realistic programming language grammars the increases
are often substantial. For example, an ALGOLW grammar
with 13 chain productions has 328 states in its SIR
tables and 519 in its CFSLR tables = an increase of
60%. Anderson (1972) found that the space fequired to



315
encode the tables grew even more dramstically than
the number of states., His SLR tables for ALGOLW
occupieé 2145 bytes while his CFSLR tables required
534 bytes = an increase of 150%. This was in spite
of the fact that several of the encoding techniques
used were especlally designed with E6FSLR tables in

mind,

These observétions strongly motivate an attempt
to apply the optimisation technique of Chapter 5 to
CFSLR tables., Although it is more difficult to
establish than in the CFLR(k) case, CFSLR tables are
sufficiently well behavéd to allow full optimisation
in the sense of Chapter 5. In order to prove this
fact ﬁe need to repeat the argument of Lemmas 5.4
through 5.7 and Theorem 5.8 for the case of CFSLR
tables. The first problem here is that the crucial
Lemma 5.4 is not true of CFSLR tables., Fortunately,

however, we can substitute the following result.

LEMMA 6,16 ' (ef. Lemma 5.4)

Let T = (Q,8, ,g,f) be the CFSLR parsing tables for
(6,C). Thenwhen ¢ ¢ Q and u ¢ Vgl, the action
"£(q,u) is inaccessible on any nonterminal A such that
u ¢ FoLLow(a).
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PROCF. It the action f£(q,u) is inspected when a
nonterminal A 1s on top of the parse stack, then the
‘previous'move made by the parser must have been
REDUCE q where q is some production with A as its
left part. But euch'actiona only occur when the look-

ahead is in the followset of A, The result follows, O

Lemma 5.5 is,1in fact, true of all approximations,

LEMMA, 6,17 (cf. Lemma 5.5 )

Let T = (Q,s, ,g,f) be a set of valid approximate
CFLR(1) persing tables for (G,C). Let e Q and X ¢ V
be such that g(q,x) 1s undefined. Then g{q,x) is

inhccessible.

PROOF, When Algorithm l.4 encounters an undefined

goto entry it halts and declares ERROR. \hen driven

by CFLR(1) tables this circumstance cannot occur

because ali errors are detected during inspection of the
action function, Part (iii) of Theorem 6.3 ensures that
all valid approximate CFLR(1l) tables share this property

and so the result follows., U

The CFSLR version of Lemma 5.6 is rather more complex.
We need not only that (G,C) is CFSLR, but also that it
has Property A and that_G is both SLR and ERFC,
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LEMMA 6,18 (ct. Lemmé 5.6 )

Let @ be _SLR and ERFC and let C be a chain set for G
such that (@,C) is CFSLR and has Property A. lLet

T = (Q,8, g,f) be the CFSLR tables for (G,C), let
X,Y € V satisfy X -= Y and let p,q,r ¢ Q be such
that q = g(p,X) and r = g(p,Y).

Then for each u e V,;l » elther
(1) £(q,u) = £(r,u) or

(11) - (a) £(q,u) = ERROR’ and
(b) u ¢ FOLLOW(X).

.PROOF. The argument used to pro;:e Lemna 5.6 may' be
used to show that if (1) is false then (iia) is true.
The hard part is to prove that (1ib) is also true. To
do this we suppose that . £(g,u) = ERROR and £(r,u) #
ERROR. Now p is @ CFSLR ﬁaréing state and so p=

NAMEOF (CFSLRV(©)) for some © e V', It follows that

q = NAMEOF(CFSLRV(6X)) and r = NAMEOF(CFSLRV(eY)).
Because f£(r,u) # ERROR, CFSLRV(OY) must contain an item
= =[B *ﬁ,,,aa,v] with u e EFFl(p,v), and because
CFSLRV(6X) cannot be enpty (beceuse its name is a parsing
" state) there is aome)‘ ttem A ¢ CPFSLRV(6X). By Theorem
6.10 we deduce that there ex_isf j+ end ¥ such that

2 ¢ SLRV(pm) and A e SLRV(Y ) where P - 6Y and

¥ f OX. Since X - Y it follows that ¥ — 6Y
and then, because (G,C) has Property A, it follows that
m snd ¥ can only differ on their final symbols,
Ve may therefore write B = U and: ¥ = oW where
U - Y and ’w.’ = X =" Y. Now ({u, X1,1Y}) is
a maximally chained pair gnd because G is SLR ( and

therefore both reduced and unambiguous) there must be
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some unique maximal intermediate, say 2 , for this
pair,. Ve then have U -:* Z s X -—:' Z and 2 = Y,

There are three cases to consider :

Case 1: Z=X. HereU -~ 2 | becomes U = X
-which implies that . p =eU =7 X and then,by

Theoren 6.10, - Z ¢ SLRV(p) gives = e CFSLRV(eX).
But this is 1mpossible - for it would imply that £(g,u)
= £(r,u). We cqnclude that this case cannot occur.
Case 2 : I = U. Here X - Z becomes X - U
-but since we cannbt have X = U (because the case above
has shown U -»:' X to be impossible), there must be
some A e V such that X == A — U, Now SLRV(xX)
# % end so if u e FOLLOW(X) it would follow from
‘Lemma 6.13 that = [A -= U.,u] ¢ SIRV(xU). But this
~item conflicts with the non-chain item = , which is
also a member of SIRV(« U), and this contradicts the

premiss that G is SLR. We conclude that u § FOLLOW(X).

Case 3.: 2 #U,Z £X., In this case, U =" 7 and
X =2 imply that U —" A —= Z and X =¥ D = 2

for some A,D ¢ V. . Now because X ¢ SLRV(¢U) and
Z has an action on u it follows by Lenma 6 12 that
u e FOLLOW(U) 'Jhen since smv(«u) B it follows I from
Leuma 6.13 that  [A = Z.,u] ¢ 'SLRV(w 2).

Similarly, if u e FOLLOW(X), it follows that

[D = Z.,u) e SIRV(xZ). These two items must be in
conflict (or else they are the same - which implies that
A = D and this contraedicts the choice that Z is a
maximal intermediste) and this contradicts the premiss
that G is SLR., We conclude that u ¢ FOLLDW(X) and
the proof is complete, [J
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Lemma 5,7 extends directly to all & - approximate
CFLR(1) tables.

LEMMA 6,-12 . (cf. Lemma 5.7)

Let (a,c) have Property A and let T = (Q,s,,g,f) be
the & - approximate CFLR(1) tables for (G, C) where

&