
Appears in Reliability Engineering and System Safety, Vol. 75, No. 2, February 2002, pp. 167–177; Originally presented at the
The 3rd Workshop on Human Error, Safety, and System Development (HESSD’99), Liege, Belgium, 7–8 June 1999.

Using model checking to help discover mode
confusions and other automation surprises

John Rushby
Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA

Automation surprises occur when an automated system behaves differently
than its operator expects. If the actual system behavior and the operator’s
“mental model” are both described as finite state transition systems, then mech-
anized techniques known as “model checking” can be used automatically to
discover any scenarios that cause the behaviors of the two descriptions to di-
verge from one another. These scenarios identify potential surprises and pin-
point areas where design changes, or revisions to training materials or proce-
dures, should be considered. The mental models can be suggested by human
factors experts, or can be derived from training materials, or can express sim-
ple requirements for “consistent” behavior. The approach is demonstrated by
applying the Murφ state exploration system to a “kill-the-capture” surprise in
the MD-88 autopilot.

This approach does not supplant the contributions of those working in hu-
man factors and aviation psychology, but rather provides them with a tool to
examine properties of their models using mechanized calculation. These cal-
culations can be used to explore the consequences of alternative designs and
cues, and of systematic operator error, and to assess the cognitive complexity
of designs.

The description of model checking is tutorial and is hoped to be accessible
to those from the human factors community to whom this technology may be
new.
Keywords: automation surprise, mode confusion, model checking, formal
methods, mental model, human-computer interaction

1 INTRODUCTION

Automated systems sometimes behave in ways that
surprise their operators [22]. These “automation sur-
prises” are particularly well-documented in the cock-
pits of advanced commercial aircraft [6,17,21] and sev-
eral fatal crashes and other incidents are attributed to
problems in the “flightcrew-automation interface” [9,
Appendix D].

Cognitive scientists have proposed that humans con-
struct “mental models” of the world [13]; in particu-
lar, operators and users of an automated system develop
such models of the system’s behavior and use them to
guide their interaction with it [16]. An automation sur-
prise then occurs when the actual behavior of a sys-

tem departs from that predicted by its operator’s mental
model.

Complex systems are often structured into “modes”
(for example, an aircraft flight management system
might have different modes for cruise, initial descent,
landing, and so on), and their behavior can change sig-
nificantly across different modes. “Mode confusion”
arises when the system is in a different mode than that
assumed by its operator; this is a rich source of automa-
tion surprises, since the operator may interact with the
system according to a mental model that is inappropri-
ate for its actual mode.

If we accept that automation surprises may be due
to a mismatch between the actual behavior of a system
and the operator’s mental model of that behavior, then
one way to look for potential surprises is to construct



2 J. M. Rushby

explicit descriptions of the actual system behavior, and
of a postulated mental model, and to compare them.

The discrete behavior of complex control sys-
tems can be described in terms of “state machines,”
which are a formal, mathematical representation that
is amenable to various kinds of automated analysis. It
is becoming accepted that such formal descriptions can
be useful in requirements analysis and other verifica-
tion and validation activities for critical systems [5].
It is also becoming accepted that state machines pro-
vide a natural representation for mental models [12].
Now, if a state machine specification is available for
the actual system, and if we can construct one for a
plausible mental model, then we could, in principle,
“run” the two machines in parallel to see if their be-
haviors ever diverge from one another. What is poten-
tially valuable about this approach is that if the two state
machines have finite state spaces, then a body of tech-
niques from the branch of formal methods in computer
science known as “model checking” [4] can be used to
compare all possible behaviors of the two machines.
If a discrepancy is discovered in the behaviors of the
two descriptions, a scenario can be generated that gives
the sequence of inputs and interactions that manifests
the divergence. This provides the designer or analyst
with information that can be used to bring the design of
the actual system into closer alignment with the mental
model (either by changing its behavior, or by improv-
ing the cues it provides to its operator), or that can be
used to guide the formation of more appropriate men-
tal models through improvements in documentation or
operator training.

This approach can be compared with current prac-
tice, which relies on development of a simulation or
rapid prototype of the proposed design that can be eval-
uated experimentally (e.g., by having test pilots fly sim-
ulated missions). A test pilot may approximate the be-
havior and expectations of a line pilot more accurately
than a hypothesized mental model encoded as a state
machine, but only a limited number of experiments can
be performed in this way, and these will cover only a
small fraction of the possible joint behaviors of the au-
tomation and the pilot. The model checking approach
uses a simple model of the pilot, but then examines
all possible interactions and joint behaviors. The evi-
dence from other applications of model checking (e.g.,
in hardware and protocol design) is that complete ex-
ploration of somewhat simplified models generally de-
tects more problems than partial exploration of the real
thing (as in testing and simulation). This is not to sug-

gest that the model checking approach should replace
experiments with human operators, but that it is likely
to be a useful adjunct that can identify some problems
that may be missed by experiments, and it may also
identify some problems earlier or more cheaply than
experiments.

There are some obvious difficulties with the model
checking approach: the state machine descriptions of
real systems often are not finite-state, or have finite
state spaces that are too large for a model checker to
analyze exhaustively (this may be so, for example, if
the state includes numeric quantities); also, there is no
direct way to access an operator’s mental model for the
purpose of encoding it as a state machine. I am of
the opinion that both these difficulties can be overcome
by abstraction and generalization. Because we are
performing refutation rather than verification (i.e., we
are looking for potential bugs—automation surprises in
this case—not trying to prove their absence) we do not
need to model all the details of the actual system. For
example, to examine mode confusion, we need model
only the mode transitions of the system, not the details
of its behavior within those modes; and to examine the
mode transition at, say, a capture altitude, we need only
to model whether or not the airplane is at or close to the
capture altitude and not its exact altitude.

Similarly, because our goal is to discover error-prone
designs, not to gain psychological insight into human
behavior, we do not need to examine the mental model
of any particular operator. We will be content to check
whether the actual system behavior violates plausible
models and natural expectations (e.g., as suggested by
training materials). I believe that human factors spe-
cialists, in combination with those involved with devel-
oping, analyzing, documenting, and using the system
concerned, should find it quite easy to suggest suitably
generalized mental models.

2 AN EXAMPLE SCENARIO

I describe the proposed method using an example re-
ported by Palmer [17, Case 2]. This example has also
been analyzed by Leveson and Palmer [14]; I compare
their approach with mine in Section 4.

The example is one of five altitude deviation scenar-
ios observed during a NASA study in which twenty-two
airline crews flew realistic two hour missions in DC-9
and MD-88 aircraft simulators. To follow the scenario,
it is sufficient to understand that the autopilot can be in-
structed to cause the aircraft to climb or to hold a certain



Using Model Checking to Detect Automation Surprises 3

altitude through the setting of its “pitch mode.” In VERT

SPD (Vertical Speed) mode the aircraft climbs at the
rate set by the corresponding dial (e.g., 2,000 feet per
minute); in IAS (Indicated Air Speed) mode, it climbs
at whatever rate is consistent with holding the air speed
set by another dial (e.g., 256 knots); in ALT HLD (Al-
titude Hold) mode, it holds the current altitude. In ad-
dition, certain “capture modes” may be armed. If ALT

(Altitude) capture is armed, the aircraft will only climb
as far as the altitude set by the corresponding dial, at
which point the pitch mode will change to ALT HLD; if
the capture mode is not armed, however, and the pitch
mode is VERT SPD or IAS, then the aircraft will con-
tinue climbing indefinitely. The behavior of this sys-
tem is complicated by the existence of an ALT CAP (Al-
titude Capture) pitch mode, which is intended to pro-
vide smooth leveling off at the desired altitude. The
ALT CAP pitch mode is entered automatically when the
aircraft gets close to the desired altitude and the ALT

capture mode is armed (do not confuse the ALT CAP

pitch mode with the ALT capture mode). The ALT CAP

pitch mode disarms the ALT capture mode and causes
the plane to level off at the desired altitude, at which
point it enters ALT HLD pitch mode.

The following scenario description is slightly re-
worded from Palmer’s original in order to fit my ter-
minology.

The crew had just made a missed approach
and had climbed to and leveled at 2,100 feet.
They received the clearance to “. . . climb now
and maintain 5,000 feet. . . ” The Captain
set the MCP (Master Control Panel) altitude
window to 5,000 feet (causing ALT capture
mode to become armed), set the autopilot
pitch mode to VERT SPD with a value of ap-
proximately 2,000 ft. per minute and the au-
tothrottle to SPD mode with a value of 256
knots. Climbing through 3,500 feet the Cap-
tain called for flaps up and at 4,000 feet
he called for slats retract. Passing through
4000 feet, the Captain pushed the IAS but-
ton on the MCP. The pitch mode became
IAS and the autothrottles went to CLAMP

mode. The ALT capture mode was still
armed. Three seconds later the autopilot au-
tomatically switched pitch mode to ALT CAP.
The FMA (Flight Mode Annunciator) ARM

window went from ALT to blank and the
PITCH window showed ALT CAP. A tenth of
a second later, the Captain adjusted the ver-

tical speed wheel to a value of about 4,000
feet a minute. This caused the pitch autopilot
to switch modes from ALT CAP to VERT SPD.
As the altitude passed through 5,000 feet at
a vertical velocity of about 4,000 feet per
minute, the Captain remarked, “Five thou-
sand. Oops, it didn’t arm.” He pushed the
MCP ALT HLD button and switched off the
autothrottle. The aircraft then leveled off at
about 5,500 feet as the “altitude—altitude”
voice warning sounded repeatedly.

An aircraft climbing through its assigned altitude
(and potentially into the airspace assigned to another
aircraft) is colloquially called a “bust,” so Palmer refers
to the scenario above as the “kill-the-capture bust.”
However, the basic problem is present whether or not
it leads to a bust, so I prefer to speak of it as the “kill-
the-capture surprise.” The source of the surprise is the
interaction of the pitch and capture modes and, in par-
ticular, with the way the ALT CAP pitch mode disarms
the ALT capture mode. When the ALT capture mode
is armed, changing the pitch mode between IAS and
VERT SPD, or changing the values set by their corre-
sponding dials, simply changes how the plane climbs
to the desired altitude. When the aircraft gets close to
the desired altitude, however, it autonomously enters
ALT CAP pitch mode and disarms ALT capture mode. If
the pitch mode is then changed to IAS or VERT SPD, the
aircraft will climb without limit in the newly selected
mode, since the ALT capture mode is now disarmed.
The only indication to the pilot that the autopilot is in
this vulnerable combination of modes is that the ARM

window of the FMA changes from ALT to blank.

3 ANALYZING THE EXAMPLE

To see how model checking techniques could reveal
the existence of the kill-the-capture surprise, we first
need to construct a mental model that a pilot might
plausibly employ. Different pilots might have differ-
ent mental models, and we cannot know what they are,
but a plausible basic tenet might be that the pitch mode
controls how the aircraft climbs, and the capture mode
controls whether there is a limit to the climb. Another
plausible basic tenet is that once capture mode is armed,
it becomes disarmed only when the aircraft reaches the
desired altitude (unless the pilot manually disarms it).
Since this mental model makes no mention of the ALT

CAP pitch mode, it obviously differs from the real sys-
tem. This does not necessarily mean that the system



4 J. M. Rushby

harbors a surprise, however, because a mental model
should suppress details considered unnecessary to un-
derstanding how to operate the system. The pilot might
well be aware of the ALT CAP pitch mode and of its
role in leveling the plane off—and may even be aware
that the ALT CAP pitch mode and the ALT capture mode
interact in some way—but could believe this is merely
the implementation of the ideal capture mode assumed
in the mental model. To discover whether a surprise
really does reside here, we need to “run” the state ma-
chines representing the actual system and the mental
model on all possible sequences of inputs and compare
their behavior.

I now present an automated analysis of this exam-
ple using the Murφ (pronounced “Murphy”) state ex-
ploration system developed by David Dill’s group at
Stanford University [7]. Strictly speaking, Murφ is
not a model checker (that term is properly reserved for
tools that test whether a transition system is a Kripke
model for some temporal logic formula [3]), but the
term “model checking” is loosely applied to any tool
that uses (explicit or symbolic) state exploration tech-
niques. Systems are described in Murφ by specifying
their state variables, and a series of rules that indicate
the actions that can be performed by the system and
the circumstances under which they can be performed.
Properties that should hold in some or all states can be
given as part of a Murφ specification (as assertions and
invariants, respectively), and the Murφ system under-
takes a search of all reachable states to ensure that the
given properties do indeed hold. If they do not, Murφ
prints an error trace that describes the circumstances
leading to the violation. Those who have some famil-
iarity with computer programming should find it fairly
easy to interpret Murφ specifications and can think of
Murφ as performing exhaustive simulation of the spec-
ified system, so that all possible behaviors are exam-
ined; this is feasible because the number of states (i.e.,
combinations of values of the system variables) is finite
(although it may be very large). In hardware and pro-
tocol applications, it is routine to apply Murφ to speci-
fications that are thousands of lines long and that have
tens of millions of reachable states.

At the level of abstraction appropriate for our in-
vestigation, the actual behavior of the example sys-
tem can be described in terms of two state variables,
pitch mode and capture armed, which are spec-
ified in Murφ as follows.

Type
pitch_modes: enum
{vert_speed,ias,alt_cap,alt_hold};

Var
pitch_mode: pitch_modes;
capture_armed: boolean;

These declarations specify that pitch mode can
take one of the four values from the enumerated
type pitch modes, and that capture armed is a
boolean. The pitch mode state variable represents
the autopilot’s pitch mode in a direct way,1 while the
capture armed variable encodes whether the ALT

capture mode is armed. The initial state of the system
is specified in the Murφ Startstate declaration as
follows.

Startstate
Begin

clear pitch_mode;
capture_armed := false;

End;

The clear construct chooses some arbitrary initial
value.

Now we can specify the actions of the system by
means of Murφ rules as follows.

Rule "IAS"
Begin

pitch_mode := ias;
End;

This rule corresponds to the pilot engaging the IAS
pitch mode (whether by pushing its button, or entering
a value in its dial is unimportant at this level of abstrac-
tion). It has no guards, meaning that it can “fire” at any
time, and has the effect of setting the pitch mode
state variable to the value ias. The string IAS is sim-
ply the name used to identify the rule.

The HLD and VSPD rules are similar and correspond
to the pilot engaging the ALT HLD and VERT SPD pitch
modes, respectively.

Rule "HLD"
Begin

pitch_mode := alt_hold;
End;

Rule "VSPD"
Begin

pitch_mode := vert_speed;
End;

1I use slightly different names to distinguish the pitch modes of
the Murφ model from those used in the narrative description, but
the intended correspondence should be obvious.



Using Model Checking to Detect Automation Surprises 5

Notice that I do not model the parameters (e.g., speed,
climb rate) used by the various pitch modes, nor the
dials that are used to set these parameters. We are con-
cerned only with the basic mode transitions, so it is ap-
propriate to omit these details. I should also note that
I have no idea whether the specification being devel-
oped here accurately represents the real DC-9 or MD-
88 autopilots—my purpose is only to explain the ap-
proach, not to present an industrial application.

The following rule corresponds to the pilot pushing
the ALT capture mode button. I have chosen to specify
it as a toggle: initially the mode is not armed, pushing
the button arms it, and pushing it again disarms it once
more.

Rule "ALT CAPTURE"
Begin

capture_armed := !capture_armed;
End;

The next rule corresponds to the aircraft approach-
ing the selected altitude. I call the rule near and use
lower case to distinguish it from the upper case names
used for the rules associated with pilot actions that were
presented above.

This rule only has an effect when capture armed
is true, in which case it sets pitch mode to
alt cap and capture armed to false. (Those
familiar with Murφ might wonder why I did not use
capture armed as a guard on the rule; the reason is
that I will later need to modify the rule to incorporate
the mental model and the present arrangement is more
convenient for this purpose.)

Rule "near"
Begin

If capture_armed Then
pitch_mode := alt_cap;
capture_armed := false;

Endif;
End;

The next rule corresponds to the aircraft reaching
the selected altitude when the pitch mode is ALT CAP,
thereby causing a transition to ALT HLD. I originally
specified this as follows,

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
End;

However, we also need to account for the possibility
that the pilot arms ALT capture mode when the aircraft

is already at the selected altitude. This circumstance
is dealt with by the second If-Then clause of the
following revised rule, which disarms the ALT capture
mode and bypasses ALT CAP to enter the ALT HLD pitch
mode directly. In this and in later specification frag-
ments, faint type is used for parts presented previously,
and dark type for the new or changed material.

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
If capture_armed Then

capture_armed := false;
pitch_mode := alt_hold;

Endif;
End;

Some readers may consider the specification of the
last two rules to be excessively loose: for exam-
ple, there is nothing in the specification that excludes
physically impossible sequences of events, such as
arrived followed by near, or several nears in suc-
cession. This looseness is typical in model checking:
by omitting to specify constraints that are enforced by
the physical world, or by other components of the sys-
tem, we allow the specified system to have more behav-
iors than is actually possible. If this less constrained
description does not exhibit the flaws we are concerned
about, then certainly a more tightly specified system
(having strictly fewer behaviors) will not exhibit them.2

Only if we get “false drops” (i.e., apparent errors that
would be excluded if the model was more detailed) will
we need to refine the model.

We have now specified the behavior of the actual sys-
tem and can turn to the specification of an idealization
that constitutes a plausible mental model. A suitable
model could be one where reaching the desired altitude
causes ALT capture mode to be turned off and the pitch
mode to change to ALT HLD; the near event is not sig-
nificant to this mental model.

To specify this, I begin by adding a boolean state
variable called ideal capture that will record the
state of the altitude capture mode in the mental model.
This variable is initialized to false in the modified
Startstate shown below.

2This is true for what are technically called safety properties; it
is not true of liveness properties. All the properties considered here
are safety properties.



6 J. M. Rushby

Var
pitch_mode: pitch_modes;
capture_armed: boolean;
ideal_capture: boolean;

Startstate
Begin

clear pitch_mode;
capture_armed := false;
ideal_capture := false;

End;

The ideal capture mode is toggled by the ALT cap-
ture mode button in the same way as the arming of the
real mode, so I add this to the specification of the ALT
CAPTURE rule.

Rule "ALT CAPTURE"
Begin

capture_armed := !capture_armed;
ideal_capture := !ideal_capture;

End;

The ideal capture mode is unaffected by the near
event, so that rule is left unchanged. If an arrived
event occurs when the ideal capture mode is armed,
then the mode is disarmed. This is specified by adding
a third If-Then clause to the corresponding rule as
follows.

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
If capture_armed Then

pitch_mode := alt_hold;
capture_armed := false;

Endif;
If ideal_capture Then

ideal_capture := false;
Endif;

End;

We now need to relate the ideal capture mode of the
mental model to the modes of the actual system. The
actual system is set to capture the desired altitude if
either the pitch mode is ALT CAP or the capture mode
is ALT. In terms of the Murφ model this condition is
given by the expression

(capture_armed | pitch_mode = alt_cap) .

The modes of the actual system and of the mental
model are consistent with each other if this expression
is true exactly when ideal capture is also true.
We can state this in a Murφ invariant as follows.

Invariant ideal_capture =
(capture_armed | pitch_mode = alt_cap);

At this point, we have constructed specifications for
the mode transitions of the actual system and of the
mental model and stated, as an invariant, the condition
for these to be consistent with each other. We can now
proceed to examine whether any sequence of events can
violate the invariant by causing Murφ to perform ex-
haustive exploration of all the reachable states of the
specification. Murφ does this by systematically firing
the rules of the specification in different orders until ei-
ther an error is found or all possible cases have been
examined. In this example, we receive the error trace
shown in Figure 1.

Error trace for the error:

Invariant "Invariant 0" failed.

Startstate Startstate 0 fired.
pitch_mode:vert_speed
capture_armed:false
ideal_capture:false
----------
Rule ALT CAPTURE fired.
capture_armed:true
ideal_capture:true
----------
Rule near fired.
pitch_mode:alt_cap
capture_armed:false
----------
Rule VSPD fired.
The last state of the trace (in full) is:
pitch_mode:vert_speed
capture_armed:false
ideal_capture:true
----------

End of the error trace.

Figure 1: First Error Trace

This is exactly the scenario that manifested the au-
tomation surprise described in the previous section: the
pilot engages the ALT capture mode, the aircraft ap-
proaches the desired altitude and automatically disarms
the capture mode and engages the ALT CAP pitch mode,
and then the pilot engages VERT SPD pitch mode. At
this point the ideal capture mode is still armed, but that
of the actual system is not. Murφ found this scenario in
0.24 seconds (on a 400 MHz Pentium II with 256 MB
of memory running Linux).

Leveson and Palmer also detected the potential for
this surprise using their method [14] (I discuss the dif-
ferences between their method and mine in the follow-
ing section), and suggested that it could be eliminated



Using Model Checking to Detect Automation Surprises 7

by making two changes to the actual system. (My spec-
ification is organized differently to theirs, so the follow-
ing translates the intent of their changes into the terms
of my specification.)

• Cause the arrived event to engage ALT HLD

pitch mode when the ALT capture mode is armed
(as opposed to when the pitch mode is ALT CAP),
and

• Cause disarming of ALT capture mode to occur
when the pitch mode becomes ALT HLD rather
than ALT CAP.

The intuition is that the ALT CAP pitch mode should be
regarded as engaging a particular control law that deter-
mines how the aircraft flies the capture trajectory, but
the ALT capture mode stays in effect until the desired
altitude is achieved.

The first of the changes above is accomplished in
our specification by deleting the first If-Then clause
in the arrived rule, so that it becomes the follow-
ing (I use a strikeout like this to indicate text that is
removed).

Rule "arrived"
Begin

If pitch_mode = alt_cap Then
pitch_mode := alt_hold;

Endif;
If capture_armed Then

pitch_mode := alt_hold;
capture_armed := false;

Endif;
If ideal_capture Then

ideal_capture := false;
Endif;

End;

The second change requires capture armed :=
false to be removed from all rules that contain the as-
signment pitch mode := alt cap and added to
all rules that contain the assignment pitch mode :=
alt hold. The arrived rule as modified above al-
ready satisfies this condition, but the HLD rule must be
changed as follows.

Rule "HLD"
Begin

pitch_mode := alt_hold;
capture_armed := false;

End;

And the near rule must be changed to the following.

Rule "near"
Begin

If capture_armed Then
pitch_mode := alt_cap;
capture_armed := false;

Endif;
End;

If we cause Murφ to perform state exploration on
this modified specification we obtain the error trace
shown in Figure 2, which highlights a potential surprise
introduced by the changes just made to the specifica-
tion: if the pilot engages ALT HLD pitch mode while
ALT capture mode is armed, the modified actual sys-
tem will disarm the capture mode, while it remains
armed in the mental model (and remained so in the ac-
tual system prior to the change). Inspection of Leve-

Error trace for the error:

Invariant "Invariant 0" failed.

Startstate Startstate 0 fired.
pitch_mode:vert_speed
capture_armed:false
ideal_capture:false
----------
Rule ALT CAPTURE fired.
capture_armed:true
ideal_capture:true
----------
Rule HLD fired.
The last state of the trace (in full) is:
pitch_mode:alt_hold
capture_armed:false
ideal_capture:true
----------

End of the error trace.

Figure 2: Second Error Trace

son and Palmer’s specification indicates that this issue
is present in their specification also, and is not just an
artifact of my encoding. Several interpretations seem
plausible and reasonable for the intended behavior (and
I have no idea what happens in this circumstance on
a real aircraft), so we could modify either the descrip-
tion of the actual system, or that of the mental model,
or both. I choose to suppose that ALT HLD pitch mode
causes the aircraft to hold the current altitude, but that
it should mask rather than disarm ALT capture mode—
which will become active again if the pitch mode is
changed to IAS or VERT SPD. This is consistent with the
current mental model, and the prior system model, so
the description of the actual system should be changed



8 J. M. Rushby

by undoing the change just made to the HLD rule (the
other changes remain in place). This revision to the
specification produces yet another error trace, shown in
Figure 3.

Error trace for the error:

Invariant "Invariant 0" failed.

Startstate Startstate 0 fired.
pitch_mode:vert_speed
capture_armed:false
ideal_capture:false
----------
Rule ALT CAPTURE fired.
capture_armed:true
ideal_capture:true
----------
Rule near fired.
pitch_mode:alt_cap
----------
Rule ALT CAPTURE fired.
The last state of the trace (in full) is:
pitch_mode:alt_cap
capture_armed:false
ideal_capture:false
----------

End of the error trace.

Figure 3: Third Error Trace

This highlights one more potential surprise in our
specification: if the pilot presses the ALT button to arm
the ALT capture mode and later, but before the desired
altitude has been achieved, presses it again, the mental
model indicates that the capture mode will be disarmed.
This will be true of the actual system if the second but-
ton press occurs before the aircraft is near enough to the
desired altitude to engage the ALT CAP pitch mode. But
if the second button press occurs after ALT CAP mode
has been engaged, then the actual system does indeed
disarm the ALT capture mode, but the aircraft will still
be in the ALT CAP pitch mode, and hence still flying a
capture trajectory.3

3This surprise is present, in a different form, in the original spec-
ification as well: if the ALT capture mode button is pressed after
ALT CAP pitch mode has been engaged, then the original specifi-
cation will arm the ALT capture mode (since it will have been dis-
armed when ALT CAP pitch mode was entered), but disarm the ideal
capture mode.

Leveson and Palmer’s specification uses a “push-pull,” rather
than a toggle arrangement for the ALT capture mode button, so this
issue does not arise in their specification. However, I suspect that
something like it must occur because their button seems to hold a

The best resolution to this issue is not obvious, so for
simplicity I simply add a guard to the ALT CAPTURE
rule that will cause ALT button presses to be ignored
when the pitch mode is ALT CAP.

Rule "ALT CAPTURE" pitch_mode!=alt_cap ==>
Begin

capture_armed := !capture_armed;
ideal_capture := !ideal_capture;

End;

With this change, we finally bring the behaviors of
the actual system and the mental model into alignment;
Murφ confirms this as shown in Figure 4.

Status:

No error found.

State Space Explored:

7 states, 41 rules fired in 0.23s.

Rules Information:

Fired 7 times - Rule "arrived"
Fired 7 times - Rule "near"
Fired 7 times - Rule "VSPD"
Fired 7 times - Rule "IAS"
Fired 7 times - Rule "HLD"
Fired 6 times - Rule "ALT CAPTURE"

Figure 4: Murφ Reports Success

The output displays of the system have not been con-
sidered in the treatment presented so far. The quality of
information presented to the operator is a critical factor
in reducing automation surprises and mode confusion,
and should certainly be examined in any comprehen-
sive analysis. As a final illustration, I will indicate how
this can be done using the model checking approach:
the information displayed will be specified as part of
the system description, the way it used by the opera-
tor will be part of mental model, and the interaction of
these elements will be examined as part of the auto-
mated analysis.

An operator does not have access to all the data avail-
able to the actual system, and hence may not always
know when a circumstance arises that calls for a mode
change. Well-designed automation should keep the op-
erator informed of these circumstances through its out-
put displays—conversely, a badly designed system may

state (i.e., “pushed in” or “pulled out”) that is not synchronized with
the internal system state.



Using Model Checking to Detect Automation Surprises 9

make it impossible for the operator to accurately pre-
dict the consequences of certain actions. (Degani and
Heymann describe such a situation in a current autopi-
lot [6].) In addition, operators have limited memory
and attention span and should not be expected to retain
the internal state of their mental model infallibly. Good
output displays should provide information that allows
operators to “reload” their mental state.

We can model an occasionally forgetful operator by
adding a “whoops” rule to our specification as follows.

Rule "whoops"
Begin

ideal_capture := !ideal_capture;
End;

This rule flips the value of ideal capture and is
invoked nondeterministically to model an operator who
not merely forgets the state of his mental model, but
“misremembers” the wrong one. Obviously, Murφ de-
tects numerous errors when this rule is added to the
model without further adjustments.

Let us suppose, however, that the actual system
turns on a light exactly when ALT capture mode is
armed. The pilot’s method of operation is changed
so that, before performing any operation, she sets the
state of the ideal capture mode of her mental model
to be that indicated by the light. This is speci-
fied by adding the assignment ideal capture :=
capture armed to the beginning of the rules that
represent pilot actions—namely, IAS, VSPD, HLD,
and ALT CAPTURE.4 Murφ will again find that the
Invariant fails in numerous circumstances (e.g.,
following the whoops rule). However, the only time it
is really important for the actual system and the mental
model to be in agreement is following any action by the
pilot (so that the pilot can accurately predict the con-
sequences of her actions). This can be accomplished
by replacing the Invariant (which is evaluated after
every rule) by Assert statements in the bodies of the
four “pilot action” rules, as shown in Figure 5.

Murφ reports no errors in this modified specification.
(It is not hard to see by inspection that this must be so.)
Additional experimentation will reveal that the guard
on the ALT CAPTURE rule is still required, and that
the only time ideal capture does depart from the
actual system state is in the near event when this fol-
lows a whoops. We regard this as unimportant, be-
cause it does not lead to a surprise in any action per-

4Because the light displays exactly the value of the state variable
capture armed, we do not need to introduce a new state variable
or function to represent it.

Rule "IAS"
Begin

ideal_capture := capture_armed;
pitch_mode := IAS;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Rule "VSPD"
Begin

ideal_capture := capture_armed;
pitch_mode := vert_speed;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Rule "HLD"
Begin

ideal_capture := capture_armed;
pitch_mode := alt_hold;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Rule "ALT CAPTURE" pitch_mode!=alt_cap ==>
Begin

ideal_capture := capture_armed;
capture_armed := !capture_armed;
ideal_capture := !ideal_capture;
Assert ideal_capture =

(capture_armed | pitch_mode = alt_cap);
End;

Figure 5: The “Pilot Action” Rules Modified to Use the
Display Light

formed by the pilot. Combining this analysis with ear-
lier ones, we conclude that the current design does not
harbor surprises for a forgetful operator who follows
the display light, nor for a nonforgetful one (indepen-
dently of the light).

As noted earlier, in addition to global invariants,
Murφ also allows assert statements in the bodies of
its rules; these provide a way of checking additional
properties, such as those that should hold on mode tran-
sitions (as opposed to when the system is in a mode).
For example, we can add an assert statement to the
rule arrived to check that the pitch mode is indeed
ALT HLD whenever the ideal capture mode is disarmed
as a result of the arrived event.



10 J. M. Rushby

Rule "arrived"
Begin

If capture_armed Then
pitch_mode := alt_hold;
capture_armed := false;

Endif;
If ideal_capture Then

ideal_capture := false;
Assert pitch_mode = alt_hold;

Endif;
End;

This check is satisfied (provided there are no whoops
events) in the final specification presented above,
but detects issues (that were also found by the
Invariant) in earlier specifications.

A notable property of all the analyses performed
here is their simplicity and efficiency. Once the initial
investment has been made to formalize the actual sys-
tem behavior (and this might already have been done
for other requirements analysis purposes), making ad-
justments to the system or mental model, performing
state exploration, and examining the results is the work
of minutes (none of the analyses described here took
more than 0.25 seconds to run). Of course, the spec-
ifications used here have almost trivially small state
spaces (from 7 to 14 states depending on the specifi-
cation) and require very few rules to be fired (from 14
to 96). However, the evidence from other fields of ap-
plication is that state exploration and model checking
techniques scale quite well: it is routine to examine tens
of millions of states with explicit enumeration, and of-
ten vastly more using symbolic methods.

4 DISCUSSION

There is much excellent work in the fields of sys-
tem design, aviation psychology, ergonomics and hu-
man factors that seeks to understand and reduce the
sources of operator error in automated systems. The
work described here is intended to complement these
existing studies by providing a practical, mechanized
means to examine system designs for features that may
be error prone. Human factors and other studies pro-
vide an idea of what to look for, and the work described
here provides a method to look for it. The method uses
existing tools for model checking and state exploration
that have, in other kinds of applications, scaled success-
fully to quite large systems.

Model checking is a member of the class of tech-
niques known as “formal methods,” and there is also
prior work, principally by Leveson and her colleagues,
in applying formal methods to the problems of automa-

tion surprises [15]. Leveson’s work uses an evolving
list of design features (currently there are about 15
items on the list) that are prone to cause operator mode
awareness errors. These features provide criteria that
can be applied to a formal system description in or-
der to root out design elements that would repay ad-
ditional consideration. Leveson and Palmer [14] apply
this approach to the kill-the-capture surprise considered
here. One of the error-prone design features identified
by Leveson is use of “indirect” mode transitions which
occur without explicit operator input. She and Palmer
construct a formal specification of the relevant parts of
the MD-88 autopilot and examine it (by hand) to detect
such transitions. This approach successfully leads them
to discover the indirect pitch mode transition to ALT

CAP, and the confusing interaction between the pitch
and capture modes.

Automation is not a replacement for careful man-
ual review of perspicuous, carefully structured formal
specifications, but it is a valuable adjunct whose value
becomes greater as the specifications get larger and
their analysis correspondingly more difficult. The ex-
ample considered here is almost trivially small, yet
its automated analysis raised an issue that was not re-
ported in Leveson and Palmer’s manual examination—
namely, that the repaired specification causes selection
of the ALT HLD pitch mode to disarm the ALT cap-
ture mode. To be fair, Leveson and Palmer explic-
itly note that their repair to the kill-the-capture surprise
“may violate other goals or desired behaviors of the
autoflight system—the designers would have to deter-
mine this when deciding what solution to use. In ad-
dition, a more sophisticated solution may be required,
e.g., a hysteresis factor may need to be added to the
mode transition logic to avoid too rapid ‘ping-ponging’
transitions between pitch modes.” Nonetheless, the fact
remains that the approach used here found the original
kill-the-capture surprise, found this issue with the re-
paired specification, and found another issue (namely
that pressing the ALT capture mode button after the
pitch mode has changed to ALT CAP does not disarm
the altitude capture)—all with essentially no effort. It
also allowed rapid and inexpensive exploration of an
occasionally forgetful operator and of the efficacy of
displays in mitigating this problem. The ability to
use formal analysis in this manner for active design
exploration is an underappreciated attribute of formal
methods—and one that depends critically on efficiently
mechanized methods of analysis.



Using Model Checking to Detect Automation Surprises 11

Many authors have observed that model checking
and other forms of automated formal analysis can use-
fully be applied to requirements specifications. Indeed,
Leveson and Palmer propose that “the pilot’s mental
model includes a cause and effect relationship between
arming the altitude capture and eventually. . . acquiring
that altitude and holding it” and this phraseology al-
most immediately invites formulation in temporal logic
(such logics provide an eventually modality), which is
the classical application of model checking. A little
thought and experimentation, however, reveals that it
is generally difficult or impossible to formulate a men-
tal model, or the expectations it engenders, within the
limited expressivity of a temporal logic. In the exam-
ple just quoted, it would be necessary to add the caveat
“provided the pilot does not explicitly disarm altitude
capture” and this is not easily stated in temporal logic.
Furthermore, the suggested formulation relates a mode
control issue (“arming the altitude capture”) to an ex-
ternal event (“acquiring that altitude”). In order to ex-
amine this relationship, our formal model would need
to include some treatment (e.g., qualitative physics) for
the notion of an aircraft “climbing” and its relation to
“altitude” that would add greatly to its complexity.

The novelty and utility in the approach used here is
that it moves specification of the desired behavior from
the property/assertion language of the model checker
into its system specification language. That is to say,
the desired property is conceived as a mental model
that is specified as a state machine running in parallel
with the state machine that specifies the actual system.
This seems consistent with representations already em-
ployed in the human factors community [12], and pro-
vides the expressiveness needed to accommodate pos-
sibilities such as the pilot explicitly disarming altitude
capture, while allowing the correctness criterion to be
stated in terms of (idealized) modes rather than external
physical realities (such as reaching a desired height).
The property/assertion language of the model checker
or state exploration system is used simply to state (as
an invariant) the desired correspondence between ac-
tual and idealized modes.

In more technical terms, we are really checking a
simulation or conformance relation between two sys-
tem descriptions (the mental model and the actual sys-
tem). This is a basic capability of “model checkers”
for process algebras, such as the FDR tool for CSP
[18], but must be achieved somewhat indirectly in tools
based on state transition relations such as Murφ. The
approach used here works in simple cases; in more

complicated cases, it may be necessary to use super-
position and an explicit abstraction (or, dually, refine-
ment) relation to connect the two system descriptions
(see [19] for a tutorial explanation).

Other ways to apply formal methods to examination
of human factors issues are exemplified in the work of
Sage and Johnson [20] and of Butler et al [2]. These
specify the behavior of the actual automation as a state
machine in much the same way as here, but specify user
expectations as logical formulas. These are examined
by model checking in the case of Sage and Johnson and
by theorem proving in the case of Butler et al. The
disadvantage to these approaches is that they support
only a simple model of the user; the concept of mental
model arose in psychology (and in artificial intelligence
[10]) precisely because deductive rules were found to
be inadequate models of human cognition.

The expressiveness provided by the mental models
approach opens a number of interesting possibilities for
modeling and analysis in addition to those already illus-
trated.

• We can examine the consequences of a faulty op-
erator: simply endow the operator model with se-
lected faulty behaviors and observe their conse-
quences. The effectiveness of remedies such as
lockins and lockouts, or improved displays, can be
evaluated similarly.

• We can examine the load placed on an operator:
if the simplest mental model that can adequately
track the actual system requires many states, or
a moderately complicated data structure such as
a stack, then we may consider the system too
complex for reliable human operation. We can
use the same method to evaluate any improve-
ment achieved by additional or modified output
displays, or by redesigning the system behavior.
This could provide a formal way to evaluate the
methods proposed by Vakil and Hansman for mit-
igating the complexity of interfaces [23].

• We can examine the accuracy of an operator in-
struction manual by formulating it as a transition
system and comparing it to a similar formulation
of its actual system—just as we formulated and
compared a mental model with its actual system
in the example.

• Javaux and Polson [12] suggest that mental mod-
els have a predictable structure that is due to un-
conscious simplifications that elide parts that are



12 J. M. Rushby

rarely employed. We could take the model sug-
gested by training material, apply the simplify-
ing processes of Javaux and Polson, and check
whether the resulting model (which may be a
fairly good approximation to the mental models
of real operators) is an adequate representation of
the real system.

• We could take a mental model from one system
(e.g., an A320) and check it against a different ac-
tual system (e.g., an A340). Discrepancies could
highlight areas that should be given special atten-
tion in training programs to convert operators from
one system to the other.

• We could extend the approach to multi-operator
systems: for example, the air traffic control sys-
tem, where the controller and the pilot may act
according to different mental models of the same
situation.

A limitation to all these analyses, and to our whole
approach, is that we are modeling only a small fragment
of the cognitive processes involved in human-computer
interaction. Our approach is silent, for example, on
problems that might be due to an operator’s difficulty
in recalling the right mental model, or to excessive de-
mands on an operator’s attention. There is very interest-
ing work by Bowman and Faconti [1] and by Duke and
Duce [8] that applies formal methods to deeper mod-
els of cognition and this allows them to detect different
kinds of issues than the automation surprises described
here. I consider all these approaches to be complemen-
tary and representative of a very promising general di-
rection: the detection of potential human factors prob-
lems by explicitly comparing the design of a system
against a model of some aspect of human cognition us-
ing mechanized formal methods. Models of different
aspects of cognition are likely to reveal different kinds
of problems. The approach described here uses sim-
ple mental models to find design flaws that lead to au-
tomation surprises, and it seems very effective for that
purpose.

In the future, I hope that this approach will be de-
veloped and documented further, and extended in the
directions listed above. I also look forward to evaluat-
ing it on a more realistic example.

Acknowledgments

I am grateful for help and encouragement received from
several people. Comments from Judy Crow improved

the presentation of this material. David Dill suggested
the forgetful operator and a number of the other ex-
tensions listed above. I received very helpful feedback
from talks at NASA Ames and Langley Research Cen-
ters, and at Rockwell Collins. Bill Rogers and Trish
Ververs provided several useful suggestions, and De-
nis Javaux been an inspiring source of information and
ideas.

This work was supported by the Air Force Of-
fice of Scientific Research, Air Force Materiel Com-
mand, USAF, under contract F49620-95-C0044, by
the National Science Foundation under contract CCR-
9509931, and by NASA Langley Research Center un-
der contract NAS1-20334.

REFERENCES

1. Bowman, H. and Faconti, G. Analysing cognitive be-
haviour using LOTOS and Mexitl. Formal Aspects of
Computing, 11(2):132–159, 1999.

2. Butler, R. W., Miller, S. P., Potts, J. N., and Carreño,
V. A. A formal methods approach to the analysis of
mode confusion. In 17th AIAA/IEEE Digital Avionics
Systems Conference, Bellevue, WA, October 1998.

3. Clarke, E. M., Emerson, E. A., and Sistla, A. P. Auto-
matic verification of finite-state concurrent systems us-
ing temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244–263,
April 1986.

4. Clarke, E. M., Grumberg, O., and Peled, D. Model
Checking. MIT Press, 1999.

5. Crow, J. and Di Vito, B. L. Formalizing Space Shut-
tle software requirements: Four case studies. ACM
Transactions on Software Engineering and Methodol-
ogy, 7(3):296–332, July 1998.

6. Degani, A. and Heymann, M. Pilot-autopilot interac-
tion: A formal perspective. In Abbott, K., Speyer,
J.-J., and Boy, G., editors, International Conference
on Human-Computer Interaction in Aeronautics: HCI-
Aero 2000, pages 157–168, Toulouse, France, Septem-
ber 2000.

7. Dill, D. L. The Murφ verification system. In Alur, R.
and Henzinger, T. A., editors, Computer-Aided Verifi-
cation, CAV ’96, Volume 1102 of Springer-Verlag Lec-
ture Notes in Computer Science, pages 390–393, New
Brunswick, NJ, July/August 1996.

8. Duke, D. and Duce, D. The formalization of a cogni-
tive architecture and its application to reasoning about
human computer interaction. Formal Aspects of Com-
puting, 11(6):665–689, 1999.



Using Model Checking to Detect Automation Surprises 13

9. The interfaces between flightcrews and modern flight
deck systems. Report of the FAA human fac-
tors team, Federal Aviation Administration, 1995.
Available at http://www.faa.gov/avr/afs/
interfac.pdf.

10. Halpern, J. Y. and Vardi, M. Y. Model checking vs.
theorem proving—a manifesto. In 2nd International
Conference on Principles of Knowledge Representation
and Reasoning (KR’91), pages 325–334, Association
for Computing Machinery, Cambridge, MA, April 1991.

11. Javaux, D. and Keyser, V. D., editors. Proceedings of the
3rd Workshop on Human Error, Safety, and System De-
velopment (HESSD’99), University of Liege, Belgium,
June 1999.

12. Javaux, D. and Polson, P. G. A method for predicting
errors when interacting with finite state machines. In
Javaux and Keyser [11].

13. Johnson-Laird, P. N. The Computer and the Mind : An
Introduction to Cognitive Science. Harvard University
Press, 1989.

14. Leveson, N. G. and Palmer, E. Designing au-
tomation to reduce operator errors. In Proceed-
ings of the IEEE Systems, Man, and Cybernetics
Conference, October 1997. Available at http:
//www.cs.washington.edu/research/
projects/safety/www/papers/smc.ps.

15. Leveson, N. G., Pinnel, L. D., Sandys, S. D., Koga,
S., and Rees, J. D. Analyzing software specifications
for mode confusion potential. In Johnson, C. W.,
editor, Proceedings of a Workshop on Human Error
and System Development, pages 132–146, Glasgow,
Scotland, March 1997. Paper available at http:
//www.cs.washington.edu/research/
projects/safety/www/papers/glascow.ps
(sic).

16. Norman, D. A. The Psychology of Everyday Things.
Basic Books, New York, NY, 1988. Also available
in paperback under the title “The Design of Everyday
Things”.

17. Palmer, E. “Oops, it didn’t arm.” A case study
of two automation surprises. In Jensen, R. S.
and Rakovan, L. A., editors, Proceedings of the
Eighth International Symposium on Aviation Psychol-
ogy, pages 227–232, The Aviation Psychology Lab-
oratory, Department of Aerospace Engineering, Ohio
State University, Columbus, OH, April 1995. Pa-
per available at http://olias.arc.nasa.gov/
˜ev/OSU95_Oops/PalmerOops.html.

18. Roscoe, A. W. Model-checking CSP. In A Classical
Mind: Essays in Honour of C. A. R. Hoare, Prentice
Hall International Series in Computer Science. Prentice
Hall, Hemel Hempstead, UK, 1994.

19. Rushby, J. Combining system properties: A caution-
ary example and formal examination. Technical re-
port, Computer Science Laboratory, SRI International,
Menlo Park, CA, June 1995. Unpublished project re-
port; included in the Murφ distribution, and also avail-
able at http://www.csl.sri.com/˜rushby/
combined.html.

20. Sage, M. and Johnson, C. Formally verified, rapid proto-
typing for air traffic control. In Javaux and Keyser [11].

21. Sarter, N. B. and Woods, D. D. How in the world did we
ever get into that mode? Mode error and awareness in
supervisory control. Human Factors, 37(1):5–19, 1995.

22. Sarter, N. B., Woods, D. D., and Billings, C. E. Au-
tomation surprises. In Salvendy, G., editor, Handbook of
Human Factors and Ergonomics. John Wiley and Sons,
second edition, 1997.

23. Vakil, S. S. and Hansman, R. J. Approaches to mitigat-
ing complexity-driven issues in commercial autoflight
systems. In Javaux and Keyser [11].

The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air
Force Office of Scientific Research or the U.S. Government.


