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Invisible Formal Methods
For Embedded Control Systems

A. Tiwari, N. Shankar, and J. Rushby

Abstract— Embedded control systems typically comprise con- include model checkingaind abstraction Abstraction is typi-
tinuous control laws combined with discrete mode logic. These cally used to reduce the possibly infinite state space system into
systems are modeled using a hybrid automaton formalism, which a finite state space abstract system, and model checking is sub-

is obtained by combining the discrete transition system formalism . .
with continuous dynamical systems. This paper develops auto- sequently used to exhaustively search through all behaviors of

mated analysis techniques for asserting correctness of hybrid sys- the finite abstraction.

tem designs. Our approach is based on symbolic representation of ~Hybrid systems differ from purely discrete systems in that
the state space of the system using mathematical formulas in an they also contain a continuous component. Such systems evolve
appropriate logic. Such formulas are manipulated using symbolic in continuous time with discrete jumps at particular time in-

theorem proving techniques. . .
It is important that formal analysis should be unobtrusive and stances. The techniques developed for discrete systems are thus

acceptable to engineering practice. We motivate a methodology Not directly applicable. First, the state space now is uncountably
called “invisible formal methods” that provides a graded sequence infinite. Second, a continuous evolution results in uncountably
of formal analysis technologies ranging from extended typecheck- many successor states from a given state of the hybrid system.
ing, through approximation and abstraction, to model checking Furthermore, the problem of checking if a hybrid system ever

and theorem proving. As an instance of invisible formal meth- reach rtain bad state is k to be intractabl d
ods, we describe techniques to check inductive invariants, or ex- eaches a certa ad state is known to be intractable (unde-

tended types, for hybrid systems and compute discrete finite state Cidable) for even simple classes of hybrid systems (for exam-
abstractions automatically to perform reachability set computa- ple, systems whose continuous dynamics involves variables that
tion. The abstract system is sound with respect to the formal proceed at two constant slopésy]).

semantics of hybrid automata. We also discuss techniques for - one approach to overcoming undecidability involves restrict-

performing analysis on non-standard semantics of hybrid au- . . . . .
tomata. We also briefly discuss the problem of translating mod- ing the continuous dynamics of the hybrid system so that suit-

els in Simulink/Stateflow language, which is widely used in prac- able abstractions can be successfully applied to yield conserva-
tice, into the modeling formalisms, like hybrid automata, for which  tive discrete transition systems. Timed automé&jarultirate

analysis tools are being developed. automata ], and rectangular automatad] are some such ex-
Index Terms—Hybrid dynamical systems, Inductive invariants, amples. Another approach is to restrict the discrete transitions
Abstraction. and the continuous flows so that finite abstractions can again

be constructed. The idea of o-minimal hybrid systefig [s
motivated by this.

There is a huge gap between the interesting large and com-
YBRID systems involve a combination of discrete anglex systems that are typically used in practice, and the re-
continuous dynamics and are used for modeling embegtricted and simple systems that are tractable by known auto-

ded control systems. Many of the embedded control systemated analysis techniques. Moreover, the available techniques
are safety critical and require formal guarantees of safe opeage still far removed from the tools engineers most often use in
tion. Formal design and analysis of hybrid system models haiactice to design embedded control systems. As a result, huge
received much attention in the research community recentiynpounts of effort is spent on validating the models through ex-
from both the computer science and control theory worlds. tensive simulation and testing on particular scenarios developed

The systems that have been traditionally studied in the cobwy the engineer. In this paper, we describe a range of formal

puter science community have been discrete. Such systeanalysis technology to incrementally establish properties that
evolve in discrete time steps over a countable state space hnlil for all behaviors of the model, thus replacing the tedious
are formalized usindiscrete transition system3ypical exam- task of testing.

ples include hardware circuit designs, network communicationOur approach is based on using a symbolic representation for
protocols, and software components. Good advances have hienstate space of the system. In contrast to simulation, where
made in the techniques and tools for analyzing discrete tramstate is represented by the numerical values for the state vari-
sition systems{, 24]. Some of the most effective techniquesables, we represent states symbolically using a mathematical

formula over some language. Whereas states are updated using
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I. INTRODUCTION



in software development. The simple notion of types, where the set of allatomicformulas. The seWWFF(X) of first-
each state variable is specified to be either an integer, realooder formulas (oveX) is defined as the smallest set contain-
boolean, can be extended to a more general notion, say tinat ATM (X) and closed under the boolean operations (con-
of non-zero integers, positive reals, and even to more complerction A, disjunctionVv, implication=-, and negation-) and
subsets specified using formulas. Typechecking these mqarentification (existential and universal). The first-order
complex type specifications is equivalent to inductive invariattteoryof reals denoted byRr, is defined as the set of all first-
checking. For discrete transition systems, this can be accoonder formulas over the above signature (and a countable set of
plished by verifying validity of certain formulas, see Sectién variables) that are true over the real numbers. We use the no-
C. In SectionV-D we show how to generalize this to hybridtation ® = ¢ to denote the fact that the (first-order) formula
systems. ¢ is true in the theory of reals. The first-order theory of the
Typechecking is a simple, though powerful, technique foeal closed fields is a complete theory, that is every sentence in
early error detection in designs. However, it might not be suffi¥/ FF (X) is either true or its negation is true in this theory, and
cient to establish all the correctness properties of interest in ike&known to be decidablesfl, 13].
design. A hybrid dynamical system evolves in time via differ- Since hybrid systems will be described using both real val-
ent trajectories through its state space. The complete behavied variablesX and boolean variable§, we extend the set
of the system is given by the set of all its trajectories under af atomic formulas to also include the sgtrue, false} U Q.
possible input vectors. Simulation techniques test single trajdtae resulting first-order theory is then an extension of the the-
tories from this set. An exhaustive search through all the systemy of real closed fields with boolean variables and constants.
behaviors over the state space is required to verify any giv€his resulting theory, denoted By©, is still decidable, since
property of the system. However, for hybrid systems, owing the boolean variables can only take values in a 2-valued do-
the presence of continuous dynamics, it is not clear how thigain {t¢rue, false}. We denote formulas iWWFF (X, Q) by
process, called model-checking, can be done. In SettiBn ¢, ), possibly with subscripts and ugeo denote polynomials
we describe the technique of creating sound finite state abstracthe setQ[X]. We say a polynomial occurs in a formula if
tions for the hybrid system, which preserve the behaviors of ttieere is an atomic formula ~ 0 in ¢. The rest of the notation
system relevant to the property of interest. In the final step, tf@lows the standard practice in hybrid systems literature.
finite state system is model-checked against the property.

The paper is organized as follows. Discrete transition sys- II. DISCRETETRANSITION SYSTEMS
tems, continuous dynamical systems, and hybrid automata arg jiscrete state transition systels is a tuple(Q, Init, t)
formalized in Sectiond, I, andlV respectively. While these

X ; ) - e where @ is a finite set of boolean variable§ denotes the
are mathematical models, in practice tools like Simulink al ountable) set of all valuations of the variabtgs Init C Q
Stateflow from MathWorks Inc. are used to create models Qf - <ot of initial states. antl C Q x Q is a set of transi-
hybrid systems. The issues related to bridging the gap betwggps The semantic§DS], of a discrete state transition system
designs in Simulink/Stateflow and the mathematical formalismsg _ (Q, Init, t) is the collection of all mapping: N — Q
are discussed in Sectidii-A. SectionV is devoted to a de- o '
scription of a broad range of analysis techniques and Séection
presents related work and conclusion.

satisfying
(a) initial condition: #(0) € Init, and
(b) discrete evolution: forall € N, (0(¢),0(i + 1)) € ¢.
The transition relatiort can be specified in many different

A. Notation : o . ]
) ways. Typically, it is given using a guarded command syntax:
We denote the set of natural numbersyrationals byQ,
and reals byR. We use capital letters, lik&, Y, with possible Q) — N4 =el(Q)

subscripts, to denote sets of real variables@rid denote a set

of boolean variables. A valuation of a sgtof real variables is , ' )
an assignment of real values to the variableXiand similarly, 9 € Q whenever the valuatiog makes the guard expression

a valuation of a sef) of boolean variables is an assignment of (@) evaluate to true and’ is obtained fromg using the as-
boolean values (true, false) to the variablegjin We denote signments, on the right-hand side of the arrow above. There is

the set of all valuations ok andQ by X andQ, respectively. On€ assignment; = ¢;(Q) for eachg; € Q. Heree;(Q) is a
Clearly, X is isomorphic taR'*X! andQ is isomorphic ta2/?!. boolean formula over the variablés Note thatg, denotes the

If X and() represent the set of all real and boolean variables Ya'ue Of state variablg; after the transition is completed.
a system, then the s6 x X represents thstate spacef this 1€ guard(Q) can be any boolean formula over the boolean
system. variables inQ). Later, when we consider hybrid systems over

Our formal analysis approach is based on representing sigoleéan variableg) and real variablest’, the guard would be

sets of the state space symbolically by a first-order formula oY formulain F'F(Q, X). Here we have assumegito only

variablesX and@. Such formulas are constructed using Ser{:_ontain boolean variables. In gener@lcould contain integer
bols from a set of function symbols-, —, -}, constant€, and variables, and variables interpreted over finite domains as well.
Y ) 1 Ll

predicate symbol$=, >, >, <, <}. The set of terms over a set

X of variables corresponds to the set of polynomi@|&] over I1l. CONTINUOUS DYNAMICAL SYSTEMS

the variablesX and coefficients fronfQ. The setATM (X), A continuous dynamical systediS is a tuple(X, Init, f)
defined as{p ~ 0 : p € Q[X]and ~€ {=,<,<,>,>}}, whereX is a finite set of variables interpreted over the reals

with the meaning that there is a transition from sigte Q to



R, X = R¥X is the set of all valuations of the variablés, times. In this case, we assume that the velocity of the front car
Init C X is the set of initial states, anfl : X — T7X is a is changing according to an uncontrolliegput a .
vector field that specifies the continuous dynamics. Heéxe We remark here that although we have excluded parameters
denotes the tangent spaceXf We assume that satisfies the and input variables in the formal definition of continuous dy-
standard assumptions for existence and uniqueness of solutioasical systems (to keep the definition simple), they can be eas-
to ordinary differential equations. Note that the continuous dity incorporated into the analysis methods we shall outline later
namical systems we consider here are autonomous, that is, timegectionV. A simulation of the above systems given in Exam-
have no inputs. ples1 and2 for a specific initial valuation for the state variables
The semantics[CS], of a continuous dynamical systemcan be done using available tools, like Simulink. However, mul-
CS = (X, Init, f) over an intervall = [r,,7,] C R is a tiple simulation runs can not provably demonstrate the safety of

collection of mappings : I — X satisfying the control laws. See Examplésand7 for an analysis using
(a) initial condition: o(7,) € Init, and symbolic techniques that reason about the complete state space.
(b) continuous evolution: for alr € (74,7.), (1) =

flo(1)). A. Simulink Simulation Semantics
In case the interval is left unspecified, it is assumed to be the For purposes of simulation, several tools use either a fixed-
interval [0, 00). step or variable-step numerical solver and approximate the dif-

We assume that the flow derivativg, is specified using ferential equation by a difference equation. Assuming the
polynomial expressions over the state variabteshat isf € use of a fixed-step solver with step side the fixed-step
(Q[X])IXI, whereQ[X] denotes the set of polynomials overnon-standard) semantics of the continuous dynamical system
the indeterminates( and coefficients inQ, and|X| denotes (X, Init, f) over an intervall = [r,,7.] is the collection of
the cardinality ofX. These polynomials can be nonlinear iimappingss : I — X satisfying condition (a) from before and
general. the new condition

Example 1:As an example of a purely continuous system(b) continuous evolution: for all natural numbetssuch that
we consider simplified leader control from the design of auto- 0 <n < (1, — 7,)/d, o(74 + (n + 1)6) = o(7, + nd) +
mated highway system83]. Suppose vehicle A is following 5f(o(1y + nd)), ando(r, + nd + &) = o(1, + nd) for
vehicle B in a lane. Leyap denote the distance between the  all0 < ¢’ < 6.
two vehicles,vy be the velocity of vehicle A be the accel-  |n case of a variable-step solver, the variable-step (non-
eration of vehicle A, and, be the velocity of vehicle B. In the standard) semantics of the continuous dynamical system
leader control mode, vehicle A follows vehicle B by suitabI)(X7 Init, f) over an intervall = [r,,7.] is the collection of

adjusting its acceleratiom, based on the sensor readings fomappingss : I — X satisfying condition (a) from before and

gap, vg, v1, andag. Let us assume that the dynamics of thehe new condition

system are given by the following equations: (b) continuous evolution: for alt € (7., 7.], there exists a
d > 0suchthat(r) =o(t — §) + 6f(o(T = 9)).

v = o There is usually an upper-bound &in this case.
ap = —4vg+ 3v1 — 3ag + gap In SectionV, we describe different techniques that handle
gap = v — the continuous dynamics in different ways, based on the what

semantics we wish to use for analysis.
We consider the velocity, of vehicle B as a parameter, that is,
an unspecified symbolic constant. We have changed variables IV. HYBRID SYSTEMS

in the above to makf®, 0, 0, 0] an equilibrium point so that the Hybrid systems involve the interaction of discrete and con-

t.W‘? cars collld(.e.wheryap N —10. Letus say that the N tinuous dynamics. They are formalized using hybrid automata,
tialization condition, or equivalently the condition underwhm@vhich combine a discrete transition system with a continuous

this co<nt2rgl mode 'i t2r(|)ggTehred, |sb|g|ve_n ltw i 0 té\ tiﬂ < dynamical system. An autonomous hybrid automatbsi is a
vo,v1 = 20 A gap = 20. The problem IS to show that the réag,, 1o (o x| nit, ¢, f), whereQ is a finite set of discrete vari-
car does not crash into the car in front, thatigy > —10 at all ables,X is a set of continuous variableByit C Q x X is a set
times. In Exampleg we show how t@rovethis automatically. -

; ) of initial statest C Q x X x Q x X is a set of (quarded) dis-
Example 2:In the same setting as Examglgconsider now crete transitionsf : Q — (X — TX) is a mapping from the
that the following simplified dynamics of the system:

discrete states to vector fields that specify the continuous flow
in that discrete state. We refer fq, x) € Q x X as thestate

L of the hybrid automatoi/ S.
Yo = a1+v1— The semantics of hybrid automata is defined in terms of
gap = v — g discrete and continuous evolutions. Formally, the semantics
of an hybrid automator S = (Q, X, Init,t, f) over an in-
Let us say that the initialization condition, or equivalently theerval I = [7,,7.] is a collection[HS] of runso : I —

condition under which this control mode is triggered, is give@ x X, wherel is a dense interval defined as the multiset union
by gap > 2 andv1 > v0. The problem is to show that the reatU!=}[r/_,,7;] of an ordered collection, called laybrid time

2

car does not crash into the car in front, thatgep > 0 at all trajectory, {[7,, 70}, [0, 1], .., [T _1, 71}, 7], 7]} with 7, =



Ti<tm=1<mn=7<--<7=1<7,="741, K h Ty andz,.,. There are also invariant sets in the two

satisfying modes which make sure that the discrete transitions are taken
(a) initial condition: o(7,) € Init, when they are enabled.
(b) continuous evolution: for all such thatr; # 7,11, the

projectionox of o over X is continuous ovefr/,7;.1] A. Expressive Power of the Modeling Formalism

and for allT € (7{,7;41) such thatr] # 7,41, 0x(7) =  One of the most extensively used tools for modeling, simula-
f(oq(7]))(ox (7)) with o (7) remaining unchanged,  tion, and rapid prototyping of control designs for embedded ap-
(b") forallisuch that = 7,41, 0(7]) = o(7i41), and plications is the Simulink/Stateflow development suite provided
(c) discrete evolution: for all such that) < i <, itis the py MathWorks Inc. Hence, it is of considerable interest to study
case thatoq(r), ox (1), 0q(7]),ox (7)) € t. the problem of translating models in Simulink/Stateflow to the

Here we have usedl, : I — Q andox : I — X to denote the kinds of formalisms for which we are building analysis capabil-
projections oy : I — Q x X so thato (1) = (cg(7),0x(7)). ities. This would offer benefits in early error detection and more
Thus, a hybrid automaton can either make discrete jumpscamplete assurance of the designs in Simulink/Stateflow. But
time points possibly changing its discrete and continuous staités dream is hampered by the lack of formal and rigorous se-
components (condition (c)), or evolve according to the flomantics for the modeling language of this tool. It is potentially
equations in time while keeping the discrete state componesluable, therefore, to provide formal semantics and to develop
unchanged (condition (b)). Condition (b’) allows for the possformal analysis techniques for important features of the model-
bility of multiple discrete jumps at the same time instance. ing language provided by the MathWorks tool.

These are the standard semantics of hybrid automata. HowMathWorks’ Simulink/Stateflow development suite consists
ever, one can consider other options where the continuous dytwo modeling languages: Simulink is used to model the con-
namics are interpreted using the simulation semantics given ei@ittious dynamics and Stateflow is used to specify the discrete
lier. Again, for simplicity, we have assumed that there are rntrol logic and the modal behavior of the system. We have
inputs, parameters, and invariant sets, which can all be handtieloped a formal semantics for the Stateflow modeling lan-
by the analysis methods described later. A parameter behagaage by translating a Stateflow model into a seta@fmuni-
just like other variable except that its value remains unchangeating pushdown automataVe skip the details of this transla-
through a run of the hybrid system. An invariant set for a dision in this paper and refer the reader $g][for details. The one
crete mode specifies a region of state space that the systemraamtrivial feature of this translation was the need of an infinite
not leave while it is in that mode. stack, which we describe briefly.

Example 3:As a simple example of a hybrid system, con- The Stateflow modeling language is based on hierarchical
sider a thermostat that controls the temperatuie® a room. state machines with discrete transitions between states. A State-
The thermostat senses the temperature and turns a heater orflandchart consists of states, transitions between states, events
off if the threshold values;,,,;, andz,,.. are reached, where that enable or disable transitions, and a hierarchy on the states.
0 < Tmin < Tmaz aANATmin, Tmaz € RT. When the heater is A state could itself consist of several substates with transition
off, the temperature of the room decreases and when the hebtstiveen them and can be classified as AND- or OR-state. The
is turned on, the temperature increases according to the follasemantics of Stateflow models is specified informally through

ing dynamics: examples in the Matlab documents. Broadly speaking, an in-
_ . put evente causes execution of the root state. A seatecutes
off + &¢=-Kz on : i=-K(z—h) by firing any of its transitions that can be fired. If none of the

Here, the parameté’ € R* is the room constant and the pa_transitions: can be fired, the state causes execution of its (either
' : one or all, depending on if it is an OR-state or AND-state) de-
ramﬁterh > xm]i”;f"ﬁ” is a real-valued constant that depenOIgcendants. When the descendents have finished executing, the
OnTthg sz(i);l\(l:?;tc; ﬁogiciztesr\./vitch between these two modes qgntr_o .l returpg to the parent stgte. A transition can fire if the
. . o condition on itis true (and the triggering event present). A tran-
given by the following two guarded transitions:

sition fires by inactivating the source state (recursively if it is an
non-leaf AND- or OR-state), performing condition actions, ac-
tivating the destination state, and performing transition actions.
Actions could change the value of a variable or broadcast an
Let us say that the initial condition is given by> z.,,,;,,, A event. Broadcasting an event is like a function call invocation
x < Tmaee and the heater is off. This thermostat examn imperative programming languages. Hence, there is a need
ple can be formally modeled as the hybrid automatbfi = of a global stack to keep track of the control passing informa-
(Q, X, Init, t, f), where@Q = {q:} (here the boolean vari- tion during the execution of a Statechart model. Each state is
able ¢; is true when the heater is on, and false when it imapped onto a pushdown automaton (a pushdown automata is
off), X = {z:1} (herez; is the temperature of the room),a discrete transition system, but with access to an infinite stack)
Init = {(@n = false,x1 = ) : Tmin < T < Tmaz}, and the full Stateflow chart gets translated into a composition
t={(q1 = true,x1 = x,q1 = false,x1 = ) : & > Tyme} U of these pushdown automata, which is itself a single pushdown
{1 = false,z1 = x,q1 = true,z1 = z) : © < Zymin}, automaton.
andf(q1 = true) = —K(x — h) andf(¢1 = false) = —Kx. The informal semantics of Stateflow is clearly different from
Note that this is a parametric hybrid automaton with parameteéh® semantics of Statecharts. Stateflow works only on one

state = off N x < Ty — state’ = on
state = on N T > Tyar — state’ = off



event at a time and there is no notion of “maximal and notion semantics of hybrid systems. Symbolic simulation can be

conflicting” transitions. Event broadcasting is recursive. Morased in different ways to do forward and backward propagation,

over, after an event is processed, control needs to return to thachability computation, invariance checking, and typecheck-

state that generated that event. We need a stack to store itinis

additional information. The communication between different For the standard semantics of hybrid systems, we describe
pushdown automata allows for passing of control between a¢hniques to perform extended typechecking (inductive invari-

two automata and not only between automata adjacent in #et checking) and creating sound abstractions of hybrid models.
hierarchy specified in the original model. This is required folFor hybrid systems described using only polynomial expres-

the translation of important features likapertransitionsand sions, both of these technique can be completely automated. In
directed event broadcasting the Stateflow language. In addi-case of the abstractor, the resulting abstraction is always a finite
tion, the automata share a global pushdown stack that is usedttite discrete transition system, which we model-check using a
keep track of events that have been broadcast. generic explicit state model-checker.

The Stateflow chart represented as a pushdown system caRrototype implementations of the techniques described in
be statically analyzed. By using the algorithm for reachabilithis paper have been built over the Symbolic Analysis Labora-
in pushdown systemsi {], it can be determined if a pushdowntory (SAL) framework. The extended SAL framework provides
system requires a bounded or an unbounded stack depth. a¢pecification language for hybrid automata and models can be
unbounded stack depth corresponds to infinite recursive eveplicitly discretized using a fixed or symbolic step for further
broadcasting in the Stateflow charts. The Simulink/Stateflagnalysis, or they can be analyzed as is using the qualitative ab-
tool detects loops in event broadcasting at simulation time. §@ractor and model-checking technologies.
perform the bounded stack depth analysis, all non-boolean data
variables are abstracted and the analysis is performed on a fi- o )
nite state abstraction. The pushdown system can also be diaSymbolic Simulation
lyzed to detect any nondeterminacy in the Stateflow chart andThe Matlab Simulink tool provides extensive simulation fa-
other such properties. All of this analysis can be performeglity. Simulation refers to traversing one trajectory of the sys-
in an completely automated and non-intrusive way. For soreem behavior from the possible infinite. To run a simulation, the
theoretical results on analysis of recursive state machines, figner must (a) specify initial conditions by giving values of
reader is referred to?]. all state variables, (b) choose a particular input function (in case

The Simulink component of the MathWorks tool suite is useghe system has inputs coming from the environment), (c) give
to model the continuous dynamical component of hybrid sysome default values to all parameters used in the modeling of
tems. However, again the semantics of the Simulink envirothe system, and optionally (d) choose a solver and/or a sample
ment are not formally specified in the MathWorks documentéime for certain blocks. The simulation tool then computes the
tion. But, a large class of Simulink designs can be captured gystem behavior under these specific choices.
ing the continuous dynamical system and hybrid automaton for-Even after doing several simulations with different choices
malisms. Note here that we have a choice on the semanticssi (a)—(d) above, the designer cannot be sure that the system
the continuous dynamics—using either the standard one, or {firks correctly inall possible scenarios. For instance, in the
simulation semantics where the differential equations are djgader control system of Exampesimulation would show the
cretized into difference equations (the discretization paramefthavior of the system under a particular profile of the accel-
is either fixed or left symbolic), the latter is used for Simulinkeration of the car in front. But, safety requires that there be no

models in MathWorks tool suite. crash undeeverypossible acceleration maneuver of the lead-
ing car. Similarly, running simulation on the thermostat model
V. ANALYSIS TECHNIQUES FORHYBRID SYSTEMS of Example3 will show that the thermostat works as desired for

We now describe formal analyses techniques for hybrid syt§e particular values of parametérsK’, n, andz . that
tems. Analysis tools for Simulink/Stateflow or hybrid modelwere chosen for the simulation.
include symbolic simulation, invariance checking, typecheck- Symbolic simulatiomefers to performing simulation on sets
ing, abstraction, and model checking. This tool set providesohstates represented symbolically. Thus, symbolic simulation
graded sequence of formal analysis technologies. On one hiters from regular simulation in two respects. First, it simul-
are completely automated techniques that determine boundgameously traverses a bunch of trajectories instead of a single
recursive event calls and perform extended typechecking. Adajectory through the state space. Second, a set of states is rep-
though such analysis helps in early error detection, it does mesented symbolically rather than explicitly. This allows rep-
provide full verification. Abstraction and invariant generation igesentation of a potentially infinite number of states and sim-
used to make the model amenable for exhaustive search. Thuation of a potentially infinite number of trajectories in one
complete assurance can be provided using theorem proving aythbolic simulation.
model checking. We use the language of first-order logic to symbolically rep-

In SectionV-A, we generalize the notion of simulation toresent sets of states. We recall that a state is a valuation of all
symbolic simulation and show how it can be useful. Symbolibe state and output variables. A set of states can be specified
simulation refers to computing the set of next states reachesing a first-order formula over the state variables. A crucial
from the set of current states using either the continuous or disep in performing symbolic simulation is the computation of
crete transition. We show how this can be done for the simulidte set of all states that are reachable from the current set of



states (represented as a first-order formula)¢(lp, X) is a theory. As seen above, quantifier elimination is a crucial step
first-order formula that represents the current set of states, aimdsymbolic simulation and reachability algorithms. Note that
the QEPCAD tool cannot handle variables that are not of type
V@ X U) — /\i(x,; =ei(Q, X, U)) A real, and hence it can be used only on formulas in which all the
Ailgi = b:(Q, X, U)) non-real variables can be eliminated by suitable preprocessing.
is a guarded transition with guateQ, X, U) and assignments In our applications, the boolean variables are the only non-real
r; = ¢(Q,X,U), ¢ = b;(Q,X,U), where@, X are state variables, and they can be easily eliminated by expansion.
variables and’ is the input set of variables; andb; are expres-  Example 4:Following up on Example®, we now show a
sions over these state variables that evaluate to a real nunijgnbolic simulation step for a variable step discretization of
and boolean constant respectively, then the set of states readhedystem in Exampl2:
after taking this transition is given by

Q. X.,U) [;f((cM) A(Qw@, ,)
i T, = €; ,X, B B

A =b:(Q, X, 0))]. vy =0 +6d; A

vy = Vg + 0(dy 4+ U1 — vp) A

B oo : gap >2 A vy >
/\)/\ ¢+ 3(gap,v1,v0,a1,9) : gap > 2 N v >0 A

'S

For a system represented by a set of guarded transitions, the

set of states reached from the g¢f), X) by one step applica- gap = gap + 6(vr — o) A
tion of a guarded transition can be computed by combining all 0<o6<1
such formulas, one for each guarded transition, by disjunction. ¢, : (gap >2 A v, —vg—gap+2>0 V

The resulting formula, denoted Ipost(4(Q, X)), represents
the set of states reached from theg@p, X) by following one

step of the system. For suitable discretizations of the continyote thats is used as a symbolic discretization time step. Here
ous .dynam|_cs of the hybrid systems, as described in previQyis js obtained from quantifier elimination ap,. We have
sections, this can be done. _ _ _shown only one simulation step in the example above because
Note also that the input variablés are existentially quanti- |y canprovethat gap > 0 always using the results from this
fied, which means no assumption is being made on them. Hoyfe symbolic propagation step. See Exaniple
ever, if the input is known to satisfy cerFain constraints, then e quantifier elimination problem has a high time and space
these can be incorporated as a conjunct in the above formulgggplexity. Consequently, techniques for simplification are re-
well. The existential quantifier in the expression fasst must  quired before the quantifier elimination tool can be used. In
be eliminated to ensure that the formulas do not get arb'”arl%rticular, we perform the following two simplifications:

large very soon, and we dlscus_s th|§ in Sept!ela. d Solving for quantified variable Certain quantified vari-
Other approaches to performing simulation that are not base ables can be easily eliminated by solving for them. For

on thedu.setrc])f elt.tquatnnﬂer ellmlllna'tAlon ptr'ocledure hav:: beeE dl_ls— example, given the equality+ y — z + 5, one can solve
c_ussle t'm . etrl1 er_a(ljure a;s well. tpar |Icutar case o S;ymto 'Cf for z to obtainz = z + 5 — y. Thus, a quantified formula
simulation is the idea of using intervals to represent sets of - ., " o, &(z) is equivalent to the formula

states. The polygonal state space can then be simulated using é(2/z+5—y), wherez /= + 5 —y denotes that we replace
particular numerical methods. There is a need to do an over- all occurrencés of in ¢ by the expression + 5 — y

approximation Whef‘ever the state set is not representable b¥ Logical simplification We can use logical equivalences to
a polygon [[7]. Similarly, level set m'ethods represent the set reduce the size of the formula that is given to the quanti-
of states as level set81] and appropriately compute theost fier elimination tool. One of the tautologies that is very

operator in that representation. useful is(3z : 6(x) A ) o (Jz: 6(z)) A o, if 2
B. Quantifier Elimination does not occur inp. This allows us to move parts of the

' o _ . formula that do not contain the quantified variable outside
_The cylindrical algebraic decomposition (CAD) algo-  the scope of the quantifier, thus reducing the size of the
rithm [13, 21] decides the full first-order theory (equality and quantified formula in the process.

the greater-than relation included) of ordered real closed ﬁeldsFinally

Given a set of polynomials over variables, the CAD proce- ’

dure decomposes the realdimensional space into a finite se

of regions where each polynomial’s evaluation is sign-invariaq

The quantifier elimination procedure for real closed fields is ob-

tained as a side effect of the CAD decomposition. Over the last

25 years, the CAD algorithm has been improved and made more ) _ )

efficient [25,27,19. One such efficientimplementation is avail-C- Invariant Generation and Checking

able via the tool QEPCAD[], which is built over a symbolic ~ Symbolic simulation can be used to compute the reachability

algebra library called SACLIBI1]. region as well. In the-th simulation step, the symbolic simula-
The tool QEPCAD can be used to perform quantifier elimtion procedure yields the set of states that are reached in exactly

nation over the first-order theory of real closed fields and, cohtransitions. Thus, in order to compute the reachable state set,

sequently, it can be used as a decision procedure for the same must collect the set of all states that are reachalistieps

(vo <wv1 A gap+vg—v1 —2>0)

the quantifier elimination procedure is quite sensitive
to the ordering of quantified variables. Logically equivalent
uantified formulagdz3y : ¢(x,y) andJy3z : ¢(z,y) may

ke drastically different time and space resources for computa-



fori = 0,1,2,.... Each successive iteration would then yield'he parameters,,;», Tmaz, andh satisfy the conditiord <
successive approximations of the reachable state set. The exagt, < z.... < h (this is part of the specification of the prob-
reachable state space is obtained only in the condition that tlem). We do not explicitly mention this conjunct in the expres-
process terminates. In case of termination, the set of reachatitns below, but it is implicitly assumed in the computation.
states is obtained as a formula, which by definition is also theStarting with an initial state in which we assume nothing on
strongest invariant for the given transition system. the value ofr and state variables, symbolic simulation gives
Example 5:In Example4 we showed a symbolic simulationthe following:
step for the the leader control system. Assuming the same no-

tation and same formulas’s from before, successive approxi- o true
mationsy);’s of the reachability set would be o1 (Aq) @ = false N 21 < Tppin A g1 = true
vV (3(q) : qn = true N 21 > Tomae N = false
Yo = do = gap=2 A vl =00 Cla) - a = = Jobse)
N Yo V & Vo (3(a1,0) : qn = true A 1 < Typax A
D =
! 0 ! 0<5§1/KA$1:f1—K5(f1—h))
The formulay), is logically equivalentto the formulagap > Vo (3(z1,9) : 1 = false N 1 > Ty A
2 A vl > v0. This logical equivalence can also be shown using 0<6<1/K A xy =12, — Kéxy)

the quantifier elimination decision procedure that is used in th
symbolic simulation steps. This establishes that the formul !
1o is an invariant of the system. The invariafy implies that (q1 = false N (21 2 Tmaz V 71 >0)) V

gap > 0, and this establishes that the rear car never crashés : (g1 = true A 1 <h) V (q1 = false A 1 > 0)

onto the car in front under the given leader control law.

The method outlined above for generating an invariant ad/e do not show the rest of the computation here, but it can be
sertion by computing the exact reachable region using forwhecked that we get the same formula after the second symbolic
symbolic propagation is, in general, not sufficient in man§imu|ation step as well. Thus, the set of states represented by
cases. In some of these other cases, a combination of @pJS an invariant of the system.
proaches based on forward and backward propagation with suitNote that we can get a stronger invariant if we make a
able narrowing and widening might be required. S&§g for strqnger assumpt?on on the parameteAs § is constrained to
the details. For an example of some of these ideas, see &16dn @ smaller neighborhood o, the upper and lower bound
Examples. onz in the invariant gets closer t0,,,,, andz,;,, so thatin the

However, the technology outlined abovesisfficientfor in-  limit, the invariant is(state = on A 1 < @maz) V (state =
variantchecking A formula¢ is an inductive invariant if (i) the off N x> xmm)- o ) _
formula describing the initial states implies the formgland e emphasize here that in this computation, no assumption
(ii) the result of symbolic propagation starting from the formul¥/@s made on (i) the values for the parametess,,, and
¢ (logically) implies the formulap, that is, post(¢) = ¢ is Tmas OF (ii) the initial state of the system.
valid in the theoryRr®. Both of these tests can be done using a
quantifier elimination procedure. In fact, Exampfesnd5 can D. Hybrid Systems with Standard Semantics
also be seen as checking that the formula given as the initialrhe techniques described in SectiowsA and V-C are
condition is an mducjuve !nvar|ant. Note that inductive invarigeneric techniques that have been developed for discrete tran-
ants are over-approximations for the set of reachable states.gjiions systems. Hence, they can be used on hybrid systems
_ Simple invariants on the values of variables can also be spggily when we consider the simulation semantics of the contin-
ified usingtypes Richer type system allows specification 0f,ous components, which allows for a translation of the hybrid
more complex relations between the values of different vadystem model into a discrete transition system model. We now

ables. Invariant checking can be used to perféypechecking describe analysis techniques to deal with the standard semantics
on such rich type systems. The designer can easily annolgt@yprid systems.

his Simulink/Stateflow model by such type information using The procedure to test for inductive invariants for transition
additional Simulink blocks. systems was considered in SectiéiC. Since the same tech-
Toiillustrate that the symbolic propagation method can in fagfque works for discrete transitions of a hybrid system, we now
generatenvariants, we consider the thermostat example.  restrict our attention to proving inductive invariants for contin-
Example 6: The thermostat hybrid system discussed in Exious dynamical systems. LétX) be a formula representing a
ample3 can be symbolically discretized using the variable set of states that we need to test for being inductive over some
which is constrained to be betweernd1/ K. continuous dynamical system. Assume that the fornp(ls)
is of the form\/, v;(X'), where each);(X) is of the form

(g1 = true A (1 < Tpin V 21 < h)) V

q1 = false N 1 < Tppin —  q) = true
g1 = true A 1 > Tmax —  q) = false ) _ .
p; >0 A q; =0 A r; >0,
g =true N T1 < Toaz N 0 >0 AN K6 <1 — /j\j /j\J /j\j
) =x1 4+ 0(—K)(x1 — h)
q1 = false N\ 21> Tmin N 6 >0 N K6 <1 — wherep;, ¢;, andr; are polynomials over the variablés. A
zy =21+ 0(—Kz) sufficientcondition to establish that(X) is inductive over the



continuous dynamics is that for eag¢h, the following implica- The continuous dynamics are mapped onto the abstract sys-
tion be valid inf: tem using qualitative reasoning. We add an abstract transition
(11,19) € tifall of the following conditions hold (for all poly-
i= A\ 20 A Ngi=0n \r=0=7r;>0), nomialsp € P):
j j j (@) if p < 0is a conjunct inyy, then (al) ifR = ¢, = p <0,

wherep;, ¢;, andr; denote the expressions obtained by syrrghenp < 0s aconjunct iny,; (a2) otherwise, eithey < 0 or

) L L o e i p = 0is a conjunct inys;
bohcglly dlﬁerentlatlng the polynomlalpj,qj, andr; with re W) if p = 0is a conjunct inyy, then (bl) ifR = ¥ = p < 0,
spective to the continuous dynamics. To prove that this coMenn < 0 is a coniunct ings; (02) it R = b = p — 0, then
dition is sufficient, note that ip; is positive in a state and the .~ J o, L=p=5

S eI J i : p = 0is a conjunct imps; (b3) if R = 1 = p > 0, then
ﬁbove implication IS true, theg, V.VOUId .b? non-negative, andp > (0 is a conjunct inyy; and (b4) if the valuation gb cannot
encep; would continue to remain positive. The casegpfis

similar. If »; > 0in a state and; = 0 = 7; > 0, thenr; nggg;ﬁﬁiﬁonﬂ}l’ then eithepp > 0,p =0, orp < 0lsa
can not ever be negative. For example, consider a simple ?323 ijfp >0 isQ'a conjunct iy, then (cl) ifR = v = p >0
ponential decay systemm = —z. For this system, ifc > 0 . . L . . -
in the initial state, then it is easily proved that> 0 is an thenp > 0 is a conjunct iny,; (c2) otherwise, eithep > 0 or

inductive invariant using the above sufficient condition sinc%?_r?ésina;tgnsjg??f':f;{es i©'S can be maooed onto an ini
z =0 = & > 0is valid in R. Validity in the theory®, or ®¢ PP an ni-

in general (when we consider hybrid systems), can be checl%lgaglsrit ?J];S;?\tde?tlsmio?%:‘ i%?:g::et;eegsetills or_:_:lr;eeaﬁbes(,:ttrsgt_lon
by using either a suitable extension of the quantifier elimina: q P  seq [

tion procedure described in SectigrB or some other decision Eﬁsiggh; coor;s:]rgg;(ljsablitra:;2/as|tetrrr]1ecrslg|_asllyégr?spt(ranccitzgn the
procedure for these theories. POl -ng ' ! u

by starting with a small seP, of polynomials of interest and
adding to this set the time derivatives of polynomial$inand
E. Abstracting the Continuous Component their derivative and so on. The initial sB could contain, for

An abstraction of a system is any system that exhibits all t§ample, the polynomials that appear in the statement of the
behaviors (trajectories) of the original system, possibly moreroperty of interest that we want to establish for the given con-
Abstract systems are usually smaller and are obtained by stituous system, or the polynomials that occur in the guards of
able generalization or pruning of information from the origimode change transitions for exiting a mode in a hybrid system,
nal system. Abstraction is essential for analyzing systems c&ic. Adding more polynomials t5 results in finer abstractions.
taining a large number of state variables. Since fairly effi- Although the procedure for constructing an abstraction is de-
cient model checking tools are available for searching throughribed using polynomials, the method is general and works for
a large, but finite, (discrete) state space, one of the challengé3er function choices as well. There are two issues to consider
in building analysis tools for hybrid systems is to come up with that case: first, polynomials guarantee that the partition of
suitable abstractions for the continuous components that arethe real space will be finite. For other functions, for example,
fined enough to suffice for proving the properties of interest. trigonometric functions, there could be infinitely many sign-

We construct sound finite state abstractions for continuoumyariant regions. Second, as long as everything is polynomial,
dynamical systems by mapping the uncountable state space iMgocan use a decision procedure for the reals to construct the
a finite state space by an abstraction function. More spec#ibstraction. For more general functions, we might need addi-
cally, if C'S = (X, Init, f) is a continuous dynamical systemtional inference engines to deal with them.
such that X| = n, then then-dimensional real spadR™ is For linear systems, effective abstractions can be constructed
partitioned into zones which are sign-invariant for all polynadsing eigenvectors of the transpose of the matrix specifying
mials in some finite seP, say{pi, ps,...,pm}- The number the continuous dynamics corresponding to real-valued eigen-
of abstract states is bounded #¥ as each polynomial can bevalues. The details of this method will be described in a future
either positive, negative, or zero in each zone. Formally, the geper. However, it is worth pointing out here that this obser-
of state variables) in the corresponding abstract discrete sysation gives a way to go beyond the known decidability results
tem DS = (Q, Init,t) contains exactly one new variable forfor reachability set computation for certain classes of linear sys-
each polynomiap € P. Thus,Q = {g, : p € P}. These tems. In particular, it is known that the reachability sets can be
new variables are interpreted over the domfains, neg, zero}  computed for linear systems specified by (a) nilpotent matrices,
and consequently the s€ of all discrete states is the set(b) diagonalizable matrices with rational eigenvalues, (c) diag-
{pos, neg, zero}< of all valuations of the variable over this onalizable matrices with purely imaginary eigenvalues with ra-
domain. We shall represent any such valuation by the cort@nal imaginary part. In case where even a single eigenvalue
sponding conjunction of atomic formulas. For example, the (a) zero, or (b) real, or (c) purely imaginary, we can create
valuation(g,, — pos, qp, — neg, qp, — zero) will be thought non-trivial abstractions using corresponding eigenvectors. The
of as the formulas; > 0 A ps <0 A p3 = 0. We shall use more eigenvalues are real or purely imaginary, the more refined
such conjunctions and valuations interchangeably. The set ofatiistraction can be created.
conjunctions representing such valuations will also be denotedThe abstraction technique is completely automatic for hy-
by Q. Note that these conjunctions are in the B&FF(X) of brid systems specified using polynomials (possibly nonlinear)
formulas over free variableX. for flows, transition guards, and resets. We are currently inves-



tigating novel approaches to enrich the $eof polynomials are based on symbolic representations and manipulations, they

so that finer abstractions are created for non-linear systemgpesmise to scale more easily to larger systems.

well. We have presented a wide range of formal technologies for
Example 7:For the adaptive cruise control law given in Exhybrid control systems starting from completely automated and

amplel, let [vg, vy, ao, gap]” be the state vector. It is easilyinvisible techniques like static analysis of simple program prop-

established that the the characteristic polynomial ofshe4  erties and symbolic simulation, through extended typechecking,

matrix to abstraction and invariant generation. These analysis tools can

0 0 L0 be embedded into design languages like Stateflow/Simulink to
A= 00 00 provide greater assurance and quick error detection.
*‘11 3 =31 Stateflow design language is based on the concept of hier-

1 00 archical automata from Statecharis], but the semantics of
corresponding to the dynamical system of Exanipis (> + Stateflow diagrams is different from the semantics of State-
312 + 41 + 1 = 0, which has a negative real root. The eigencharts in several ways. There have been efforts at providing
vector of the transposd” of A, corresponding to this neg- semantics to Statechartsd. Hierarchical automata were used
ative real eigenvalue, i3, —r3 — 1,74,1]7, wherers = for this purpose in{9], and a set of several different semantics
I? + 3l andry, = I. Hence, the corresponding polynomiafor Statecharts was given iG .
p = gap — r3v1 + r3vg — v1 + raag iS used to construct an ab- Quantifier elimination tools have been used in the hybrid
straction of the continuous dynamical system. The reason thisstem world in a variety of contexts. Formulas and expres-
is useful is the fact that for this polynomial, the derivativisI  sions over the first-order theory of real closed fields arise natu-
timesp, and for negative real valugthe value op would expo- rally when linear and non-linear control systems are described.
nentially decrease on each trajectory of the dynamical systedany problems in control theory can be reduced to finding so-
The resulting abstraction allows us to prove collision avoidantgtions of systems of polynomial equations, disequations, and
for sets of initial states whenpe > 0 (assuming a bound on theinequalities P2]. Quantifier elimination is also used in obtain-
maximum deceleration). The initial condition specified in Exing decidability results for reachability in safety-critical embed-
amplel satisfies this formula. We have assumed here that ttled systems and hybrid systems][ Many applications, espe-
velocity of the leading cav; is an unspecified symbolic con-cially in mechanical engineering and in numerical analysis, lead
stant. to formulas with trigonometric functions involved]. In fact,
Example 8: Consider the thermostat hybrid model from EXCAD-based quantifier elimination procedures have been used to
ample3. Starting with the seP;, = {z;} of seed polynomials, solve problems regarding stationarity, stability, and reachability
the saturation process adds new polynomials from the speaifi-control system designg&§]. Requiem B(] is a tool for per-
cation of the thermostat and the property to be proved. The fifiatming exact reachability state set computation for linear sys-
set of polynomials generated is tems specified using nilpotent matrices. It uses the quantifier
elimination procedure implemented inside Mathematica. The
computation of the reach set for parametric inhomogenous lin-
Note here that- Kz; + Kh is the derivative ofz; in the heater ear differential systems is done using implicitization and quan-
“on” mode. The second derivative of Kz; + Kh in this tifier elimination in [].
mode would be-K?(h — z1), which is a constant multiple A finite decomposition of the real spad' into open sets
of —Kx; + Kh and hence it is not added to the g&t and points such that each partition element preserves a first-
Using this set of polynomials and the known relationshipsrder formula over reals is crucial not only for getting a de-
on the parameters,,.», tmaz, andh, the abstract system iscision procedure for the first-order theory, but also for obtain-
created. Model-checking the abstract system against the safaty finite abstractions of certain hybrid systen. [ In fact,
property that the temperature is betwegg,, andz,,,... Shows a model-theoretic structure over the reals in which every (first-

P={-Kxi1+ Kh, 1, Tmin — 21, L1 — Tmaaz}

that this property is valid always. order) definable subset B is afinite union of points and open
intervals is called @-minimalstructure. It is shown ind] that
VI. CONCLUSION hybrid systems that are definable over some o-minimal struc-

Due to large scale deployment of embedded processtuge admit finite abstractions. The class of o-minimal structures
in several physical systems, many of which are safety critver the reals includes structures with richer signatures as well.
ical, automated tools for analysis of embedded control sys-The techniques for verification of hybrid systems described
tems is becoming an important and challenging task. Mudahthis paper are being extended in several different ways. First,
work has been done in the design and analysis of hybrid sg®mpositional techniques for creating the abstract transition
tems [L4,7,4,8,17]. This paper describes tools and techniquesystem are being developed. This will make the tools scalable
for performing formal analysis on hybrid models using a syme handle larger system designs. Second, new techniques for
bolic approach to represent states and manipulate these refatentifying interesting polynomials to partition the state space
sentations using formal techniques such as theorem provers arelrequired to create fine abstractions for non-linear systems.
decision procedures. The attractive features of this methoddhe basic premise is that even though the general reachability
ogy is that it avoids the theoretical intractability results by prgeroblem might be intractable, there should be ways to extract
viding a graded sequence of tools to perform incremental ansiHficient, though incomplete, information from the model de-
ysis and provide incremental assurance. Since the technigsesptions to prove the properties of interest for a given sys-



tem. Finally, the abstraction technique relies strongly on ths]

ability to check validity of formulas in a given theory.

If

good decision procedures for this problem can be developgg
for richer theories, then the abstraction method can be used on
non-polynomial systems as well. A unique feature in our wd%o]
of using the decision procedures is that our algorithm is tolerant
to failures of the decision procedure. More specifically, even if
the procedure fails to prove a theorem which was valid, the dpt!
straction algorithm continues to remain sound, though it might
result in weaker abstractions.
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