
Reformatted from Proceedings 7th DoD/NBS Computer Security Conference,
Gaithersburg, Maryland, September 24-26 1984 (pp. 294-311).

A Trusted Computing Base for Embedded

Systems

John Rushby
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

Abstract

The structure of many secure systems has been based on the idea
of a security kernel—an operating system nucleus that performs all
trusted functions. The difficulty with this approach is that the security
kernel tends to be rather large, complex, and unstructured.

This paper proposes an alternative structure for secure embedded
systems. The structure comprises three layers. At the bottom is a
Domain Separation Mechanism which is responsible for maintaining
isolated “domains” (also known as “processes” or “virtual machines”)
and for providing controlled channels for their intercommunication.
The other resources of the system (for example, devices and the more
abstract entities, such as file systems, built upon them) are each con-
trolled by independent resource managers which comprise the second
layer of the system. The applications code provides the third layer.
Components in both the resource management and applications layers
are protected from each other by the domain separation mechanism.
The Trusted Computing Base is composed of the domain separation
mechanism and a reference validation mechanism associated with each
resource.

The benefit of this approach is that it leads to a separation of
concerns: each component of the embedded system performs a single,
well-defined activity and can be understood (and verified) in relative
isolation from all other components. Implementation and language
issues are also discussed.

1



1 Introduction

This paper is concerned with the design of secure computer systems. The
DoD Computer Security Center has established criteria which such systems
should satisfy and has structured these criteria into several divisions ac-
cording to the degree of assurance of security that they confer [6]. Although
some of the criteria are quite specific, the document in which they are de-
scribed (the “Orange Book” [6]) falls (intentionally) short of being a “how
to” manual on secure systems design. Furthermore, although the document
includes a section on the rationale underlying the criteria, many readers con-
tinue to find their motivation obscure and their interpretation difficult. In
this paper, I will present my understanding of the motivation behind some
of the criteria (specifically, those applying to evaluation classes B3 and A1)
and I will provide my interpretation of how they should influence the design
of secure embedded systems—by which I mean systems dedicated to the
support of a single application (I wish to exclude the more complex case of
general purpose systems, although many of my observations will apply to
that class of systems as well).

It is important to stress that these are my personal opinions and inter-
pretations concerning the DoD Evaluation Criteria; they have not yet been
presented to, much less sanctioned by, the DoD Computer Security Center.

2 What’s in a TCB?

There is considerable experimental evidence that conventional computer sys-
tems are not secure. Furthermore, repairing security flaws as they are dis-
covered has proved an inadequate approach to the provision of truly secure
systems. Firstly, many of the flaws in conventional systems reflect funda-
mental inadequacies in their design and their complete repair is infeasible.
Secondly, there is no technique for demonstrating that all the security flaws
have been eliminated from a system not designed with that aim in mind;
penetration testing only reveals the presence of flaws, not their absence.
The only sound approach to the provision of secure computer systems is to
design security into those systems right from the start. Furthermore, the
primary evidence that a system is secure must be based on the analysis of its
design and implementation. The Evaluation Criteria express this as follows:

“Systems representative of higher classes in division B and di-
vision A derive their security attributes from their design and

2



implementation structure. Assurance that the required features
are operative, correct, and tamper proof under all circumstances
is gained through progressively more rigorous analysis during the
design process” [6, p5].

Thus, a secure computer system must contain mechanisms that are suf-
ficient to guarantee its security in all circumstances, and it must be possible
to provide compelling evidence that those mechanisms are entirely adequate
to their task; it is not enough for the mechanisms to be be correct, they
must be seen to be so. Generally speaking, small, simple, and localized
mechanisms are easier to get correct, and more easily shown to be correct,
than large, complex, or diffuse ones. The first task in the design of a secure
system, therefore, is to find a way of structuring it so that its security mech-
anisms are localized as much as possible, and are as small and as simple
as possible. In addition, since the evidence for the security of a system is
to be provided by analysis of its security mechanisms, those mechanisms
must be based on some overall concept of what constitutes security and the
evaluation of those mechanisms must be performed with reference to that
concept.

The Evaluation Criteria refer to the totality of security mechanisms
within a secure system as its Trusted Computing Base (TCB). For Eval-
uation Class B3 and above, it is required that

“... The TCB shall be internally structured into well-defined
largely independent modules.

“... The TCB modules shall be designed such that the principle
of least privilege is enforced.

“... The TCB shall be designed and structured to use a com-
plete, conceptually simple protection mechanism with precisely
defined semantics.1 This mechanism shall play a central role in
enforcing2 the internal structuring of the TCB and the system.
The TCB shall incorporate significant use of layering, abstrac-
tion, and data hiding. Significant system engineering shall be di-
rected toward minimizing the complexity of the TCB and exclud-

1This is an incorrect use of the word “semantics” (which refers to the association of
meaning with language). The word “behavior” seems to be intended.

2This also seems an inappropriate choice of words. Structure is a property of a design
and cannot be “enforced” by a mechanism which is an artifact of that same design. A
better choice of words would be “influencing” or “determining”.

3



ing from the TCB modules that are not protection-critical” [6,
p37].

The “complete, conceptually simple protection mechanism” endorsed by the
Evaluation Criteria is that of a Reference Validation Mechanism (RVM),
which is the name given to a mechanism that implements the concept of
a reference monitor. Unfortunately, the definitions given for these notions
in the Evaluation Criteria are not particularly helpful. We are told that a
reference monitor is

“an access control concept that refers to an abstract machine
that mediates all accesses by subjects to objects” [6, p112],

and that a reference validation mechanism

“validates each reference to data or programs by any user (pro-
gram) against a list of authorized types of reference for that
user” [6, p64].

In order to understand what is intended by these terms, an analogy with
the human world will be helpful. Imagine a bureaucracy that uses untrusted
clerks to process classified information. Each clerk is assigned a level which
is the most highly classified information that he may process: for example, a
Secret level clerk may process information classified as Secret, Confidential,
or Unclassified. The clerks are assigned to offices according to their levels:
all the Unclassified clerks occupy one office, the Confidential ones another,
and so on. The information processed by the clerks is recorded in folders
stored in vaults. There is a separate vault for each security classification: one
contains only Unclassified folders, another contains the Confidential folders
etc. Periodically, a clerk will need to retrieve a folder from a vault, or to
return one. The exits from the clerks’ offices all lead into a central hallway
containing the vaults and patrolled by a guard. A clerk who leaves his office
in order to retrieve information from a vault will be intercepted by the guard
and allowed only to enter a vault with a classification less than or equal to
his own level. Once he has obtained the information required, the clerk will
leave the vault and the guard will escort him back to his office. A clerk who
wishes to deposit information in a vault will be treated similarly, except
that the guard will allow him to enter only a vault with classification greater
than or equal to his own level. The clerks have no memory of their own,
everything they process must be written down on paper; the guard ensures

4



that clerks are empty-handed when they enter a vault classified below their
own level, and also when they leave a vault classified above their own level.

It seems clear that this arrangement provides security in the sense that
no information derived from a folder in a highly classified vault can ever
wind up in a folder stored in a vault of lower classification. The interesting
question here is to enquire what it is about the arrangement that makes it
secure.

Clearly, the guard plays an important role in the security of this system—
he is, in fact, its reference validation mechanism in that he “validates each
reference to data (i.e. folders) by any program (i.e. clerk) against the
type of reference authorized for that program” [6, p64 (paraphrased]. But
is the guard the only characteristic of this system that is necessary to its
security? Clearly not—certain properties of the environment in which he
operates are crucial to his ability to perform his task correctly. Suppose, for
example, that the different offices were not isolated from one another, but
had interconnecting doors. The system would then provide no security at all
since Unclassified clerks could enter the Secret office and could there observe
and record information classified as Secret. Similar problems would arise if
the vaults had interconnecting doors, or if clerks could slip by the guard
and evade his supervision. The Evaluation Criteria address these problems
by citing the following three design requirements which must be met by a
RVM [6, p64].

• The RVM must be tamper-proof,

• The RVM must always be invoked, and

• The RVM must be small enough to be subject to analysis and tests,
the completeness of which can be assured.

These requirements are often referred to as the isolation, completeness and
correctness of an RVM, respectively.

Of these three requirements, only the last (correctness) is really a prop-
erty of the RVM itself; the other two are more properly regarded as prop-
erties of the environment in which the RVM operates. Thus, although the
concept of a reference monitor may serve to guide and motivate the design
of a TCB, it is clear that a TCB must be more than just an RVM. The first
requirement of a TCB is that it should create an environment in which an
RVM can operate securely.

5



The type of environment required for this purpose is one of cleanly sep-
arated “domains” in which untrusted programs can operate with no oppor-
tunity to interfere with each other. Domains cannot be completely isolated,
of course, or there would be no possibility for information flow between
the different security levels at all—the purpose of a secure system is not to
prohibit information flow between different security levels, but to control it.
The Domain Separation Mechanism (DSM) of a TCB must therefore provide
channels for inter-domain communication, but these communication chan-
nels must be under strict control and must be “wired up” correctly. (For
example, there must be no channels directly connecting untrusted domains
of different security levels.) Abstract domains and communication channels
are represented by the isolated “offices” and “vaults” and by the “doors”
and hallways of the human-world example described earlier.

It is interesting to observe that for certain simple systems, domain sepa-
ration and controlled “wiring” of the inter-domain communication channels
may be all that is necessary to provide security: an explicit RVM is not
always necessary. In the example we have been considering, it is conceivable
that a cunning layout of corridors may make it possible to dispense with
the guard altogether—a clerk wishing to obtain information from a vault
would leave his office and find himself in a corridor giving access only to the
vaults that he is allowed to enter. There is an apparent difficulty here in
that in that each clerk is restricted to a different set of vaults depending on
whether he wishes to read, or to write information. This problem can be
overcome by providing different channels for different operations: a Secret
clerk wishing to read information from a vault would exit his office by a door
which gave him access to the Unclassified, Confidential, and Secret vaults,
while one wishing to deposit information would leave by a door leading to
the Secret and Top Secret vaults.

We should now ask whether this scheme of carefully routed corridors is
really any different to the original one involving the guard. I think not: both
schemes are implementations of the reference monitor concept, but whereas
the guard is a run-time mechanism—checking each access as it is about
to occur—the corridor routing approach is applied at system configuration
time.

So, to summarize so far: domain separation is a necessary prerequisite
for the implementation of an RVM. In some simple cases, the RVM can
be “hard-wired” into the routing of the inter-domain communication chan-
nels. (Certain communications processing applications lend themselves to
this approach—see [3, 10] for an example of this type.) In more complex

6



cases, it may be better to use a run-time RVM to check each inter-domain
communication as it occurs.

The question we should now consider is whether a run-time RVM should
be part of the DSM, or a distinct mechanism in its own right. In the former
case, the DSM could monitor each inter-domain communication channel and
consult its in-built RVM before allowing the communication to proceed. In
the latter case, untrusted domains would not be allowed to directly com-
municate with each other at all; instead, they would have to relay their
communication through a special domain containing an RVM. This refer-
ence validation domain would check each communication and pass on only
those that were authorized.

On the surface, the second scheme appears to correspond to a better sep-
aration of concerns, but would also seem inefficient (in that it doubles the
number of communication steps and introduces additional domain swaps).
Further consideration, however, reveals that these are not the only two alter-
natives: there is a third which has certain advantages over both the others.
In order to see this, it is necessary to consider the nature of inter-domain
communication more carefully.

There are basically two reasons why one domain should need to commu-
nicate with another. The first reason is simply for the purpose of passing
information: one domain passes information to another that has need of it.
This style of communication is common in communications processing appli-
cations where messages go through several stages of processing. The second
reason is quite different: it is performed in order to obtain a service from
a domain which encapsulates a resource. Examples of such services include
storing and retrieving files, and providing access to a communications line.
Different kinds of resource naturally provide different kinds of services and
the access control restrictions necessary to enforce security will naturally
differ with the different services. For example, it is necessary to prevent
domains from reading files classified above themselves, and to prevent them
from writing files classified below their own clearance: the reading and writ-
ing of information have different security implications and this is reflected
in the different access control restrictions that apply to the two operations.
For this reason, it seems reasonable to have a separate RVM associated with
each different type of resource; in this way, each RVM can be tailored to the
particular characteristics of the service provided by the resource with which
it is associated.

A counter-argument maintains that all operations on all resources can
be characterized as either read-like or write-like. If this is the case, then

7



only a single RVM is needed: it could operate by first consulting a record of
whether the requested operation is read-like or write-like and then applying
whichever of the two fundamental access control disciplines is appropriate.
The benefit that can be claimed for this approach is that the crucial refer-
ence validation function is localized in a single place. This argument seems
plausible, but it loses much of its force if resource managers (i.e. the domains
which encapsulate resources) have to be trusted. For certain simple kinds of
resource, it is possible to construct resource managers that do not need to
be trusted, but this is possible only if a separate instance of the resource can
be synthesized a for each security level, and if the resource manager does
not retain private state information. (The vaults in our example have these
characteristics.)

In order to understand why it is necessary to synthesize separate in-
stances of a resource at different security levels it will be helpful to return
to the analogy with secure office procedures. Suppose that the only com-
munication between our bureaucracy and the outside world is via a single
telephone line. When the phone rings, an operator answers it and interro-
gates the caller in order to determine his identity and authorized security
level—this could require that the caller gives a secret password, for example.
The telephone operator will then switch the call over the internal telephone
system to an office containing clerks of an appropriate level. It is clear that
the telephone operator must be trusted to perform these tasks correctly. Of
course, we could require that the guard who controls access to the vaults
doubles up as the telephone operator, but this evades the issue. The proce-
dures necessary to operate the telephone securely are quite different to those
concerned with access to the vaults and the principle of separation of con-
cerns indicates that they are best treated separately: the best structured
mechanism is that which uses a separate and trusted telephone operator
(who personifies a resource manager for the telephone line).

To understand the significance of retaining state information in a re-
source manager, suppose that the vaults do not merely contain a haphazard
collection of folders which ordinary clerks can sort through at will, but are
instead maintained as orderly filing systems. This could be achieved by hav-
ing a filing clerk inside each vault who obtains files on behalf of the ordinary
clerks and who stores returned files back in their proper places. In order to
maintain the filing system, each filing clerk is allowed to maintain a direc-
tory recording which file is stored where inside his vault. Now suppose the
Unclassified vault contains, among others, 26 folders of different sizes and
suppose further that one of the ordinary Secret level clerks makes 6 trips

8



to the Unclassified vault and retrieves the 5th, 14th, 9th, 7th, 13th and 1st
smallest folders, in that order. It is not hard to see that the Secret string
“ENIGMA” has been communicated to the Unclassified filing clerk—who
can now manufacture a folder containing this information and hand it to
the next ordinary Unclassified clerk who visits his vault.

These examples should convince the reader that resource managers, such
as the telephone operator and the filing clerks, generally need to be trusted
to perform their functions securely as well as correctly. This being the case, it
is surely most appropriate for each resource to have its own RVM associated
with it—that RVM can then be designed to integrate cleanly with the other
trusted functions of the resource manager.

Summarizing this discussion, I propose that trusted embedded computer
systems should be structured as follows. At the bottom, closest to the hard-
ware, there should be a domain separation mechanism whose purpose is
to divide the system into a number of separate execution domains—virtual
machines, in effect—which are interconnected by carefully “wired” com-
munications channels. It is an engineering decision whether the reference
monitor function at this level is accomplished by the fixed routing of the the
inter-domain communications channels, or by a run-time reference validation
mechanism within the domain separation mechanism.

Above the domain separation layer should come a resource management
layer. Some resource managers will consist of simply the software needed to
encapsulate and control some hardware device (i.e. a device driver). Others
will synthesize more sophisticated resources out of primitive ones—for ex-
ample, a file system may be built on top of a primitive disk resource. The
code that manages each resource should be isolated in one or more domains;
any trusted code must reside in a separate domain from that which is un-
trusted. Care and skill are needed to minimize the amount and complexity
of the trusted code in each resource manager. This can often be achieved
by careful layering. For example, it is a complex task to synthesize a secure
file system directly on top of a raw disk driver. It may be better to first
synthesize securely partitioned “mini-disks” on top of the single physical
disk and to then build the secure file system on top of the secure mini-disks.

Access to all “multilevel” resources must be controlled by a reference
validation mechanism that provides the only outside interface to the services
of the resource. Most often, the reference validation mechanism will be
part of a domain that performs other trusted functions concerned with the
management of the resource.

9



At the top, above the resource management layer, should come the ap-
plication layer comprising the code necessary to tailor the system to the
intended application. The domain separation provided by the domain sep-
aration mechanism must be exploited to separate trusted from untrusted
applications code, and to partition untrusted applications code operating
with different security attributes (e.g. different “levels”).

Within this structure, the Trusted Computing Base consists of the do-
main separation mechanism, together with all domains that perform trusted
functions. These will include the reference validation and other trusted do-
mains from the resource management layer, together with the few (if any)
application-specific trusted domains from the applications layer.

This approach to system structuring is very similar to that employed in
modern operating systems (e.g. Thoth [5] and Tunis [9]) and is in contrast to
the older approach to secure system design in which nearly all trusted func-
tions were combined with the domain separation mechanism to yield a rather
large “security kernel” with little internal structure [1, 10]. The approach
advocated here extends naturally to distributed systems (where domain iso-
lation is achieved using separate processors and inter-domain communication
uses external communications lines) and seems well able to satisfy the sys-
tem architecture requirements of the Evaluation Criteria for B3 systems and
beyond.

3 Implementation and Language Issues

In order to implement a TCB with the structure described in the previous
section, it is sensible to begin with the DSM. One approach is to use physical
domain separation—that is, to use separate processors for each domain. (See
[4, 12] for systems based on this approach.) If, however, a single processor
is to support multiple domains, then we have a choice of compile-time or
run-time separation mechanisms.

The compile-time approach relies on a programing language implemen-
tation to provide separation. In order to be suitable for this purpose, the
chosen programming language must be oriented towards the construction of
programs from inter-communicating, but otherwise isolated, units (such as
“tasks” or “processes”). Modern message-based programming languages for
distributed systems (such as CSP and Gypsy) have this character; languages
based on shared-variable parallelism are not suitable. The problem with
the language-based, compile-time approach to domain separation is that it

10



depends on the correctness of a (generally large and complex) compiler. Al-
though the semantics of the language may indicate that domains with no
explicit communication between them are unable to influence each other,
there is a danger that a compiler bug, or possibly a deliberately planted
Trojan Horse, may permit communication anyway. There is evidence that
some real compilers do contain serious security flaws: one notorious exam-
ple concerns a Fortran compiler that allowed the creation and execution of
arbitrary machine code, while a particularly insidious Trojan Horse is de-
scribed in [13]. Since there is no practical technology for verifying compiler
correctness, the Evaluation Criteria appear not to sanction this approach.

Instead, the Evaluation Criteria for Divisions B and A require use of a
run-time domain separation mechanism. (The full requirements are intro-
duced at the B2 level, but some of the key requirements are present at the
B1 level also.) A run-time domain separation mechanism relies on hard-
ware protection mechanisms to provide domain isolation. The protection
mechanisms provided by currently available hardware are usually based on
multiple CPU states (at least a superviser/user mode distinction is neces-
sary) together with memory management functions. These may range from
the fairly crude (e.g. the fixed set of PAR/PDR registers provided by a PDP-
11/34) to the relatively sophisticated (e.g. the descriptor-based addressing
scheme of the Intel iAPX286). The Evaluation Criteria for Class B2 and
above require hardware protection mechanisms such as these to be present
and to be exploited as follows.

“The TCB shall maintain a domain for its own execution that
protects it from external interference or tampering (e.g. by mod-
ification of its code or data structures). The TCB shall main-
tain process isolation3 through the provision of distinct address
spaces under its control. It shall make effective use of available
hardware to separate those elements that are protection-critical
from those that are not.” [6, p30]

The TCB structure that I am advocating allocates exactly these tasks
to its domain separation mechanism. I will use the term separation kernel
to refer to a run-time DSM which operates in the way described above. In
contrast to a conventional “security kernel”, a separation kernel does nothing
but provide domain separation and this gives it a conceptual simplicity that

3I interpret “process isolation”, in the sense used here, as synonymous with domain
separation.

11



is lacking in a security kernel. The next step is make the implementation
correspondingly simple.

The task of a separation kernel is to manipulate the protection features
of the hardware in order to manufacture separate domains. The kernel must
also provide inter-domain communication and synchronization mechanisms
and should probably hide some of the less attractive hardware features (such
as interrupts—these should be mapped onto the standard inter-domain com-
munication mechanism). By removing all complex tasks from the separation
kernel, each of its remaining functions can be accomplished in a small fixed
number of machine instructions. This makes it possible for the kernel to
run with interrupts masked off—which enormously simplifies the kernel and
contributes greatly to its comprehensibility, since it can now be understood
as a single sequential program.

The functionality of a separation kernel as described here is almost iden-
tical to that of the “nucleus” of any modern operating system [5, 9] and is
therefore based on a well understood technology. The primary difference be-
tween a conventional nucleus and a separation kernel is that the latter must
provide absolutely rigorous separation between its client domains. Consid-
erable simplification is possible in the case of embedded systems since their
process structure is generally static. The separation kernel for an embedded
system need not, therefore, support dynamic domain creation, and can use
very simple domain scheduling strategies. Such a separation kernel should
require no more that a couple of hundred machine instructions in total.

An important question concerns the choice of language in which a separa-
tion kernel should be programmed. Most high-level programming languages
are ruled out immediately since they depend upon a run-time support sys-
tem that is quite often larger than the kernel we wish to construct. Since
the separation kernel is to be the fundamental security mechanism in the
system, its behavior cannot be allowed to depend on any code but its own.
Thus, the kernel implementation language must not require a run-time sup-
port system, it must permit special hardware registers to be named directly,
and it must allow the use of special machine instructions. These requirement
rule out all but assembler and a few system implementation languages, such
as the sequential subset of Concurrent Euclid [9]. Personally, I can see no
reason for using anything other than assembler since the code of a separation
kernel consists almost exclusively of assignments to special hardware regis-
ters (e.g. loading the protection status or the memory management registers)
and special instructions (e.g. those to set the interrupt mask or the processor
status word). The behavior of a separation kernel written in a high level

12



language cannot be inferred from the standard semantics for that language;
its behavior and effects are primarily determined by the characteristics of
the hardware which it manipulates.4 For this reason, it is absurd to suggest
that a separation kernel should be written in a high-level language in order
that it be verifiable. The effect ascribed to the assignment statement x :=
0 by a standard programming language semantics does not begin to address
the real behavior of the program when x is the processor status word! The
task of verifying a separation kernel is rather different than conventional
program verification. A technique for accomplishing the task is described
informally in [10] and more formally in [11]. An application of the technique
is described in [8].

Although a separation kernel must essentially be written in assembler (or
in assembler disguised as a high-level language), one of the merits of the TCB
structure advocated here is that it isolates all the machine dependencies in
the (very small) separation kernel so that the rest of the system can be
written in a high-level language. So the next question concerns the choice
of language to be used in the rest of the system—that is, in the resource
management and application layers. Essentially, any language, or set of
languages, could be used, since each domain may contain whatever run-time
support mechanisms are necessary for languages used within that domain.
Inter-domain communication can be provided by subroutine calls on the
separation kernel interface.

But while it may be possible to use any language(s) whatever, it does not
follow that all languages are equally appropriate. An embedded system pre-
sumably has some overall purpose: all its domains must cooperate towards
that end and must be understood in combination with each other. The pro-
gramming language used should therefore be one which is matched to the
environment created by a separation kernel: that is one of isolated domains
with controlled inter-domain communications channels. Essentially, this en-
vironment simulates that of a distributed system and so the most appropriate
programming languages are those intended for distributed systems. If such
a language is used, then the separation kernel becomes, in effect, part of
its run-time support system and the inter-domain communication facilities
provided by the kernel must correspond to those assumed by the language.
Unfortunately, the design of programming languages for distributed systems

4A simple separation kernel written in the sequential subset of Concurrent Euclid is de-
scribed in [7]. However, I found the assembler code from which it was derived considerably
easier to comprehend.

13



is still in its early stages and for systems to be constructed in the near future,
it will probably be necessary to graft inter-domain communication primitives
onto an existing sequential programming language whose choice is dictated
by other factors.

Design of the inter-domain communications primitives that should be
supported by the separation kernel is an interesting problem (see [2] for a
discussion of communications primitives). Recall that the resource manage-
ment layer of the proposed TCB structure provides services to callers. The
form of communication mechanism that is most appropriate to this form
of interaction is that of a Remote Procedure Call (RPC): the domain re-
questing the service must call the domain that provides (the interface to)
it and must wait until the requested service has been performed and its
results (if any) returned. From the caller’s point of view, the behavior of
an RPC is identical to that of an ordinary procedure call: the fact that
the service is actually provided by a remote domain is invisible. As well as
a simple semantics, RPCs have a simple message-passing implementation
using a “blocking send with reply” and a “blocking receive” [2, 5].

In contrast to the resource management layer, where RPCs provide the
communication mechanism of choice, inter-domain communication in the
application layer may be better served by straightforward message passing
(i.e. “non-blocking” send and receive). However, the implementation of
non-blocking send and receive is more complex than that of their blocking
counterparts, since it requires the buffering of messages that have been sent
but not yet received. To my mind, the implementation of these primitives
is more complex than is desirable within a separation kernel (remember, we
want each kernel operation to execute in a fixed, small number of machine
instructions, so that it will be safe to mask interrupts during the interval).
A compromise approach is possible, however, by providing non-blocking
message passing as a service of the resource management layer. This can be
accomplished using a “queue management” domain that responds to RPCs
containing requests to enqueue a message from one domain to another, or
to dequeue a message from the input queue of its caller.5

5The question of how the messages constituting an RPC call and its reply are actually
moved from one domain to another is an interesting one. The conventional solution
of simply passing a pointer into a global message pool is obviously unsecure. Modern
hardware often provides mechanisms whereby a segment containing a message can be
mapped out of one domain’s address space and into another, but it is not easy to integrate
this mechanism into a high-level programming language. Also, the sanitization of message
buffers required by the Evaluation Criteria [6, p15] renders this solution less attractive (in

14



As well as requiring only a simple, relatively efficient implementation,
the use of RPCs as the basic inter-domain communication mechanism has
another advantage: it can support the use of Ada. It is likely that many
future secure system developments will require use of Ada. Unfortunately,
Ada was designed while hardware and language technology were in tran-
sition [14] and its tasking facilities contain shared-variable features that
are poorly matched to the environment of a distributed system—and to
the environment described here. However, the Ada rendezvous is essen-
tially an RPC mechanism [2] and my suggestion for accommodating Ada
within secure systems development is to use the rendezvous as the (only)
inter-domain communication mechanism. Within each domain, full Ada will
be made available (including unrestricted multi-tasking and shared-variable
communication) by an Ada run-time support system contained within the
domain. Between tasks located in different domains, however, communi-
cations will be allowed only via the rendezvous mechanism, which in this
case will be provided by the separation kernel rather than the standard
run-time support. The integration of the inter-task rendezvous provided
by the separation kernel and the intra-domain communications provided by
the Ada run-time support system should eventually be made as seamless as
possible—though it may require considerable research and development to
reach this stage.

4 Summary and Conclusion

I have described a system structure suitable for implementing secure em-
bedded systems. The structure is comprised of three layers. At the bottom
is a Domain Separation Mechanism which is responsible for maintaining iso-
lated “domains” (also known as “processes” or “virtual machines”) and for
providing controlled channels for their intercommunication. The other re-
sources of the system (for example, devices and the more abstract entities,
such as file systems, built upon them) are each controlled by independent
resource managers which comprise the second layer of the system. The ap-
plications code provides the third layer. Components in both the resource
management and applications layers are protected from each other by the
domain separation mechanism. The Trusted Computing Base is composed of
the domain separation mechanism and a reference monitor associated with

the absence of “write-only” protection). Physical copying of messages from one domain
to another seems the most practicable mechanism.

15



each resource. This approach to system structuring is very similar to that
employed in modern operating systems (e.g. Thoth [5] and Tunis [9]) and is
in contrast to the older approach to secure system design in which nearly
all trusted functions were combined with the domain separation mechanism
to yield a rather large “security kernel” with little internal structure [1,10].

The implementation of a domain separation mechanism is called a sep-
aration kernel. There is little merit in attempting the implementation of
a separation kernel in anything other than assembler; the total size of a
separation kernel should be no more than a couple of hundred machine in-
structions. A message-based implementation of remote procedure calls is
the most appropriate choice for the inter-domain communication mecha-
nism to be provided by a separation kernel. More complex communications
mechanisms can be provided as services of the resource management layer.

The resource management and application layers can be written in any
high level language. It is proposed that Ada can be accommodated by
mapping the inter-task rendezvous onto the inter-domain remote procedure
call provided by the separation kernel.

The approach advocated here extends naturally to distributed systems
(where domain isolation is achieved using separate processors and inter-
domain communication uses external communications lines) and seems well
able to satisfy the system architecture requirements of the Evaluation Cri-
teria for B3 systems and beyond.

References

[1] S. R. Ames Jr. Security kernels: A solution or a problem? In Proceed-
ings of the Symposium on Security and Privacy, pages 141–150, IEEE
Computer Society, Oakland, CA, April 1981.

[2] G. R. Andrews and F. B. Schneider. Concepts and notations for con-
current programming. ACM Computing Surveys, 15(1):3–43, March
1983.

[3] D. H. Barnes. The provision of security for user data on packet switched
networks. In Proceedings of the Symposium on Security and Privacy,
pages 121–126, IEEE Computer Society, Oakland, CA, April 1983.

[4] T. A. Berson, R. J. Feiertag, and R. K. Bauer. Processor-per-domain
guard architecture. In Proceedings of the Symposium on Security and

16



Privacy, page 120, IEEE Computer Society, Oakland, CA, April 1983.
(Abstract only).

[5] D. R. Cheriton. The Thoth System: Multi-process Structuring and
Portability. Operating and Programming Systems Series. North-
Holland, 1982.

[6] Department of Defense Trusted Computer System Evaluation Criteria.
Department of Defense, December 1985. DOD 5200.28-STD (super-
sedes CSC-STD-001-83).

[7] P. F. Fisher. An operating system security kernel. Master’s thesis,
Computing Laboratory, University of Newcastle upon Tyne, England,
September 1982.

[8] B. A. Hartman. A Gypsy-based kernel. In Proceedings of the Sympo-
sium on Security and Privacy, pages 219–225, IEEE Computer Society,
Oakland, CA, April 1984.

[9] R. C. Holt. Concurrent Euclid, the UNIX System, and TUNIS.
Addison-Wesley, 1983.

[10] John Rushby. The design and verification of secure systems. In Eighth
ACM Symposium on Operating System Principles, pages 12–21, Asilo-
mar, CA, December 1981. (ACM Operating Systems Review , Vol. 15,
No. 5).

[11] John Rushby. Proof of Separability—A verification technique for a
class of security kernels. In Proc. 5th International Symposium on Pro-
gramming, Volume 137 of Springer-Verlag Lecture Notes in Computer
Science, pages 352–367, Springer-Verlag, Turin, Italy, April 1982.

[12] John Rushby and Brian Randell. A distributed secure system. IEEE
Computer, 16(7):55–67, July 1983.

[13] K. Thompson. Reflections on trusting trust. Communications of the
ACM, 27(8):761–763, August 1984.

[14] P. Wegner. Capital-intensive software technology. IEEE Software,
1(3):7–45, July 1984.

17


