Reformatted from Proceedings 7th DoD/NBS Computer Security Conference,
Gaithersburg, Maryland, September 24-26 1984 (pp. 120-136).

The Security Model of Enhanced HDM

John Rushby
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

Abstract

The Enhanced HDM Specification and Verification System being
developed at SRI International includes an “MLS Checker” that auto-
matically verifies the security of a certain class of system specifications.

This paper gives a brief and informal overview of the security model
on which the MLS checker is based and discusses its application and
its relationship to other security models and to the requirements of the
DoD Trusted Computer System Evaluation Criteria.

1 Introduction

SRI’'s Enhanced HDM Specification and Verification System will include a
subsystem known as “The MLS Checker” that determines whether system
specifications are consistent with the DoD Multilevel Security (MLS) policy.
In order to do this, the MLS Checker embodies certain assumptions about:

e The “meaning” of specifications written in Revised Special (this is the
specification language of Enhanced HDM),

e The sort of systems whose specifications are to be checked, and

e The interpretation of “security” that is appropriate to that class of
Systems.

The first of these assumptions concerns the semantics of Revised Special
and will not be discussed here; the other two assumptions constitute the
security model of Enhanced HDM and are the subject of this paper. The
security model of Enhanced HDM is the same as that of “Old” HDM, which
was developed by Feiertag, Levitt, and Robinson in 1977 [4] and which

provided the basis for the original MLS Checking Tool developed by Feiertag
[3]. The description of the model has been improved over the years (notably
by Goguen and Meseguer [5]); the informal presentation given here is based
on the current technical description [13]. It should be stressed that it is
only the MLS Checking component of Enhanced HDM that has this (or
any other) security model built into it; the rest of the HDM system is a
general specification and verification environment that may be used to state
and verify arbitrary system properties—including those derived from other
security models.

Security models are abstract descriptions of computer systems that con-
centrate on matters relating to the protection and security of information.
Such models are helpful in two aspects of the system design process: syn-
thesis and analysis. By emphasizing just the features relevant to security, a
security model can serve to clarify and guide the design (i.e. synthesis) of a
secure system; and, by providing a formal basis for the notion of “security”,
a model can provide the foundation needed to conduct a rigorous informal
analysis, or a formal verification, of the security of a system design. Because
of its application to the design of the MLS Checker, it is this second aspect
that is emphasized in the security model for Enhanced HDM.

As indicated above, a security model has two components: the first
embodies assumptions about the sort of systems that are to be considered,
while the second defines a notion of security that is appropriate to that class
of systems. I will call these, respectively, the system and the security
components of the model. The utility of a model is closely related to
the realism of the assumptions that constitute its system component; the
correctness of a model is a function of its security component.

In order to understand what is meant by the “utility” and “correctness”
of a model, it is necessary to understand how a system is verified with respect
to a security model. Essentially, verification consists of a demonstration that
the system is a valid interpretation of the model; that is to say, one must
establish a correspondence between the elements of the system and those of
the model and must show that the elements of the system interact only in
ways that are consistent with the model. A model is of limited utility if few,
if any, systems of interest can be shown to be consistent with it; a model is
incorrect if a system that has been shown to be consistent with the model
fails, nonetheless, to meet its security requirements.

Since one of the main purposes of a security model is to capture secu-
rity requirements formally and unambiguously, there will generally be no
independent formal description of a system’s security requirements against

which to evaluate the correctness of its model. Furthermore, testing is a
notoriously unreliable technique for discovering subtle flaws in a system,
and this is especially true in the case of security—where flaws may become
manifest only under conditions of sophisticated and deliberate abuse. Thus
there is no reliable way of determining whether a system meets its security
requirements other than by verifying its compliance with a formal security
model. It follows that incorrect security models cannot be countenanced:
they just have to be right.

The best way to ensure that a model is correct is to make it so simple
that it can be totally comprehended by suitably skilled persons. In this way,
the correctness of a model can be established by the social process of peer
review—just as the correctness of a mathematical theorem is established.
This requirement for simplicity argues for very abstract security models:
ones from which all irrelevant issues, and all details peculiar to a given
system, have been stripped away so that the single issue of security is isolated
and exposed to scrutiny.

Unfortunately, the desire for highly abstract security models conflicts
with one of the realities concerning their application. In practice, the demon-
stration of consistency between a system and its security model is rarely
accomplished in a single step—the “gap” between them is just too great to
bridged so simply. (The details of the interpretation would be so complex
that they would, themselves, be prone to error). Instead, it is generally
an abstract specification of the system that is verified with respect to a
security model. The step of showing that the actual system is a valid in-
terpretation of its verified specification is generally performed informally.
(Formal techniques do exist, but they are hugely expensive). The informal-
ity, and possible unreliability, of this second step raises the possibility that
undetected security flaws may be introduced during the implementation of
a secure specification. In order to reduce the likelihood of such flaws, it is
desirable that the specification should be “close” to the implementation—
so that the complexity of the informal verification step is reduced as much
as possible. In particular, the security mechanisms to be employed in the
implementation should be described, in all essential details, in the specifi-
cation. Formal verification of the specification with respect to a security
model, followed by informal verification of the system with respect to the
verified specification, then gives considerable confidence in the security of
the final system.

The desire to verify detailed, concrete, system specifications argues for a
detailed, highly concrete, security model—since otherwise the interpretation

from model to specification becomes complex and error-prone and we will
be back where we started. Unfortunately, however, such concrete security
models often raise the very doubts they are meant to allay: if the model
is highly detailed and its definition of security correspondingly so, then one
naturally wonders whether that definition is correct. The discovery of subtle
quirks and outright flaws in certain well established security models shows
that these doubts are not idle [9,15].

Thus we are confronted with a dilemma: in order to be sure that it is itself
correct, a security model should be simple and highly abstract; but in order
that it can be used to verify usefully detailed system specifications, a model
must be detailed and concrete. In my view, the correct escape from this
dilemma is through the horns: rather than argue that abstract models are
superior to concrete ones, or vice versa, we should recognize the need for both.
Having said that, however, I also claim that abstract models should be given
primacy. My reason is that abstract models can be used to verify the
correctness of concrete ones—this is accomplished by showing that the
axioms of the abstract model are provable as theorems of the more concrete
one. Furthermore, although abstract models cannot be used directly to
verify the security of a detailed specification of a system’s implementation,
they have a useful role to play in verifying an abstract specification of its
interface. This is useful in its own right, since a system may be unsecure
for (at least) two reasons: either its specification may include inherently
unsecure operations (i.e., its interface specification may be unsecure), or
its mechanisms may fail to correctly implement otherwise secure operations.
It is somewhat heavy-handed to detect flaws of the first kind using models
intended to detect those of the second kind. For example, it is surely better
to discover immediately if a file system contains operations that permit
unclassified users to read classified files, rather than wait until the internal
mechanisms of the file system are found to be inconsistent with a concrete
security model. An abstract security model can be used to perform the
useful task of verifying the security of system interface specifications before
resources are committed to its implementation.

The security model of Enhanced HDM is a highly abstract one. Its merits
are its simplicity and elegance: it is easy to see that it is correct (as far as it
goes—and I will discuss the issue of its completeness later). Its applications
are the verification of system interface specifications (performed automat-
ically using the MLS Checker of Enhanced HDM), and the verification of
more concrete security models (currently performed by hand). An informal

description of the HDM model is given in the next section; technical details
may be found in [13].

2 The Model

As explained in the introduction, there are two components to a security
model: the system and the security components. The system component
of the HDM security model is a conventional finite automaton. That is to
say, a computer system is regarded as a “black box” that consumes input
“tokens” one at a time and, with each token consumed, changes its own
internal state in a manner that depends upon its current state and the value
of the input token consumed. At the same time, an output token, whose
value is determined in the same way, is emitted and returned to the user
who sent the input token that initiated the activity. The internal state of
the system is not visible outside; all that can be observed is its input /output
behavior.

This automaton model captures the essential characteristics of many
types of systems, and system components, quite accurately. Consider, for
example, a file server that receives requests from users to save and retrieve
files and that returns files and status information to users in response to
those requests. The requests sent to the file server can be identified with the
input tokens of the model, while the results that it returns can be identified
with the output tokens. The internal state of the file server consists of the
file system that it maintains. The receipt of a request from a user will cause
it to update the file system on the basis of information sent with the request,
and to return a result determined by the contents of the file system and the
nature of the request.

We now need to add a security component to this system model. The
first step is simply to interpret the system model a little differently. Instead
of tokens being sent by, and returned to, human users directly, we now rec-
ognize that those users may be supported by untrusted computer systems
or processes. Whereas a human with legitimate access to classified informa-
tion may be trusted not to reveal that information to unauthorized persons,
a computer system cannot. We indicate that the users of the system are
now identified with untrusted computer systems or processes by using the
term subject instead of “user”. We associate a sensitivity label with
each subject to indicate the clearance of the (human) user identified with
that subject. The sensitivity labels are assumed to be partially ordered by a

dominates relation! that defines the security policy to be enforced by the
system. This policy requires that no information may flow from one subject
to another unless the clearance of the recipient dominates that of the sender.
The heart of the security component of the HDM security model is the way
in which it gives a precise definition to what it means for information to
“flow” from one subject to another.

This definition is beautifully simple: an input from one subject causes
information to flow to another subject if the outputs subsequently seen
by the second subject are different from those that it would have seen if
the input concerned had not been present. The security component of the
HDM model then simply requires that information may flow, in the sense
just defined, from one subject to another only if the clearance of the recipient
dominates that of the sender.

In the case of the file server example, a request to delete a file obviously
causes information to flow to all those subjects who may subsequently de-
termine that the file has been deleted. But our definition of information
flow is much stronger than this: it says that information flows to all sub-
jects for whom the file server will subsequently behave differently than it
would have done if the delete-file request had not been issued. Thus, if the
delete-file request causes some disk space to become free and another subject
can subsequently discover that the amount of free space has changed, then
information has flowed to that subject from the one that sent the delete-file
request—and this is to be allowed only if the clearance of that subject dom-
inates that of the subject that sent the delete-file request. It can be seen
that this information-flow characterization of security is very powerful: it
embraces covert storage channels (though not timing channels) as well as
direct disclosure.

I claim that this formulation of what is meant by security captures
clearly, and correctly, the intent behind other formulations of the prop-
erty. There is, however, a serious charge that can be brought against the
model. The charge is that a valid security model should be based on estab-
lished government regulations regarding the handling of classified informa-
tion. This would suggest the introduction of objects as the repositories of
information “within” the system state and, by analogy with the regulations
of the “pen and paper” world, we should demand that objects be labelled

'Security Level Sq is said to dominate security level So if the hierarchical classification
of Sy is greater than or equal to that of S9 and the non-hierarchical categories of Sq
include all those of So as a subset [2, p110].

with the sensitivity level of their contents (i.e. their classification) and
that subjects may only read objects whose classifications are dominated by
their own clearances. My objection to this approach is that the regulations
that would be taken as the starting point in the construction of our model
are not a statement of the intent of security procedures, but are a particu-
lar set of mechanisms that are appropriate for safeguarding security in the
“pen and paper” world. In effect, they are a security model whose (un-
stated) system component is a set of assumptions about the way in which
the “pen and paper” world operates. Computer systems do not correspond
to these assumptions (they are not passive entities like paper and vaults)
and this invalidates the security component of the “pen and paper” model.
That this is true is manifest by the need to introduce additional axioms
(e.g. the “x-property” [1]) into those computer security models that follow
this approach.

The attempt to base computer security models closely on established
regulations is a laudable one; my objection is to taking this approach as
a starting point—for then we have no “higher-level” notion of security to
appeal to in cases where these mechanisms prove inadequate. The “trusted
processes” of the Bell and La Padula model [1] are a case in point. These
processes are not constrained by the *-property because they are trusted not
to violate the intent of that model property. The problem is then to establish
the security of these processes in the absence of a precise description of just
what the “intent” of the model is: because the Bell and La Padula model
describes a particular set of security mechanisms, it provides no guidance in
cases where its mechanisms prove inadequate.

Instead of identifying security with a particular set of mechanisms, I
argue that it is preferable to first enunciate a principle of security that
attempts to get at the intent behind such mechanisms. Once this has been
done, we can introduce particular security mechanisms into our model—
mechanisms based on government regulations—and attempt to verify them
with respect to our more abstract model. If this attempt succeeds, then
we have the satisfaction of knowing that two fairly independent efforts to
formalize the same set of concerns have converged on the same (and therefore
presumably correct) point; if it fails, then investigation of the discrepancy
between the models will sharpen our understanding of the issues concerned
and may lead to the discovery, and subsequent correction, of errors in one
or both of them. I will describe an experiment of this kind later.

Although I claim that the HDM security model, as formulated so far, pro-
vides a useful definition of security, it is too abstract to give much practical

guidance in the construction or analysis of secure systems. The treatment of
a computer system as a “black box” with no internal structure is not helpful
to those who must design or analyze the internal mechanisms of a computer
system. Furthermore, the definition of information flow is quantified over
all sequences of future state transitions: that is, information is considered
to flow from one subject to another if the presence of an input from the first
subject can cause any change whatever in the subsequent behavior of the
system as perceived by the second. What we would really like is a charac-
terization of security that applies to single state transitions, rather than to
sequences of transitions.

Both these deficiencies in the most abstract formulation of the model can
be remedied by adding more structure to its system component. Instead of
treating the system state as a “black box” with no internal structure, we will
now assume that the system state is a record of the values held in objects.
We will further assume that each object is assigned a fized sensitivity label
called its classification. We also need a little more terminology: we will say
that the individual steps performed by the system are called operations.
An operation consumes an input token, causes a state change, and produces
an output token. The sensitivity level of an operation is taken to be that of
the subject that sent the input token that invoked it.

Given these elaborations to the basic model, it is possible to prove the
following result.

Theorem: A system is secure if each of its operations satisfy the following
three conditions.

1. The output produced by an operation at sensitivity level | depends
only on the values of objects whose classifications are dominated by .

2. An operation at sensitivity level [changes only the values of objects
whose classifications dominate .

3. If an operation changes the value of an object at classification [, then
the new value assigned to the object depends only on the prior values
of objects whose classifications are dominated by 1.

This result is the one on which the MLS Checker is built. I will discuss
its interpretation and application in the next section.

3 Applications

The theorem quoted at the end of the previous section provides the basis
for the MLS Checker of Enhanced HDM, and for a similar tool developed
earlier by Feiertag [3]. These tools process system specifications that have
been augmented with information concerning the sensitivity labels associ-
ated with the objects and operations defined in the specifications and then
check the specifications of the operations to see that they comply with the
three conditions stated in the theorem. This checking involves the generation
and proof of putative theorems (called verification conditions) concern-
ing relationships among the sensitivity labels of the operations and objects
defined in the specification. The Checker also ensures that the specifications
are sufficiently complete that they define the behavior of the system under
all conditions. Individually, the conditions that need to be checked are con-
ceptually simple, but they are so numerous and detailed that it is unreliable
and uneconomic to attempt the process by hand—it is the existence of au-
tomatic MLS Checkers that make this a viable method of security analysis.
SRI’s original MLS Tool [3] has been used in the analysis of several opera-
tional systems, including Honeywell’s SCOMP [14]. This section considers
what is accomplished by such analysis.

The first point to note is that, as stated earlier, it is only the interface
specification of the system that can be verified in this way. Because the
model requires all objects to be assigned fized classifications, it does not ad-
dress one of the major problems faced in the development of secure systems:
the design and verification of mechanisms that permit system resources to
be multiplexed securely among entities belonging to different security classi-
fications. In effect, the HDM model assumes that each security classification
operates in its own virtual system. It is possible to modify the security model
so that the security classifications of objects are not fixed (the Mitre Cor-
poration has built flow analyzers that do this) but this does not completely
solve the problem. Instead, the correct solution to the problem is, in my
view, to deny that there is one! Checking interface specifications for security
is an important process in its own right. Ensuring that those interface spec-
ifications are implemented correctly is an equally important, but different,
problem that is best approached as a separate issue using techniques (based
on more concrete security models) that are specialized to that problem.

The next point to note is that the system component of the HDM se-
curity model assumes that input tokens (i.e. requests for operations to be
performed) are “tagged” with their correct sensitivity labels. As I have

explained earlier, this is a reasonable assumption for certain “application
level” systems, or system components, such as file servers. It is not a valid
assumption, however, for really basic system components such as an operat-
ing system nucleus. This is the component at the heart of a security kernel
that establishes and maintains “process isolation through the provision of
distinct address spaces” as required by the DoD Trusted Computer System
Evaluation Criteria [2] for Evaluation Classes B1 and above. Requests ar-
riving at the interface of the operating system nucleus are not associated
with sensitivity labels provided by some outside agency: it is the task of the
nucleus to establish this association. Also, operations do not arrive at the
nucleus in an orderly, one at a time, fashion. Instead, it is the responsibility
of the nucleus to respond to asynchronous interrupts and to establish the
orderly transmission of operation requests to the processes that it supports.
In short, the nucleus creates an environment for its client processes that is
consistent with the HDM security model, while it itself operates in a far
more complex and demanding environment. Once again, I do not see it as
a weakness of the HDM model that it does not address these issues—that
is the task of other, specialized security models [6, 10].

Just as it does not address the issue of the secure implementation of
verified interface specifications, nor the security problems of an operating
system nucleus, so the HDM security model does not confront security issues
other than disclosure through information flow. In particular, the discre-
tionary aspects of security policy are not addressed, nor those of inference
and aggregation. Neither are the problems of specialized systems and com-
ponents such as databases and downgraders considered. Specialized models
are needed in all these cases.

In summary, the HDM security model focuses on just one aspect of the
general security problem—but within that limited domain, it does a pretty
good job. For the rest, let us have lots of specialized security models that
each focus on an individual problem with comparable clarity and precision,
and let us learn how to combine these different models in ways that give
comprehensive guidance and assurance to the developers of trusted computer
systems.

4 Comparison with other Models

One of the most influential of security models is the one developed by Bell
and La Padula [1]. Recently, some security flaws have been found in the

10

model [9, 15]—some of its rules have been found to admit covert storage
channels. In this section, I will show how the attempt to verify the Bell
and La Padula model with respect to the HDM model provides a systematic
technique for detecting such flaws.

In order to verify the Bell and La Padula model, we must demonstrate
that it is a valid interpretation of the HDM model. The details of this
demonstration are quite complex, since the two models use different mathe-
matical formalisms. The following is a very informal, outline description of
the process; those who desire the technical detail are referred to the appro-
priate reports [11,12].

The Bell and La Padula security model is a concrete one, in that it
describes explicit security mechanisms. Basically, the system state is parti-
tioned into two components: the value state and the protection state.
The first of these is the (usual) record of the values stored in objects, while
the second records the current and maximum security level of each subject,
the classification of each object, and the type of access each subject is al-
lowed to each object. In the simplest case, only two types of access need be
distinguished: read and write. If a subject has read access to an object,
then it may use the value of that object when computing the output of an
operation or the value to be stored in an object; it may only change the
value of an object if it has write access to that object. These mechanisms
are assumed to be provided by the system’s “hardware”.

The operations of the system are divided into two classes: the (regular)
operations, and the rules. Operations access only the value state and are
constrained by the “hardware” in the manner described above; operations
correspond to the ordinary functions like “add”, “load” and “store” etc.
Rules, on the other hand, access only the protection state; they perform
functions such as “give this subject read access to that object”, and “change
the classification of this object to that level”.

The security component of the The Bell and La Padula model identifies
security with the following two (slightly simplified) conditions:

simple security property: a subject may have read access only to objects
whose classifications are dominated by its own clearance, and

*_property: an untrusted subject may have write access only to objects
whose classifications dominate its own clearance.

It is quite easy to prove that these two conditions imply those of the theorem
given earlier—the simple security property (henceforth abbreviated to ss-

11

property) guarantees the first and third conditions in the statement of the
theorem, while the *-property guarantees the second. Thus we deduce that
the Bell and La Padula model is consistent with the HDM model in the case
of the regqular operations. The rules are a different matter, however.

Bell and La Padula gave a representative set of rules (based on those
found in Multics) and argued that they were secure because they preserved
the ss- and the *-properties. However, covert storage channels have sub-
sequently been discovered in some of these rules. (A channel in the rule
change-subject-current-security-level is described in [9], channels in the rule
change-object-security-level are described in [11,15]). These channels arise
because the ss- and *-properties only consider the problem of information
flow through the walue component of the system state—the possibility of
information flow through the protection state is not considered explicitly.?
If one attempts to prove that the rules of the Bell and La Padula model
are secure with respect to the HDM model, then the system state of the
HDM model must be identified with the conjunction of both the value and
the protection states from the Bell and La Padula model and the proof fails
because certain of the rules permit unsecure information flows through the
protection state. Although I have described this process as one performed
by hand, it is possible (though I haven’t tried it, nor thought through all
the details) that it could be accomplished mechanically by constructing a
specification of the Bell and La Padula model in Revised Special and then
submitting it to the MLS Checker.

The lesson to be learned from this exercise is that the construction of
concrete security models is a difficult and error-prone task and that informal
review may not be an effective technique for uncovering subtle problems
or oversights in such models. (The Bell and La Padula model is nearly
ten years old, yet Millen and Cerniglia, who attribute the discovery of the
covert storage channel in the rule change-subject-current-security-level to
P.S. Tasker of the Mitre Corporation, observe that this channel was found
only “recently” [9].)

As I noted earlier, the rules present in the Bell and La Padula model were
based on functions found in Multics. In order to model other systems, it
may be necessary to introduce different rules that correspond more closely

2In fact, many of the rules perform checks additional to those necessary to preserve
the ss- and *-properties. The effect of these checks is to prevent covert storage channels
that would otherwise have arisen, but the model does not explain why these checks are
necessary, nor how to construct them systematically. It is the inadequacy of the checks in
the two rules named above that admit the covert storage channels.

12

to those present in the systems of interest. For some application areas,
completely specialized security models have been developed (see [7,9] for
examples), and this trend is likely to continue as novel applications are con-
templated. In all these cases, whether they are new variations on established
models, or completely new models, it is highly desirable that some objective,
formal analysis of their correctness should be undertaken. In many cases, it
seems that part of this analysis can be accomplished by verifying these new
models with respect to the HDM model.

In comparison with other security models, the HDM model is much more
abstract: it has no security mechanisms built in. However, these other
security models can often be viewed as more detailed elaborations of the
HDM model. Establishing this connection formally is a good way to evaluate
some aspects of the correctness of these other models.

5 Relation to the DoD Trusted Computer System
Evaluation Criteria

The DoD Trusted Computer System Evaluation Criteria [2] require the use
of a formal security model for Evaluation Class B2 and above. For Evalu-
ation Class Al and beyond, formal methods are required in the analysis of
covert channels (Paragraph 4.1.3.1.3) and a combination of informal and for-
mal techniques must be used to demonstrate consistency between the Formal
Top-Level Specification (FTLS) and the model (Paragraph 4.1.3.2.2). The
Glossary to [2] provides some guidance on what constitutes an acceptable
security model:

“... to be adequately precise, such a model must represent the

initial state of a system, the way in which the system progresses
from one state to another, and a definition of a “secure” state of
the system.

43

. the model must be supported by a formal proof that if the
initial state of the system satisfies the definition of a “secure”
state and if all the assumptions required by the model hold,
then all future states of the system will be secure.”

A theorem satisfying the requirement of the second paragraph in this quota-
tion is often called a Basic Security Theorem after a theorem of that name
due to Bell and La Padula. A significant criticism of this requirement is
that a Basic Security Theorem says essentially nothing about security—as

13

McLean [8] demonstrated by proving just such a theorem for a model that
clearly violates any reasonable notion of “security”.? In fact, it should be
clear that if ® is any effectively decidable property of the system state, then
an analog to the Basic Security Theorem can be constructed for that .
As McLean observed, a Basic Security Theorem is really a property of the
finite-state system model employed (in that states can be indexed to sup-
port proof by induction), rather than of the particular definition given for
security.

Bell and La Padula actually made very modest claims for their Basic
Security Theorem (and made no subsequent use of it after they had proved
it). They observed merely that it established:

“the relative simplicity of maintaining security: the minimum
check that the proposed new state is “secure” is both necessary
and sufficient for full maintenance of security” [1, p21].

In my view, the intent behind the requirements stated in the DoD Criteria
is sound, but the particular requirement for a Basic Security Theorem is
poorly chosen. If I may be permitted to interpret the intentions of the
authors of that document, I would say that their real requirement was for a
concrete security model. A concrete model is one, such as that of Bell and
La Padula, that describes particular security mechanisms, as opposed to the
HDM model, which describes only security policy. A security mechanism
must obviously maintain some state information (recording who may access
what, and in what way), and not all states will be equally “secure”. Thus,
it is natural (indeed, necessary) for a concrete model to prescribe a set of
“secure states” and a set of rules which are proven (by a Basic Security
Theorem) to be sufficient to guarantee that all state transitions are secure-
state-preserving.

The identification of a set of secure states and the proof of a Basic Secu-
rity Theorem do not, however, guarantee that a model enforces a useful form
of security—they simply establish the internal consistency of a set of secu-
rity mechanisms. A separate (preferably formal) justification is required in
order to establish that those mechanisms enforce a more abstract statement
of required security policy. As I have already observed, the HDM security
model will serve well in this latter capacity.

Given that the verification of compliance between an actual system and
its FTLS will be performed only informally, the requirement that a con-

3Basically, McLean turned the *-property around, so that subjects may transfer infor-
mation from higher to lower classification levels.

14

crete security model be used for the verification of the FTLS is entirely
reasonable—for we certainly wish to be sure that the security mechanisms
of the system are included in the formal stage of its analysis. Nonetheless,
and as noted earlier, the security verification of interface specifications pro-
vided by the MLS Checker of Enhanced HDM can also make an important
contribution to overall security assurance, especially since it is the only for-
mal technique able to detect covert storage channels. It would seem that
the DoD Computer Security Center accepts this view since the verification
of the Honeywell SCOMP kernel was largely accomplished with the aid of
the MLS Checker of “Old” HDM. Also, the HDM security model continues
to apply in those cases where the mechanisms of a concrete model prove in-
adequate, and trusted process are found to be required. Clarification of the
Center’s requirements and guidelines on all these topics would be welcome.

6 Summary

I have given an informal description of the security model employed by the
MLS Checker of Enhanced HDM. This model is a highly abstract one that
has no particular security mechanisms built in. The model gives a precise,
formal definition of an information-flow interpretation of security that covers
covert storage channels as well as direct disclosure. The model is so simple
that there can be no doubt about its correctness. The applications of the
model are the verification of system interface specifications and the analysis
of more concrete security models.

References

[1] D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition
and Multics interpretation. Technical Report ESD-TR-75-306, Mitre Corpo-
ration, Bedford, MA, March 1976.

[2] Department of Defense Trusted Computer System FEvaluation Criteria. De-
partment of Defense, December 1985. DOD 5200.28-STD (supersedes CSC-
STD-001-83).

[3] R. J. Feiertag. A technique for proving specifications are multilevel secure.
Technical Report CSL-109, Computer Science Laboratory, SRI International,
Menlo Park, CA, January 1980.

15

[4]

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of
a system design. In Sizth ACM Symposium on Operating System Principles,
pages 57-65, November 1977.

J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings of the Symposium on Security and Privacy, pages 11-20, Oakland,
CA, April 1982. IEEE Computer Society.

B. A. Hartman. A Gypsy-based kernel. In Proceedings of the Symposium
on Security and Privacy, pages 219-225, Oakland, CA, April 1984. IEEE
Computer Society.

C. E. Landwehr. A survey of formal models for computer security. ACM
Computing Surveys, 13(3):247-278, September 1981.

J. McLean. A comment on the “basic security theorem” of Bell and La Padula.
Informal note, Naval Research Laboratory, 1983.

J. K. Millen and C. M. Cerniglia. Computer security models. Working Paper
WP25068, Mitre Corporation, Bedford, MA, September 1983.

John Rushby. Proof of Separability—A verification technique for a class of
security kernels. In Proc. 5th International Symposium on Programming, vol-
ume 137 of Lecture Notes in Computer Science, pages 352367, Turin, Italy,
April 1982. Springer-Verlag.

John Rushby. The Bell and La Padula security model. Draft report, Computer
Science Laboratory, SRI International, Menlo Park, CA, February 1984.

John Rushby. Comparison between the Bell and La Padula and the SRI secu-
rity models. Draft Report, Computer Science Laboratory, SRI International,
Menlo Park, CA, February 1984.

John Rushby. The SRI security model. Draft Report, Computer Science
Laboratory, SRI International, Menlo Park, CA, July 1994.

J. M. Silverman. Reflections on the verification of the security of an operating
system kernel. In Ninth ACM Symposium on Operating System Principles,
pages 143-154, Bretton Woods, NH, October 1983. (ACM Operating Systems
Review, Vol. 17, No. 5).

T. Taylor. Comparison paper between the Bell and La Padula model and the
SRI model. In Proceedings of the Symposium on Security and Privacy, pages
195202, Oakland, CA, April 1984. IEEE Computer Society.

16

