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1 Preamble

The DoD Computer Security Center’s Invitational Workshop on Computer Net-
work Security is concerned with extension of the Criteria in the Center’s “Orange
Book” [5] to cover the case of computer networks. My assignment was to prepare
a position paper on the role of (Formal) Verification in ensuring network security—
but before I could address the issue of verification, I found I had first to consider the
notion of “network”: just what is a network, and what does it mean for a network
to be “secure”?

2 Networks

2.1 What Sort of Networks should be considered?

First, we must decide how general a notion of “network” we wish to consider. The
letter of invitation indicates that the goal is the production of “Trusted Network
Evaluation Criteria for long-haul, packet switched networks similar to the Arpanet
or DDN”. This restricted focus is, in my view, shortsighted, undesirable, and un-
necessary.

The most significant development in modern systems design is the trend to-
wards distributed systems; that is, systems composed of smaller systems which
communicate over some medium in order to cooperate towards the achievement
of a common goal. This trend is especially true in the case of military systems,
where C3I and message systems—which are nothing if not distributed systems—
play such a significant, and growing, role. But quite aside from systems whose
very function involves communications and networking, modern hardware devel-
opments make it inevitable that many general and special purpose systems—even
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systems that fit in a single box—will be structured internally as multi-processor
systems communicating over a private bus or LAN.

To ignore these developments in our consideration of network security is to
risk the production of Network Evaluation Criteria whose application is restricted
to a limited, and declining, section of the market. More importantly, by failing to
comprehend these new developments in systems design, we will fail to influence
their course and will have to struggle, belatedly, for a proper consideration of their
security implications.

Orthogonal to the use of physical networks to build distributed systems has
been the development of system concepts based on the idea of communicating pro-
cesses. This approach, which regards systems as composed of self-contained, au-
tonomous processes connected by ideal communications channels, seems likely to
dominate future language and system design—its influence can already be seen in
languages such as CSP, Gypsy, and NIL [9] (and even, to a limited extent, in Ada)
and in operating systems such as Thoth [4] and Accent [11]. Using this approach,
the decision whether the processes constituting a design should be supported on
separate machines connected by physical communications lines, or should be time-
shared on a single processor, is relegated to an implementation issue.

Thus, a second reason for considering a broad interpretation of the notion of
“network” is the need for Security Evaluation Criteria not only to remain abreast of
the best modern approaches to system design, but to exploit the insights which they
confer. One of the great merits of the approach based on communicating processes,
and a reason for its popularity, lies in the opportunity it provides for integrating
networking, inter-process communication, and operating system services. Thus,
issues which had formerly seemed quite dissimilar have now been unified. I believe
we could expect a similar benefit in the case of security: a unification of the issues
of system and network security. Conversely, if we follow the narrow approach,
there is a danger that systems based on communicating processes and implemented
on a network will fall outside the scope of the Network Evaluation Criteria, while
those implemented on a single processor will likewise fall outside the rather narrow
scope of the Orange Book!

2.2 What is a Network?

If we decide to take a broad view of the sort of networks that should be considered
for security evaluation, then we need to agree on what constitutes a network. The
definition proposed in letter of invitation states:

“A network is an entity composed of a communications medium
and those parts of all devices attached to that medium whose responsi-
bility is facilitating, controlling, monitoring, or otherwise participating
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in the transfer of information across the medium. Such devices may
include, but are not limited to, packet switches, host front ends, access
controllers, monitoring centers, and hosts.”

This definition concentrates on the physical characteristics of networks and views
them primarily as agents for data transmission. This view is entirely appropriate for
networks such as the Arpanet or the X25 networks maintained by PTTs, where the
services provided by the network amount to little more than the ability to connect
to a remote host or to transfer files from one host to another. In these cases, the
user is left in no doubt that the network is simply a data transmission medium and
that all services are provided by the host machines attached to the network.

More recently, however, networks themselves have come to provide services
or resources—file servers, name servers etc.—while some of the services provided
by host machines have become so integrated with those of the network that they
give the appearance of a single network-system-wide service—electronic mail, for
example. The most recent stage of development is exemplified by systems such
as Unix United [3] and Locus [10], and by the products of Apollo, Sun and cer-
tain other manufacturers which, to a greater or lesser extent, present their users
with a single coherent system interface that hides the fact that their implementa-
tion involves separate machines and network communications. In the best of these
systems, copying a file from one machine to another is no different than copying it
from one directory to another.

If we consider the special issue of access control, a similar evolution may be
perceived. In the beginning, access control was exclusively the responsibility of
the hosts attached to the network; later, networks themselves came to provide some
form of access control; most recently, there have emerged systems in which access
control is fully distributed throughout the host systems and the network. In the
limit, this last approach can be used to synthesize a multilevel secure system out of
largely untrusted components [15].

What we are witnessing in all these cases is the eclipse of the idea that networks
are “special” in some way, and its replacement by an integrated, systems-level
view that regards networks as simply an implementation mechanism used in certain
types of system. There can be few today who would dispute that this is, indeed, the
correct view. If I send mail to someone, it is a matter of indifference to me whether
his mailbox is on the same machine as mine, or is on a machine of an entirely
different sort at the other side of the world: the mechanisms by which our mail is
exchanged are an implementation detail, it is the service—the ability to exchange
mail—that is of interest. Similarly, in the case of security, the properties (and even
the existence!) of networks are an implementation issue; the significant matter is
the security of the services provided by the total system.
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I submit, therefore, that security is a property of systems; networks are an im-
plementation mechanism used in certain systems and the security of a network
cannot be considered in isolation from that of the overall system of which it is a
component. It is therefore unnecessary, and undesirable, to generate Security Eval-
uation Criteria specifically for networks. Instead, revisions to the Orange Book are
needed in order to establish Security Evaluation Criteria for systems that will admit
implementations using networks. This is not to deny that the security characteris-
tics of network implementations are important; it is simply to recognize that they
should not be treated in isolation.

The significant property of networking technology is that it makes it possible to
put systems together to produce bigger systems, or, looked at from the other direc-
tion, it makes it possible to build systems out of smaller systems. Thus, the novel
problems raised by networks are those concerning systems built from systems.
Thus, I claim that networks are systems, and the issue we should be concerned
with is one of putting systems together.

2.3 What is different about Systems built from Systems?

As far as security is concerned, systems made up of other systems differ from
monolithic systems in two important respects. The first of these concerns the fact
that the component systems are active entities; the second is due to the fact that
they are autonomous entities. These two properties undermine the application of
certain cherished principles of secure systems design and modeling.

The Simple-Security Condition doesn’t apply The principle known as the
“simple security condition” asserts that security is preserved if an untrusted subject
at one security level reads from an object at a lower level.1 This is sound because,
by definition, objects are passive entities: they can make no clandestine use of
“read requests” received from higher level subjects—a memory doesn’t “know”
when it has been read by a high level subject.2

The situation is different when the participants are active systems. In order for
one system to read information from another, the first must send a “read request”
message to the second—which must decode the request, obtain the information
requested, and return it in a message to the first system. Thus, the reading of

1For ease of expression, I am using inexact terminology here. I should, of course, speak of
security classifications drawn from a poset with “dominates” as the ordering relation.

2In modern paged-memory systems this may not be so, since the “use” bit indicates whether a
memory page has been read. If this bit can be read by user processes, then it provides a covert
channel; even if it cannot be read, it may still provide a timing channel, since a used page is less
likely to be removed from main memory and is therefore more likely to provide rapid access.
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information can only be accomplished with the knowledge and active participation
of the system being read from, and therefore it is not secure for a high level system3

to read information from a lower level one—since the untrusted high level system
may choose to encode high level information in the read requests which it sends to
the low level system and the latter can decode this information and record it at a
lower level of classification. Thus, an untrusted system may not read information
(and, in general, may not request a service) from another such system operating at
a lower level.

The *-property doesn’t apply The dual situation arises when information is
written from one system to another. The “*-property” asserts that security is pre-
served when an untrusted subject writes into an object at a higher level. But this
rule, too, is inadequate when independent systems are concerned. The problem this
time is due to the autonomy of the participants. When information is sent from one
system to another, it is necessary to receive an acknowledgment that the recipient
has received and acted upon the information that was sent. It is impossible to build
a usefully reliable distributed system in the absence of such acknowledgments.
And it is important to recognize that the need for acknowledgments is not merely
due to unreliability in the underlying communication mechanism: the problem re-
mains even when the communications channels are perfect—as when the parties to
the transaction are not remote systems, but are independent processes sharing the
same hardware.

The root cause of the problem is that if one system sends a file to another,
then it needs to know that the receiving system has been able to write the file
satisfactorily—which the receiver may be unable to do for any number of reasons
quite independent of transmission errors. It may, for example, be out of disk space,
or temporarily busy on some other, more urgent task. In fact, since the receiver is
an autonomous system, it may choose to reject the “write request” for any reason
of its own choosing. Thus end-to-end acknowledgments are required and it is these
that render it unsecure for a low level system to write information to (or, in general,
to request a service from) an untrusted system at a higher level—since the latter can
choose modulate its acknowledgments to the former in a manner that encodes high
level information.

I should stress that I am not claiming that the Bell and La Padula model of se-
curity [2] is wrong; that model is very careful to distinguish (active) subjects from
(passive) objects. Rather, it is the case that the assumptions of that model (devel-
oped for monolithic systems) do not accord with the different reality of distributed
systems.

3By which I mean a system with access to highly classified information.
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Reference Monitors must be Application-Specific The requirement for end-to-
end acknowledgments also undermines another tenet of secure systems design: the
idea that it is possible to localize most, if not all, security issues, in a small and ap-
plication independent “security kernel”. Because the acknowledgments must come
from the remote application process (since it alone knows whether it has performed
the requested service correctly), a trusted, application-specific reference monitor is
required if the application is to service requests from lower level systems.4 It is
difficult to overstate the importance of this last point; it is also the one least appre-
ciated by those unfamiliar with distributed systems.

In fact, this problem is not unique to distributed systems; it arises also with
“conventional” multilevel secure systems. Consider, for example, an MLS system
that maintains a SECRET file containing structured information (such as a database
or message file). There must be some “guardian” process that ensures the structural
integrity of that information. Since this process must be able to both read and write
the file containing the information, it must operate at the SECRET level. If an
UNCLASSIFIED user wishes to update the information in the file, he must send his
proposed update to the guardian, which will perform the update on his behalf only
if it accords with its integrity criterion. But what if the update does not meet this
criterion? It is unsecure for the guardian (a SECRET level process) to communicate
this (or any other) fact back to its UNCLASSIFIED client—and the MLS system will
ensure that it does not do so, since its reference monitor will prevent the “write-
down” that would be required were it to attempt it. Now in a conventional MLS
system in which the guardian’s clients are human users, this lack of feedback may
be acceptable, or it may be feasible to interpose some (human mediated) guard
function that lowers the risk of clandestine use of the feedback channel to some
acceptable level.5 In a distributed system, on the other hand, where the client
may be another process, and where communications may be expected to operate
at high bandwidth, these solutions are likely to be less acceptable. The moral
seems to be not so much that distributed systems are intrinsically different than
conventional ones, but rather that expectations are greater and that more ambitious
functionality may be desired. The single reference monitor of a conventional MLS
system (providing secure access only to unstructured files) may not be sufficient to
support future applications.

4It is because each multilevel service requires its own reference monitor that our DSS system
provides only one such service—namely, file storage and retrieval [15]. Notice that an application-
independent reference monitor will suffice if applications are only allowed to service requests from
clients at their own level.

5Alternatively, the guardian may be made a “trusted process”—which is simply a euphemism for
an application-specific reference monitor.
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2.4 A Simple Security Model

Fortunately, it seems possible to deduce some fairly straightforward principles for
secure operation in distributed systems. I will describe these principles in the con-
text of a simple security model for distributed systems.

A system is composed of interconnected domains. A domain is a self-
contained computational entity provided with sockets. No information may en-
ter or leave a domain except through one of its sockets. A domain may either be
atomic, meaning that it has no internal structure (visible at this level of abstrac-
tion), or it may be composed, recursively, of a set of interconnected smaller do-
mains (i.e., a system). Domains are interconnected by linking their sockets. Within
this model, a conventional monolithic system is an example of an atomic domain;
a (simple Arpanet-type) network can be regarded as a domain that provides lots of
sockets but rather limited computational power.

In order to talk about security, we associate a security label with each socket.
For simplicity, I will ignore compartments and speak as if the levels TS, S, C, and
U were the only labels—the extension to compartments is obvious. 6 A domain is
secure if the information leaving the domain through a socket tagged with level l is
entirely unaffected by any information that may have entered the domain through
sockets at levels higher than l.7 Notice that any domain can be rendered secure
by causing all its sockets to have the same level. Consequently, I will talk about
single-level domains (those whose sockets all have the same level) and multilevel
domains (those whose sockets may have different levels). An atomic multilevel
domain is simply a conventional MLS system—one that could be certified using
the criteria in the Orange Book. The question of interest here is: what are the rules
for interconnecting domains securely? Because of the problems discussed earlier,
the rules are Draconian and, therefore, quite simple.

The basic rule is: sockets may be connected if they have exactly the same
security label. Thus, if we have a network that provides no security at all,8 then it
can be used as a single-level domain at, say, the S level, and may interconnect other
single-level S domains, and the S level sockets of multilevel domains. Notice that
the resulting system is also a domain and may partake in further interconnections.

The simplicity of the scheme described above must be compromised somewhat
in order to accommodate domains that are “not quite” multilevel. Such domains

6At this level of abstraction, sockets are single-level. In practice, sockets of different levels may
be multiplexed onto a single physical socket—but this is an implementation-level issue which may
be ignored here.

7This is an informal re-statement of the “standard” SRI security model [6–8, 13, 14].
8By which I mean that it cannot reliably associate security labels with its sockets. Remember, it

is an axiom that information cannot enter or leave a domain except through its sockets—thus, even
an unsecure network is required to be protected against both active and passive wiretapping.
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are typified by (monolithic) systems cleared to operate in “system high” mode. In
this mode of operation, a system may be allowed to operate as multilevel (say,
S and TS), but all its users are required to be cleared to the level of the most
sensitive information held by the system (TS in this case) and no information may
be released at less than the highest level without manual review. This mode of
operation is intended for those systems that are believed to do a “good job” of
correctly labeling information and of enforcing policy, but which are not trusted
absolutely. We can accommodate such systems within our model by labeling their
sockets with the entire set of security labels associated with the information they
process (e.g., {S, TS}).

It should be clear that it is unsecure to connect a {S, TS} socket with one
labeled {C, S}, or one labeled simply S. On the other hand, it is secure to connect
it to sockets labeled {S, TS} or TS. It is not obvious to me whether it would be
secure to allow a connection to a socket labeled {C, S, TS}, but I will assume that
it is. With this assumption, the rule seems to be: sockets may be connected if their
associated label sets share the same least upper bound. It seems clear that similar
rules can be developed to deal with the “controlled” and “compartmented” modes
of operation.

Another extension to the simple model is desirable in order to admit certain
types of systems (typically, networks) that do provide a fairly strong form of se-
curity, but which do not enforce DoD policy. The motivation is as follows: if it is
secure to interconnect two sockets, then the length and nature of the interconnect-
ing “wire” is unimportant (provided it is secure against active and passive wire-
tapping). Thus we should also allow sockets to be interconnected by a “network”
domain that provides “pure channels” that are functionally identical to a dedicated
wire, even if the network is ignorant of DoD policy.

Simple extensions to the model accommodate this situation. Instead of (or as
well as) a security label, a socket may be marked as a pure channel connection and
labeled with an identifier. At most two sockets may share the same identifier.9 The
requirement is that any information leaving the domain through a pure channel
socket with identifier i must be entirely unaffected by any information that may
have entered the domain though sockets bearing any other label or identifier. Notice
that this is entirely in accord with the policy on conventionally labeled sockets: the
label [pure channel, identifier i] can be regarded as a new security level that neither
dominates, nor is dominated by, any other. This requirement ensures that two pure
channel sockets bearing the same identifier can be regarded as “collapsed” to a
single point. Thus one pure channel socket with identifier i may be connected to a

9Actually, I think this requirement can be relaxed to allow broadcast systems.
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socket of label X and another to one of label Y exactly if sockets X and Y may be
directly interconnected.

2.5 Certification Criteria

Very little of the security model developed in the previous section is specific to net-
works, yet it seems to address many of the relevant issues. I believe that with a little
rewording, many of the criteria in the Orange Book can be similarly generalized to
cover network, as well as monolithic, implementations. To take a single example,
the system architecture requirement for B2 systems states, in part: “the TCB shall
maintain process isolation through the provision of distinct address spaces.” Now
the real requirement here is to ensure that no information enters or leaves a domain
except through its sockets. The use of distinct address spaces for each domain is
an implementation mechanism suitable for achieving this requirement on a single
processor. In a distributed system, the appropriate implementation mechanisms in-
clude the use of separate processors for each domain and end-to-end encryption to
protect their intercommunications. If the Orange book were to say more about un-
derlying requirements and less about specific implementation techniques, networks
and distributed systems could be accommodated along with conventional systems.

3 Verification

Just as it is necessary to understand what we mean by “networks”, so we need to be
clear what “verification” is about before we can consider its role in the evaluation
of trusted systems.

3.1 What does Verification Accomplish?

Verification is the demonstration of consistency between two (or more) descrip-
tions the same system. The exact meaning of “consistency” depends on the type
of verification being performed. Formal Verification operates on system descrip-
tions called specifications which are theories expressed in some logic; in this case,
“consistency” means that one specification (the more “concrete” one) is a valid in-
terpretation of the other (the more “abstract” one)—i.e., any model of the more
concrete theory will also be a model of the more abstract one. This form of consis-
tency is demonstrated by showing that the axioms of the more abstract theory are
theorems of the more concrete one.

If two independent specifications are verified to be consistent, then one’s con-
fidence that both are “correct” is surely increased. If the two specifications are not
independent, however (e.g., if the more concrete one is consciously derived from
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the other), then all that can be said is that one’s confidence in the correctness of the
derived specification is raised near to that of one’s confidence in the abstract spec-
ification. The ultimate goal—confidence in the correctness of an actual running
system—can be achieved through a chain of consistency demonstrations running
all the way from a highly abstract specification, through possibly many levels of
intermediate specifications, to the running code. The starting point for such a ver-
ification chain is a highly abstract specification whose correctness is accepted on
the basis of extensive scrutiny and peer review. It is not necessary that this most
abstract of specifications should describe all the properties desired of the system:
some properties may be deemed more important than others and it will be these that
are included in the most abstract specification and subject to the rigor of verifica-
tion. In the case of security verification, the properties present in the most abstract
specification are concerned exclusively with security issues and the specification is
usually called a security model.10

In practice, it is generally too tedious and too expensive to perform a chain of
formal verification all the way from the most abstract specification right down to
the running code. Instead, the formal verification is generally broken off at some
level and informal techniques are used to carry assurance from there down to the
code level. The reason that formal verification is used at all is that (especially when
machine-checked) it is more complete and reliable than informal verification. This
being the case, it is important to choose the right point in the verification chain at
which to turn from formal to informal verification: in particular, formal verification
should not be broken off too early—the major design decisions affecting security
should certainly be subject to the rigor of formal verification, as should any particu-
larly subtle issues (such as covert channels). On the other hand, formal verification
should not be pursued too far; in my view (which is by no means universal) the
vast cost of code proof yields a poor return in terms of increased confidence in the
security of the overall system.

Just as the decision where to break off the formal verification chain is an im-
portant one, so is the choice of the point at which the chain should start—i.e., in
the case of security verification, the choice of security model. If the security model
is so highly abstract that it can apply to almost any system design, then a num-
ber of intermediate specifications and verification steps will be needed to reach a
reasonably detailed description of the actual system of interest. Far fewer steps
will be needed if one starts with a more concrete and detailed security model, but
that model will already embody system details and design decisions that restrict
the class of systems to which it can be applied, and there is also the non-trivial
problem of establishing the correctness of such a detailed model in the first place.

10Confusingly, this sense of the word “model” is different from that used in logic.
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The choice of security model is therefore a delicate and important matter. A
security model comprises two components (termed the system and the security
component, respectively):

• Assumptions about the sort of systems to be verified, and

• An interpretation of “security” that is appropriate to that class of systems.

Since most existing security models were developed with monolithic systems
in mind, their system components may not accord with the different reality of dis-
tributed systems (recall Sections 2.3 and 2.3). It therefore seems necessary to con-
sider how the modeling of distributed systems should differ from that of conven-
tional ones.

3.2 What is different about Systems built from Systems? (Revisited)

Most modeling and verification techniques for monolithic systems depend on the
notion of “state”: at each instant the system is “in” some state, and progress is
represented by the transition from one state to the next. This state-based approach
is viable because the monolithic systems can be regarded as sequential processes.
This is not the case with distributed systems: the components of such a system pro-
ceed in parallel and, in general, asynchronously. Although the instantaneous state
of a distributed system can be defined as the product of the states of its sequential
components, the evolution of that composite state will not be deterministic—since
its components may proceed at different rates. For this reason, attempts to describe
the behavior of distributed systems in terms of their composite state have not been
altogether satisfactory. Most current work attempts to describe distributed sys-
tems in terms of the communications in which their components participate (i.e.,
their input/output behavior—sometimes known as “trace semantics”). The bene-
fit of this approach is that it permits the specification of system behavior without
excessive placing of constraints on system implementation: unlike the case with
state semantics, the designer is free to choose either a distributed or a sequential
implementation.

The arguments that have led those concerned with general system properties
to prefer trace to state semantics apply no less forcefully in the case of security
properties. I believe that a formal security model for “putting systems together”
is more likely to develop from a security model expressed in terms of input/output
behavior (e.g., the SRI model [6–8, 13, 14]) than one expressed in terms of states.
The informal model described in Section 2.4 can easily be formalized using the
techniques of the SRI model and seems to provide a step in the right direction.
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3.3 What should be Verified?

The model of Section 2.4 is built on two key assumptions, which become require-
ments on the next lower level of modeling:

• No information can enter or leave a domain, except through its sockets, and

• Information leaving a domain through a socket labeled at level l must be
independent of any information that entered the domain through sockets la-
beled at levels not dominated by l.

The first of these requirements is sometimes referred to as “domain isolation”
or “separation”. It is clearly fundamental to everything else and, in my view, is
definitely a candidate for formal verification. For the case of multiple domains
supported on a single processor, I have proposed a technique for verifying this
property which I call “Proof of Separability” [12]. In the case of networks, the
requirement may be achieved in many different ways (e.g., link, node, or end-to-
end encryption, or physically protected cableways) and the appropriate verification
techniques will be different also. It is likely that verification of domain isolation in
networks will have to consider a “distributed reference monitor” (e.g., crypto boxes
and KDC in the case of end-to-end encryption) and this will present an interesting
challenge.

The second requirement is to ensure that the services provided at the interface
to each domain are secure. This also seems a prime candidate for verification and
is one for which several techniques are available. Those based on information flow
analysis have the special merit that they identify covert channels as well as the
more gross forms of insecurity. The question of covert channels, and whether they
(or rather, their absence) should be a target for formal verification, was one that
we were specifically asked to consider. It seems to me that if an overt channel
is a conduit for information that is provided deliberately, then a covert channel is
simply one that is provided accidentally! It is significant that there is no distinction
between overt and covert (storage) channels in the mathematical security model of
information flows [6–8, 13, 14].

Since distributed systems are only feasible in the presence of high-bandwidth
communications, it is very dangerous to assume that any covert channels will be
of sufficiently low bandwidth that they will not pose a serious threat. Also, be-
cause distributed systems are composed of active entities and generally require
explicit acknowledgments to messages, the opportunities for covert channels are
much greater than in monolithic systems (recall the channels described in Sections
2.3 and 2.3). Furthermore, since covert channels are provided “accidentally” it
is also dangerous to assume that they can be discovered by casual examination.
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Rather, I believe that the systematic detection of covert channels is one of the main
contributions of formal verification to the evaluation of secure distributed systems.

4 Suggested Verification Criteria

The following is a sketch of Verification Criteria that are suggested for Class A1.
The bulk of the existing A1 criteria can be retained, with slight rewording. For
Class B3, replace the term “formal” by “descriptive” and the phrase “mathematical
proof” by “careful argument”.

A formal model shall be maintained of the security policy supported
by the complete system of which the evaluated product is to form a
component, and by the evaluated product itself. Formal statements
shall be provided of the assumptions made about all system compo-
nents and a mathematical proof shall be provided to demonstrate that
these assumptions, in conjunction with the policy supported by the
evaluated product, are sufficient to support the policy of the overall
system. A FTLS of the evaluated product TCB shall be maintained and
verified with respect to the security model established for the product.
The formal models employed shall address the issue of covert chan-
nels and the techniques used to substantiate the security policy of the
evaluated product and to verify its FTLS shall be ones that identify
covert channels.
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