
CSL Technical Report • September 2001

Formal Verification of McMillan’s Compositional
Assume-Guarantee Rule

John Rushby
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

This research was supported by NASA Langley Research Center under contract
NAS1-20334 and Cooperative Agreement NCC-1-377 with Honeywell Tucson, and
by the DARPA MoBIES program under contract F33615-00-C-1700 with US Air
Force Research Laboratory.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

To illustrate some of the power and convenience of its specification language and the-
orem prover, we use the PVS formal verification system to verify the soundness of a proof
rule for assume-guarantee reasoning due to Ken McMillan.

i

ii

Contents

Contents 1

1 Introduction 3

2 Formalization and Verification in PVS 7

Bibliography 13

1

2

Chapter 1

Introduction

The key idea in assume-guarantee reasoning, first introduced by Chandy and Misra [MC81]
and Jones [Jon83], is that we show that componentX1 guarantees certain propertiesP1 on
the assumption that componentX2 delivers certain propertiesP2, andvice versaforX2, and
then claim that the composition ofX1 andX2 (i.e., both running and interacting together)
guaranteesP1 andP2 unconditionally.

We can express this idea symbolically in terms of the following putative proof rule.

〈P2〉X1〈P1〉
〈P1〉X2〈P2〉

〈true〉 X1||X2 〈P1 ∧ P2〉

Here,X1||X2 denotes the composition ofX1 andX2 and formulas like〈p〉X〈q〉 assert that
if X is part of a system that satisfiesp (i.e., p is true of all behaviors of the composite
system), then the system must also satisfyq (i.e.,X assumesp and guaranteesq).

Rules such as this are called “compositional” because we reason aboutX1 andX2

separately (in the hypotheses above the line) and deduce properties aboutX1||X2 (in the
conclusion below the line) without having to reason about the composed system directly.
The problem with such proof rules is that they are circular (X1 depends onX2 andvice
versa) and potentially unsound.

In fact, the unsoundness is more than potential, it is real: for example, letP1 be “even-
tually x = 1,” let P2 be “eventuallyy = 1,” let X1 be “wait until y = 1, then setx to 1,”
and letX2 be “wait untilx = 1, then sety to 1,” where bothx andy are initially 0. Then
the hypotheses to the rule are true, but the conclusion is not:X1 andX2 can forever wait
for the other to make the first move.

There are several modified assume-guarantee proof rules that are sound. Different rules
may be compared according to the kinds of system models and specification they support,
the extent to which they lend themselves to mechanized analysis, and the extent to which
they are preserved under refinement (i.e., the circumstances under whichX1 can be replaced
by an implementation that may do more thanX1). Early work considered many different

3

system models for the components—for example, (terminating) programs that communi-
cate by shared variables or by synchronous or asynchronous message passing—while the
properties considered could be those true on termination (e.g., input/output relations), or
characterizations of the conditions under which termination would be achieved. Later work
considers the components as reactive systems (i.e., programs that maintain an ongoing inter-
action with their environment) that interact through shared variables, and whose properties
are formalized in terms of their behaviors (i.e., roughly speaking, the sequences of values
assumed by their state variables).

One way to obtain a sound compositional rule is to break the “circular” dependency in
the previous one by introducing an intermediate propertyI such that

〈P1〉X1〈I〉
〈I〉X2〈P2〉

〈P1〉 X1||X2 〈P2〉.

The problem with this approach is that “circular” dependency is a real phenomenon
and cannot simply be legislated away. In the Time Triggered Architecture (TTA)
[KG94, TTT01], for example, clock synchronization depends on group membership and
group membership depends on synchronization—so we do need a proof rule that truly ac-
commodates this circularity. However, closer examination of the circular dependency in
TTA reveals that it is not circular if the temporal evolution of the system is taken into con-
sideration: clock synchronization in roundt depends on group membership in roundt− 1,
which in turn depends on clock synchronization in roundt− 2 and so on.

This suggests that we could modify our previous circular rule to read as follows, where
P tj indicates thatPj holds up to timet.

〈P t2〉X1〈P t+1
1 〉

〈P t1〉X2〈P t+1
2 〉

〈true〉 X1||X2 〈P1 ∧ P2〉

Although this seems intuitively plausible, we really want thet andt + 1 on the same side
of each antecedent formula, so that we are able to reason from one time point to the next.
A formulation that has this character has been introduced by McMillan [McM99]; hereH
is a “helper” property (which can be simplytrue), 2 is the “always” modality of Linear
Temporal Logic (LTL), andp � q (“ p constrainsq”) means that ifp is always true up to
time t, thenq holds at timet+ 1 (i.e.,p fails beforeq).

〈H〉X1〈P2 � P1〉
〈H〉X2〈P1 � P2〉

〈H〉 X1||X2 〈2(P1 ∧ P2)〉
(1.1)

4

Notice thatp � q can be written as the LTL formula¬(pU¬q), whereU is the LTL
“until” operator.1 This means that the antecedent formulas can be established by LTL model
checking if the transition relations forX1 andX2 are finite.

The proof rule1.1has the characteristics we require, but what exactly does it mean, and
is it sound? These question can be resolved only by giving a semantics to the symbols and
formulas used in the rule. McMillan’s presentation of the rule only sketches the argument
for its soundness; a more formal treatment is given by Namjoshi and Trefler [NT00], but it
is not easy reading and does not convey the basic intuition.

Accordingly, we present in the next Chapter a formalization and verification of McMil-
lan’s rule using PVS. The development is surprisingly short and simple and should be clear
to anyone with knowledge of PVS.

1The subexpressionpU¬q holds if q eventually becomes false, andp was true at every preceding point;
this is the exact opposite of what we want, hence the outer negation.

5

6

Chapter 2

Formalization and Verification in
PVS

We begin with a PVS datatype that defines the basic language of LTL (to be interpreted over
a state typestate).

pathformula[state : TYPE]: DATATYPE
BEGIN

Holds(state_formula: pred[state]): Holds?
U(arg1: pathformula, arg2: pathformula): U?
X(arg: pathformula): X?
˜(arg: pathformula): NOT?
\/(arg1: pathformula, arg2: pathformula): OR?

END pathformula

Here,UandX represent theuntil andnextmodalities of LTL, respectively, and̃and\/
represent negation and disjunction, respectively.Holds represents application of a state (as
opposed to a path) formula.

The semantics of the language defined bypathformula are given by the function|=
defined in the theorypaths . LTL formulas are interpreted over sequences of states (thus,
an LTL formula specifies a set of such sequences). The definitions |= P 1 (s satisfiesP)
recursively decomposes the pathformulaP by cases and determines whether it is satisfied
by the sequences of states.

1PVS infix operators such as|= must appear in prefix form when they are defined.

7

paths[state: TYPE]: THEORY
BEGIN

IMPORTING pathformula[state]

s: VAR sequence[state]
P, Q : VAR pathformula

|=(s,P): RECURSIVE bool =
CASES P OF

Holds(S) : S(s(0)),
U(Q, R): EXISTS (j:nat): (suffix(s,j) |= R) AND

(FORALL (i: below(j)): suffix(s,i) |= Q),
X(Q): rest(s) |= Q,
˜(Q) : NOT (s |= Q),
\/(Q, R): (s |= Q) OR (s |= R)

ENDCASES
MEASURE P by <<

The various cases are straightforward. A state formulaS Holds on a sequences if it
is true of the first state in the sequence (i.e.,s(0)). U(Q, R) is satisfied if some suffix of
s satisfiesRandQwas satisfied at all earlier points.X(Q) is satisfied bys if Q is satisfied
by the rest ofs . The functionssuffix andrest (which is equivalent tosuffix(1))
are defined in the PVS prelude. Negation and disjunction are defined in the obvious ways.

Given semantics for the basic operators of LTL, we can define the other operators in
terms of these.

CONVERSION+ K_conversion

<>(Q) : pathformula = U(Holds(TRUE), Q) ;
[](Q) : pathformula = ˜<>˜Q ;
&(P, Q) : pathformula = ˜(˜P \/ ˜Q) ;
=>(P, Q) : pathformula = ˜P \/ Q ;
<=>(P, Q) : pathformula = (P => Q) & (Q => P) ;
|>(P, Q): pathformula = ˜(U(P,˜Q))

END paths

Here<> and [] are theeventuallyandalwaysmodalities, respectively. A formulaQ is
eventually satisfied bys if it is satisfied by some suffix ofs . TheCONVERSION+command
turns on PVS’s use of K Conversion (named after the K combinator of combinatory logic),
which is needed in the application ofU in the<> construction to “lift” the constantTRUEto
a predicate on states. Theconstrainsmodality introduced by McMillan is specified as|> .

We are less interested in interpreting LTL formulas over arbitrary sequences of states
than over those sequences of states that are generated by some system or program. We
specify programs as transition relations on states; a state sequences is then apath(or trace)

8

of a program (i.e., it represents a possible sequence of the states as the program executes) if
each pair of adjacent states in the sequence is consistent with the transition relation. These
notions are specified in the theoryassume guarantee , which is parameterized by a
state type and a transition relationNover that type.

assume_guarantee[state: TYPE, N: pred[[state, state]]]: THEORY
BEGIN

IMPORTING paths[state]

i, j: VAR nat
s: VAR sequence[state]

path: TYPE = {s | FORALL i: N(s(i), s(i + 1)) }
p: VAR path
JUDGEMENT suffix(p, i) HAS_TYPE path

A key property, expressed as a PVS judgement (i.e., a lemma that can be applied by the
typechecker) is that every suffix to a path ofN is also a path ofN. The proof obligation that
justifies this judgement is proved automatically.

Next, we specify what it means for a pathformulaP to bevalid for N (this notion is
not used in this development, but it is important in others).2 We then state a useful lemma
and lem . It is proved by(GRIND) .

H, P, Q: VAR pathformula

valid(P): bool = FORALL p: p |= P

and_lem: LEMMA (p |= (P & Q)) = ((p |= P) AND (p |= Q))

Next, we define the functionag(P, Q) that gives a precise meaning to the informal
notation<P> N <Q>used earlier (again, theN is implicit as it is a theory parameter).

ag(P, Q): bool = FORALL p: (p |= P) IMPLIES (p |= Q)

Two key lemmas are then stated and proved.

agr_box_lem: LEMMA ag(H, []Q) =
FORALL p, i: (p |= H) IMPLIES (suffix(p,i) |= Q)

constrains_lem: LEMMA ag(H, P |> Q) =
FORALL p, i: (p |= H)

AND (FORALL (j: below(i)): suffix(p, j) |= P)
IMPLIES (suffix(p, i) |= Q)

END assume_guarantee
2Note thatN is implicit as it is a parameter to the theory; this is necessary for theJUDGEMENT, which would

otherwise need to containNas a free variable (which is not allowed in the current version of PVS).

9

The first lemma allows thealways([]) modality to be removed from the conclusion of an
assume-guarantee assertion, while the second lemma allows elimination of theconstrains
(|>) modality. Both of these are proved by(GRIND :IF-MATCH ALL) .

Finally, we can specify composition and McMillan’s rule for compositional assume-
guarantee reasoning.

composition[state: TYPE]: THEORY
BEGIN

N, N1, N2: VAR PRED[[state, state]]

//(N1, N2)(s, t: state): bool = N1(s, t) AND N2(s, t)

IMPORTING assume-guarantee

i, j: VAR nat
H, P, Q: VAR pathformula[state]

kens_thm: THEOREM
ag[state, N1](H, P |> Q) AND ag[state, N2](H, Q |> P)

IMPLIES
ag[state, N1//N2](H, [](P & Q))

END composition

Here, // is an infix operator that represents composition of programs, defined as the
conjunction of their transition relations. Then,kens thm is a direct transliteration into
PVS of the proof rule1.1 on page4. The PVS proof of this theorem is surprisingly short:
it basically uses the lemmas to expose and index into the paths, and then performs a strong
induction on that index.

(SKOSIMP)
(APPLY (REPEAT

(THEN (REWRITE "agr_box_lem") (REWRITE "constrains_lem"))))
(INDUCT "i" :NAME "NAT_induction")
(SKOSIMP* :PREDS? T)
(REWRITE "and_lem[state,N1!1 // N2!1]")
(GROUND)
(("1" (APPLY (THEN (INST -6 "p!1" "j!1") (LAZY-GRIND))))

("2" (APPLY (THEN (INST -5 "p!1" "j!1") (LAZY-GRIND)))))

Our first attempt to formalize this approach to assume-guarantee reasoning was long,
and the proofs were also long—and difficult. Other groups have apparently invested months
of work in a similar endeavor without success. That the final treatment in PVS is so straight-
forward is testament to the expressiveness of the PVS language (e.g., its ability to define
LTL in a few dozen lines) and the power and integration of its prover (e.g., the predicate

10

subtypepath and its associatedJUDGEMENT, which automatically discharges numerous
side conditions during the proof).

Although we have proved McMillan’s assume-guarantee method to be sound, it is
known to be incomplete (i.e., there are correct systems that cannot be verified using the
rule 1.1). Namjoshi and Trefler [NT00] present an extended rule that is both sound and
complete, and it would be interesting to extend our PVS verification to this rule.

Another extension would expand the formal treatment from the two-process to then-
process case (this is a technical challenge in formal verification, rather than an activity that
would yield additional insight).

Finally, it will be useful to investigate practical application of the approach presented
here. One possible application is to the mutual interdependence of membership and syn-
chronization in TTA: each of these is verified on the basis of assumptions about the other.

Acknowledgment

The PVS formalization of LTL was performed by Carsten Schürmann. The PVS formal-
ization and proof of1.1 was a collaborative effort with Jonathan Ford, Sam Owre, Harald
Rueß, and N. Shankar.

11

12

Bibliography

[Jon83] C. B. Jones. Tentative steps toward a development method for interfering pro-
grams.ACM TOPLAS, 5(4):596–619, 1983.3

[KG94] Hermann Kopetz and G̈unter Gr̈unsteidl. TTP—a protocol for fault-tolerant real-
time systems.IEEE Computer, 27(1):14–23, January 1994.4

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.IEEE
Transactions on Software Engineering, 7(4):417–426, July 1981.3

[McM99] K. L. McMillan. Circular compositional reasoning about liveness. In Laurence
Pierre and Thomas Kropf, editors,Advances in Hardware Design and Verifi-
cation: IFIP WG10.5 International Conference on Correct Hardware Design
and Verification Methods (CHARME ’99), volume 1703 ofLecture Notes in
Computer Science, pages 342–345, Bad Herrenalb, Germany, September 1999.
Springer-Verlag.4

[NT00] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of composi-
tional reasoning. In E. A. Emerson and A. P. Sistla, editors,Computer-Aided
Verification, CAV ’2000, volume 1855 ofLecture Notes in Computer Science,
pages 139–153, Chicago, IL, July 2000. Springer-Verlag.5, 11

[TTT01] Time-Triggered Technology TTTech Computertechnik AG, Vienna, Austria.
Specification of the TTP/C Protocol (version 0.6p0504), May 2001. 4

13

	Contents
	Introduction
	Formalization and Verification in PVS
	Bibliography

