
Slightly updated from Dependable Software Systems Engineering (Marktoberdorf Summer

School Lectures, 2016), ed. A. Pretschner, D. Peled and T. Hutzelmann, pp. 207-236. Published

by IOS Press, Volume 50 of NATO Science for Peace and Security Series D, October 2017.

Assurance and Assurance Cases

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract.

Assurance provides confidence that a system will work as required
and not cause harm. Confidence is based on justified beliefs about the

system and its environment, and justification can be developed and

documented as an assurance case comprised of a structured argument
grounded on evidence. For justification to be compelling, the argument

must be indefeasible, meaning that we have so thoroughly considered

everything that can go wrong (i.e., hazards to the system and defeaters
to the argument) that there is no new information that could change

our assessment.
I show how the obligation for indefeasible justification can guide con-

struction and interpretation of the argument and the evidence in an as-

surance case and how confidence in the case translates to bounds on the
risk posed by the system.

Assurance requires predictability in both the system and its environ-

ment; I speculate how credible assurance may be provided for recent and
forthcoming systems where both kinds of predictability may be lacking.

Keywords.
Assurance, Assurance Case, Safety Case, Risk, Indefeasibility, Evidence,

Argument

Critical Properties and System Assurance

It is natural that customers for a computerized system should expect assurance
that it will perform as required. They, and society at large, will also expect as-
surance that the system will not cause unintended harm. To make this notion of
“assurance” precise, we need to be careful about the terms we employ.

The system operates in an environment that we call the world ; properties
of the world that are relevant to the system are documented as assumptions.
The system is intended to bring about some change in the world, and these
intentions constitute its requirements. It is important to note that requirements
are described entirely in terms of the change or effect that the system is to have
on the world; requirements do not describe how this change is to be accomplished,
that is the task of the system specification [31]. The specification is elaborated
through possibly many levels of design to yield an implementation that realizes the
requirements. The implementation may depend on components, or on interaction

1

with other systems; these are parts of the world and their properties should be
documented among the assumptions for the system under consideration.

We need to be sure that the implemented system will satisfy the customer’s
intent; we break this overall goal into the four claims shown in Figure 1, which
reflect the rôles of the intermediate artifacts: assumptions, requirements, and
specification. We really want to know that these four claims are true, but truth is
an ideal known only to the omniscient, so we need to find a weaker but acceptable
alternative.

The closest we can come to knowing the truth of these claims is to have
confidence in their truth. Confidence is a psychological state which, if rational,
must be based on the reasons—that is, the justification—for believing the claims.
Hence, assurance is the task of identifying and providing trustworthy means for
justified belief in the four claims of Figure 1.

1. The requirements satisfy the customer’s intent,
2. The assumptions correctly describe the world,
3. The specification satisfies the requirements, given the assumptions, and
4. The implementation satisfies the specification, given the assumptions.

Figure 1. Four Claims about the System

In addition to the explicit customer requirements, there may be additional
expectations that are often left implicit: examples include “don’t hurt me,” “don’t
violate my privacy,” “don’t lose my data,” and so on. Systems that have significant
potential to cause harm are called critical systems, and the kinds of harm to be
avoided are then made explicit as critical requirements.1

Because they are often stated as a negative (i.e., describe what must not hap-
pen) critical requirements seldom concern the purpose of the system and so they
do not play quite the same rôle as ordinary requirements during systems develop-
ment and engineering (e.g., we say “I require a banking system and it should be
secure,” rather than “I require a secure system and it should do banking”) but
they do play the same rôle in systems assurance: that is, we need justified belief in
the four claims given earlier for both the critical and the ordinary requirements.

Due to the asymmetry in development, violations of critical requirements
may come about because they conflict with, or are not ensured by, the ordinary
requirements.2 But a more common source of violation is an unanticipated at-
tribute or behavior (often a failure, or mode of failure) in some component of the
system, or in some other (sub)system with which it interacts. (The unanticipated
attribute need not concern computational behavior: for example, the other com-
ponent could overheat this one, or stress its power supply.) A deployed compo-
nent or subsystem should satisfy its requirements but it may also have additional

1Some of these properties should surely be made explicit for every system, so to some extent
all systems should be engineered as if critical: for example, the world would be a better place if

all systems were secure.
2It is not mandatory that the ordinary requirements should (be augmented to) ensure the crit-

ical requirements—the ordinary and the critical requirements could be achieved by independent
means—but it is one approach.

2

properties, including failures, due to choices made in its design and implementa-
tion; in an ideal world, these would be fully documented and then incorporated
among the assumptions of the system under consideration. Part of the assurance
for the system will be to show that it deals adequately with all these documented
cases. But components and interacting systems (to say nothing of humans and
physical machinery and other real-world elements of the environment) are often
imperfectly documented, especially regarding their failures, so an essential part
of critical systems engineering is to think of every failure and other previously
unforeseen circumstance that could impact the ability of the system to achieve
its critical requirements (these are the hazards) and to deal with them appro-
priately. The process of identifying hazards is referred to as hazard analysis, and
assurance must establish that it has been performed completely and effectively
and that all hazards are documented; the later stages of design must ensure that
all hazards are adequately handled (e.g., eliminated or mitigated), and assurance
must confirm that this is so.

We now know that assurance provides justified belief that a system will satisfy
all its requirements, but how much justification do we need, particularly for the
critical requirements? To answer this important question we need to explore the
relationship between assurance and risk.

1. System Assurance and Risk

A failure occurs when a system violates its ordinary or critical requirements. The
failure, particularly if it concerns critical requirements, will often cause harm or
lead to some loss. Harm can occur in many dimensions (e.g., death and injury,
theft of property, invasion of privacy, loss of service, reduced quality of life, or
environmental damage) and on many scales (e.g., affecting individuals, commu-
nities, nations, or the world) so it is not easy to quantify severity of harm in
a general way. But for any given system, we may assume the severity of harm
associated with its potential failures can be ranked in some way. What we desire
is that the severity and frequency of failures should be inversely related and, in
particular, the really severe failures should be very rare indeed. The product of
severity of harm and frequency of occurrence is termed risk, so our goal is to
minimize risk. We then must ask: what is a reasonable threshold on acceptable
risk?

Public perception and tolerance of risk are unrelated to statistical threat: for
example, in recent years, the typical annual death toll in the United States due to
medical errors is over 400,000, road accidents 35,000, firearms 12,000 (including
about 400 mass shootings—defined as four or more victims, not necessarily fatal),
terrorism 3–70 (highly variable), airplane crashes 0, and nuclear accidents 0 [66].
A significant element in public concern seems to be “dread factor”: the degree to
which there is mass impact, exposure is involuntary, and the evolution of events
is outside individual control [44].

For any particular class of system or kind of harm, regulators, insurance com-
panies, and other stakeholders generally establish some threshold on acceptable
risk that pays due attention to both objective threat and public perception. Our

3

task is to identify means of assurance that are commensurate with these thresh-
olds.

As an illustration of risk thresholds, we can briefly examine the regulations
for commercial aircraft (see [50] for more details). The Federal Aviation Regula-
tions (FAR) Part 25.1309 identifies five failure condition categories (i.e., severities
of harm) from “catastrophic” down through “hazardous/severe-major,” “major,”
and “minor” to “no effect.” Catastrophic failure conditions are “those which would
prevent continued safe flight and landing,” while severe-major failure conditions
can produce “a large reduction in safety margins or functional capabilities, higher
workload or physical distress such that the crew could not be relied on to perform
its tasks accurately or completely.” Catastrophic failure conditions must be “ex-
tremely improbable” while hazardous/severe-major must be “extremely remote.”
Furthermore, no single failure may precipitate a catastrophic failure condition.

FAR 25.1309 does not define “extremely improbable” and related terms; these
are explicated in FAA Advisory Circular (AC) 25.1309,3 which states, for exam-
ple, that “extremely improbable” means “so unlikely that they are not anticipated
to occur during the entire operational life of all airplanes of one type,” while “ex-
tremely remote” means “not anticipated to occur to each airplane during its total
life, but which may occur a few times when considering the total operational life
of all aeroplanes of the type.” AC 25.1309 further states that “when using quan-
titative analyses. . . numerical probabilities. . . on the order of 10−9 per flight-hour
may be used. . . as aids to engineering judgment. . . to. . . help determine compli-
ance” with the requirement for extremely improbable failure conditions. The cor-
responding probabilities for hazardous/severe-major (“extremely remote”) and
severe (“remote”) failure conditions are 10−7 and 10−5 per hour, respectively.
Other industries provide similar guidance, often based on the ALARP principle
(“As Low As Reasonably Practicable”) [46].

Figures such as 10−9 per hour concern probability or frequency of failure,
whereas assurance provides justified belief in claims that ultimately concern sat-
isfaction of requirements. How are these related?

Violation of any of the four claims given in Figure 1 constitutes a fault, so we
will say that a system that satisfies all four claims is “fault-free” or “nonfaulty.”
The only way a system can fail is by encountering a fault, which can happen if
our confidence in its fault-freeness is misplaced. But a faulty system is not certain
to fail: it depends on the circumstances of its execution whether it will encounter
one of its faults, whether that encounter causes a departure from correct system
state or behavior (i.e., an error), and whether that error ultimately leads to a
failure.4 Thus, we can speak of there being some probability that the system will
fail, if it is faulty: i.e., P (system fails | system faulty).

We noted earlier that justified belief cannot guarantee truth of the claims for
fault-freeness. But we can imagine that different procedures for justifying our be-
lief will provide greater or lesser degrees of confidence in the truth of those claims.

3The European Aviation Safety Agency (EASA) Certification Specifications CS 25 and Ac-

ceptable Means of Compliance AMC 25 [18] are largely harmonized with FAR 25 and its Advi-
sory Circulars.

4Fault-tolerant systems generally work by detecting errors and then correcting them before
they escape their “fault containment unit,” thereby preventing them from causing failure.

4

We can quantify that confidence as a subjective probability, P (system nonfaulty),
denoted pnf .5 Then, by the formula for total probability

P (system fails [on a randomly selected demand]) (1)

= P (system fails | system nonfaulty)× P (system nonfaulty)

+ P (system fails | system faulty)× P (system faulty).

The first term in this sum is zero, because the system does not fail if it is non-
faulty (which is why the theory needs these definitions6). Hence, with pnf as the
probability the system is nonfaulty (so that P (system faulty) = 1−pnf), and pF |f
as the probability that it Fails, if faulty, its probability of failure on demand, pfd
is given by

pfd = pF |f × (1− pnf). (2)

Different industries make different assessments about the parameters to (2).
Early nuclear protection, for example, seemed to presume the system is faulty, so
it set pnf to 0 and performed extensive random testing to substantiate (typically)
pF |f < 10−3. If those regulators had accepted that modest amounts of assurance
could deliver pnf ≥ 0.9, then by (2) the same probability of failure could be
achieved7 with the much less costly testing required to validate merely pF |f <
10−2.

Dually, AC 25.1309 seems to suggest that aircraft certification presumes the
system will fail if it is faulty, and so sets pF |f = 1. The whole burden for assurance
then rests on the value assessed for pnf . This suggests we need pnf ≥ 1 − 10−9

for catastrophic failure conditions, which is completely implausible. In fact (and
contrary to [50]), there is no credible assignment of values to the parameters of
(2) that delivers pfd ≤ 10−9 per hour, which seems to be required for aircraft
certification; an alternative model is needed.

Rather than the figure of 10−9 per hour, which is intended only as “an aid to
engineering judgment,” let us look at the fundamental requirement that a catas-
trophic failure condition is “not anticipated to occur during the entire operational
life of all airplanes of one type.” Extending (2), the probability of surviving n
independent demands without failure, denoted psrv (n), is given by

psrv (n) = pnf + (1− pnf)× (1− pF |f)n. (3)

5For a frequentist interpretation think of the actual system as a random selection from the
set of all systems for the same requirements, with the probability distribution of the selection
being determined by the problem to be solved and the character of the system development and

assurance processes employed. Each system can be assigned an indicator variable that takes the
value 1 if it is fault free and 0 if it is not; pnf is then the expected value of the indicator variable

over the selection distribution [38,41].
6There is a related notion of quasi fault-freeness, meaning the system is either fault free or

is faulty but has only a minuscule probability of failure [60]; this is a more robust model and

yields attractive results [69], but the details are more complicated.
7We are cutting a lot of corners here: the full treatment must distinguish aleatoric from

epistemic assessment and must justify that beliefs about the two parameters can be separated;

[39–41,69] give details.

5

Demands can be interpreted as hours of operation, or flights, or some other
measure of exposure and, whichever is chosen, a suitably large n can represent
“the entire operational life of all airplanes of one type.” The notable feature of (3)
is that the first term establishes a lower bound for psrv (n) that is independent of
n. Thus, if assurance gives us the confidence to assess, say, pnf ≥ 0.9 (or whatever
threshold is meant by “not anticipated to occur”) then it seems we have sufficient
confidence to certify the aircraft as safe.

However, we can imagine using this procedure to provide assurance for mul-
tiple airplane types; if pnf = 0.9 and we assure 10 types, then we can expect that
one of them will have faults. In this case, we need confidence that the system
will not suffer a critical failure despite the presence of faults, and this means we
need to be sure that the second term in (3) will be well above zero even though
it decays exponentially. This confidence could come from prior failure-free oper-
ation (e.g., flight tests). Calculating the overall psrv (n) can then be posed as a
problem in Bayesian inference: we have assessed a value for pnf , have observed
some number r of failure-free demands, and want to predict the probability of
seeing n− r future failure-free demands. To do this, we need a prior distribution
for pF |f , which may be difficult to obtain and difficult to justify for certification.
However, Strigini and Povyakalo [60] show there is a distribution (specifically,
one in which pF |f is concentrated in a probability mass at some qn ∈ (0, 1]) that
delivers provably worst-case predictions; hence, we can make predictions that are
guaranteed to be conservative, given only pnf , r, and n. For values of pnf above
0.9, their results show that psrv (n) is well above the floor given by pnf , provided
r > n

10 .
If we regard a complete flight as a demand, then “the entire operational life of

all airplanes of one type” might require n to be in the range 108 to 109 (e.g., the
Airbus A320 series have already performed over 62 million flights). Flight tests
prior to certification might provide only r = 103, so it appears this is insufficient
for certification by the criterion above. However, it can be argued that when an
airplane type is certified we do not require (and in fact cannot feasibly obtain)
sufficient evidence to predict failure-free operation over the entire lifetime of the
type; instead, we initially require sufficient confidence only for, say, the first six
months of operation and the small number of aircraft that will be manufactured
and deployed in that period. This will be a much smaller value of n, and our pnf
(from assurance) and our r (from flight tests) will be sufficient for confidence in
its failure-free operation. Then we will need confidence in the next six months of
operation, with a larger fleet, (i.e., a larger n) but now have the experience of the
prior six months failure-free operation (i.e., a larger r) and in this way we can
“bootstrap” our way forward.

It remains to consider what happens if experience in operation does reveal
a fault (by manifesting a failure, hopefully not catastrophic—remember there is
a requirement that no single fault may cause a catastrophic failure condition).
Commercial airplanes operate in a legal and ethical framework where all incidents
and accidents are promptly reported and dispassionately investigated. The FAA
issues Airworthiness Directives mandating workarounds or corrections to detected
faults; in extreme cases it may temporarily ground the fleet (as it did for Boeing
787 battery problems in January 2013). Bishop [11] constructs a statistical model

6

for this scenario and shows that, under plausible assumptions, detection and re-
pair of faults significantly increases long run safety, even if the fleet continues to
operate after a fault has been discovered, and even if repairs may be imperfect.

In its totality, the analysis above (which is based on research at Adelard
and City University in London [10–12, 41, 60, 69]) provides—for the first time, I
think—a plausible statistical model that retrospectively explains the success of
aircraft certification, and other certification regimes based on similar practices.
At the base of this analysis is an assessed confidence (e.g., pnf > 0.9) that the
system is nonfaulty with respect to critical requirements. Assurance delivers this
through justified belief in the four claims of Figure 1, and so we now need to
consider what manner of justification provides the required confidence.

2. Assurance Cases

It seems reasonable that justified belief in any of the claims of Figure 1 should rest
on evidence about the artifacts concerned, and an argument that this evidence
is sufficient to justify the claim. The four claims, and the artifacts they concern,
are rather different from each other and we might expect that they will involve
different kinds of evidence and argument. The first claim, for example, relates
the requirements, which will be recorded in a document, to the customer’s intent,
which will be a psychological or institutional phenomenon. The evidence will pre-
sumably document the process of “elicitation” employed and the argument will
justify the adequacy of this process and the means by which the requirements
are probed for errors, inconsistencies, and oversights. Likewise, the second claim
concerns the relationship between our assumptions and the actual world, and the
evidence and argument will document the way the assumptions are developed and
examined for utility, adequacy, and accuracy. The third and fourth claims, on the
other hand, concern relationships between documents: namely, the requirements,
the specification, and the implementation, given the assumptions. If the imple-
mentation is software, then all these documents are potentially formal and the
justification can employ evidence whose construction can be partially automated
using formal reasoning and program verification (or synthesis). However, the ar-
gument must then justify why we can trust the results of automated analysis, and
how we can be sure that the formal documents accurately represent the informal
interpretations we place upon them.

The differing nature of the artifacts involved in the four assurance claims and
the correspondingly different character of their associated assurance tasks cause
them to be referred to by different names: those associated with the first two
claims are said to concern validation (“are we building the right system?”) while
the second two concern verification (“are we building the system right?”). But,
in all cases, assurance uses argument and evidence to provide justified belief in
the associated claim; where they differ is in the kind of evidence deployed. It is
important to note that evidence is required not only for each primary claim (e.g.,
the process of elicitation used for requirements, or formal verification of speci-
fications against requirements), but for all its attendant doubts and subsidiary

7

concerns, such as trust in the results of automated analysis and in the fidelity of
formal specifications.8

Prior to the introduction of assurance cases [13,67], the selection of evidence
was specified in standards and guidelines and in some industries this continues to
the present. Thus DO-178C [47], the guidelines on assurance of software for civil
aircraft (and which is entirely focused on items 3 and 4 of Figure 1), describes 71
“objectives” for which evidence may be required. For the most critical software
(that which could lead to a catastrophic failure condition), known as Level A,
all 71 objectives must be satisfied, 33 of them “with independence” (meaning
assurance must be performed by personnel independent of the developers). For the
less critical Level B software (that which could lead to a hazardous/severe-major
failure condition) it is 69 objectives, 21 with independence; for Level C (major
failure conditions) it is 62 and 8, and for Level D (minor failure conditions) it is
26 and 5.

Identification and selection of the objectives in DO-178C were performed in
committee meetings, and through evolution from earlier versions of the document.
The guidelines seem to be effective: no aircraft accident or serious incident has
been traced to a flaw in software development (though some have implicated
flawed requirements—more properly called specifications—which are assured by a
different set of guidelines known as ARP 4754A [58]), but we do not have a good
understanding of why they are effective, nor a rationale for how the objectives
were selected.

Aircraft systems are changing (e.g., increasingly autonomous operation), as
is their environment (e.g., closer integration with air traffic management in
NextGen), and so are methods of software development and assurance (e.g., model
based design, and automated verification and synthesis), so DO-178C and similar
guidelines may need to be updated or replaced if they are to remain relevant [50].
We therefore need some principles to guide the selection of evidence that can
meet these new challenges. Since we do not have a good account of the principles
underlying DO-178C and its related guidelines, we need retrospectively to con-
struct suitable principles from the ground up. Assurance cases can provide the
intellectual scaffolding for this endeavor.

To provide justified belief in a claim, it seems reasonable that we should pro-
vide evidence that it is true. The difficulty is that there can be many reasons why
proffered evidence might not be persuasive. Hence, the evidence in support of a
claim needs to be organized in such a way that we can be sure that every con-
cern is adequately addressed. In an assurance case, this organization is achieved
through what is called a structured argument, which is a hierarchical collection
of individual argument steps, each of which justifies a local claim on the basis of
evidence and/or lower-level subclaims. A trivial example is shown on the left in
Figure 2, where a top claim C is justified by an argument step AS1 on the basis
of evidence E3 and subclaim SC1, which itself is justified by argument step AS2 on
the basis of evidence E1 and E2.9

8It is instructive to review faults found in formally verified systems [22, 68]: verification suc-
cessfully eliminates one class of potential faults, but others remain.

9To make this concrete, the claim C might concern system correctness; E1 could then be test

results, and E2 a description of how the tests were selected and the adequacy of their coverage, so

8

Here, C indicates a claim, SC a subclaim, and E evidence; AS indicates a
generic argument step, RS a reasoning step, and ES an evidential step.

C

SC E

E E

AS

AS1

3

21

2

1

C

SC

E

ES

SC

E

RS

ES

E
321

1

1

2 n

n

Figure 2. A Structured Argument in Free (left) and Simple Form (right)

Assurance cases often are portrayed graphically, as in the figure, and two
such graphical notations are in common use: Claims-Argument-Evidence, or CAE
[1], and Goal Structuring Notation, or GSN [34]; however, Figure 2 is generic
and does not represent any specific notation. The boxes in the Figure contain,
or reference, descriptions of the artifacts concerned: for evidence this may be
substantial, including results of tests, formal verifications, etc., and for argument
steps it will be a narrative explanation or “warrant” why the cited subclaims and
evidence are sufficient to justify the local parent claim.

Our goal now is to determine when an assurance case delivers sufficient con-
fidence to accept its claim—and to do that we need to determine how to evaluate
its evidence and structured argument.

Recall that the goal of assurance is to deliver confidence in the truth of its
claim, which we accomplish by means of justified belief. These concepts have been
studied since antiquity: Plato equated knowledge with justified true belief, and
that equivalence has been examined and debated for approximately 2,400 years as
a central focus of epistemology, the study of knowledge. Plato’s formulation was
generally accepted until the beginning of the 20th Century, when doubts began
to emerge. Russell posed the “stopped clock case” in 1912:

that SC1 is a claim that the system is adequately tested; E3 might then be version management
data to confirm it is the deployed software that was tested. Of course, a real assurance case will
concern more than testing and even testing will require dozens of items of supporting evidence,
so real assurance cases are huge.

9

Alice sees a clock that reads two o’clock, and believes that the time is two
o’clock. It is in fact two o’clock. However, unknown to Alice, the clock she is
looking at stopped exactly twelve hours ago.

The issue here is that although Alice has justified belief that the time is two
o’clock, and that belief is true, it easily could have been false because her justifi-
cation is weak. If this were an assurance case, Alice would be faulted for not con-
sidering the hazard of a faulty clock and seeking additional evidence to confirm
or refute that possibility. A publication by Gettier in 1963 [24] gave additional
examples in which poorly justified beliefs were “accidentally” true and this stim-
ulated huge activity (over 3,000 citations), much of which attempts to adjust the
definition of knowledge by replacing or augmenting “justified true belief.”

In assurance, we do not seek to (re)define knowledge, but to find good criteria
for belief to be adequately justified, and some epistemologists follow a similar
direction. Among many proposed criteria, the one relevant to assurance is that of
indefeasibility [36]. The idea is that for a belief to be justified indefeasibly we must
be so sure that all contingencies have been identified and considered that there
is no (or, more realistically, we cannot imagine any) new evidence that would
change our belief. Paraphrasing Barker [8], if you have an indefeasibly justified
belief, then what you don’t know can’t hurt you! Our task now is to apply the
indefeasibility criterion to the evidence and arguments of an assurance case.

Observe that the argument step AS1 on the left of Figure 2 uses both evidence
E3 and a subclaim SC1. Elsewhere [52], I sketch how to interpret such “mixed”
argument steps, but it is easier to understand the basic approach in their absence.
By introducing additional subclaims where necessary, it is straightforward to con-
vert arguments into simple form where each argument step is supported either
by subclaims or by evidence, but not by a combination of the two. The “mixed”
or free argument on the left of Figure 2 is converted to simple form on the right
by introducing a new subclaim SCn and a new argument step ESn above E3.

The benefit of simple form is that argument steps are now of two kinds: those
supported by subclaims are called reasoning steps (in the example, argument step
AS1 is relabeled as reasoning step RS1), while those supported by evidence are
called evidential steps (in the example, these are the relabeled step ES2 and the
new step ESn) and the key to our approach is that the two kinds of argument step
are interpreted differently. Specifically, evidential steps are interpreted “epistem-
ically,” using ideas grounded in probability, while reasoning steps are interpreted
“logically”: subclaims supported by evidential steps that cross some threshold of
credibility are accepted as premises in a classical deductive interpretation of the
reasoning steps.

We now consider these two kinds of argument steps in more detail.

2.1. Evidential Steps

My recommended approach for evidential steps is described in a related paper [52];
here, I provide a summary and relate it to the indefeasibility criterion.

Evidential steps are the bridge between our assurance concepts, represented
as claims and subclaims, and external reality consisting of the system, customers
(and other stakeholders), and the world. Our concepts, such as correctness of an

10

O

T

C

V

Z

S

A

Z: System specification

A: Assessment of specification quality

O: Test oracle

S: System’s true quality

T: Test results

V: Verification outcome

C: Claim of correctness

Figure 3. BBN for Testing and Verification Evidence

implementation with respect to its specification, might not be directly observable
in the world, so we observe what we can—for example, we run tests, conduct
walkthroughs, perform static analysis, and so on—and “weigh” this combination
of evidence to see if it crosses some threshold of credibility that allows us to
conclude the concept (i.e., claim or subclaim) concerned. There is often a choice
between combining two (or more) items of evidence to support a single subclaim
and using each to support its own subclaim, with those subclaims being combined
in a higher level reasoning step. For example, on the right hand side of Figure 2,
evidence E1 and E2 are combined in an evidential step, while E3 is combined with
these in a higher level reasoning step. My opinion is that reasoning steps should
be used to combine (subclaims corresponding to) evidence that is independent,
while evidential steps combine evidence that has dependencies.

An example, developed in [52], considers evidence involving both empirical
testing and formal verification of an implementation. These are not independent
(although later I will revisit that assertion), since success or failure of one suggests
a similar outcome is likely for the other. The question then, is how to combine
and “weigh” these items of evidence, paying due attention to their lack of inde-
pendence? We saw earlier that subjective probabilities provide a useful measure
for confidence in assurance claims; we can extend this to subclaim concepts such
as “implementation is correct,” which is assessed by evidence that the system
passed both formal verification and testing. Now there is a chance that a cor-
rect system will fail testing (the oracle, which judges whether a test succeeds or
fails, could be flawed), and that an incorrect one will pass (testing samples only
some of the possible runs), and likewise for verification (formal verification often
has to use approximation), and we can allocate subjective probabilities to these.
Bayesian Belief Nets (BBNs) then provide a method for combining probabilities
such as these, and are supported by tools that facilitate construction of models
and calculation of conditional probabilities.

The BBN for this example is shown in Figure 3, which is taken from [52]
(and derived from [42]), where its analysis is described in more detail. The idea
is that, given (presumably) successful test and verification outcomes, and condi-
tional probabilities modeling how these are assumed to depend on the quality of
the specification and the oracle and on the correctness of the implementation, the
BBN allows us to calculate confidence in the claim of correctness C.

11

A key point that emerges from BBN analysis is that the value of testing
evidence is highly dependent on the quality of the oracle, for which no evidence
was initially provided. It is difficult to evaluate test oracles, but we might suppose
they are more likely to be correct if the specification from which they are derived
is “testable.” Evidence for this (which might be expert opinion) is introduced to
the BBN as the variable A; this kind of evidence is required by DO-178C [47,
paragraph 6.3.1.d] and “what if” exploration with BBNs such as this can confirm
its value. Observe that A is indirect or “confidence building” evidence: it does not
measure a concept we are directly interested in, but “vouches for” the quality of
some artifact (here, report of successful testing) used in that estimation; BBNs
provide a way to use such confidence items in evidential steps.

It remains to determine what probabilistic quantities should be assessed in
argument steps. When we have evidence E supporting a hypothesis or claim C, it
seems plausible that our procedure should be to assess the conditional probability
P (C |E) and to accept C when this probability exceeds some threshold. Unfortu-
nately, even experts find it difficult to directly assess a quantity such as P (C |E).
Furthermore, the significance of P (C |E) depends on our prior assessment P (C),
which could be one of ignorance (or, in law, prejudice). For this reason, I rec-
ommend that we should take ideas from Bayesian Confirmation Theory [17], and
instead use what are called confirmation measures.

The idea underlying these measures is that we are really interested in the
ability of E to discriminate between C and its negation ¬C, so the quantities we
should look at concern the relationship between P (E |C) and P (E | ¬C); such
measures may be said to “weigh” C and ¬C “in the balance” provided by E.
Notice that P (E |C) is related to P (C |E) by Bayes’ Theorem but seems easier to
assess: that is, it seems easier to estimate the likelihood of concrete observations
E, given a claim about the world C, than vice-versa. There is no agreement in
the literature on the best confirmation measure: Fitelson [20] considers several

and makes a strong case for Good’s measure log P (E |C)
P (E | ¬C) , while Tentori and col-

leagues [62] perform an empirical comparison and generally approve of Kemeny

and Oppenheim’s measure P (E |C)−P (E | ¬C)
P (E |C)+P (E | ¬C) . Most of the measures support sim-

ilar verdicts,10 and these can differ significantly from P (C |E); for example, ad-
dition of the confidence item A in Figure 3 makes little difference to the value of
P (C |E), but the Kemeny-Oppenheim confirmation measure improves from 0.49
to 0.76 [52].

I do not propose that numerical assessment of these measures should be per-
formed in most assurance cases; rather, I think that “what if” experiments and
sensitivity studies with BBN tools, such as that reported in [52], can help re-
fine the recommendations for evidence and thresholds provided in standards and
guidelines such as DO-178C, where 71 assurance “objectives” are identified for
the most critical aviation software with little rationale for how these were selected
or how they support or depend on each other.

10Shogenji [57] proposes a measure of justfication that is equivalent to 1− logP (C |E)
logP (C)

. Atkin-

son [7] shows that this measure may support different verdicts than the standard confirmation

measures and that it is unique in a certain sense.

12

In summary, the evidence supplied in an evidential step should be evaluated,
either with the aid of explicit probabilistic modeling, or informally using judgment
honed by experiments with such models, and accepted when its combined weight
crosses some threshold that is deemed sufficient for its subclaim to be accepted
as a “settled fact.”

The indefeasibility criterion comes into play when we ask what defeaters could
exist for the evidence supplied. Defeaters are discussed in more detail in the next
subsection, but the basic idea is that a defeater to an argument step is like a
hazard to a system: a reason or circumstance why things might go wrong. For
example, testing evidence is defeated if it is not for exactly the same software
as that under consideration, and verification evidence is defeated if its theorem
prover might be unsound. Thus, each evidential step must be buttressed by ad-
ditional evidence to negate all possible defeaters (we need all possible to ensure
indefeasibility). According to the dependencies involved, this additional evidence
might be combined in the same evidential step as the original evidence or, more
likely, it will be used in individually dedicated evidential steps to support sepa-
rate subclaims that are combined in higher-level reasoning steps. This process is
described in the following subsection.

2.2. Reasoning Steps

In evidential steps, we have seen that multiple items of evidence are combined
and “weighed” to justify (belief in) truth of the (sub)claim concerned. This com-
bination may be performed informally or it can use probabilistic modeling with
BBNs, as in the example, where verification and testing evidence were combined
with “confidence” evidence about testability of the specification. We need to use
some kind of formal or informal “weighing” because the items of evidence may
be neither definitive nor independent.

When evidence is (or can be treated as) independent, it can be used to sup-
port separate subclaims that are then combined in reasoning steps. Independence
is a matter of judgment: thus, although formal verification and testing are not
generally independent, it could be argued that they can be treated as such when
we are dealing with extremely high quality software, where the likelihood of test-
ing or verification failure is infinitesimal and each can be considered to examine a
different aspect of the sparse failure space. Thus, the verification evidence in the
example of Figure 3 could be split from the testing and testability evidence so that
each supports a separate subclaim. Because they are (now assumed) independent,
the subclaims in a reasoning step are simply conjoined to deliver the truth of
their parent claim: that is, the claim in a reasoning step is considered true if and
only if all its subclaims are so. This interpretation could be “inductive,” that is
the conjunction of subclaims strongly suggests the claim is true, or it could be
“deductive,” meaning the conjunction implies (or entails, or proves) the claim.

We earlier stated that indefeasibly justified belief is the criterion that should
apply to assurance cases and it is now time to expand on this. There are two
reasons why an assurance case may be inadequate: one is that some subclaims
may be supported by weak evidence (e.g., if the evidence is testing, the tests may
be too few), and the other is that some legitimate concerns are overlooked, so

13

that necessary subclaims and their supporting evidence are entirely absent. Some
may think these are very similar: the response of public officials and the press to
embarrassing system failures is generally to blame inadequate testing. But this
misunderstands the rôle that testing and other evidence plays in assurance: it
is not to search for faults but to provide confidence in certain subclaims (which
may be about the absence of some kinds of faults) for the system. Thus weak
evidence is damaging not because it may have failed to detect a fault but because
it provides inadequate justification for belief in its subclaim, and hence the system
must be considered vulnerable to whatever consequences may follow from possible
falsity of that subclaim.

Thus, the evidence in an assurance case must be both strong and complete.
The previous subsection considered techniques for “weighing” evidence and our
strength criterion for adequately justified belief is for the weight of each evidential
step to exceed some threshold. For completeness, our criterion is indefeasibility:
we need to be sure that no concern has been overlooked and we apply this to
each step of the argument. For reasoning steps, this corresponds to the deductive
interpretation. However, although we ultimately require reasoning steps to be
deductive, I advocate approaching this via the methods and tools of an inductive
interpretation.

The reason for this is that assurance cases are developed incrementally: at
the beginning, we might miss some possible concerns and will not be sure that our
reasoning steps are deductive. As our grasp of the problem deepens, we may add
and revise subclaims and argument steps and only at the end will we be confident
that each reasoning step is deductive. Yet even in the intermediate stages, we will
want to have some way to evaluate the case, and an inductive interpretation can
provide this.

Furthermore, even when we are satisfied that the case is deductively sound,
we need to support review by others. The main objection to assurance cases is
that they are prone to “confirmation bias” [37]: this is the human tendency to
seek information that will confirm a hypothesis, rather than refute it. The most
effective counterbalance to this and other fallibilities of human judgment is to
subject assurance cases to vigorous examination by multiple reviewers with dif-
ferent points of view. Such a “dialectical” process of review can be organized as a
search for potential defeaters. That is, a reviewer asks “what if this happens,” or
“what if that is not true.” These challenges effectively assert that the reasoning
step concerned is inductive rather than deductive because there is some missing
case, or because some subclaim is too weak or needs to be bolstered by an as-
sumption or is just plain wrong, and so on. Hence, although all reasoning steps
should be (accepted as) deductive when an assurance case is in its finished state,
they may be considered inductive during development and review.

The idea of defeaters comes from epistemology, where Pollock [45, page 40]
defines a rebutting defeater as one that (in our terminology) contradicts the claim
of an argument step (i.e., asserts it is false), while an undercutting defeater merely
doubts it (i.e., doubts that the claim really does follow from the proffered sub-
claims or evidence); others subsequently defined undermining defeaters as those
that doubt some of the evidence or subclaims used in an argument step. I do not
find this particular taxonomy very helpful, but I do believe that tools to sup-

14

port development and evaluation of assurance cases should provide systematic
methods for proposing defeaters or otherwise challenging an argument step.

The response to such challenges may be to adjust the case, or it may be
to dispute the challenge (i.e., to defeat the defeater). I think the record of such
challenges and responses (and the narrative justification that accompanies them)
should be preserved as part of the assurance case to assist further revisions and
additional reviews. The fields of defeasible and dialectical reasoning provide tech-
niques for evaluating such “disputed” arguments. For example, Carneades [25] is
a system that supports dialectical reasoning, allowing a subargument to be pro or
con its conclusion: a claim is “in” if it is not the target of a con that is itself “in”
unless . . . (the details are unimportant here). Weights can be attached to evidence
and a proof standard is calculated by “adding up” the pros and cons supporting
the conclusion and their attendant weights. Thus, a conclusion is supported to
the preponderance of evidence proof standard if it has at least one pro argument
that is “in” and weighs more than any “in” con argument. For assurance cases,
we ultimately want the proof standard equivalent to a deductive argument, which
means that no con may be “in” (i.e., every defeater must be defeated). Takai and
Kido [61] build on these ideas to extend the Astah GSN assurance case toolset
with support for dialectical reasoning [6].

The top-down motivation for insisting that reasoning steps, when completed,
should be deductive is that the overall argument must support the indefeasibility
criterion for justified belief. The indefeasibility criterion for assurance cases was
introduced in [53]; prior to that I adduced bottom-up grounds for the deductive
requirement [52] and these reinforce the derivation from indefeasibility.

One bottom-up motivation is that assurance cases are generally very large
and cannot truly be comprehended in toto: a modular or compositional method is
essential. Deductive reasoning steps can be assessed in just such a modular fash-
ion, one step or one claim at a time. First, we check local soundness: that is, for
each reasoning step, we must assure ourselves that the conjunction of subclaims
truly implies the claim. Second, we must check that claims are interpreted con-
sistently between the steps that establish them and the steps that use them; this,
too, is a modular process, performed one claim at a time. In contrast, the first
of these is not modular for inductive steps—for when a step is labeled inductive,
we are admitting a “gap” in our reasoning: we must surely believe either that the
gap is insignificant, in which case we could have labeled the step deductive, or
that it is taken care of elsewhere, in which case the reasoning is not modular.

My second bottom-up reason for deprecating inductive reasoning steps is that
they implicitly acknowledge the presence of an unknown defeater. We may surely
assume that any inductive step is “almost” deductive. That is to say, the following
generic inductive step

p1 AND p2 AND · · · AND pn SUGGESTS c (4)

would become deductive if some missing subclaim or assumption a (which, of
course, may actually be a conjunction of smaller subclaims) were added, as shown
below.11 (It may be necessary to adjust the existing subclaims p1 to p′1 and so on

11There are other, logically equivalent, ways to interpret the repair: for example, we could

suppose that the premises stay the same but the conclusion is weakened to the claim c OR NOT a.

15

if, for example, the originals are inconsistent with a.)

a AND p′1 AND p′2 AND · · · AND p′n IMPLIES c. (5)

If we cannot imagine such a “repair,” then surely (4) must be utterly falla-
cious. It then seems that any estimation of the doubt in an inductive step like
(4) must concern the gap represented by a which is, in effect, an undercutting
defeater to its deductiveness. Now, if we knew anything at all about a it would be
irresponsible not to add it to the argument. But since we did not do so, yet ac-
knowledged that (4) is inductive, we must be ignorant of a and of the magnitude
of doubt that it represents.

One way to buttress support for an inductive step could be to provide addi-
tional subclaims or evidence that strengthen some aspects of the justification, even
though they do not change its inductive character. These intended strengthenings
are called confidence claims. We saw earlier that confidence items can play a con-
structive rôle in evidential steps (recall the “testability” evidence A in Figure 3)
but, there, we were in the context of “weighing” evidence that is interdependent.
In a reasoning step, the subclaims are assumed to be independent and there seems
no logical way to interpret the contribution of a confidence claim. Furthermore,
Hawkins et al observe a tendency to include numerous confidence claims “just in
case,” resulting in “voluminous, rambling, ad infinitum arguments” [27] that fail
to fulfill the primary purpose of an assurance case, which is to communicate a
clear argument.

Hawkins et al [27] propose that confidence claims should comprise a separate
part of the argument: the primary argument directly supports the top-level claim,
while the confidence part provides arguments for believing the primary part.
This is mistaken, in my view (the reasons for believing a reasoning step are not
specified as claims but are part of its narrative justification), and derives from
acceptance of inductive reasoning steps, which lack a clear criterion for adequacy.
Deductive reasoning steps, on the other hand, have a strict criterion and it is
very clear what their evaluation must accomplish: it must review the content and
justification of the step and assent (or not) to the proposition that its subclaims
truly imply the claim. The justification is provided as a narrative attached to each
reasoning step. There is no rôle for confidence claims in deductive reasoning steps,
and other superfluous subclaims are likely to complicate rather than strengthen
the assessment.12 Hence the requirement for deductive soundness encourages the
formulation of precise subclaims and concise arguments.

Reasoning steps, as I have described them, have a simple and austere form:
they comprise a claim, deductively supported by a conjunction of subclaims.
Critics may argue that this simplicity is illusory, because it is impractical: they
might cite argument over hazards as an example that is inherently inductive.
The idea is that we identify all hazards and then show that the system design
eliminates or adequately mitigates each one. A reasoning step will justify the claim
“all hazards eliminated or adequately mitigated” by a conjunction of subclaims
“hazard1 eliminated or adequately mitigated” and similarly for hazard2, . . . ,

12Context and assumptions are two additional kinds of claim that sometimes appear in as-

surance cases. In my opinion these are unnecessary because ordinary subclaims can fulfill the
same rôles [52].

16

hazardn; some will argue that this is necessarily an inductive step because we
cannot know that these are the only hazards. But we must have performed hazard
analysis to discover hazards hazard1 to hazardn, so we conjoin an additional
subclaim that asserts “hazard1, hazard2, . . . , hazardn are the only hazards”
and the step is now deductive. This is not a trick: deductiveness of reasoning
steps may sometimes be argued in the narrative justification for the step and
other times, particularly when, as here, it involves an enumeration, in a subclaim.
Doubts then focus, as they should, on the evidential support for this subclaim,
which will describe the method of hazard analysis employed, the diligence of its
performance, historical effectiveness, and so on.

From a strict viewpoint, all assurance cases must be inductive, even under
the indefeasibility criterion, for we lack omniscience: the best we can achieve is
adequately justified belief (i.e., confidence), not certainty. What my interpreta-
tion of indefeasible assurance cases accomplishes, however, is to isolate all induc-
tive doubt in the evidential steps where, in principle, probabilistic measures for
the weight of evidence provide the intellectual tools to manage confidence or its
lack.13 What we now need is a way to propagate measures of confidence from the
evidential steps through the reasoning steps to the top claim.

3. Complete Arguments

A complete structured argument in simple form consists of evidential steps, all
of which are deemed to have crossed some threshold of credibility, and reasoning
steps, all of which are judged to be deductively valid. An argument that satis-
fies these criteria is considered sound and we then regard the evidential steps as
premises in a conventional logical interpretation of the reasoning steps so that, to-
gether, they “prove” the top claim. However, some sound arguments may be con-
sidered “stronger” than others, so we need a way to evaluate argument strength;
ideally, this should relate to pnf so that it can be applied in the analysis following
(3).

A sound argument must be indefeasible, so a measure of argument strength
could, in principle, evaluate how persuasively this is justified. Justification for
indefeasibility requires that both the developers of the assurance case and its re-
viewers actively search for defeaters and document these, including successfully
resisted challenges (i.e., “defeated defeaters”) as part of the case. The goal is to
ensure that all assumptions and contingencies have been discovered and dealt
with: there must be no surprises following deployment. I accept that there may
be opportunity for undertaking these activities with greater or lesser degrees of
rigor depending on the risk posed by the system, but I do not see how to attach a
measure to this. Furthermore, a weak case for indefeasibility is similar to accep-
tance of inductive reasoning steps, and I caution against (in fact, deprecate) these
for reasons presented in the previous section. Hence, I recommend that indefea-
sibility of each reasoning and evidential step should be justified “as rigorously as
feasible.”

13This can be seen as a more systematic version of the style of informal argumentation known
as “natural language deductivism.”

17

The other criterion for a sound argument is that its evidential steps must
each cross a threshold of credibility, and these thresholds are a candidate measure
for argument strength. It is debatable whether all the evidential steps in a given
case should use the same threshold. Intuitively, it seems that some evidentially
supported subclaims might be considered more important (and thus require higher
thresholds) than others. But, on the other hand, all these subclaims are combined
via reasoning steps higher up in the argument, and the method of combination is
conjunction. Thus, the falsity of any subclaim in a reasoning step is sufficient to
falsify its parent claim and it therefore seems inappropriate that some should be
justified to different thresholds than others.

Independently of whether the thresholds are the same or different, we need
to consider how to combine the assessed strength for each step into one for the
overall argument. There seem several plausible ways to proceed. If the evidential
steps are assessed by probabilities representing P (C |E) (i.e., the probability of
the local subclaim, given the local evidence) then we could say that a conservative
assessment of the top claim is the product of all the local assessments (since sub-
claims are assumed independent, and are therefore conjoined in reasoning steps).
However, we saw that there are good reasons for preferring other assessments
for evidential steps, such as confirmation measures. There is little research on
how confirmation measures should propagate through arguments, but there are
indications that it may not be straightforward.

For example, we might hope that if evidence E supports a claim C and C
deductively entails C ′, then E should also support C ′. This expectation is refuted
by the following counterexample. Let C be the claim that a certain playing card
(drawn at random from a shuffled deck) is the Ace of Hearts, let C ′ be the claim
that the card is red, and let E be the evidence that the card is an Ace. Certainly
E (Ace) supports C (Ace of Hearts), which entails C ′ (red), but E (Ace) cannot
be considered to support C ′ (red). However, we should note that the evidence
“Ace” provides incomplete support for the claim “Ace of Hearts”—this is really
a conjunction “Ace AND Heart” and we have evidence for Ace but not for
Heart, so this counterexample is not persuasive when the indefeasibility criterion
is imposed.

One plausible option is that confirmation measures for the evidential steps
in an indefeasibly valid argument compose as a weakest link phenomenon. That
is, the confirmation measure of the top claim is no worse than the least value for
any evidential subclaim. This could still apply when confirmation assessments are
applied informally, resulting in ordinal measures such as “low,” “medium,” and
“high,” but the simplest option seems to be that the top claim is simply assessed
true when all its evidential subclaims exceed their thresholds.

It might seem that to exploit the line of argument following from (3) and
thereby contribute to a quantitative case for certification, assurance does need to
deliver a numerical assessment for pnf . However, the rôle of pnf in that equation is
to provide acceptable confidence in the absence of faults (i.e., we need a judgment
rather than a number), and the “simplest” option above can be interpreted as
assessing that confidence directly.

Different systems and subsystems pose different risks and so their assurance
targets should differ appropriately, as in the case mentioned earlier of aircraft

18

EE E

SC SC

3

1

1 2

C1

n

Figure 4. Venn Diagram of Assurance Case

software that is graduated from Level A to Level D. One way to accomplish this
within a fixed argument structure is to lower the thresholds for acceptable cred-
ibility of evidential steps. With testing evidence, for example, we could accept
fewer tests, or tests to a lesser coverage standard, for systems with lower assur-
ance targets. Within an evidential step, we could even eliminate some items of
evidence if these are considered strongly dependent on others (hence providing
little diversity), or are merely confidence items (such as the testability evidence
in Figure 3). Elimination of an item of evidence would also eliminate the need
for subclaims and supporting evidence concerning its defeaters: for example, if
formal verification evidence is eliminated, we no longer need evidence about the
soundness of the verifier concerned. However, elimination of a subclaim and its
attendant evidence other than as a consequence of the removal of evidence else-
where seems unjustifiable: such removal would mean that its parent reasoning
step is no longer deductive and hence the overall argument would no longer meet
the indefeasibility criterion.

Although subclaims cannot be removed without sacrificing the indefeasibility
criterion, they can certainly be rearranged. Figure 4 provides an alternative view
of the assurance case on the right of Figure 2; here, the Venn diagram represents
the space of “concerns” about the system. Their totality is covered by the claim
C1, which is partitioned into those covered by the subclaims SC1 and SCn, which
are themselves covered by their nested evidence. Although the space would not be
covered if we eliminated one of these subclaims, we can imagine it being divided
up differently (and, indeed, it would be a different space) had we chosen other
subclaims.

Michael Holloway has retrofitted an assurance case to DO-178C [28] that
makes explicit the way its assurance is “graduated” from Level A down to D.
Some of this is accomplished by lowering the threshold on evidence (for example,
unit tests for Level A software must achieve MC/DC coverage, while Level B
requires merely DC), and some involves changes to the argument. For example,
Levels A, B, and C employ Low Level Requirements (LLR, these are actually
specifications in our terminology), but these and all their attendant objectives are

19

eliminated at Level D. The reasoning seems to be that the correctness argument
from High Level Requirements (HLR) to Executable Object Code (EOC) is more
credible if it is broken into smaller steps via the LLR; it seems to me that this
may be plausible if the argument is informal, but would not be so if the relation
were formally verified, or if the EOC were generated from the HLR by automated
synthesis. Some of the other changes are rather difficult to reconcile with my
account, because Holloway employs a confidence argument (which I deprecate) in
addition to the primary correctness argument. I discuss some of the difficulties
in recasting DO-178C as an assurance case elsewhere [51, Section 3.1], and there
is certainly scope for differing opinions on how this should be done. My hope is
that the framework developed here will prove useful in formulating successors to
DO-178C and similar guidelines directly as explicit assurance cases that achieve
broad consensus.

4. Future Challenges

The purpose of assurance is to provide guarantees about the future, so that we
can be confident our system will do what we want and will not cause or allow bad
things to happen. These guarantees are based on two bedrock assumptions: first,
that it is possible to predict the future behavior of our system in the world and,
second, that with enough effort we can obtain near-omniscient (i.e., indefeasible)
insight into those behaviors.

Those bedrock assumptions are credible only in highly constrained circum-
stances: those where both our system and the world in which it operates are fully
predictable. These constraints do apply to traditional aircraft systems, for ex-
ample, where the world consists of well-understood physical phenomena (nothing
is more accurately modeled than the flow of air over a wing), simple physical
devices (flaps, landing gear, etc.) with well-understood failures, other computer-
ized systems, and trained and disciplined human operators (pilots and air traffic
controllers).

But even in this simple space, additional constraints are imposed to ensure
predictability. In particular, the FAA requires aircraft systems to be determin-
istic. This affects software design (e.g., choice of scheduling strategy), hardware
exploitation (e.g., use of caches and multiple cores), and algorithm design. For
example, control laws for the ailerons and other control surfaces need to change as
the aircraft transitions from slow flight in warm dense air at takeoff to transonic
flight in cold thin air at cruise. A single adaptive control law could do this, but
these are considered insufficiently predictable so, instead, as many as 30 sepa-
rate, individually certified, control laws are used with complex rules to smooth
the transitions between them. Concern about predictability is not unreasonable:
adaptive control is implicated in the crash of one of NASA’s X-15 spaceplanes
and the death of its pilot [16] (the problem was not in adaptive control considered
alone, but its behavior in the presence of other failures, as one of the elevons had
lost 80% of its control effectiveness).

The constraints that ensure the bedrock assumptions are becoming less ten-
able in modern systems, so on what alternative foundations can credible assurance

20

be constructed? There are two dimensions to this question: one concerns proper-
ties and predictability (a strong property may not be indefeasibly predictable, but
a weaker one might), and the other concerns the location of unpredictability: is it
in the system (where unpredictability can sometimes be managed by architectural
means), or in the world, or both?

An example where unpredictability in the system is transformed into pre-
dictability for a weaker property is provided by the so-called “simplex” architec-
ture [56]. Here, we have a sophisticated primary component that provides attrac-
tive but unassurable behavior (e.g., an adaptive control law), and a secondary
component that is less attractive, but assurable (e.g., a verifiably safe, but crude
control law). The secondary component guarantees safety as long as the system is
within some envelope; the primary component generally drives the system but the
architecture transitions to the secondary component when monitoring indicates
the system is approaching the edge of the secondary component’s envelope.

The simplex architecture can be seen as the extension to reactive systems of
an earlier technique for sequential systems called (provably) “safe programming”
[4], and both are related to the “detectors and correctors” treatment of fault
tolerance [5] and similar treatments for security [63].

All these techniques depend on a monitor function that detects incipient
failure of the primary. A monitor can be very simple: it does not need to do
anything active, just observe the values of sensors and internal variables and
periodically evaluate some predicate. The predicate need not be a full check on the
system’s operation, but rather some property that is relevant to its safety claim.
Due to its simplicity, it is plausible that assurance can deliver strong confidence
that a monitor is fault-free with respect to the monitored property. Now it is a
remarkable fact that when we have a system with two “channels,” one that is
reliable with pfd pA, and one for which we have confidence pB in its nonfaultiness,
then the reliability of their combination has pfd ≤ pA×pB [41].14 Notice that the
pfds of two reliable channels cannot be multiplied together because their failures
may not be independent.

The simplest arrangement of this type is a “monitored architecture” where
the first channel provides the standard operation of the system and the second is a
monitor that signals failure when its property is violated. This prevents transitions
into hazardous states and notifies higher-level fault management (e.g., human
pilots) that something is amiss. In a monitored architecture, we must consider
failures of commission (i.e., the monitor signals failure when it should not) as
well as omission (i.e., the monitor does not signal when it should). These details
are developed and analyzed in the paper cited above [41, Sections 4 and 5] and
illustrated for the case of an aircraft incident that involved failure of a massively
redundant fuel management system. The notable conclusion is that confidence in
nonfaultiness of the monitor provides strong assurance for reliability of the overall
system. The closer the monitored property is to a top-level claim, the stronger
and more direct this assurance will be.

14This is an aleatoric analysis; to apply it, we need epistemic estimates of the parameters

involved and these may introduce dependencies. However, it is often possible to manage these
by making conservative estimates [69].

21

In its most basic form, the monitored property can be a simple predicate; in
the fuel management example mentioned above this would check that the fuel is
distributed among the aircraft tanks in a way that is laterally balanced, has the
center of gravity in the correct place, is distributed along the wings in a way that
minimizes structural loads, and keeps an adequate supply in the engine tanks.
But in more complex systems, we may need to check stimulus-response proper-
ties: for example, the automation of an “Increasingly Autonomous” (IA) aircraft
(one where automation can stand in for a human pilot) may request the human
pilot to perform some task (e.g., set radio frequencies) and must then listen for
the confirmation. Temporal logics provide suitable foundations for describing such
properties and languages based on these (e.g., [9]) have been developed for a
variant of monitoring known as “runtime verification” [26,35]. For more complex
properties, the property specification language may need to be further enriched
to include real-time and other quantitative attributes [3, 15]. In the presence of
imperfect sensors (e.g., a vision understanding system) the monitored property
may need to be expressed probabilistically [32]. When human interaction is con-
sidered, it will generally be necessary to include some representation of the hu-
mans’ “mental models” [48] and their states of knowledge and belief [2], and even
trust [29]. These concepts require ever-richer logics, and combinations of logics,
as the foundations for languages to describe them.

The simplex architecture and its variants extend monitored architectures by
adding a secondary operational channel that can take over when the monitor
detects failure of the primary. Assurance for this architecture can be based on
that for the monitor and the secondary channel alone, with little or no reliance
on the primary operational channel. (Presumably the primary channel delivers
attractive behavior, so weak assurance for the ordinary requirements may derive
from this channel, while strong assurance for safety derives from the monitor and
secondary channel.)

The simplex architecture can be extended to multiple levels of fall-back with
less and less desirable, but still safe, backup channels or behaviors. But what if
there is no safe behavior? The crash of Air France flight 447 in 2009 provides an
example: here, the Pitot tubes were blocked by ice crystals, depriving the airplane
of airspeed data. The autopilot detected the problem and disconnected handing
control to the pilots (i.e., the standard behavior of a monitored architecture). In
the absence of airspeed data, pilots are instructed to hold pitch and thrust con-
stant, although this is difficult (AF 447 was in turbulence and cloud) and delicate
(at altitude there is a small margin between stall and Mach buffet/overspeed).
However, the pilot flying misinterpreted the situation15 and stalled the airplane
all the way down to the ocean, resulting in the deaths of everyone on board [14].
The autopilot of a future IA aircraft, could offer to hold the plane straight and
level (i.e., a form of simplex architecture) while the pilot troubleshoots—indeed,
the autothrottle of AF 447 did automatically enter thrust lock, but the pilot flying
disabled it. But what would be the basis for assuring the safety of this procedure?
In the absence of reliable airspeed data, it is impossible to give guarantees on the
safety of flight.

15The formal analysis of [2] attributes this to a lack of “negative introspection,” meaning the
pilot was unaware he lacked necessary information (i.e., he did not know what he did not know).

22

Assurance, as developed in the previous sections, requires indefeasible con-
fidence in strong claims for critical properties; here, we cannot achieve this, so
should we relax indefeasibility or the strength of the claims? My opinion is that
we should retain indefeasibility—we must remain sure that nothing has been
overlooked—but lower the threshold on evidential claims. In the absence of air-
speed data, we cannot be sure of the performance of the wing, but we can attempt
to estimate that data from other sensors (e.g., ground speed and altitude from
GPS) and recent history (e.g., stale air data), with fixed (or table-lookup) pitch
and thrust as a final fallback. Although these estimates cannot support strong
assurance, it seems to me that this approach is the best we can do and it retains
the basic outline and justification we have developed for trust in assurance cases.

Monitoring provides a systematic way to deal with unpredictability: if we
cannot predict how our system or the world will behave, we monitor them and
base our assurance case on claims that are guaranteed assuming the monitored
properties. However, this requires that we can accurately monitor properties of
interest, which may not be so, especially when uncertainty is located in the world.
Automated driving provides an instructive example. Here, we have cameras and
possibly LiDARs and other sensors, and a sensor fusion and vision understanding
system that attempts to discern the layout of the road and the presence of traffic
signals and obstacles and other hazards. The vision system uses machine learn-
ing, so its operation is opaque and unsuited to conventional assurance16 and we
have no independent way to monitor its correct interpretation of the scene. How-
ever, although we cannot monitor a safety claim directly related to its top-level
function, we can monitor related properties. For example, given the car’s location
(from GPS) and map data, we can calculate static features of the expected scene,
such as a gas station on the left and a mailbox on the right, or an intersection
ahead. A monitor can calculate these predicted features and check that the vision
system reports them. Such a monitor does not guarantee that the vision system
is operating safely, but at least we know it is awake and interpreting the world
around it with some accuracy [43,59].

A variant is to monitor the state of the system against its own history. The
idea (a generalization of [63]) is that we observe the system during (incident free)
operation, either in test or in prior operation, and construct a compact represen-
tation that approximates the states encountered. We then monitor the system in
execution against that representation and raise a signal when we encounter a state
that differs from those encountered previously. The idea is to alert higher-level
functions, or a human operator, that the system is now entering a space that it
has not previously encountered.

Beyond monitoring and backup channels to ensure satisfaction of assump-
tions, safety properties, or other weaker claims, are systems that adapt their be-
havior to ensure these. This can be appropriate in highly unpredictable envi-

16There is much recent interest in “Explainable AI” and in verification of AI systems that
use deep neural nets. Some of this was prompted by “adversarial perturbations” where small
changes to an image cause a vision system to misclassify it ([30] gives examples) leading to

concern, for example, that an automated driving system might miss a stop sign. There has been
some success in formal analysis and verification of these topics (e.g., [30,33]), so this is an area
where we can expect rapid change.

23

ronments, such as those involving collaboration with humans, as in IA aircraft
where the automation may replace one of the pilots. In addition to mandated and
airline-specific standard operating procedures (SOPs), there is a huge amount of
“implicit knowledge” underlying the interaction of human pilots. Attempting to
program suitable behavior for each scenario into an IA system seems difficult and
fault prone. It might be better to monitor the total system state and pilot activity
against a model of the aircraft, SOPs, checklists, and high-level “rules of flight”
and to employ alternative courses of action when the state does not evolve as
expected.17 For example, if the IA system operating as the “pilot flying” requests
the human as “pilot monitoring” to deploy the landing gear, it should expect to
see the state equivalent to “three greens” (gear down and locked) within some
reasonable time and, if not, take some alternative action (e.g., repeat the request,
try to diagnose the problem, release the gear itself, initiate a go-around, switch
roles etc.).

Some do expect these behaviors to be pre-programmed and propose to verify
their scripts against high-level requirements such as “rules of flight” [19, 65] or
financial regulations [23], whereas others advocate their generation at runtime
by an automated planner or other (verifiably sound) synthesis procedure driven
from those requirements and the modeled and observed environment. (Among
other benefits, a system of this kind can explain the reasons for its actions.)
Assurance then derives from a combination of the validity of the rules (assured
statically, at design time), and their interpretation and monitoring at runtime.
Whereas a traditional system might use formal verification to provide design-time
assurance for some aspect of design, a system of the kind envisaged here uses
formal synthesis and monitoring to construct and verify the design at runtime.
Because some of the assurance is derived from runtime analysis and synthesis, this
approach is provocatively named “runtime certification” [49]. Also provocatively,
we can speculate that advanced and future systems of this kind might evaluate
their actions not merely against SOPs and safety rules, but against models of
social norms and ethics.18 And beyond systems that, in effect, generate assurance
evidence at runtime, we can anticipate those that construct parts of the assurance
argument at runtime. Such behavior is very plausible in the Internet of Things,
where separately assured systems discover each other and integrate to achieve
some coordinated purpose (e.g., multiple medical devices attached to the same
patient). Safety may require that the separate systems exchange their assurance
cases and adjust their behavior to ensure compatibility (e.g., synthesize wrappers
to constrain behavior by one that would be a hazard to the other), or synthesize
a new collective case [54,64].

It is unlikely that autonomous systems operating in unpredictable environ-
ments can be assured to the level of today’s highly constrained systems. A plausi-
ble goal would be “at least as good as a human”; in the case of automated driving
this might be quantified as more than 165,000 miles between crashes.19 As in

17Inadequate monitoring and challenging are implicated in the majority of aircraft accidents

attributed to (human) crew error [21].
18Already there is an annual workshop on “Social Trust in Autonomous Robots”.
19To be clear, we would expect classical car and aircraft systems to be assured to the level they

are today, or better; it is their automated driving and IA autopilots that might be assured to the

24

cases where failures render the system unsafe (e.g., the AF 447 scenario described
earlier), assurance cases for autonomous systems operating in unpredictable en-
vironments cannot be watertight. So we have to decide whether some alternative
means of assurance should be adopted (e.g., licensing, or massive testing) or, if
assurance cases are retained, whether we should relax the indefeasibility criterion
or other elements of the traditional case.

In my opinion, equation (3) and its subsequent analysis retain their value
even when assurance goals are relaxed (i.e., we use a smaller value for n), be-
cause some confidence in absence of faults is needed to “bootstrap” the Bayesian
analysis that demonstrates the value of (even massive) pre-deployment testing
and subsequent experience in operation. An assurance case is surely the only in-
tellectually credible means to obtain that confidence: what other basis can there
be apart from evidence and argument? Similarly, indefeasibility seems the only
credible basis for justified belief: unless we (and our dialectical challengers) have
made a comprehensive attempt to think of everything that can go wrong with
both our system and our argument (i.e., all hazards and defeaters), then we are
vulnerable to faults that may reside in the overlooked cases.

5. Summary and Conclusions

We have seen that assurance provides justified belief that a system is free of serious
faults. Confidence in that belief can be expressed as a subjective probability,
which then translates into a similar probability that the software will suffer no
critical failures in its entire operational lifetime. However, there is a possibility
that our confidence is misplaced and so we also need to be sure that the system
will not fail even if it does contain faults. Confidence in that property is acquired
incrementally through predeployment testing and operational experience that is
justified by a Bayesian analysis bootstrapped under worst-case assumptions from
the initial confidence in fault-freeness, and is therefore conservative.

Justified belief in the quality of the system is based on evidence about its de-
sign, construction, behavior, and other relevant attributes. Evidence is organized
into an assurance case using a structured argument, which is partitioned into
evidential and reasoning steps. The former, which are interpreted epistemically,
combine related items of evidence to deliver probabilistic confidence in properties
referred to as local claims, while the latter, which are interpreted logically, conjoin
these to justify higher level claims and, ultimately, the top claim, which is the
safety property of interest.

To provide truly justified confidence in its top claim, the argument steps
of an assurance case must be indefeasible, meaning we must be so sure that
all objections and difficulties (i.e., hazards to the system and defeaters to the
argument) have been identified and considered that there is no new information
that would change our assessment. Each argument step is supported by a narrative
justification of its indefeasibility and, for evidential steps, of the thresholds on

human-equivalent level. Note also that a crash by an automated car should lead to investigation
of the precipitating scenario and improvement in the automated driving software that benefits

the safety of all automated cars, whereas human drivers learn only from their own experience.

25

evidence (e.g., if the evidence is testing, the number of tests required and the
criteria for their selection).

As a human construct, there is always the possibility that an assurance case
may be flawed; thus it must be subjected to active scrutiny and challenge by in-
dependent reviewers. Reviewers may contest the indefeasibility of each argument
step and the thresholds on evidential steps. When an assurance case is accepted
as sound, its evidential steps are treated as premises in a deductive logical in-
terpretation of its reasoning steps. During development and review, however, an
assurance case may not yet be indefeasible, and there can be utility in tools that
support inductive and defeasible interpretations of the partial case.

Systems that pose less risk may be assured to lower criteria; a standardized
assurance case can be graduated to deliver reduced assurance by lowering the
thresholds on evidential steps. This may allow the elimination of some evidence
and, hence, of subclaims to support its indefeasibility (e.g., if we drop static
analysis, we no longer need evidence for the soundness of its analyzer).

This model of assurance can be used, retrospectively, to explain the success
of current assurance practices, such as those for commercial aircraft and, prospec-
tively, to guide their evolution to cope with the challenges of new developments. I
recommend that future guidelines and standards for assurance should be explicitly
constructed as (templates for) assurance cases. These could allow sufficient flexi-
bility to accommodate novel systems and methods while retaining the industry-
wide scrutiny that seems to have been effective in ensuring the effectiveness of
current practices.

However, some current and many likely future systems break key assumptions
underlying our basic model for assurance: namely, that we have a good under-
standing of the operation of our system, and that its environment is predictable.
Self-driving cars exhibit both these difficulties: they use vision understanding sys-
tems based on machine learning to detect the layout of the road and its obstacles,
and they must cope with the often unpredictable behavior of other road users.

My opinion is that the basic framework of assurance cases can be employed
for these systems, but much of the evidence must be based on runtime monitoring,
and some of the assurance argument also may need to be constructed at runtime.

The challenge for the future, then, is to develop practical methods for as-
surance of these new systems that are as effective, and based on foundations as
credible, as those for the best current systems.

Acknowledgments.

This work was partially funded by SRI International and builds on previous re-
search that was funded by NASA under a contract to Boeing with a subcontract
to SRI International.

I have benefited greatly from extensive discussions on these topics with Robin
Bloomfield, Bev Littlewood, Lorenzo Strigini, and others at Adelard and City
University, and with John Knight, tragically now departed, of Dependable Com-
puting and University of Virginia.

26

References

[1] ASCAD: Adelard Safety Case Development Manual. Adelard LLP, London, UK, 1998.

Available from https://www.adelard.com/resources/ascad.html.
[2] Seth Ahrenbach. Reasoning about safety-critical information flow between pilot and com-

puter. In NASA Formal Methods, Volume 10227 of Springer-Verlag Lecture Notes in

Computer Science, pages 342–356, Mountain View, CA, May 2017.
[3] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quan-

titative properties of data streams. In European Symposium on Programming Languages

and Systems, Volume 9632 of Springer-Verlag Lecture Notes in Computer Science, pages
15–40, Eindhoven, The Netherlands, April 2016.

[4] T. Anderson and R. W. Witty. Safe programming. BIT, 18:1–8, 1978.
[5] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance

components. In 18th International Conference on Distributed Computing Systems, pages

436–443, IEEE Computer Society, Amsterdam, The Netherlands, 1998.
[6] Astah. Astah GSN home page. http://astah.net/editions/gsn.

[7] David Atkinson. Confirmation and justification. A commentary on Shogenji’s measure.

Synthese, 184(1):49–61, January 2012.
[8] John Barker. What you don’t know won’t hurt you. American Philosophical Quarterly,

13(4):303–308, October 1976.

[9] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. In Verification, Model Checking, and Abstract Interpretation, VMCAI 2004,

Volume 2937 of Springer-Verlag Lecture Notes in Computer Science, pages 44–57, Venice,

Italy, January 2004.
[10] Antonia Bertolino and Lorenzo Strigini. Assessing the risk due to software faults: Esti-

mates of failure rate vs. evidence of perfection. Software Testing, Verification and Relia-
bility, 8(3):156–166, 1998.

[11] Peter Bishop. Does software have to be ultra reliable in safety critical systems? In

SafeComp [55], pages 118–129.
[12] Peter Bishop and Robin Bloomfield. A conservative theory for long-term reliability-growth

prediction. IEEE Transactions on Reliability, 45(4):550–560, 1996.

[13] Peter Bishop and Robin Bloomfield. A methodology for safety case development. Safety
and Reliability, 20(1):34–42, 2000.

[14] Final Report on the Accident on 1st June 2009 to the Airbus A330-203 registered F-

GZCP operated by Air France flight AF 447 Rio de Janeiro–Paris. Bureau d’Enquêtes
et d’Analyses (BEA), Paris, France, July 2012.

[15] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. Self-

adaptive software needs quantitative verification at runtime. Communications of the
ACM, 55(9):69–77, 2012.

[16] Zachary T. Dydek, Anuradha M. Annaswamy, and Eugene Lavretsky. Adaptive control

and the NASA X-15-3 flight revisited. IEEE Control Systems Magazine, 30(3):32–48,
March 2010.

[17] John Earman. Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory.
MIT Press, 1992.

[18] Certification Specifications and Acceptable Means of Compliance for Large Aero-
planes, CS-25 and AMC-25. The European Aviation Safety Agency (EASA), June
2016. Amendment 18; available at https://www.easa.europa.eu/document-library/

certification-specifications.

[19] Michael Fisher, Louise Dennis, and Matt Webster. Verifying autonomous systems. Com-
munications of the ACM, 56(9):84–93, September 2013.

[20] Branden Fitelson. Studies in Bayesian Confirmation Theory. PhD thesis, Department of
Philosophy, University of Wisconsin, Madison, May 2001. Available at http://fitelson.
org/thesis.pdf.

[21] A Practical Guide for Improving Flight Path Monitoring: Final Report of The Active

Pilot Monitoring Working Group. Flight Safety Foundation, November 2014.
[22] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. An empirical study

on the correctness of formally verified distributed systems. In Proceedings of the Twelfth

27

https://www.adelard.com/resources/ascad.html
http://astah.net/editions/gsn
https://www.easa.europa.eu/document-library/certification-specifications
https://www.easa.europa.eu/document-library/certification-specifications
http://fitelson.org/thesis.pdf
http://fitelson.org/thesis.pdf

European Conference on Computer Systems (EuroSys’17), pages 328–343, Association for

Computing Machinery, Belgrade, Serbia, April 2017.
[23] Reginald Ford, Grit Denker, Daniel Elenius, Wesley Moore, and Elie Abi-Lahoud. Au-

tomating financial regulatory compliance using ontology+rules and Sunflower. In Proceed-

ings of the 12th International Conference on Semantic Systems, pages 113–120, Associa-
tion for Computing Machinery, Leipzig, Germany, September 2016.

[24] Edmund L. Gettier. Is justified true belief knowledge? Analysis, 23(6):121–123, 1963.

[25] Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades model of argu-
ment and burden of proof. Artificial Intelligence, 171(10):875–896, 2007.

[26] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2002), Volume

2280 of Springer-Verlag Lecture Notes in Computer Science, pages 342–356, Grenoble,

France, April 2002.
[27] Richard Hawkins, Tim Kelly, John Knight, and Patrick Graydon. A new approach to

creating clear safety arguments. In Chris Dale and Tom Anderson, editors, Advances in

System Safety: Proceedings of the Nineteenth Safety-Critical Systems Symposium, pages
3–23, Southampton, UK, February 2011.

[28] C. Michael Holloway. Explicate ’78: Discovering the implicit assurance case in DO-178C.

In Mike Parsons and Tom Anderson, editors, Engineering Systems for Safety. Proceedings
of the 23rd Safety-critical Systems Symposium, pages 205–225, Bristol, UK, February

2015.

[29] Xiaowei Huang and Marta Kwiatkowska. Reasoning about cognitive trust in stochastic
multiagent systems. In Proceedings, AAAI-2017, San Francisco, CA, February 2017.

[30] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. arXiv preprint arXiv:1610.06940, 2017.

[31] Michael Jackson. Software requirements & specifications: A Lexicon of Practice, Principles

and Prejudices. ACM Press/Addison-Wesley Publishing Co., 1995.
[32] Susmit Jha and Vasumathi Raman. Automated synthesis of safe autonomous vehicle

control under perception uncertainty. In NASA Formal Methods, Volume 9690 of Springer-

Verlag Lecture Notes in Computer Science, pages 117–132, Minneapolis, MN, June 2016.
[33] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An

efficient SMT solver for verifying deep neural networks. arXiv preprint arXiv:1702.01135,

2017.
[34] Tim Kelly. Arguing Safety—A Systematic Approach to Safety Case Management. DPhil

thesis, Department of Computer Science, University of York, UK, 1998.

[35] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh Viswanathan.
Runtime assurance based on formal specifications. In Proceedings of International Confer-

ence on Parallel and Distributed Processing Techniques and Applications, pages 279–287,
Las Vegas, NV, June 1999.

[36] Keith Lehrer and Thomas Paxson. Knowledge: Undefeated justified true belief. The

Journal of Philosophy, 66(8):225–237, April 1969.
[37] Nancy Leveson. The use of safety cases in certification and regulation. Journal of System

Safety, 47(6):1–5, 2011.
[38] B. Littlewood and D. R. Miller. Conceptual modeling of coincident failures in multiversion

software. IEEE Transactions on Software Engineering, 15(12):1596–1614, December 1989.

[39] Bev Littlewood and Andrey Povyakalo. Conservative bounds for the pfd of a 1-out-of-2

software-based system based on an assessor’s subjective probability of “not worse than
independence”. IEEE Transactions on Software Engineering, 39(12):1641–1653, 2013.

[40] Bev Littlewood and Andrey Povyakalo. Conservative reasoning about the probability of
failure on demand of a 1-out-of-2 software-based system in which one channel is “possibly
perfect”. IEEE Transactions on Software Engineering, 39(11):1521–1530, 2013.

[41] Bev Littlewood and John Rushby. Reasoning about the reliability of diverse two-channel

systems in which one channel is “possibly perfect”. IEEE Transactions on Software
Engineering, 38(5):1178–1194, September/October 2012.

[42] Bev Littlewood and David Wright. The use of multi-legged arguments to increase con-
fidence in safety claims for software-based systems: a study based on a BBN analysis of

28

an idealised example. IEEE Transactions on Software Engineering, 33(5):347–365, May

2007.
[43] Ayhan Mehmed, Sasikumar Punnekkat, Wilfried Steiner, Giacomo Spampinato, and Mar-

tin Lettner. Improving dependability of vision-based advanced driver assistance systems

using navigation data and checkpoint recognition. In SafeComp 2015: Proceedings of
the 34th International Conference on Computer Safety, Reliability, and Security, Vol-

ume 9337 of Springer-Verlag Lecture Notes in Computer Science, pages 59–73, Delft, The

Netherlands, September 2015.
[44] Charles Perrow. Normal Accidents: Living with High Risk Technologies. Basic Books,

New York, NY, 1984.
[45] John L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. MIT

Press, 1995.

[46] Felix Redmill. ALARP explored. Technical Report CS-TR-1197, Department of Comput-
ing Science, University of Newcastle upon Tyne, UK, March 2010.

[47] DO-178C: Software Considerations in Airborne Systems and Equipment Certification.

Requirements and Technical Concepts for Aviation (RTCA), Washington, DC, December
2011.

[48] John Rushby. Using model checking to help discover mode confusions and other automa-

tion surprises. Reliability Engineering and System Safety, 75(2):167–177, February 2002.
[49] John Rushby. Runtime certification. In Martin Leucker, editor, Eighth Workshop on

Runtime Verification: RV08, Volume 5289 of Springer-Verlag Lecture Notes in Computer

Science, pages 21–35, Budapest, Hungary, April 2008.
[50] John Rushby. New challenges in certification for aircraft software. In Sanjoy Baruah and

Sebastian Fischmeister, editors, Proceedings of the Ninth ACM International Conference
On Embedded Software: EMSOFT, pages 211–218, Taipei, Taiwan, 2011.

[51] John Rushby. The interpretation and evaluation of assurance cases. Techni-

cal Report SRI-CSL-15-01, Computer Science Laboratory, SRI International, Menlo
Park, CA, July 2015. Available at http://www.csl.sri.com/users/rushby/papers/

sri-csl-15-1-assurance-cases.pdf.

[52] John Rushby. On the interpretation of assurance case arguments. In New Frontiers in Ar-
tificial Intelligence: JSAI-isAI 2015 Workshops, LENLS, JURISIN, AAA, HAT-MASH,

TSDAA, ASD-HR, and SKL, Revised Selected Papers, Volume 10091 of Springer-Verlag

Lecture Notes in Artificial Intelligence, pages 331–347, Kanagawa, Japan, November 2015.
[53] John Rushby. The indefeasibility criterion for assurance cases. In Shonan Workshop

on Implicit and Explicit Semantics Integration in Proof Based Developments of Discrete

Systems, Kanagawa, Japan, November 2016. Postproceedings to be published in Springer
LNCS.

[54] John Rushby. Trustworthy self-integrating systems. In Nikolaj Bjørner, Sanjiva Prasad,
and Laxmi Parida, editors, 12th International Conference on Distributed Computing and

Internet Technology, ICDCIT 2016, Volume 9581 of Springer-Verlag Lecture Notes in

Computer Science, pages 19–29, Bhubaneswar, India, January 2016.
[55] SafeComp 2013: Proceedings of the 32nd International Conference on Computer Safety,

Reliability, and Security, Volume 8153 of Springer-Verlag Lecture Notes in Computer
Science, Toulouse, France, September 2013.

[56] Lui Sha. Using simplicity to control complexity. IEEE Software, 18(4):20–28, July 2001.

[57] Tomoji Shogenji. The degree of epistemic justification and the conjunction fallacy. Syn-

these, 184(1):29–48, January 2012.
[58] Aerospace Recommended Practice (ARP) 4754A: Certification Considerations for Highly-

Integrated or Complex Aircraft Systems. Society of Automotive Engineers, December
2010. Also issued as EUROCAE ED-79.

[59] Wilfried Steiner, Ayhan Mehmed, and Sasikumar Punnekkat. Improving intelligent vehi-

cle dependability by means of infrastructure-induced tests. In Dependable Systems and

Networks Workshops (DSN-W), 2015 IEEE International Conference, pages 147–152,
2015.

[60] Lorenzo Strigini and Andrey Povyakalo. Software fault-freeness and reliability predictions.
In SafeComp [55], pages 106–117.

29

http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf
http://www.csl.sri.com/users/rushby/papers/sri-csl-15-1-assurance-cases.pdf

[61] Toshinori Takai and Hiroyuki Kido. A supplemental notation of GSN to deal with

changes of assurance cases. In 4th International Workshop on Open Systems Depend-
ability (WOSD), pages 461–466, IEEE International Symposium on Software Reliability

Engineering Workshops, Naples, Italy, November 2014.

[62] Katya Tentori, Vincenzo Crupi, Nicolao Bonini, and Daniel Osherson. Comparison of
confirmation measures. Cognition, 103:107–119, 2007.

[63] Ashish Tiwari, Bruno Dutertre, Dejan Jovanović, Thomas de Candia, Patrick D. Lincoln,

John Rushby, Dorsa Sadigh, and Sanjit Seshia. Safety envelope for security. In Proceedings
of the 3rd International Conference on High Confidence Networked Systems (HiCoNS),

pages 85–94, Association for Computing Machinery, Berlin, Germany, April 2014.
[64] Mario Trapp and Daniel Schneider. Safety assurance of open adaptive systems—a survey.

In Nelly Bencomo, Robert France, Betty H.C. Cheng, and Uwe Assmann, editors, Mod-

els@Run.Time: Foundations, Applications, and Roadmaps, volume 8378 of Lecture Notes
in Computer Science, pages 279–318. Springer-Verlag, 2014.

[65] Matt Webster, Michael Fisher, Neil Cameron, and Mike Jump. Formal methods for the

certification of autonomous unmanned aircraft systems. In SafeComp 2011: Proceedings
of the 30th International Conference on Computer Safety, Reliability, and Security, Vol-

ume 6894 of Springer-Verlag Lecture Notes in Computer Science, pages 228–242, Naples,

Italy, September 2011.
[66] Wikipedia. Various entries, 2016.

[67] S. P. Wilson, T. P. Kelly, and J. A. McDermid. Safety case development: Current practice,

future prospects. In Roger Shaw, editor, Safety and Reliability of Software Based Systems
(Twelfth Annual CSR Workshop), pages 135–156, Bruges, Belgium, September 1995.

[68] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 283–294, San Jose, CA, June 2011.

[69] Xingyu Zhao, Bev Littlewood, Andrey Povyakalo, Lorenzo Strigini, and David Wright.
Modeling the probability of failure on demand (pfd) of a 1-out-of-2 system in which one

channel is quasi-perfect. In Reliability Engineering and System Safety. pages 230–245,

February 2017.

30

