
Invited paper, presented at FTRTFT’02, Oldenburg, Germany, September 2002. Springer-Verlag
LNCS Vol. 2469, pp. 83–105.c©Springer-Verlag

An Overview of Formal Verification
For the Time-Triggered Architecture?

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA
rushby@csl.sri.com

Abstract. We describe formal verification of some of the key algorithms in the
Time-Triggered Architecture (TTA) for real-time safety-critical control applica-
tions. Some of these algorithms pose formidable challenges to current techniques
and have been formally verified only in simplified form or under restricted fault
assumptions. We describe what has been done and what remains to be done and
indicate some directions that seem promising for the remaining cases and for
increasing the automation that can be applied. We also describe the larger chal-
lenges posed by formal verification of the interaction of the constituent algorithms
and of their emergent properties.

1 Introduction

The Time-Triggered Architecture (TTA) provides an infrastructure for safety-critical
real-time control systems of the kind used in modern cars and airplanes. Concretely,
it comprises an interlocking suite of distributed algorithms for functions such as clock
synchronization and group membership, and their implementation in the form of TTA
controllers, buses, and hubs. The suite of algorithms is known as TTP/C (an adjunct
for non safety-critical applications is known as TTP/A) and was originally developed
by Kopetz and colleagues at the Technical University of Vienna [28]; its current spec-
ification and commercial realization are by TTTech of Vienna [75]. More abstractly,
TTA is part of a comprehensive approach to safety-critical real-time system design [25]
that centers on time-triggered operation [26] and includes notions such as “temporal
firewalls” [24] and “elementary” interfaces [27].

The algorithms of TTA are an exciting target for formal verification because they
are individually challenging and they interact in interesting ways. To practitioners and
developers of formal verification methods and their tools, these algorithms are excellent
test cases—first, to be able to verify them at all, then to be able to verify them with suffi-
cient automation that the techniques used can plausibly be transferred to nonspecialists
? This research was supported by NASA Langley Research Center under Cooperative Agree-

ment NCC-1-377 with Honeywell Incorporated, by DARPA through the US Air Force Rome
Laboratory under Contract F30602-96-C-0291, by the National Science Foundation under
Contract CCR-00-86096, and by the NextTTA project of the European Union.

1



for use in similar applications. For the developers and users of TTA, formal verifica-
tion provides valuable assurance for its safety-critical claims, and explication of the
assumptions on which these rest. As new versions of TTA and its implementations are
developed, there is the additional opportunity to employ formal methods in the design
loop.

TTA provides the functionality of a bus: host computers attach to TTA and are able
to exchange messages with other hosts; in addition, TTA provides certain services to
the hosts (e.g., an indication which other hosts and their interface controllers are partic-
ipating reliably in network protocols). Because it is used in safety-critical systems, TTA
must be fault tolerant: that is, it must continue to provide its services to nonfaulty hosts
in the presence of faulty hosts and in the presence of faults in its own components.
In addition, the services that it provides to hosts are chosen to ease the design and
construction of fault-tolerant applications (e.g., in an automobile brake-by-wire appli-
cation, each wheel has a brake that is controlled by its own host computer; the services
provided by TTA make it fairly simple to arrange a safe distributed algorithm in which
each host can adjust the braking force applied to its wheel to compensate for the failure
of one of the other brakes or its host).

Serious consideration of fault-tolerant systems requires careful identification of the
fault containment units (components that fail independently), fault hypotheses (the kind,
arrival rate, and total number of faults to be tolerated), and the type of fault tolerance to
be provided (e.g., what constitutes acceptable behavior in the presence of faults: fault
masking vs. fail silence, self stabilization, or never-give-up). The basic goal in verifying
a fault-tolerant algorithm is to prove

fault hypotheses satisfiedimpliesacceptable behavior.

Stochastic or other probabilistic and experimental methods must then establish that the
probability of the fault hypotheses being satisfied is sufficiently large to satisfy the
mission requirements.

In this short paper, it is not possible to provide much by way of background to the
topics adumbrated above, nor to discuss the design choices in TTA, but a suitable in-
troduction is available in a previous paper [54] (and in more detail in [55]). Neither is
it possible, within the limitations of this paper, to describe in detail the formal verifi-
cations that have already been performed for certain TTA algorithms. Instead, my goal
here is to provide an overview of these verifications, and some of their historical an-
tecedents, focusing on the importance of the exact fault hypotheses that are considered
for each algorithm and on the ways in which the different algorithms interact. I also
indicate techniques that increase the amount of automation that can be used in these
verifications, and suggest approaches that may be useful in tackling some of the chal-
lenges that still remain.

2 Clock Synchronization

As its full name indicates, the Time-Triggered Architecture uses the passage of time
to schedule its activity and to coordinate its distributed components. A fault tolerant

2



distributed clock synchronization algorithm is therefore one of TTA’s fundamental ele-
ments.

Host computers attach to TTA through an interface controller that implements the
TTP/C protocol. I refer to the combination of a host and its TTA controller as anode.
Each controller contains an oscillator from which it derives its local notion of time (i.e.,
a clock). Operation of TTA is driven by a global schedule, so it is important that the
local clocks are always in close agreement. Drift in the oscillators causes the various
local clocks to drift apart so periodically (several hundred times a second) they must be
resynchronized. What makes this difficult is that some of the clocks may be faulty.

The clock synchronization algorithm used in TTA is a modification of the Welch-
Lynch (also known as Lundelius-Lynch) algorithm [78], which itself can be understood
as a particular case of the abstract algorithm described by Schneider [66]. Schneider’s
abstract algorithm operates as follows: periodically, the nodes decide that it is time to
resynchronize their clocks, each node determines the skews between its own clock and
those of other nodes, forms afault-tolerant averageof these values, and adjusts its own
clock by that amount.

An intuitive explanation for the general approach is the following. After a resyn-
chronization, all the nonfaulty clocks will be close together (this is the definition of
synchronization); by the time that they next synchronize, the nonfaulty clocks may have
drifted further apart, but the amount of drift is bounded (this is the definition of a good
clock); the clocks can be brought back together by setting them to some value close to
the middle of their spread. An “ordinary average” (e.g., the mean or median) over all
clocks may be affected by wild readings from faulty clocks (which, under aByzantine
fault hypothesis, may provide different readings to different observers), so we need a
“fault-tolerant average” that is insensitive to a certain number of readings from faulty
clocks.

The Welch-Lynch algorithm is characterized by use of thefault-tolerant midpointas
its averaging function. If we haven clocks and the maximum number of simultaneous
faults to be tolerated isk (3k < n), then the fault-tolerant midpoint is the average
of the k + 1’st andn − k’th clock skew readings, when these are arranged in order
from smallest to largest. If there are at mostk faulty clocks, then some reading from a
nonfaulty clock must be at least as small as thek + 1’st reading, and the reading from
another nonfaulty clock must be at least as great as then− k’th; hence, the average of
these two readings should be close to the middle of the spread of readings from good
clocks.

The TTA algorithm is basically the Welch-Lynch algorithm specialized fork = 1
(i.e., it tolerates a single fault): that is, clocks are set to the average of the2nd and
n − 1’st clock readings (i.e., the second-smallest and second-largest). This algorithm
works and tolerates a single arbitrary fault whenevern ≥ 4. TTA does not use dedicated
wires to communicate clock readings among the nodes attached to the network; instead,
it exploits the fact that communication is time triggered according to a global schedule.
When a nodea receives a message from a nodeb, it notes the reading of its local clock
and subtracts a fixed correction term to account for the network delay; the difference
between this adjusted clock reading and the time forb’s transmission that is indicated
in the global schedule yieldsa’s perception of the skew between clocksa andb.

3



Not all nodes in a TTA system need have accurate oscillators (they are expensive),
so TTA’s algorithm is modified from Welch-Lynch to use only the clock skews from
nodes marked1 as having accurate oscillators. Analysis and verification of this variant
can be adapted straightforwardly from that of the basic algorithm. Unfortunately, TTA
adds another complication.

For scalability, an implementation on the Welch-Lynch algorithm should use data
structures that are independent of the number of nodes—i.e., it should not be necessary
for each node to store the clock difference readings for all (accurate) clocks. Clearly, the
second-smallest clock difference reading can be determined with just two registers (one
to hold the smallest and another for the second-smallest reading seen so far), and the
second-largest can be determined similarly, for a total of four registers per node. If TTA
used this approach, verification of its clock synchronization algorithm would follow
straightforwardly from that of Welch-Lynch. Instead, for reasons that are not described,
TTA does not consider all the accurate clocks when choosing the second-smallest and
second-largest, but just four of them.

The four clocks considered for synchronization are chosen as follows. First, TTA
is able to tolerate more than a single fault by reconfiguring to exclude nodes that are
detected to be faulty. This is accomplished by the group membership algorithm of TTA,
which is discussed in the following section.2 The four clocks considered for synchro-
nization are chosen from the members of the current membership; it is therefore es-
sential that group membership have the property that all nonfaulty nodes have the same
members at all times. Next, each node maintains a queue of four clock readings3; when-
ever a message is received from a node that is in the current membership and that has the
SYF field set, the clock difference reading is pushed on to the receiving node’s queue
(ejecting the oldest reading in the queue). Finally, when the current slot has the syn-
chronization field (CS) set in theMEDL, each node runs the synchronization algorithm
using the four clock readings stored in its queue.

Formal verification of the TTA algorithm requires more than simply verifying a
four-clocks version of the basic Welch-Lynch algorithm: for example, the chosen clocks
can change from one round to the next. However, verification of the basic algorithm
provides a foundation for the TTA case.

Formal verification of clock synchronization algorithms has quite a long history, be-
ginning with Rushby and von Henke’s verification [60] of the interactive convergence
algorithm of Lamport and Melliar Smith [32]; this is similar to the Welch-Lynch algo-
rithm, except that theegocentric meanis used as the fault-tolerant average. Shankar [70]
formally verified Schneider’s abstract algorithm and its instantiation for interactive con-
vergence. This formalization was subsequently improved by Miner (reducing the dif-
ficulty of the proof obligations needed to establish the correctness of specific instan-
tiations), who also verified the Welch-Lynch instantiation [38]. All these verifications
were undertaken with EHDM [61], a precursor to PVS [41]. The treatment developed by

1 By having theSYFfield set in theMEDL(the global schedule known to all nodes).
2 A node whose clock loses synchronization will suffer send and/or receive faults and will there-

fore be detected and excluded by the group membership algorithm.
3 It is described as a push-down stack in the TTP/C specification [75], but this seems to be an

error.

4



Miner was translated to PVS and generalized (to admit nonaveraging algorithms such
as that of Srikanth and Toueg [73] that do not conform to Schneider’s treatment) by
Schwier and von Henke [69]. This treatment was then extended to the TTA algorithm
by Pfeifer, Schwier and von Henke [45]. The TTA algorithm is intended to operate in
networks where there are at least four good clocks, and it is able to mask any single
fault in this circumstance. Pfeifer, Schwier and von Henke’s verification establishes this
property. Additional challenges still remain, however.

In keeping with thenever give upphilosophy that is appropriate for safety-critical
applications, TTA should remain operational with less than four good clocks, though
“the requirement to handle a Byzantine fault is waived” [75, page 85]. It would be
valuable to characterize and formally verify the exact fault tolerance achieved in these
cases. One approach to achieving this would be to undertake the verification in the con-
text of a “hybrid” fault model such as that introduced for consensus by Thambidurai and
Park [74]. In a pure Byzantine fault model, all faults are treated as arbitrary: nothing
is assumed about the behavior of faulty components. A hybrid fault model introduces
additional, constrained kinds of faults and the verification is extended to examine the
behavior of the algorithm concerned under combinations of several faults of differ-
ent kinds. Thambidurai and Park’s model augments the Byzantine orarbitrary fault
model withmanifestandsymmetricfaults. A manifest fault is one that is consistently
detectable by all nonfaulty nodes; a symmetric fault is unconstrained, except that it ap-
pears the same to all nonfaulty nodes. Rushby reinterpreted this fault model for clock
synchronization and extended verification of the interactive convergence algorithm to
this more elaborate fault model [49]. He showed that the interactive convergence al-
gorithm withn nodes can withstanda arbitrary,s symmetric, andm manifest faults
simultaneously, providedn > 3a + 2s + m. Thus, a three-clock system using this
algorithm can withstand a symmetric fault or two manifest faults.

Rushby also extended this analysis tolink faults, which can be considered as asym-
metric and possibly intermittent manifest faults (i.e., nodea may obtain a correct read-
ing of nodeb’s clock while nodec obtains a detectably faulty reading). The fault toler-
ance of the algorithm is thenn > 3a + 2s + m + l wherel is the maximum, over all
pairs of nodes, of the number of nodes that have faulty links to one or other of the pair.

It would be interesting to extend formal verification of the TTA algorithm to this
fault model. Not only would this enlarge the analysis to cases where fewer than three
good clocks remain, but it could also provide a much simpler way to deal with the
peculiarities of the TTA algorithm (i.e., its use of queues of just four clocks). Instead of
explicitly modeling properties of the queues, we could, under a fault model that admits
link faults, imagine that the queues are larger and contain clock difference readings
from the full set of nodes, but that link faults reduce the number of valid readings
actually present in each queue to four (this idea was suggested by Holger Pfeifer). A
recent paper by Schmid [64] considers link faults for clock synchronization in a very
general setting, and establishes bounds on fault tolerance for both the Welch-Lynch and
Srikanth-Toueg algorithms and I believe this would be an excellent foundation for a
comprehensive verification of the TTA algorithm.

All the formal verifications of clock synchronizations mentioned above are “brute
force”: they are essentially mechanized reproductions of proofs originally undertaken

5



by hand. The proofs depend heavily on arithmetic reasoning and can be formalized at
reasonable cost only with the aid of verification systems that provide effective mecha-
nization for arithmetic, such as PVS. Even these systems, however, typically mechanize
only linear arithmetic and require tediously many human-directed proof steps (or nu-
merous intermediate lemmas) to verify the formulas that arise in clock synchronization.
The new ICS decision procedures [16] developed for PVS include (incomplete) exten-
sions to nonlinear products and it will be interesting to explore the extent to which such
extensions simplify formal verification of clock synchronization algorithms.4 Even if
all the arithmetic reasoning were completely automated, current approaches to formal
verification of clock synchronization algorithms still depend heavily on human insight
and guidance. The problem is that the synchronization property is not inductive: it must
be strengthened by the conjunction of several other properties to achieve a property
that is inductive. These additional properties are intricate arithmetic statements whose
invention seems to require considerable human insight. It would be interesting to see if
modern methods for invariant discovery and strengthening [6,7,76] can generate some
of these automatically, or if the need for them could be sidestepped using reachability
analysis on linear hybrid automata.

All the verifications described above deal with the steady-state case; initial syn-
chronization is quite a different challenge. Note that (re)initialization may be required
during operation if the system suffers a massive failure (e.g., due to powerful electro-
magnetic effects), so it must be fast. The basic idea is that a node that detects no activity
on the bus for some time will assume that initialization is required and it will broadcast a
wakeup message: nodes that receive the message will synchronize to it. Of course, other
nodes may make the same determination at about the same time and may send wakeup
messages that collide with others. In these cases, nodes back off for (different) node-
specific intervals and try again. However, it is difficult to detect collisions with perfect
accuracy and simple algorithms can lead to existence of groups of nodes synchronized
within themselves but unaware of the existence of the other groups. All of these com-
plications must be addressed in a context where some nodes are faulty and may not
be following (indeed, may be actively disrupting) the intended algorithm. The latest
version of TTA uses a star topology and the initialization algorithm is being revised to
exploit some additional safeguards that the central guardian makes possible [42]. Veri-
fication of initialization algorithms is challenging because, as clearly explained in [42],
the essential purpose of such an algorithm is to cause a transition between two models
of computation: from asynchronous to synchronous. Formal explication of this issue,
and verification of the TTA initialization algorithm, are worthwhile endeavors for the
future.

3 Transmission Window Timing

Synchronized clocks and a global schedule ensure that nonfaulty nodes broadcast their
messages in disjoint time slots: messages sent by nonfaulty nodes are guaranteed not

4 It is not enough to mechanize real arithmetic on its own; it must be combined with inequali-
ties, integer linear arithmetic, equality over uninterpreted function symbols and several other
theories [50].

6



to collide on the bus. A faulty node, however, could broadcast at any time—it could
even broadcast constantly (thebabbling failure mode). This fault is countered by use
of a separate fault containment unit called aguardianthat has independent knowledge
of the time and the schedule: a message sent by one node will reach others only if the
guardian agrees that it is indeed scheduled for that time.

Now, the sending node, the guardian, and each receiving node have synchronized
clocks, but there must be some slack in the time window they assign to each slot so
that good messages are not truncated or rejected due to clock skew within the bounds
guaranteed by the synchronization algorithm. The design rules used in TTA are the
following, whereΠ is the maximum clock skew between synchronized components.

– The receive window extends from the beginning of the slot to4Π beyond its allot-
ted duration.

– Transmission begins2Π units after the beginning of the slot and should last no
longer than the allotted duration.

– The bus guardian for a transmitter opens its windowΠ units after the beginning of
the slot and closes it3Π beyond its allotted duration.

These rules are intended to ensure the following requirements.

Agreement: If any nonfaulty node accepts a transmission, then all nonfaulty nodes do.
Validity: If any nonfaulty node transmits a message, then all nonfaulty nodes will ac-

cept the transmission.
Separation: messages sent by nonfaulty nodes or passed by nonfaulty guardians do

not arrive before other components have finished the previous slot, nor after they
have started the following one.

Formal specification and verification of these properties is a relatively straightfor-
ward exercise. Description of a formal treatment using PVS is available as a technical
report [57].

4 Group Membership

The clock synchronization algorithm tolerates only a single (arbitrary) fault. Additional
faults are tolerated by diagnosing the faulty node and reconfiguring to exclude it. This
diagnosis and reconfiguration is performed by thegroup membershipalgorithm of TTA,
which ensures that each TTA node has a record of which nodes are currently partici-
pating correctly in the TTP/C protocol. In addition to supporting the internal fault tol-
erance of TTA, membership information is made available as a service to applications;
this supports the construction of relatively simple, but correct, strategies for tolerating
faults at the application level. For example, in an automobile brake-by-wire application,
the node at each wheel can adjust its braking force to compensate for the failure (as in-
dicated in the membership information) of the node or brake at another wheel. For such
strategies to work, it is obviously necessary that the membership information should be
reliable, and that the application state of nonmembers should be predictable (e.g., the
brake is fully released).

7



Group membership is a distributed algorithm: each node maintains a privatemem-
bershiplist, which records all the nodes that it believes to be nonfaulty. Reliability of
the membership information is characterized by the following requirements.

Agreement: The membership lists of all nonfaulty nodes are the same.
Validity: The membership lists of all nonfaulty nodes contain all nonfaulty nodes and

at most one faulty node (we cannot require immediate removal of faulty nodes
because a fault must be manifested before it can be diagnosed).

These requirements can be satisfied only under restricted fault hypotheses. For example,
validity cannot be satisfied if new faults arrive too rapidly, and it is provably impossible
to diagnose an arbitrary-faulty node with certainty. When unable to maintain accurate
membership, the best recourse is to maintain agreement, but sacrifice validity. This
weakened requirement is calledclique avoidance.

Two additional properties also are desirable in a group membership algorithm.

Self-diagnosis: faulty nodes eventually remove themselves from their own member-
ship lists and fail silently (i.e., cease broadcasting).

Reintegration: it should be possible for excluded but recovered nodes to determine
the current membership and be readmitted.

TTA operates as a broadcast bus (even though the recent versions are stars topo-
logically); the global schedule executes as a repetitive series ofrounds, and each node
is allocated a broadcast slot in each round. The fault hypothesis of the membership
algorithm is a benign one: faults must arrive two or more rounds apart, and must be
symmetric in their manifestations: eitherall or exactlyonenode may fail to receive
a broadcast message (the former is called asendfault, the latter areceivefault). The
membership requirements would be relatively easy to satisfy if each node were to at-
tach a copy of its membership list to each message that it broadcasts. Unfortunately,
since messages are typically very short, this would use rather a lot of bandwidth (and
bandwidth was a precious commodity in early implementations of TTA), so the algo-
rithm must operate with less explicit information and nodes must infer the state and
membership of other nodes through indirect means. This operates as follows.

Each active TTA node maintains a membership list of those nodes (including itself)
that it believes to be active and operating correctly. Each node listens for messages from
other nodes and updates its membership list according to the information that it receives.
The time-triggered nature of the protocol means that each node knows when to expect a
message from another node, and it can therefore detect the absence of such a message.
Each message carries a CRC checksum that encodes information about its sender’sC-
State, which includes its local membership list. To infer the local membership of the
sender of a message, receivers must append their estimate of that membership (and
other C-state information) to the message and then check whether the calculated CRC
matches that sent with the message. It is not feasible (or reliable) to try all possible
memberships, so receivers perform the check against just their own local membership,
and one or two variants.

Transmission faults are detected as follows: each broadcaster listens for the mes-
sage from itsfirst successor(roughly speaking, this will be the next node to broadcast)

8



to check whether it suffered a transmission fault: this will be indicated by its exclusion
from the membership list of the message from its first successor. However, this indica-
tion is ambiguous: it could be the result of a transmission fault by the original broad-
caster, or of a receive fault by the successor. Nodes use the local membership carried by
the message from theirsecond successorto resolve this ambiguity: a membership that
excludes the original broadcaster but includes the first successor indicates a transmis-
sion fault by the original broadcaster, and one that includes the original broadcaster but
excludes the first successor indicates a receive fault by the first successor.

Nodes that suffer receive faults could diagnose themselves in a similar way: their
local membership lists will differ from those of nonfaulty nodes, so their next broadcast
will be rejected by both their successors. However, the algorithm actually performs this
diagnosis differently. Each node maintainsacceptandrejectcounters that are initialized
to 1 and 0, respectively, following its own broadcast. Incoming messages that indicate
a membership matching that of the receiver cause the receiver to increment its accept
count; others (i.e., those that indicate a different membership or that are considered
invalid for other reasons) cause it to increment its reject count. Before broadcasting,
each node compares its accept and reject counts and shuts down unless the former is
greater than the latter.

Formal verification of this algorithm is difficult. We wish to prove that agreement
and validity are invariants of the algorithm (i.e., they are true of all reachable states), but
it is difficult to do this directly (because it is hard to characterize the reachable states).
So, instead, we try to prove a stronger property: namely, that agreement and validity
are inductive(that is, true of the initial states and preserved by all steps of the algo-
rithm). The general problem with this approach to verification of safety properties of
distributed algorithms is that natural statements of the properties of interest are seldom
inductive. Instead, it is necessary to strengthen them by conjoining additional proper-
ties until they become inductive. The additional properties typically are discovered by
examining failed proofs and require human insight.

Before details of the TTA group membership algorithm were known, Katz, Lin-
coln, and Rushby published a different algorithm for a similar problem, together with
an informal proof of its correctness [23] (I will call this the “WDAG” algorithm). A
flaw in this algorithm for the special case of three nodes was discovered independently
by Shankar and by Creese and Roscoe [12] and considerable effort was expended in
attempts to formally verify the corrected version. A suitable method was found by
Rushby [53] who used it to formally verify the WDAG algorithm, but used a sim-
plified algorithm (called the “CAV” algorithm) to explicate the method in [53]. The
method is based on strengthening a putative safety property into adisjunctionof “con-
figurations” that can easily be proved to be inductive. Configurations can be constructed
systematically and transitions among them have a natural diagrammatic representation
that conveys insight into the operation of the algorithm. Pfeifer subsequently used this
method to verify validity, agreement, and self-diagnosis for the full TTA membership
algorithm [44] (verification of self-diagnosis is not described in the paper).

Although the method just described is systematic, it does require considerable hu-
man interaction and insight, so more automatic methods are desirable. All the group
membership algorithms mentioned (CAV, WDAG, TTA) aren-process algorithms (so-

9



calledparameterized systems), so one attractive class of methods seeks to reduce the
general case to some fixed configuration (say four processes) of an abstracted algo-
rithm that can be model checked. Creese and Roscoe [12] report an investigation along
these lines for the WDAG algorithm. The difficulty in such approaches is that proving
that the abstracted algorithm is faithful to the original is often as hard as the direct proof.

An alternative is toconstructthe abstracted algorithm using automated theorem
proving so that the result is guaranteed to be sound, but possibly too conservative. These
methods are widely used for predicate [62] and data [11] abstraction (both methods are
implemented in PVS using a generalization of the technique described in [63]), and have
been applied ton-process examples [71]. The precision of an abstraction is determined
by the guidance provided to the calculation (e.g., which predicates to abstract on) and
by the power of the automated deduction methods that are employed.5 The logic called
WS1S is very attractive in this regard, because it is very expressive (it can represent
arithmetic and set operations on integers) and it is decidable [14]. The method imple-
mented in the PAX tool [4,5] performs automated abstraction of parameterized specifi-
cations modeled in WS1S. Application of the tool to the CAV group membership pro-
tocol is described on the PAX web page athttp://www.informatik.uni-kiel.

de/˜kba/pax/examples.html . The abstraction yields a finite-state system that can
be examined by model checking. I conjecture that extension of this method to the TTA
algorithm may prove difficult because the counters used in that algorithm add an extra
unbounded dimension.

The design of TTA (and particularly of the central guardian) is intended to mini-
mize violations of the benign fault hypothesis of the group membership algorithm. But
we cannot guarantee absence of such violations, so the membership algorithm is but-
tressed by a clique avoidance algorithm (it would better be called a clique elimination
algorithm) that sacrifices validity but maintains agreement under weakened fault hy-
potheses. Clique avoidance is actually a subalgorithm of the membership algorithm: it
comprises just the part that manages the accept and reject counters and that causes a
node to shut down prior to a broadcast unless its accept count exceeds its reject count at
that point. The clique avoidance algorithm can be analyzed either in isolation or, more
accurately, in the presence of the rest of the membership algorithm (this is, the part that
deals with the first and second successor).

Beyond the benign fault hypothesis lieasymmetricfaults (where more than one
but less than all nodes fail to receive a broadcast correctly), andmultiple faults, which
are those that arrive less than two rounds apart. These hypotheses all concern loss of
messages; additional hypotheses includeprocessorfaults, where nodes fail to follow
the algorithm, andtransient faults, where nodes have their state corrupted (e.g., by
high-intensity radiation) but otherwise follow the algorithm correctly.

Bauer and Paulitsch [3] describe the clique avoidance algorithm and give an in-
formal proof that it tolerates a single asymmetric fault. Their analysis includes the ef-
fects of the rest of the membership algorithm. Bouajjani and Merceron [8] prove that
the clique avoidance algorithm, considered in isolation, tolerates multiple asymmetric

5 In this context, automated deduction methods are used in afailure-tolerantmanner, so that
if the methods fail to prove a true theorem, the resulting abstraction will be sound, but more
conservative than necessary.

10

http://www.informatik.uni-kiel.de/~kba/pax/examples.html
http://www.informatik.uni-kiel.de/~kba/pax/examples.html


faults; they also describe an abstraction for then-node,k-faults parameterized case that
yields a counter automaton. Reachability is decidable for this class of systems, and
experiments are reported with two automated verifiers for thek = 1 case.

For transient faults, I conjecture that the most appropriate framework for analysis is
that of self-stabilization [68]. An algorithm is said to beself-stabilizingif it converges
to a stable “good” state starting from an arbitrary initial state. The arbitrary initial state
can be one caused by an electromagnetic upset (e.g., that changes the values of the
accept and reject counters), or by other faults outside the benign fault hypotheses.

An attractive treatment of self-stabilization is provided by the “Detectors and Cor-
rectors” theory of Arora and Kulkarni. The full theory [2, 31] is comprehensive and
more than is needed for my purposes, so I present a simplified and slightly modified
version that adapts the important insights of the original formulation to the problem at
hand.

We assume some “base” algorithmM whose purpose is to maintain an invariant
S: that is, if the (distributed) system starts in a state satisfying the predicateS, then
execution ofM will maintain that property. In our case,M is the TTA group mem-
bership algorithm, andS is the conjunction of the agreement and validity properties.
M corresponds to what Arora and Kulkarni call the “fault-intolerant” program, but in
our context it is actually a fault-tolerant algorithm in its own right. This aspect of the
system’s operation can be specified by the Hoare formula

{S}M ||F {S}

whereF is a “fault injector” that characterizes the fault hypothesis of the base algorithm
andM ||F denotes the concurrent execution ofM andF .

Now, a transient fault can take the system to some state not satisfyingS, and at this
point our hope is that a “corrector” algorithmC will take over and somehow cause the
system to converge to a state satisfyingS, where the base algorithm can take over again.
We can represent this by the following formula

C |= 3S

where3 is theeventuallymodality of temporal logic.
In our case,C is the TTA clique avoidance algorithm. So far we have treatedM and

C separately but, as noted previously, they must actually run concurrently, so we really
require

{S} C||M ||F {S}
and

C||M ||F |= 3S.

The presence ofF in the last of these represents the fact that although the disturbance
that took the system to an arbitrary state is assumed to have passed when convergence
begins, the standard, benign fault hypothesis still applies.

To ensure the first of these formulas, we need thatC does not interfere withM—
that is, thatC||M behaves the same asM (and henceC||M ||F behaves the same as
M ||F ). A very direct way to ensure this is forC actually to be a subalgorithm ofM—
for thenC||M is the same asM . As we have already seen later, this is the case in TTA,
where the clique avoidance algorithm is just a part of the membership algorithm.

11



A slight additional complication is that the corrector may not be able to restore the
system to the ideal condition characterized byS, but only to some “safe” approximation
to it, characterized byS′. This is the case in TTA, where clique avoidance sacrifices
validity. Our formulas therefore become the following.

{S} C||M ||F {S} (1)

{S′} C||M ||F {S′ ∨ S}, and S ⊃ S′ (2)

and
C||M ||F |= 3S′. (3)

The challenge is formally to verify these three formulas. Concretely, (1) is accom-
plished for TTA by Pfeifer’s verification [44] (and potentially, in more automated form,
by extensions to the approaches of [4,8]), (2) should require little more than an adjust-
ment to those proofs, and the hard case is (3). Bouajjani and Merceron’s analysis [8]
can be seen as establishing

C |= 3S′

for the restricted case where the arbitrary initial state is one produced by the occurrence
of multiple, possibly asymmetric faults in message transmission or reception. The gen-
eral case must consider the possibility that the initial state is produced by some outside
disturbance that sets the counters and flags of the algorithm to arbitrary values (I have
formally verified this case for a simplified algorithm), and must also consider the pres-
ence ofM andF . Formal verification of this general case is an interesting challenge for
the future. Kulkarni [30, 31] has formally specified and verified the general detectors
and correctors theory in PVS, and this provides a useful framework in which to develop
the argument.

A separate topic is to examine the consequences of giving up validity in order to
maintain agreement under the clique avoidance algorithm. Under the never give up
philosophy, it is reasonable to sacrifice one property rather than lose all coordination
when the standard fault hypothesis is violated, but some useful insight may be gained
through an attempt to formally characterize the possible behaviors in these cases.

Reintegration has so far been absent from the discussion. A node that diagnoses a
problem in its own operation will drop out of the membership, perform diagnostic tests
and, if these are satisfactory (indicating that the original fault was a transient event),
attempt to reintegrate itself into the running system. This requires that the node first
(re)synchronizes its clock to the running system, then acquires the current membership,
and then “speaks up” at its next slot in the schedule. There are potential difficulties here:
for example, a broadcast by a nodea may be missed by a nodeb whose membership
is used to initialize a reintegrating nodec; rejection of its message byb and c then
causes the good nodea to shut down. This scenario is excluded by the requirement that
a reintegrating node must correctly receive a certain number of messages before it may
broadcast itself. Formal examination of reintegration scenarios is another interesting
challenge for the future.

12



5 Interaction of Clock Synchronization and Group Membership

Previous sections considered clock synchronization and group membership in isola-
tion but noted that, in reality, they interact: synchronization depends on membership to
eliminate nodes diagnosed as faulty, while membership depends on synchronization to
create the time-triggered round structure on which its operation depends. Mutual de-
pendence of components on the correct operation of each other is generally formalized
in terms of assume-guarantee reasoning, first introduced by Chandy and Misra [39] and
Jones [22]. The idea is to show that componentX1 guarantees certain propertiesP1 on
the assumption that componentX2 delivers certain propertiesP2, andvice versafor
X2, and then claim that the composition ofX1 andX2 guaranteesP1 andP2 uncon-
ditionally. This kind of reasoning appears—and indeed is—circular in thatX1 depends
onX2 andvice versa. The circularity can lead to unsoundness and there has been much
research on the formulation of rules for assume-guarantee reasoning that are both sound
and useful. Different rules may be compared according to the kinds of system models
and specification they support, the extent to which they lend themselves to mechanized
analysis, and the extent to which they are preserved under refinement (i.e., the circum-
stances under whichX1 can be replaced by an implementation that may do more than
X1).

Closer examination of the circular dependency in TTA reveals that it is not circular if
the temporal evolution of the system is taken into consideration: clock synchronization
in roundt depends on group membership in roundt−1, which in turn depends on clock
synchronization in roundt − 2 and so on. McMillan [37] has introduced an assume-
guarantee rule that seems appropriate to this case. McMillan’s rule can be expressed as
follows, whereH is a “helper” property (which can be simplytrue), 2 is the “always”
modality of Linear Temporal Logic (LTL), andp � q (“ p constrainsq”) means that if
p is always true up to timet, thenq holds at timet+ 1 (i.e.,p fails beforeq), where we
interpret time as rounds.

〈H〉X1〈P2 � P1〉
〈H〉X2〈P1 � P2〉

〈H〉 X1||X2 〈2(P1 ∧ P2)〉
(4)

Notice thatp � q can be written as the LTL formula¬(pU¬q), whereU is the LTL
“until” operator. This means that the antecedent formulas can be established by LTL
model checking if the transition relations forX1 andX2 are finite.

I believe the soundness of the circular interaction between the clock synchronization
and group membership algorithms of TTA can be formally verified using McMillan’s
rule. To carry this out, we need to import the proof rule (4) into the verification frame-
work employed—and for this we probably need to embed the semantics of the rule into
the specification language concerned. McMillan’s presentation of the rule only sketches
the argument for its soundness; a more formal treatment is given by Namjoshi and Tre-
fler [40], but it is not easy reading and does not convey the basic intuition. Rushby [56]
presents an embedding of LTL in the PVS specification language and formally verifies
the soundness of the rule. The specification and proof are surprisingly short and provide
a good demonstration of the power and convenience of the PVS language and prover.

13



Using this foundation to verify the interaction between the clock synchronization
and group membership algorithms of TTA remains a challenge for the future. Observe
that such an application of assume-guarantee reasoning has rather an unusual character:
conventionally, the components in assume-guarantee reasoning are viewed as separate,
peer processes, whereas here they are distributed algorithms that form part of a protocol
hierarchy (with membership above synchronization).

6 Emergent Properties

Clock synchronization, transmission window timing, and group membership are im-
portant properties, but what makes TTA useful are not the individual properties of its
constituent algorithms, but the emergent properties that come about through their com-
bination. These emergent properties are understood by the designers and advocates of
TTA, but they have not been articulated formally in ways that are fully satisfactory, and
I consider this the most important and interesting of the tasks that remain in the formal
analysis of TTA.

I consider the three “top level” properties of TTA to be the time-triggered model of
computation, support for application-independent fault tolerance, and partitioning. The
time-triggered model of computation can be construed narrowly or broadly. Narrowly,
it is a variant on the notion of synchronous system [35]: these are distributed computer
systems where there are known upper bounds on the time that it takes nonfaulty pro-
cessors to perform certain operations, and on the time that it takes for a message sent
by one nonfaulty processor to be received by another. The existence of these bounds
simplifies the development of fault-tolerant systems because nonfaulty processes exe-
cuting a common algorithm can use the passage of time to predict each others’ progress,
and the absence of expected messages can be detected. This property contrasts with
asynchronous systems, where there are no upper bounds on processing and message
delays, and where it is therefore provably impossible to achieve certain forms of con-
sistent knowledge or coordinated action in the presence of even simple faults [9, 17].
Rushby [52] presents a formal verification that a system possessing the synchronization
and scheduling mechanisms of TTA can be used to create the abstraction of a syn-
chronous system. An alternative model, closer to TTA in that it does not abstract out
the real-time behavior, is that of the language Giotto [19] and it would be interesting to
formalize the connection between TTA and Giotto.

More broadly construed, the notion of time-triggered system encompasses a whole
philosophy of real-time systems design—notably that espoused by Kopetz [25]. Kopetz’
broad conception includes a distinction betweencompositeandelementaryinterfaces
[27] and the notion of atemporal firewall[24].

A time-triggered system does not merely schedule activity within nodes, it also
manages the reliable transmission of messages between them. Messages obviously
communicate data between nodes (and the processes within them) but they may also,
through their presence or absence and through the data that they convey, influence the
flow of control within a node or process (or, more generically, a component). An impor-
tant insight is that one component should not allow another to control its own progress.
Suppose, for example, that the guarantees delivered by componentX1 are quite weak,

14



such as, “this buffer may sometimes contain recent data concerning parameterA.” An-
other componentX2 that uses this data must be prepared to operate when recent data
aboutA is unavailable (at least fromX1). It might seem that predictability and simplic-
ity would be enhanced if we were to ensure that the flow of data aboutA is reliable—
perhaps using a protocol involving acknowledgments. But in fact, contrary to this intu-
ition, such a mechanism would greatly increase the coupling between components and
introduce more complicated failure propagations. For example,X1 could block wait-
ing for an acknowledgment fromX2 that may never come ifX2 has failed, thereby
propagating the failure fromX2 toX1. Kopetz [27] defines interfaces that involve such
bidirectional flow of control as composite and argues convincingly that they should be
eschewed in favor of elementary interfaces in which control flow is unidirectional.

The need for elementary interfaces leads to protocols for nonblocking asynchronous
communication that nonetheless ensure timely transmission and mutual exclusion (i.e.,
no simultaneous reading and writing of the same buffer). In computer science, these
are known as lock- and wait-free atomic register constructions ( [1] is a convenient
survey, focussing on the work of Lamport, who first introduced the topic), but similar
constructions were developed independently in the avionics and real-time communi-
ties. The best-known of these is the four-slot protocol of Simpson [72]. Formal anal-
yses of Simpson’s protocol have been developed by Clark [10] (using Petri nets), by
Rushby [59] (using model checking), and by Henderson and Paynter [18] (using PVS).
Hesselink [21] have verified some atomic register constructions from the computer sci-
ence literature using ACL2.

TTA uses a protocol called NBW (nonblocking write) [29] whose wait-free element
was inspired by Simpson’s algorithm, and whose lock-free construction is that of Lam-
port [33]. It would be useful to undertake a formal examination of NBW (which is used
in the Communication Network Interface (CNI) that provides communication between
hosts and their TTA controllers), particularly since Simpson’s algorithm requires atomic
control registers, and Rushby’s analysis [59] shows that it fails when this (very strong)
assumption is violated.

The larger issue of formally characterizing composite and elementary interfaces has
not yet been tackled, to my knowledge. It is debatable whether formalization of these
notions is best performed as part of a broad treatment of time-triggered systems, or
as part of an orthogonal topic concerned with application-independent fault tolerance.
Temporal firewalls, another element in Kopetz’ comprehensive philosophy [24], seem
definitely to belong in the treatment of fault tolerance. The standard way to commu-
nicate a sensor sample is to package it with a timestamp: then the consuming process
can estimate the “freshness” of the sample. But surely the useful lifetime of a sample
depends on the accuracy of the original reading and on the dynamics of the parameter
being measured—and these factors are better known to the process doing the sensing
than to the process that consumes the sample. So, argues Kopetz, it is better to turn the
timestamp around, so that it indicates the “must use by” time, rather than the time at
which the sample was taken. This is the idea of the temporal firewall, which exists in
two variants. Aphase-insensitivesensor sample is provided with a time and a guaran-
tee that the sampled value is accurate (with respect to a specification published by the
process that provides it) until the indicated time. For example, suppose that engine oil

15



temperature may change by at most 1% of its range per second, that its sensor is com-
pletely accurate, and that the data is to be guaranteed to 0.5%. Then the sensor sample
will be provided with a time 500 ms ahead of the instant when it was sampled, and the
receiver will know that it is safe to use the sampled value until the indicated time. A
phase-sensitivetemporal firewall is used for rapidly changing parameters; in addition to
sensor sample and time, it provides the parameters needed to perform state estimation.
For example, along with sampled crankshaft angle, it may supply RPM, so that angle
may be estimated more accurately at the time of use.

The advantage of temporal firewalls is that they allow some of the downstream pro-
cessing (e.g., sensor fusion) to become less application dependent. Temporal firewalls
are consistent with modern notions ofsmart sensorsthat co-locate computing resources
with the sensor. Such resources allow a sensor to return additional information, includ-
ing an estimate of the accuracy of its own reading. An attractive way to indicate (con-
fidence in) the accuracy of a sensor reading is to return two values (both packaged in
a temporal firewall) indicating the upper and lower 95% (say) confidence interval. If
several such intervals are available from redundant sensors, then an interesting ques-
tion is how best to combine (orfuse) them. Marzullo [36] introduces the sensor fusion
function

⋂
f,n(S) for this problem; Rushby formally verifies the soundness of this con-

struction (i.e., the fused interval always contains the correct value) [58]. A weakness
of Marzullo’s function is that it lacks the “Lipschitz Condition”: small changes in in-
put sensor readings can sometimes produce large changes in its output. Schmid and
Schossmaier [65] have recently introduced an improved fusion functionFfn (S) that
does satisfy the Lipschitz condition, and is optimal among all such functions. It would
be interesting to verify formally the properties of this function.

Principled fault tolerance requires not only that redundant sensor values are fused
effectively, but that all redundant consumers agree on exactly the same values; this is
the notion ofreplica determinism[46] that provides the foundation forstate machine
replication [67] and other methods for application-independent fault tolerance based
on exact-match voting. Replica determinism in its turn depends oninteractively consis-
tentmessage passing: that is, message passing in which all nonfaulty recipients obtain
the same value [43], even if the sender and some of the intermediaries in the transmis-
sion are faulty (this is also known as the problem ofByzantine Agreement[34]). It is
well known [35] that interactive consistency cannot be achieved in the presence of a
single arbitrary fault with less than two rounds of information exchange (one to dissem-
inate the values, and one to cross-check), yet TTA sends each message in only a single
broadcast. How can we reconcile this practice with theory? I suggest in [55] that the
interaction of message broadcasts with the group membership algorithm (which can be
seen as a continuously interleaving two-round algorithm) in TTA achieves a “Draconian
consensus” in which agreement is enforced by removal of any members that disagree.
It would be interesting to subject this idea to formal examination, and to construct an
integrated formal treatment for application-level fault tolerance in TTA similar to those
previously developed for classical state machine replication [48,13].

The final top-level property is the most important for safety-critical applications;
it is calledpartitioning and it refers to the requirement that faults in one component
of TTA, or in one application supported by TTA, must not propagate to other compo-

16



nents and applications, and must not affect the operation of nonfaulty components and
applications, other than through loss of the services provided by the failed elements.
It is quite easy to develop a formal statement of partitioning—but only in the absence
of the qualification introduced in the final clause of the previous sentence (see [51] for
an extended discussion of this topic). In the absence of communication, partitioning is
equivalent to isolation and this property has a long history of formal analysis in the se-
curity community [47] and has been adapted to include the real-time attributes that are
important in embedded systems [79]. In essence, formal statements of isolation state
that the behavior perceived by one component is entirely unchanged by the presence or
absence of other components. When communication between components is allowed,
this simple statement no longer suffices, for ifX1 supplies input toX2, then absence
of X1 certainly changes the behavior perceived byX2. What we want to say is that
theonly change perceived byX2 is that due to the faulty or missing data supplied by
X1 (i.e.,X1 must not be able to interfere withX2’s communication with other com-
ponents, nor write directly into its memory, and so on). To my knowledge, there is no
fully satisfactory formal statement of this interpretation of partitioning.

It is clear that properties of the TTA algorithms and architecture are crucial to par-
titioning (e.g., clock synchronization, the global schedule, existence of guardians, the
single-fault assumption, and transmission window timing are all needed to stop a faulty
node violating partitioning by babbling on the bus), and there are strong informal ar-
guments (backed by experiment) that these properties are sufficient [55], but to my
knowledge there is as yet no comprehensive formal treatment of this argument.

7 Conclusion

TTA provides several challenging formal verification problems. Those who wish to
develop or benchmark new techniques or tools can find good test cases among the al-
gorithms and requirements of TTA. However, I believe that the most interesting and
rewarding problems are those that concern the interactions of several algorithms, and it
is here that new methods of compositional analysis and verification are most urgently
needed. Examples include the interaction between the group membership and clique
avoidance algorithms and their joint behavior under various fault hypotheses, the mu-
tual interdependence of clock synchronization and group membership, and the top-level
properties that emerge from the collective interaction of all the algorithms and architec-
tural attributes of TTA. Progress on these fronts will not only advance the techniques
and tools of formal methods, but will strengthen and deepen ties between the formal
methods and embedded systems communities, and make a valuable contribution to as-
surance for the safety-critical systems that are increasingly part of our daily lives.

Acknowledgments

Günther Bauer of TU Vienna provided helpful comments and corrections for a previous
version of this paper.

17



References

Papers on formal methods and automated verification by SRI authors can generally
be located by visiting home pages or doing a search fromhttp://www.csl.sri.
com/programs/formalmethods .

[1] James H. Anderson. Lamport on mutual exclusion: 27 years of planting seeds. In20th ACM
Symposium on Principles of Distributed Computing, pages 3–12, Association for Comput-
ing Machinery, Newport, RI, August 2001.15

[2] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In18th International Conference on Distributed Computing Systems, pages
436–443, IEEE Computer Society, Amsterdam, The Netherlands, 1998.11

[3] Günther Bauer and Michael Paulitsch. An investigation of membership and clique avoid-
ance in TTP/C. In19th Symposium on Reliable Distributed Systems, Nuremberg, Germany,
October 2000.10

[4] Kai Baukus, Saddek Bensalem, Yassine Lakhnech, and Karsten Stahl. Abstracting WS1S
systems to verify parameterized networks. In Susanne Graf and Michael Schwartzbach,
editors,Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2000),
pages 188–203, Berlin, Germany, March 2000.10, 12

[5] Kai Baukus, Yassine Lakhnech, and Karsten Stahl. Verifying universal properties of param-
eterized networks. In Matthai Joseph, editor,Formal Techniques in Real-Time and Fault-
Tolerant Systems, Volume 1926 of Springer-VerlagLecture Notes in Computer Science,
pages 291–303, Pune, India, September 2000.10

[6] Saddek Bensalem, Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, and Yassine
Lakhnech. A transformational approach for generating non-linear invariants. In Jens Pals-
berg, editor,Seventh International Static Analysis Symposium (SAS’00), Volume 1824 of
Springer-VerlagLecture Notes in Computer Science, pages 58–74, Santa Barbara CA, June
2000. 6

[7] Saddek Bensalem and Yassine Lakhnech. Automatic generation of invariants.Formal
Methods in Systems Design, 15(1):75–92, July 1999.6

[8] Ahmed Bouajjani and Agathe Merceron. Parametric verification of a group membership
algorithm. In Werner Damm and Ernst-Rüdiger Olderog, editors,Formal Techniques in
Real-Time and Fault-Tolerant Systems, Volume 2469 of Springer-VerlagLecture Notes in
Computer Science, pages 311–330, Oldenburg, Germany, November 2002.10, 12

[9] Tushar D. Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette Charron-Bost. On the
impossibility of group membership. InFifteenth ACM Symposium on Principles of Dis-
tributed Computing, pages 322–330, Association for Computing Machinery, Philadelphia,
PA, May 1996. 14

[10] Ian G. Clark. A Unified Approach to the Study of Asynchronous Communication Mecha-
nisms in Real Time Systems. PhD thesis, King’s College, London University, May 2000.
15

[11] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby, Shawn Laubach,
and Hongjun Zheng. Bandera: Extracting finite-state models from Java source code. In
22nd International Conference on Software Engineering, pages 439–448, IEEE Computer
Society, Limerick, Ireland, June 2000.10

[12] S. J. Creese and A. W. Roscoe. TTP: A case study in combining induction and data in-
dependence. Technical Report PRG-TR-1-99, Oxford University Computing Laboratory,
Oxford, England, 1999.9, 10

[13] Ben L. Di Vito and Ricky W. Butler. Formal techniques for synchronized fault-tolerant
systems. In C. E. Landwehr, B. Randell, and L. Simoncini, editors,Dependable Computing

18

http://www.csl.sri.com/programs/formalmethods
http://www.csl.sri.com/programs/formalmethods


for Critical Applications—3. Volume 8 of Springer-Verlag, Vienna, AustriaDependable
Computing and Fault-Tolerant Systems, pages 163–188, September 1992.16

[14] Jacob Elgaard, Nils Klarlund, and Anders Möller. Mona 1.x: New techniques for WS1S
and WS2S. In Alan J. Hu and Moshe Y. Vardi, editors,Computer-Aided Verification, CAV
’98, Volume 1427 of Springer-VerlagLecture Notes in Computer Science, pages 516–520,
Vancouver, Canada, June 1998.10

[15] E. A. Emerson and A. P. Sistla, editors.Computer-Aided Verification, CAV ’2000, Volume
1855 of Springer-VerlagLecture Notes in Computer Science, Chicago, IL, July 2000.20,
21

[16] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonization and Solving.
In G. Berry, H. Comon, and A. Finkel, editors,Computer-Aided Verification, CAV ’2001,
Volume 2102 of Springer-VerlagLecture Notes in Computer Science, pages 246–249, Paris,
France, July 2001.6

[17] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process.Journal of the ACM, 32(2):374–382, April 1985.14

[18] N. Henderson and S. E. Paynter. The formal classification and verification of Simpson’s 4-
slot asynchronous communication mechanism. In Peter Lindsay, editor,FME 2002: Formal
Methods–Getting IT Right, pages 350–369, Copenhagen, Denmark, July 2002.15

[19] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered language for em-
bedded programming. In Henzinger and Kirsch [20], pages 166–184.14

[20] Tom Henzinger and Christoph Kirsch, editors.EMSOFT 2001: Proceedings of the First
Workshop on Embedded Software, Volume 2211 of Springer-VerlagLecture Notes in Com-
puter Science, Lake Tahoe, CA, October 2001.19, 21

[21] Wim H. Hesselink. An assertional criterion for atomicity.Acta Informatica, 28(5):343–366,
2002. 15

[22] C. B. Jones. Tentative steps toward a development method for interfering programs.ACM
TOPLAS, 5(4):596–619, 1983.13

[23] Shmuel Katz, Pat Lincoln, and John Rushby. Low-overhead time-triggered group member-
ship. In Marios Mavronicolas and Philippas Tsigas, editors,11th International Workshop
on Distributed Algorithms (WDAG ’97), Volume 1320 of Springer-VerlagLecture Notes in
Computer Science, pages 155–169, Saarbrücken Germany, September 1997.9

[24] Herman Kopetz and R. Nossal. Temporal firewalls in large distributed real-time systems.
In 6th IEEE Workshop on Future Trends in Distributed Computing, pages 310–315, IEEE
Computer Society, Tunis, Tunisia, October 1997.1, 14, 15

[25] Hermann Kopetz.Real-Time Systems: Design Princples for Distributed Embedded Appli-
cations. The Kluwer International Series in Engineering and Computer Science. Kluwer,
Dordrecht, The Netherlands, 1997.1, 14

[26] Hermann Kopetz. The time-triggered model of computation. InReal Time Systems Sympo-
sium, IEEE Computer Society, Madrid, Spain, December 1998.1

[27] Hermann Kopetz. Elementary versus composite interfaces in distributed real-time systems.
In The Fourth International Symposium on Autonomous Decentralized Systems, IEEE Com-
puter Society, Tokyo, Japan, March 1999.1, 14, 15

[28] Hermann Kopetz and G̈unter Gr̈unsteidl. TTP—a protocol for fault-tolerant real-time sys-
tems.IEEE Computer, 27(1):14–23, January 1994.1

[29] Hermann Kopetz and Johannes Reisinger. The non-blocking write protocol NBW: A so-
lution to a real-time synchronization problem. InReal Time Systems Symposium, pages
131–137, IEEE Computer Society, Raleigh-Durham, NC, December 1993.15

[30] Sandeep Kulkarni, John Rushby, and N. Shankar. A case study in component-based me-
chanical verification of fault-tolerant programs. InICDCS Workshop on Self-Stabilizing
Systems, pages 33–40, IEEE Computer Society, Austin, TX, June 1999.12

19



[31] Sandeep S. Kulkarni.Component-Based Design of Fault Tolerance. PhD thesis, The Ohio
State University, Columbus, OH, 1999.11, 12

[32] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults.Journal
of the ACM, 32(1):52–78, January 1985.4

[33] Leslie Lamport. Concurrent reading and writing.Association for Computing Machinery,
20(11):806–811, November 1977.15

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.16

[35] Nancy A. Lynch.Distributed Algorithms. Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann, San Francisco, CA, 1996.14, 16

[36] Keith Marzullo. Tolerating failures of continuous-valued sensors.ACM Transactions on
Computer Systems, 8(4):284–304, November 1990.16

[37] K. L. McMillan. Circular compositional reasoning about liveness. In Laurence Pierre and
Thomas Kropf, editors,Advances in Hardware Design and Verification: IFIP WG10.5 In-
ternational Conference on Correct Hardware Design and Verification Methods (CHARME
’99), Volume 1703 of Springer-VerlagLecture Notes in Computer Science, pages 342–345,
Bad Herrenalb, Germany, September 1999.13

[38] Paul S. Miner. Verification of fault-tolerant clock synchronization systems. NASA Techni-
cal Paper 3349, NASA Langley Research Center, Hampton, VA, November 1993.4

[39] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.IEEE Transactions
on Software Engineering, 7(4):417–426, July 1981.13

[40] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional reasoning.
In Emerson and Sistla [15], pages 139–153.13

[41] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS.IEEE Transactions on
Software Engineering, 21(2):107–125, February 1995.4

[42] Michael Paulitsch and Wilfried Steiner. The transition from asynchronous to synchronous
system operation: An approach for distributed fault-tolerant systems. InThe 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS ’02), pages 329–336, IEEE
Computer Society, Vienna, Austria, July 2002.6

[43] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, April 1980.16

[44] Holger Pfeifer. Formal verification of the TTA group membership algorithm. In Tom-
maso Bolognesi and Diego Latella, editors,Formal Description Techniques and Protocol
Specification, Testing and Verification FORTE XIII/PSTV XX 2000, pages 3–18, Pisa, Italy,
October 2000.9, 12

[45] Holger Pfeifer, Detlef Schwier, and Friedrich W. von Henke. Formal verification for time-
triggered clock synchronization. In Weinstock and Rushby [77], pages 207–226.5

[46] Stefan Poledna.Fault-Tolerant Systems: The Problem of Replica Determinism. The Kluwer
International Series in Engineering and Computer Science. Kluwer, Dordrecht, The Nether-
lands, 1996.16

[47] John Rushby. The design and verification of secure systems. InEighth ACM Symposium
on Operating System Principles, pages 12–21, Asilomar, CA, December 1981. (ACMOp-
erating Systems Review, Vol. 15, No. 5). 17

[48] John Rushby. A fault-masking and transient-recovery model for digital flight-control sys-
tems. In Jan Vytopil, editor,Formal Techniques in Real-Time and Fault-Tolerant Systems,
Kluwer International Series in Engineering and Computer Science, chapter 5, pages 109–
136. Kluwer, Boston, Dordecht, London, 1993.16

[49] John Rushby. A formally verified algorithm for clock synchronization under a hybrid fault
model. InThirteenth ACM Symposium on Principles of Distributed Computing, pages 304–

20



313, Association for Computing Machinery, Los Angeles, CA, August 1994. Also available
as NASA Contractor Report 198289.5

[50] John Rushby. Automated deduction and formal methods. In Rajeev Alur and Thomas A.
Henzinger, editors,Computer-Aided Verification, CAV ’96, Volume 1102 of Springer-Verlag
Lecture Notes in Computer Science, pages 169–183, New Brunswick, NJ, July/August
1996. 6

[51] John Rushby. Partitioning for avionics architectures: Requirements, mechanisms,
and assurance. NASA Contractor Report CR-1999-209347, NASA Langley Re-
search Center, June 1999. Available athttp://www.csl.sri.com/˜rushby/
abstracts/partitioning , and http://techreports.larc.nasa.gov/
ltrs/PDF/1999/cr/NASA-99-cr209347.pdf ; also issued by the FAA.17

[52] John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms.
IEEE Transactions on Software Engineering, 25(5):651–660, September/October 1999.14

[53] John Rushby. Verification diagrams revisited: Disjunctive invariants for easy verification.
In Emerson and Sistla [15], pages 508–520.9

[54] John Rushby. Bus architectures for safety-critical embedded systems. In Henzinger and
Kirsch [20], pages 306–323.2

[55] John Rushby. A comparison of bus architectures for safety-critical embedded sys-
tems. Technical report, Computer Science Laboratory, SRI International, Menlo
Park, CA, September 2001. Available athttp://www.csl.sri.com/˜rushby/
abstracts/buscompare . 2, 16, 17

[56] John Rushby. Formal verification of McMillan’s compositional assume-guarantee rule.
Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA,
September 2001.13

[57] John Rushby. Formal verification of transmission window timing for the time-triggered
architecture. Technical report, Computer Science Laboratory, SRI International, Menlo
Park, CA, March 2001.7

[58] John Rushby. Formal verification of Marzullo’s sensor fusion interval. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, CA, January 2002.16

[59] John Rushby. Model checking Simpson’s four-slot fully asynchronous communication
mechanism. Technical report, Computer Science Laboratory, SRI International, Menlo
Park, CA, July 2002.15

[60] John Rushby and Friedrich von Henke. Formal verification of algorithms for critical sys-
tems.IEEE Transactions on Software Engineering, 19(1):13–23, January 1993.4

[61] John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal specification
and verification using EHDM. Technical Report SRI-CSL-91-2, Computer Science Labora-
tory, SRI International, Menlo Park, CA, February 1991.4

[62] Hassen Säıdi and Susanne Graf. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor,Computer-Aided Verification, CAV ’97, Volume 1254 of Springer-Verlag
Lecture Notes in Computer Science, pages 72–83, Haifa, Israel, June 1997.10

[63] Hassen Säıdi and N. Shankar. Abstract and model check while you prove. In Nicolas
Halbwachs and Doron Peled, editors,Computer-Aided Verification, CAV ’99, Volume 1633
of Springer-VerlagLecture Notes in Computer Science, pages 443–454, Trento, Italy, July
1999. 10

[64] Ulrich Schmid. How to model link failures: A perception-based fault model. InThe Inter-
national Conference on Dependable Systems and Networks, pages 57–66, IEEE Computer
Society, Goteborg, Sweden, July 2001.5

[65] Ulrich Schmid and Klaus Schossmaier. How to reconcile fault-tolerant interval intersection
with the Lipschitz condition.Distributed Computing, 14(2):101–111, May 2001.16

21

http://www.csl.sri.com/~rushby/abstracts/partitioning
http://www.csl.sri.com/~rushby/abstracts/partitioning
http://techreports.larc.nasa.gov/ltrs/PDF/1999/cr/NASA-99-cr209347.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/1999/cr/NASA-99-cr209347.pdf
http://www.csl.sri.com/~rushby/abstracts/buscompare
http://www.csl.sri.com/~rushby/abstracts/buscompare


[66] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Technical
Report 87-859, Department of Computer Science, Cornell University, Ithaca, NY, August
1987. 3

[67] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.16

[68] Marco Schneider. Self stabilization.ACM Computing Surveys, 25(1):45–67, March 1993.
11

[69] D. Schwier and F. von Henke. Mechanical verification of clock synchronization algorithms.
In Formal Techniques in Real-Time and Fault-Tolerant Systems, Volume 1486 of Springer-
VerlagLecture Notes in Computer Science, pages 262–271, Lyngby, Denmark, September
1998. 5

[70] Natarajan Shankar. Mechanical verification of a generalized protocol for Byzantine fault-
tolerant clock synchronization. In J. Vytopil, editor,Formal Techniques in Real-Time and
Fault-Tolerant Systems, Volume 571 of Springer-VerlagLecture Notes in Computer Science,
pages 217–236, Nijmegen, The Netherlands, January 1992.4

[71] Natarajan Shankar. Combining theorem proving and model checking through sym-
bolic analysis. InCONCUR 2000: Concurrency Theory, pages 1–16, State College,
PA, August 2000. Available atftp://ftp.csl.sri.com/pub/users/shankar/
concur2000.ps.gz . 10

[72] H. R. Simpson. Four-slot fully asynchronous communication mechanism.IEE Proceedings,
Part E: Computers and Digital Techniques, 137(1):17–30, January 1990.15

[73] T. K. Srikanth and Sam Toueg. Optimal clock synchronization.Journal of the ACM,
34(3):626–645, July 1987.5

[74] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure
modes. In7th Symposium on Reliable Distributed Systems, pages 93–100, IEEE Computer
Society, Columbus, OH, October 1988.5

[75] Specification of the TTP/C Protocol (version 0.6p0504). Time-Triggered Technology TT-
Tech Computertechnik AG, Vienna, Austria, May 2001.1, 4, 5

[76] Ashish Tiwari, Harald Rueß, Hassen Saı̈di, and N. Shankar. A technique for invariant gen-
eration. In T. Margaria and W. Yi, editors,Tools and Algorithms for the Construction and
Analysis of Systems: 7th International Conference, TACAS 2001, Volume 2031 of Springer-
VerlagLecture Notes in Computer Science, pages 113–127, Genova, Italy, April 2001.6

[77] Charles B. Weinstock and John Rushby, editors.Dependable Computing for Critical
Applications—7, Volume 12 of IEEE Computer SocietyDependable Computing and Fault
Tolerant Systems, San Jose, CA, January 1999.20, 22

[78] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock synchronization.
Information and Computation, 77(1):1–36, April 1988.3

[79] Matthew M. Wilding, David S. Hardin, and David A. Greve. Invariant performance: A
statement of task isolation useful for embedded application integration. In Weinstock and
Rushby [77], pages 287–300.17

22

ftp://ftp.csl.sri.com/pub/users/shankar/concur2000.ps.gz
ftp://ftp.csl.sri.com/pub/users/shankar/concur2000.ps.gz

	An Overview of Formal VerificationFor the Time-Triggered Architecture
	John Rushby

