
Reprint from Proceedings of the Fault-Tolerant Computing Symposium, FTCS 23, Toulouse, France, June 1993,
pp. 402–411; also appears in FTCS: Highlights from 25 Years, pp. 438–447.

A Formally Verified Algorithm for Interactive Consistency
Under a Hybrid Fault Model∗

Patrick Lincoln and John Rushby
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

Abstract

Thambidurai and Park [13] have proposed an algo-
rithm for Interactive Consistency that retains resilience
to the arbitrary (or Byzantine) fault mode, while tol-
erating more faults of simpler kinds than standard
Byzantine-resilent algorithms. Unfortunately, and de-
spite a published proof of correctness, their algorithm
is flawed. We detected this while undertaking a formal
verification of the algorithm.

We present a corrected algorithm that has been
subjected to mechanically-checked formal verification.
Because informal proofs seem unreliable in this do-
main, and the consequences of failure could be catas-
trophic, we believe formal verification should become
standard for algorithms intended for safety-critical ap-
plications.

Keywords: Byzantine agreement, interactive consis-
tency, hybrid fault models, formal verification.

1 Introduction

Byzantine-resilient algorithms make no assumptions
about the behavior of faulty components and are there-
fore maximally effective with respect to the kinds (or
modes) of faults they tolerate. But they are not uni-
formly effective with respect to the number of faults
they can tolerate: other algorithms can withstand more
faults for a given level of redundancy than Byzantine-
resilient ones, provided the faults are of particular
kinds. However, these alternative algorithms may fail
when confronted by faults beyond the kinds they are
designed to handle.

These observations motivate the study of fault-
tolerant architectures and algorithms with respect to

∗This work was supported by the National Aeronautics and
Space Administration, Langley Research Center, under contract
NAS1-18969.

hybrid fault models that include the Byzantine, or “ar-
bitrary,” fault mode, together with a limited number
of additional fault modes. Inclusion of the arbitrary
fault mode (i.e., faults whose behaviors are entirely
unconstrained) eliminates the fear that some unfore-
seen mode may defeat the fault-tolerance mechanisms
provided, while inclusion of other fault modes allows
greater resilience to be achieved for faults of those kinds
than with a classical Byzantine fault-tolerant architec-
ture.

Our interest is architectures for digital flight-control
systems, where fault-masking behavior is required to
achieve ultra-high levels of reliability. This means that
not only must stochastic modeling show that adequate
numbers and kinds of faults are masked to satisfy the
mission requirements, but that convincing analytical
evidence must attest to the soundness of the overall
fault-tolerant architecture and to the correctness of the
design and implementation of its mechanisms of fault
tolerance.1

In this paper, we focus on algorithms for reliably dis-
tributing single-source data to multiple channels in the
presence of faults. This problem, known as “Interac-
tive Consistency” (although sometimes called “source
congruence”), was first posed and solved for the case
where faulty channels can exhibit arbitrary behavior
by Pease, Shostak, and Lamport [10] in 1980.

The principal difficulty to be overcome in achieving
Interactive Consistency is the possibility of asymmetric
behavior on the part of faulty channels: such a channel
may provide one value to a second channel, but a dif-
ferent value to a third, thereby making it difficult for
the recipients to agree on a common value. Interactive
Consistency algorithms overcome this problem by us-
ing several rounds of message exchange during which
channel p tells channel q what value it received from

1There are examples where unanticipated behaviors of the
mechanisms for fault tolerance became the primary source of
system failure [6].

1



channel r and so on. The precise form of the algorithm
depends on assumptions about what a faulty channel
may do when relaying such a message; under the “Oral
Messages” assumption, there is no guarantee that a
faulty channel will relay messages correctly. This cor-
responds to totally arbitrary behavior by faulty chan-
nels: not only can a faulty channel provide inconsistent
data initially, but it can also relay data inconsistently.2

Using m + 1 rounds of message exchanges, the
Oral Messages algorithm of Lamport, Shostak, and
Pease [3], which we denote OM(m), can withstand up
to m arbitrary faults, provided n, the number of chan-
nels, satisfies n > 3m. The bound n > 3m is optimal:
Pease, Shostak, and Lamport proved that no algorithm
based on the Oral Messages assumptions can withstand
more arbitrary faults than this [10]. However, as we
have already noted, OM(m) is not optimal when other
than arbitrary faults are considered: other algorithms
can withstand greater numbers of simpler faults for a
given number of channels than OM(m).

We are not the first to make these observations.
Thambidurai and Park [13] and Meyer and Prad-
han [7] have considered Interactive Consistency algo-
rithms that resist multiple fault classes. Thambidurai
and Park’s “unified” or “hybrid” fault model divides
faults into three classes: nonmalicious (or benign),
symmetric malicious, and asymmetric malicious. We
find the anthropomorphism in terms such as “malicious
faults” unhelpful and rename the cases to arbitrary ,
symmetric, and manifest faults, respectively. A mani-
fest fault is one that produces detectably missing val-
ues (e.g., timing, omission, or crash faults), or that
produces a value that all nonfaulty recipients can de-
tect as bad (e.g., it fails checksum or format tests).
The other two fault modes yield values that are not
detectably bad (i.e., they are wrong , rather than miss-
ing or manifestly corrupted, values): a symmetric fault
delivers the same wrong value to every nonfaulty re-
ceiver; an arbitrary fault is completely unconstrained
and may deliver (possibly) different wrong values (or
missing or detectably bad values) to different nonfaulty
receivers.

Thambidurai and Park present a variant on the clas-
sical Oral Messages algorithm that retains the effective-
ness of that algorithm with respect to arbitrary faults,
but that is also capable of withstanding more faults of
the other kinds considered.3

2Under the “signed messages” assumption (which can be sat-
isfied using digital signatures), an altered message can be de-
tected by the recipient.

3Meyer and Pradhan [7] consider a fault model that, in our
version of Thambidurai and Park’s taxonomy, comprises only ar-
bitrary and manifest faults. Their algorithm is derived from the

Unfortunately, Thambidurai and Park’s algorithm
(which they call Algorithm Z) has a serious flaw and
fails in quite simple circumstances. In this paper, we
describe the flaw, and explain how straightforward at-
tempts to repair it also fail. We then present a cor-
rect algorithm for the problem of Interactive Consis-
tency under a hybrid fault model and present a proof
of its correctness. Thambidurai and Park presented a
proof of correctness for their flawed algorithm, and we
have also developed some rather convincing “proofs”
of incorrect algorithms for this problem ourselves. We
discovered the errors in Thambidurai and Park’s algo-
rithm and in our own imperfect variants while attempt-
ing to formally verify the algorithms concerned.

The algorithm presented here has been subjected to
mechanically-checked formal verification using the PVS
verification system [8]. We describe this formal verifi-
cation and claim that it is not particularly difficult.
Because informal proofs seem unreliable in this do-
main, and because the consequences of failure could be
catastrophic, we argue that formal verification should
become standard.

2 Requirements, Assumptions, and the
Algorithms OM and Z

Interactive Consistency is a symmetric problem: it
is assumed that each channel has a “private value”
(e.g., a set of sensor samples) and the goal is to en-
sure that every nonfaulty channel achieves an accurate
record of the private value of every other nonfaulty
channel. In 1982, Lamport, Shostak, and Pease [3]
presented an asymmetric version of Interactive Consis-
tency, which they called the “Byzantine Generals Prob-
lem”; here, the goal is to communicate a single value
from a designated channel called the “Commanding
General” to all the other channels, which are known as
“Lieutenant Generals.” The problem of real practical
interest is Interactive Consistency, but the metaphor of
the Byzantine Generals has proved so memorable that
this formulation is better known; it can also be easier
to describe algorithms informally using the Byzantine
Generals formulation, although the balance of advan-
tage can be reversed in truly formal presentations. All
the algorithms we consider are presented here in their
Byzantine Generals formulation. An algorithm for the
Byzantine Generals problem can be converted to one
for Interactive Consistency by simply iterating it over
all channels (each channel in turn taking the role of the

algorithm of [2] and, like the parent algorithm, is not particu-
larly well suited to the cases of practical interest (i.e., m = 1, or
possibly m = 2, n less than 10).

2



Commander), so there is no disadvantage to consider-
ing the Byzantine Generals formulation. See [11] for
more extended discussion of this topic.

2.1 Requirements

In the Byzantine Generals formulation of the prob-
lem, there are n participants, which we call “proces-
sors.” A distinguished processor, which we call the
transmitter , possesses a value to be communicated to
all the other processors, which we call the receivers.
There are n processors in total, of which some (pos-
sibly including the transmitter) may be faulty. The
transmitter’s value is denoted v and the problem is to
devise an algorithm that will allow each receiver p to
compute an estimate νp of the transmitter’s value sat-
isfying the following conditions.

BG1: If receivers p and q are nonfaulty, then they
agree on the value ascribed to the transmitter—that
is, for all nonfaulty p and q, νp = νq.

BG2: If the transmitter is nonfaulty, then every non-
faulty receiver computes the correct value—that is, for
all nonfaulty p, νp = v.

Conditions BG1 and BG2 are sometimes known as
“Agreement” and “Validity,” respectively.

2.2 Assumptions

The principal difficulty that must be overcome by a
Byzantine Generals algorithm is that the transmitter
may send different values to different receivers, thereby
complicating satisfaction of condition BG1. To over-
come this, algorithms use several “rounds” of message
exchange during which processor p tells processor q
what value it received from processor r and so on. Un-
der the “Oral Messages” assumptions, the difficulty is
compounded because a faulty processor q may “lie” to
processor r about the value it received from processor
p. More precisely, the Oral Messages assumptions are
the following.

A1: Every message that is sent between nonfaulty pro-
cessors is correctly delivered.

A2: The receiver of a message knows who sent it.

A3: The absence of a message can be detected.

In the classical Byzantine Generals problem, there
are no constraints at all on the behavior of a faulty
processor.

2.3 Algorithm OM

Lamport, Shostak, and Pease’s Algorithm OM
solves the Byzantine Generals problem under the Oral
Messages assumption. The algorithm is parameterized
by m, the number of rounds of message exchanges per-
formed. OM(m) can withstand up to m faults, pro-
vided n > 3m, where n is the total number of proces-
sors. The algorithm is described recursively; the base
case is OM(0).

OM(0)

1. The transmitter sends its value to every receiver.

2. Each receiver uses the value obtained from the
transmitter, or some arbitrary, but fixed, value if
nothing is received.

Next, we describe the general case.

OM(m), m > 0

1. The transmitter sends its value to every receiver.

2. For each p, let vp be the value receiver p ob-
tains from the transmitter, or else be some arbi-
trary, but fixed, value if it obtains no value. Each
receiver p acts as the transmitter in Algorithm
OM(m−1) to communicate its value vp to each of
the n− 2 other receivers.

3. For each p, and each q 6= p, let vq be the value re-
ceiver p obtained from receiver q in step (2) (using
Algorithm OM(m−1)), or else some arbitrary, but
fixed, value if nothing was received. Each receiver
p calculates the majority value among all values vq
it receives, and uses that as the transmitter’s value
(or some arbitrary, but fixed, value if no absolute
majority exists).

The correctness of this algorithm (i.e., that it
achieves BG1 and BG2 under assumptions A1 to A3)
and its optimality (i.e., that no algorithm can mask the
same number of arbitrary faults with fewer processors)
were proven in [3, page 390]. These results have been
formally verified by Bevier and Young [1].

2.4 Algorithm Z

Thambidurai and Park’s Algorithm Z is a modifi-
cation of OM intended to operate under their hybrid
fault model described earlier. The difference between
OM and Z is that the latter has a distinguished “er-
ror” value, E. Any processor that receives a missing

3



or manifestly bad value replaces that value by E and
uses E as the value that it passes on in the recursive
instances of the algorithm. The majority voting that is
required in OM, is replaced in Z by a majority vote with
all E values eliminated (we call this a hybrid-majority
vote). Thambidurai and Park claim that an m-round
implementation of Algorithm Z can withstand a+s+c
simultaneous faults, where a is the number of arbitrary
faults, s the number of symmetric faults, and c the
number of manifest faults,4 provided a ≤ m, and n,
the number of processors, satisfies n > 2a+2s+ c+m.
In the case of no symmetric or manifest faults (i.e.,
Byzantine faults only), we have m = a and s = c = 0,
so that n > 3m and the algorithm provides the same
performance as the classical Oral Messages algorithm.

We and our colleagues at SRI have undertaken me-
chanically checked formal verifications for a number of
fault-tolerant algorithms, including OM [11], and have
identified deficiencies in some of the previously pub-
lished analyses (though not in the algorithms) [9, 12].
Any changes to the established algorithms for Interac-
tive Consistency must be subjected to intense scrutiny,
for errors in these algorithms are single points of fail-
ure in any system that employs them. Changes that
widen the classification of faults considered are likely
to increase the case analysis, and hence the complexity
and potential fallibility of arguments for the correct-
ness of modified algorithms. We therefore considered
Thambidurai and Park’s Algorithm Z an interesting
candidate for formal verification.

We began our attempt to formally verify Algorithm
Z by studying the proof of its correctness provided by
Thambidurai and Park [13, pages 96 and 97]. This
proof follows the outline of the standard proof for
OM [3, page 390] quite closely. However, we found
that Thambidurai and Park’s proof of their Lemma 1
(all nonfaulty receivers get the correct value of a non-
faulty transmitter) fails to consider the case where the
value sent by the transmitter is E. This can arise in
recursive instances of the algorithm when nonfaulty re-
ceivers are passing on the value received from a faulty
source. Further thought reveals that not only is the
proof flawed, but the algorithm is incorrect: even sys-
tems with large numbers of processors may fail with
only two faulty components.

The simplest counterexample comprises five proces-
sors in which the transmitter has a manifest fault, one

4We cannot use m for the number of manifest-faulty pro-
cessors, because the parameter m is traditionally used for the
number of rounds (although Thambidurai and Park use r). The
symbol c can be considered a mnemonic for “crashed,” which is
one of the failures that can generate manifest-faulty behavior.

of the receivers has an arbitrary fault, and the algo-
rithm is Z with one round (i.e., n = 5, a = 1, s =
0, c = 1,m = 1). All the nonfaulty receivers note E
as the value received from the transmitter, and relay
the value E to all the other receivers. The faulty re-
ceiver sends a different (non-E) value to each of the
nonfaulty receivers. Each nonfaulty receiver then has
three E values, and one non-E value; because E values
are discarded in the majority vote, each nonfaulty re-
ceiver selects the value received from the faulty receiver
as the value sent by the transmitter. Since these val-
ues are all different, the algorithm has failed to achieve
agreement among the nonfaulty receivers.

3 The Algorithm OMH

In this section we introduce our new algorithm OMH
for interactive consistency under a hybrid fault model.
Before describing the algorithm, we present the fault
model.

3.1 Hybrid Fault Model

As noted, the fault modes we distinguish for pro-
cessors are arbitrary-faulty , symmetric-faulty , and
manifest-faulty . Of course, we also need a class of good
(also called nonfaulty) processors. We specify these
fault modes semiformally as follows.

When a transmitter sends its value v to the receivers,
the value obtained by a nonfaulty receiver p is:

• v, if the transmitter is nonfaulty

• E, if the transmitter is manifest-faulty5

• Unknown, if the transmitter is symmetric-faulty,
but all receivers obtain the same value,

• Completely unconstrained, if the transmitter is
arbitrary-faulty.

Note that it is not necessary to define the value re-
ceived by a faulty receiver, because such receivers may
send values completely unrelated to their inputs.

Algorithm OMH must satisfy the Byzantine Gener-
als conditions extended to the fault model described
above.

5Some preprocessing of timeouts, parity and “reasonableness”
checks, etc. may be necessary to identify manifestly faulty val-
ues. The intended interpretation is that the receiver detects the
incoming value as missing or bad, and then replaces it by the
distinguished value E.

4



BGH1: If processors p and q are nonfaulty, then they
agree on the value ascribed to the transmitter; that is,
νp = νq.

When the transmitter is symmetric-faulty, it is con-
venient to call the unique value received by all non-
faulty receivers the value actually sent by the trans-
mitter.

BGH2: If processor p is nonfaulty, the value ascribed
to the transmitter by p is

• The correct value v, if the transmitter is nonfaulty,

• The value actually sent, if the transmitter is
symmetric-faulty,

• The value E, if the transmitter is manifest-faulty.

3.2 The Algorithm

It seems that the flaw in Algorithm Z stems from
the fact that it does not distinguish between values re-
ceived from manifest-faulty processors and the report
of such values received from nonfaulty processors; the
single value E is used for both cases. Thus, a plau-
sible repair for Algorithm Z introduces an additional
distinguished value RE (for Reported Error); when a
manifestly faulty value is received, the receiver notes
it as E, but passes it on as RE; if an RE is received,
it is noted and passed on as such. Only E values are
discarded when the majority vote is taken. In the coun-
terexample to Algorithm Z given above, the nonfaulty
receivers in this modified algorithm will each interpret
the value received from the transmitter as E, and pass
it on to the other receivers as RE. In their majority
votes, each nonfaulty receiver has a single E (from the
transmitter) which it discards, two REs (from the other
nonfaulty receivers), and an arbitrary value (from the
faulty receiver). All will therefore select RE as the
value ascribed to the transmitter.

Unfortunately this modified algorithm has two de-
fects. First, a receiver that obtains a manifest-faulty
value from the transmitter notes it as E, but passes
it on as RE. Thus, this receiver will omit the value
from its majority vote, but the others will include
it (as RE). This asymmetry can be exploited by an
arbitrary-faulty transmitter to force the receivers into
disagreement (consider an arbitrary-faulty transmitter
and three nonfaulty receivers, where the transmitter
sends the values E, RE, and a normal value).

It therefore seems that receivers must distinguish be-
tween an E received from the transmitter (which must
be treated locally as RE and passed on as such), and

one received from another receiver (which can be dis-
carded in the majority vote). This repair fixes one
problem, but leaves the other: the value ascribed to
a manifest faulty transmitter is not E, but RE. This
might seem a small inconvenience, but it causes the
algorithm to fail when m, the number of rounds, is
greater than 1 (consider the case n = 6, m = 2 when
there is a nonfaulty transmitter and three manifest-
faulty receivers).

A repair to this difficulty might be to return the
value E whenever the majority vote yields the value
RE. This modification has the problem that receivers
cannot distinguish a manifest-faulty receiver from a
nonfaulty one reporting that another is manifest-faulty
(consider the case n = 4, m = 1, all the processors are
nonfaulty, and the transmitter is trying to send RE—as
can arise in recursive cases when m > 1).

Like Thambidurai and Park did for Algorithm Z, we
produced rather convincing, but nonetheless flawed, in-
formal “proofs of correctness” for these erroneous re-
pairs to Algorithm Z. Eventually, the discipline of for-
mal verification (where one must deal with the impla-
cable skepticism of a mechanical proof checker and is
eventually forced to confront overlooked cases and un-
stated assumptions) enabled us to develop a genuinely
correct algorithm for this problem.

Our new algorithm, OMH (for “Oral Messages, Hy-
brid”), is somewhat related to the last of the modi-
fications to Algorithm Z indicated above, but recog-
nizes that a single “reported error” value is insufficient.
OMH therefore employs two functions R and UnR that
act as a “wrapper” and an “unwrapper” for error val-
ues.

The basic idea of OMH is that at each round, the
processors do not forward the actual value they re-
ceived. Instead, each processor sends a value corre-
sponding to the statement “I’m reporting value.” One
can imagine that after several rounds, messages cor-
responding to “I’m reporting that he’s reporting that
she’s reporting an Error value” arise. This wrapper is
only required for error values, but for simplicity we as-
sume for the time being that the functions R and UnR
are applied to all values (alternatives are explored in
Section 5). This gives the following intuitive picture of
the algorithm.

Proceed as in the usual OM Byzantine agreement
algorithm presented above, with the following excep-
tions. Add a distinguished error value E, and two
functions on values R and UnR. When a manifestly
bad value is received, temporarily record it as the spe-
cial value E. When passing along a value received
from the transmitter or incorporating it into the local

5



majority vote, apply R, standing for “I report. . . ” to
the value. Discard all E values (received from other
receivers) before voting, but treat all other error val-
ues (R(E), R(R(E)), etc.) as normal, potentially valid
values during voting. After voting, apply UnR (strip
off one R) before returning the value.

The key idea here is that in Z and related algorithms
there is a confusion about which processors have man-
ifest faults: if there is only one error value, E, how
can a processor distinguish between a manifest-faulty
receiver and a good receiver reporting a bad value (or
the lack of a value) from a manifest-faulty transmit-
ter? The counterexample to Algorithm Z given above
exploits this confusion, but it is handled correctly by
OMH, because the nonfaulty receivers in OMH(1) each
receive a single E from the transmitter, which they pass
on to the other receivers and themselves as R(E). The
values thus voted on include three R(E)s and an ar-
bitrary value (from the arbitrary-faulty receiver). All
nonfaulty receivers therefore select R(E) as the major-
ity value. After stripping one R from this value, the
result correctly identifies the transmitter as manifest-
faulty. In short, OMH incorporates the diagnosis of
manifest faults into the agreement algorithm.

The Hybrid Oral Messages Algorithm OMH(m) is
defined more formally below.

OMH(0)

1. The transmitter sends its value to every receiver.

2. Each receiver uses the value received from the
transmitter, or uses the value E if a missing or
manifestly erroneous value is received.

OMH(m), m > 0

1. The transmitter sends its value to every receiver.

2. For each p, let vp be the value receiver p obtains
from the transmitter, or E if no value, or a mani-
festly bad value, is received.

Each receiver p acts as the transmitter in Algo-
rithm OMH(m − 1) to communicate the value
R(vp) to all of the n − 1 receivers, including it-
self.

3. For each p and q, let vq be the value receiver p re-
ceived from receiver q in step (2) (using Algorithm
OMH(m − 1)), or else E if no such value, or a
manifestly bad value, was received. Each receiver
p calculates the majority value among all non-E
values vq received, (i.e., the hybrid-majority); if no
such majority exists, the receiver uses some arbi-
trary, but functionally determined value. Receiver
p then applies UnR to that value, using the result
as the transmitter’s value.

3.3 Correctness Arguments

We make explicit a few unsurprising technical as-
sumptions:

• All processors are either nonfaulty, arbitrary-
faulty, symmetric-faulty, or manifest-faulty. (Any
fault not otherwise classified is considered arbi-
trary.)

• Processors do not change fault status during the
procedure; for example, if a nonfaulty processor
were to become manifest-faulty during this pro-
cedure, we would say that processor is arbitrary-
faulty because it has effectively sent different val-
ues to other processors.

• For all values v, R(v) 6= E. (Wrapped values are
never mistaken for errors.)

• For all values v, UnR(R(v)) = v. (Unwrapping a
wrapped value results in the original value.)

The argument for the correctness of OMH is an
adaptation of that for the Byzantine Generals formu-
lation of OM [3, page 390]. We define

• n, the number of processors,

• a, the maximum number of arbitrary-faulty pro-
cessors the algorithm is to tolerate,

• s, the maximum number of symmetric-faulty pro-
cessors the algorithm is to tolerate,

• c, the maximum number of manifest-faulty proces-
sors the algorithm is to tolerate,

• m, the number of rounds the algorithm is to per-
form.

Lemma 1 For any a, s, c and m, Algorithm OMH(m)
satisfies BGH2 if there are more than
2(a+ s) + c+m processors.

Proof: The proof is by induction onm. BGH2 spec-
ifies only what must happen if the transmitter is not
arbitrary-faulty. In the base case m = 0, a nonfaulty
receiver obtains the transmitter’s value if the transmit-
ter is nonfaulty. If the transmitter is symmetric-faulty
the value obtained is the value actually sent. If the
transmitter is manifest-faulty the receiver obtains the
value E. So the trivial algorithm OMH(0) works as
advertised and the lemma is true for m = 0. We now
assume the lemma is true for m−1 (m > 0), and prove
it for m.

6



In step (1) of the algorithm, the transmitter effec-
tively sends some value ν to all n− 1 receivers. If the
transmitter is nonfaulty, ν will be v, the correct value;
if it is symmetric-faulty, ν is the value actually sent; if
it is manifest-faulty, ν is E. In any case, we want all
the nonfaulty receivers to decide on ν.

In step (2), each receiver applies OMH(m− 1) with
n− 1 participants. Those receivers that are nonfaulty
will apply the algorithm to the value R(ν). Since by
hypothesis n > 2(a + s) + c + m, we have n − 1 >
2(a + s) + c + (m − 1), so we can apply the induction
hypothesis to conclude that the nonfaulty receiver p
gets vq = R(ν) for each nonfaulty receiver q. Let c′ de-
note the number of manifest-faulty processors among
the receivers. At most (a+s+ c′) of the n−1 receivers
are faulty, so each nonfaulty receiver p obtains a mini-
mum of n− 1− (a+ s+ c′) values equal to R(ν). Since
there are c′ manifest-faulty processors among the re-
ceivers, a nonfaulty receiver p also obtains a minimum
of c′ values equal to E and, therefore, at most n−1−c′
values different from E. The value R(ν) will therefore
win the hybrid-majority vote performed by each non-
faulty processor p, provided

2(n− 1− (a+ s+ c′)) > n− 1− c′,

that is, provided n > 2(a+s)+c′+1. Now, c′ ≤ c, and
1 ≤ m, so this condition is ensured by the constraint
n > 2(a + s) + c + m. Finally, UnR is applied to the
result R(ν), which results in final value ν. 2

Theorem 1 For any m, Algorithm OMH(m) satisfies
conditions BGH1 and BGH2 if there are more than
2(a+ s) + c+m processors and m ≥ a.

Proof: The proof is by induction on m. In the base
case m = 0 there can be no arbitrary-faulty processors,
since m ≥ a. If there are no arbitrary-faulty processors
then the previous lemma ensures that OMH(0) satisfies
BGH1 and BGH2. We therefore assume that the theo-
rem is true for OMH(m−1) and prove it for OMH(m),
m > 0.

We next consider the case in which the transmitter is
not arbitrary-faulty. Then BGH2 is ensured by Lemma
1, and BGH1 follows from BGH2.

Now consider the case where the transmitter is
arbitrary-faulty. There are at most a arbitrary-faulty
processors, and the transmitter is one of them, so at
most a − 1 of the receivers are arbitrary-faulty. Since
there are more than 2(a+ s) + c+m processors, there
are more than 2(a+ s) + c+m− 1 receivers, and

2(a+ s) + c+m− 1 > 2([a− 1] + s) + c+ [m− 1].

We may therefore apply the induction hypothesis to
conclude that OMH(m− 1) satisfies conditions BGH1
and BGH2. Hence, for each q, any two nonfaulty re-
ceivers get the same value for vq in step (3). (This
follows from BGH2 if one of the two receivers is pro-
cessor q, and from BGH1 otherwise). Hence, any
two nonfaulty receivers get the same vector of val-
ues v1, . . . , vn−1, and therefore obtain the same value
hybrid-majority(v1, . . . , vn−1) in step (3) (since this
value is functionally determined), thereby proving
BGH1. 2

3.4 Benefits

Recall that OM achieves agreement and validity if
there are more than three times as many good pro-
cessors as arbitrary-faulty processors (n > 3a) and
at least as many rounds as arbitrary-faulty proces-
sors (m ≥ a). From the bounds given in Theorem 1,
n > 2(a + s) + c + m and m ≥ a, it may be seen that
OMH achieves the same resilience to arbitrary faults if
there are no symmetric-faulty or manifest-faulty pro-
cessors (i.e., if s = c = 0). However, OMH achieves
can withstand larger numbers of symmetric and mani-
fest faults than OM—which does not distinguish such
faults from arbitrary ones.

However, even OMH appears suboptimal in the
number of faults tolerated in some of the extreme cir-
cumstances. In some cases, this is because algorithm is
truly suboptimal; in others, the algorithm is optimal,
but the general analysis given above is too conservative.
As an example of the latter, consider the case where
only manifest faults are present. Then the general anal-
ysis above indicates that the number of manifest faults
that can be tolerated is n − m − 1: in other words,
the greater the number of rounds, the fewer manifest
faults that can be tolerated. In fact, alternative anal-
ysis shows that OMH(m) tolerates the maximum pos-
sible number of manifest-faulty processors when there
are no arbitrary nor symmetric faults. The only con-
straint is that there must be more processors (whether
faulty or not) than rounds (since otherwise some re-
cursive instances would be run on the empty set of
processors).

Theorem 2 If arbitrary and symmetric faults are not
present, Algorithm OMH(m) satisfies conditions BGH1
and BGH2 provided there are more than m processors.

This theorem has been formalized and mechanically
verified [4].

7



When only symmetric faults are present, it is the
algorithm, rather than its general analysis, that is less
than optimal. Here, the additional rounds of message
exchanges are actively counterproductive in the cases
m > 0 (compare n = 4, s = 2 for the cases m = 0 and
m = 1). Additional rounds of messages are the price
paid for overcoming arbitrary faults, and these seem to
reduce the ability to deal with symmetric faults. An
interesting topic for future research is to investigate
whether this trade-off can be mitigated.

Number of Faults
Arbitrary (a) Symmetric (s) Manifest (c)

1 1 0
1 0 2
0 2 0
0 1 2
0 0 5

Table 1: Fault-Masking Ability of OMH(1) with n = 6

Table 1 summarizes the different numbers of si-
multaneous faults that a 6-plex can withstand using
OMH(1); for comparison, observe that the standard
analysis indicates that OM(1) can withstand only a
single (arbitrary) fault in this configuration. Tham-
bidurai, Park and Trivedi [14] present reliability analy-
ses that show this increased fault-tolerance indeed pro-
vides superior reliability under plausible assumptions6.

In fact, OM(1) can itself withstand more faults than
its standard analysis suggests. When there are no man-
ifest faults, Algorithm OMH becomes similar to the
traditional Algorithm OM. A related point was made
in [13]: in the absence of error values, hybrid majority
is equivalent to majority. Thus the only substantive
difference between OMH and OM are the wrapper and
unwrapper functions applied to values. As discussed
in Section 5 these functions may be identity on non-
error values, in which case OMH becomes exactly OM.
Thus the analysis of the previous section may be ap-
plied, showing that the traditional algorithm OM(m)
satisfies conditions BGH1 and BGH2 if there are more
than 2(a+s)+m processors and m ≥ a. Thus, the real
distinction between OM and OMH is that the latter can
distinguish manifest from (other) symmetric faults. In
the case tabulated above (n = 6,m = 1), this revised
analysis means that OM can withstand two simultane-
ous faults, provided at most one of them is arbitrary.

6Although algorithm Z is somewhat flawed, the analysis
in [14] can be correctly applied to OMH

4 Formal Verification of OMH

We have formally verified Lemma 1 and Theorems
1 and 2 for OMH(n) using the PVS verification sys-
tem [8]. That is, we have expressed the algorithm, its
assumptions, and desired properties in the formal spec-
ification language of PVS, and have developed formal
proofs of the desired properties that have been accepted
by the PVS proof checker. Technical descriptions of the
formal specification and verification are given in a com-
panion paper [5], and presented in complete detail in a
technical report [4]; here we focus on how we performed
the formal verification and on the benefits we derived.

The specification language of PVS is a higher-order
logic with a rather rich type system in which it is com-
paratively straightforward to state the desired specifi-
cation. Although OMH is conceived as a distributed,
concurrent algorithm, its correctness argument need
not involve a model of distributed computation and
we were therefore able to specify OMH as a simple re-
cursive function. Such abstraction is one of the keys to
making formal analysis of difficult algorithms tractable.
The formal specification of OMH was derived from one
we had previously constructed for the classical OM al-
gorithm [11] and was developed iteratively as failed
attempts at formal verification exposed the errors de-
scribed earlier in Algorithm Z and its plausible vari-
ants.

Ideally, formal verification should resemble a dialog
with a tirelessly skeptical colleague who checks every
detail of a purported proof and makes sure that no
cases are overlooked. The proof checker of PVS falls
a long way short of this ideal, but comes closer to it
than others. In contrast to more automatic theorem
provers, which must be coaxed to “discover” the proof
themselves, the user of PVS proposes the main proof
steps directly (e.g., “use induction on formula 3,” or
“consider the case m = 0”) and PVS carries them out.
The primitive inference steps of PVS are quite powerful
and include decision procedures for linear arithmetic,
so that trivial steps such as m + 1 − 1 = m are dealt
with instantaneously. Less powerfully automated proof
checkers require user assistance to discharge the hun-
dreds of such trivial facts that arise in a proof; this con-
siderably slows the development of a proof and, more
importantly, distracts the user from the main line of
the argument.

The greatest benefit of formal specification and ver-
ification in this case has been the refinement of our
own understanding. It is very easy for humans to be
convinced of the correctness of flawed algorithms in
domains where lots of detail and special cases must

8



be considered. In more than one case during the de-
velopment of OMH, we developed convincing informal
arguments and attempted to verify the claims using
PVS. The proof checker would not accept these flawed
arguments, and eventually led us to discover counterex-
amples. Finally, we were able to develop the new algo-
rithm presented above, and prove it correct.

It is sometimes argued that a large part of the value
of formal methods lies in formal specification rather
than verification. Formal specifications can serve to
clarify thinking and also provide a means of communi-
cation less subject to error and misinterpretation than
traditional natural-language documentation. However,
the additional step of verification proved crucial in our
case. Formal specification of the flawed algorithms
strengthened our erroneous convictions about them;
only through failed attempts at formal verification were
the errors detected.

Even formal verification is insufficient to guarantee
that an algorithm is fit for its intended purpose: valida-
tion is required as well, in order to ensure that the as-
sumptions are realistic, and that the properties estab-
lished match those required for the intended applica-
tion. Peer review is an essential element in validation,
but another technique we use is to pose “challenges”
that are evaluated by theorem proving. For example,
an axiomatization of the hybrid majority function can
be challenged by proving that the hybrid majority of
a collection of values not containing E is the same as
the simple majority of that collection. In our case,
we produced one specification of a flawed algorithm
for which we were able to formally verify the validity
property. However, one of our axioms about hybrid
majority was stated incorrectly. Only through chal-
lenges and attempting to refine the specification into
an implementation did the inadequacy of the axiom
become apparent.

5 Implementing R and UnR

Although our presentation of the OMH Algorithm
suggests that R and UnR are applied to all values at
every round, this is unnecessary. R and UnR may be
identity on nonerror values. Thus, values v could be
passed with an extra (say, highest order) bit denoting
whether the word actually stands for a data value or
for Rv(E). R and UnR would then become increment
and decrement operations conditional on the highest
bit.

If R and UnR are applied to all values at every
round, perhaps as unconditional increment and decre-
ment operations, then intermediate error values such

as R(R(E)) may coincide with valid data values. The
algorithm remains correct because UnR (decrement) is
always applied to the output of the majority vote.

Both of these implementations of R and UnR re-
quire unbounded integers in order to truly satisfy the
requirements on R and UnR (for all v, R(v) 6= E, and
UnR(R(v)) = v). However, for an m round OMH, just
m+ 1 error values (E up to Rm(E)) suffice with suit-
able modifications to the algorithm.

One could add a comparison of the number of ap-
plications of R with the depth of recursion in the al-
gorithm OMH. (Simply computing Rx(E) where x is
taken modulo the total number of rounds leads to erro-
neous results.) Any values with more R’s than elapsed
rounds may correctly be considered to indicate mani-
fest faults and treated as E, thus reducing the number
of possible error values to one more than the number
of rounds. In the common case of one-round OMH,
two error values, corresponding to E and R(E) suffice.
With only a small set of error values, it may no longer
be necessary to distinguish them by setting a special
bit: they could simply be allocated to values beyond
the valid data range.

Using these techniques, one may reduce the over-
head of using OMH-like algorithms (as compared to
OM) to a small constant number of extra data values,
and a slightly more complex algorithm. These imple-
mentation techniques have not been formally verified.

6 Conclusions

Thambidurai and Park’s hybrid fault model extends
the design and analysis of Byzantine fault-tolerant al-
gorithms in an important and useful way. Hybrid fault-
tolerant algorithms can tolerate greater numbers of
“simple” faults than classical Byzantine fault-tolerant
algorithms, without sacrificing the ability to withstand
Byzantine, or arbitrary, faults. Unfortunately, their Al-
gorithm Z for achieving Interactive Consistency under
a hybrid fault model is flawed. In the preceding sec-
tions, we have described the problem with Algorithm Z
and presented OMH, a correct algorithm for this prob-
lem.

A crucial tool in our detection of the flaw in Tham-
bidurai and Park’s algorithm, and also in detecting
flaws in our own early attempts to repair this algo-
rithm, was our use of mechanically-checked formal ver-
ification. The discipline of formal specification and
verification was also instrumental in helping us to de-
velop the correct algorithm presented here. The rigor of
a mechanically-checked proof enhances our conviction
that this algorithm is, indeed, correct, and also helped

9



us develop the informal, but detailed, proof given here
in the style of a traditional mathematical presentation.

It is worth repeating that no formal verification
proves any program “correct.” At most, a model of
the program is shown to satisfy a specification, and
shown to exhibit certain properties under a certain set
of assumptions. The true benefit of formal specification
and verification is not in getting a theorem prover to
say proved, but rather in refining one’s understanding
through dialogue with a tireless mechanical skeptic.

The effort required to perform this formal verifica-
tion was not particularly large and did not seem to us
to demand special skill. We attribute some of this ease
in performing formal verification of a relatively tricky
algorithm to the effectiveness of the tools employed [8].
These tools (and others that may be of similar effective-
ness) are freely available. In light of the flaws we dis-
covered in Thambidurai and Park’s algorithm, and had
previously found in the proofs for other fault-tolerant
algorithms [9, 12], we suggest that formal verification
should become a routine part of the social process of
development and analysis for fault-tolerant algorithms
intended for practical application in safety-critical sys-
tems.

Acknowledgments: PVS was constructed by our col-
leagues Sam Owre and Natarajan Shankar. Michelle
McElvany-Hugue and Chris Walter of Allied Signal
provided helpful discussion on hybrid fault models.
The anonymous referees provided very useful com-
ments.

References

[1] William R. Bevier and William D. Young. Machine
checked proofs of the design of a fault-tolerant circuit.
Formal Aspects of Computing, 4(6A):755–775, 1992.

[2] Danny Dolev, Michael J. Fischer, Rob Fowler,
Nancy A. Lynch, and H. Raymond Strong. An efficient
algorithm for Byzantine agreement without authenti-
cation. Information and Control, 52:257–274, 1982.

[3] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine Generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382–
401, July 1982.

[4] Patrick Lincoln and John Rushby. Formal verifica-
tion of an algorithm for interactive consistency under
a hybrid fault model. Technical Report SRI-CSL-93-
2, Computer Science Laboratory, SRI International,
Menlo Park, CA, March 1993. Also available as NASA
Contractor Report 4527, July 1993.

[5] Patrick Lincoln and John Rushby. Formal verifica-
tion of an algorithm for interactive consistency under
a hybrid fault model. In Costas Courcoubetis, editor,
Computer-Aided Verification, CAV ’93, Volume 697 of
Springer-Verlag Lecture Notes in Computer Science,
pages 292–304, Elounda, Greece, June/July 1993.

[6] Dale A. Mackall. Development and flight test ex-
periences with a flight-crucial digital control system.
NASA Technical Paper 2857, NASA Ames Research
Center, Dryden Flight Research Facility, Edwards,
CA, 1988.

[7] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with
dual failure modes. IEEE Transactions on Parallel and
Distributed Systems, 2(2):214–222, April 1991.

[8] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. In Deepak Kapur, edi-
tor, 11th International Conference on Automated De-
duction (CADE), Volume 607 of Springer-Verlag Lec-
ture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992.

[9] Sam Owre, John Rushby, Natarajan Shankar, and
Friedrich von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering,
21(2):107–125, February 1995. PVS home page: http:
//pvs.csl.sri.com.

[10] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. Journal of the
ACM, 27(2):228–234, April 1980.

[11] John Rushby. Formal verification of an Oral Messages
algorithm for interactive consistency. Technical Report
SRI-CSL-92-1, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, July 1992. Also available
as NASA Contractor Report 189704, October 1992.

[12] John Rushby and Friedrich von Henke. Formal verifi-
cation of algorithms for critical systems. IEEE Trans-
actions on Software Engineering, 19(1):13–23, January
1993.

[13] Philip Thambidurai and You-Keun Park. Interac-
tive consistency with multiple failure modes. In 7th
Symposium on Reliable Distributed Systems, pages 93–
100, IEEE Computer Society, Columbus, OH, October
1988.

[14] Philip Thambidurai, You-Keun Park, and Kishor S.
Trivedi. On reliability modeling of fault-tolerant dis-
tributed systems. In 9th International Conference on
Distributed Computing Systems, pages 136–142, IEEE
Computer Society, Newport Beach, CA, June 1989.

10


