
Appears as Appendix C.1, pages 121–125 in Dan Craigen and Karen Summerskill,
editors, Formal Methods for Trustworthy Computer Systems (FM89), Halifax, Nova
Scotia, Canada, July 1989. Springer-Verlag Workshops in Computing.

Formal Methods and Critical Systems

In the Real World

John Rushby
Computer Science Laboratory

SRI International

Programmable computers make it possible to construct systems whose be-
havior is unimaginably complex. These systems are built because their com-
plexity is believed to confer operational benefits, but this same complexity can
harbor unexpected and catastrophic failure modes. The source of these failures
can often be traced to software faults—for example, a software bug in the con-
trol system of the Therac-25 radiation therapy machine was responsible for the
death of three patients and serious injury to several others [Jac89].

Software doesn’t wear out: all software-induced failures are due to design
faults, and design faults are largely attributable to the complexity of the designs
concerned—complexity that exceeds the intellectual grasp of its own creators.
The only way to reduce or eliminate software design faults is to bring the com-
plexity of the software into line with our ability to master that complexity. This
might mean choosing not to build certain types of system (such as flight-critical
computer control systems for passenger aircraft), and it should mean enhancing
the intellectual tools available to software designers.

Engineers in established fields use applied mathematics to predict the be-
havior and properties of their designs with great accuracy. Software engineers,
despite the fact that their creations exhibit far more complexity than physical
systems, do not generally do this and the practice of the discipline is still at
the pre-scientific or craft stage. Unlike most physical systems, the behavior
of software admits discontinuities and so interpolation between known points
is unreliable: formal logical analysis is needed to address the discrete, formal,
character of software. Thus, the applied mathematics of software is formal logic,
and calculating the behavior of software is an exercise in theorem proving. Just
as engineers in other disciplines need the speed and accuracy of computers to
help them perform their engineering calculations, so software engineers can use
the speed and accuracy of computers to help them prove the (large number of
relatively simple and not intrinsically interesting) theorems required to predict
the behavior of software.

“Formal Methods” are nothing but the application of applied mathematics—
in this case, formal logic—to the design and analysis of software-intensive sys-
tems. Formal methods can be used during the design and documentation of

1



systems, and they can also provide evidence for consideration during the assess-
ment and certification of systems that perform critical functions. The former
is surely uncontroversial—one should rather have to defend the absence than
the use of formal methods (though see [Nau82])—and some projects, notably
several undertaken in the UK, attest to a practical benefit from using formal
methods.

Concern that faults could have very serious consequences has led to the
introduction of special standards requiring use of formal methods during the
construction and quality assurance of certain classes of computer systems (for
example, the US “Orange Book” [DoD85] for secure systems and the British De-
fence Standard 00-55 [MOD91] for safety critical systems). Such use of formal
methods—particularly mechanically checked formal verification—in the certifi-
cation of critical systems is more controversial.

In established engineering disciplines, the reliability and accuracy of pre-
dictions of system behavior are determined by the fidelity of the mathematical
models on which they are based, and by the extent to which the necessary
calculations are performed without error. For example, the accuracy of the pre-
dicted performance of an airfoil depends on how well the chosen aerodynamic
model captures the real behavior of air over a wing. It is obvious that similar
considerations apply to the reliability and accuracy of predictions concerning
the behavior of digital systems made by formal verification. For example, pro-
gram verification depends on an assumed semantics for the programming lan-
guage concerned, but these assumed semantics may not coincide with those of
its implementation; additionally, the proofs performed during verification may
be flawed. The nature and significance of these potential flaws in the efficacy
of formal methods are no different from those that attend the use of applied
mathematics in other engineering disciplines. Yet—perhaps because the calcu-
lations performed in formal verification are proofs, and the inexperienced tend
to associate proofs with absolute guarantees—these limitations to formal veri-
fication have caused some to excoriate the field [DLP79,Fet88] (see [Bar89] for
one of the few well-informed discussions of this controversy). These limitations
to verification are not, contrary the assertions of its detractors, denied or mini-
mized by those in the field (see [Coh89] for example), but the more interesting
question—what to do about them—has received scant attention.

Assurance and Certification for Critical Systems

One body of opinion suggests that limitations on the value of the assurance pro-
vided by formal verification can be minimized by applying the technique more
completely and rigorously. For example, the fear that a verification may be un-
sound because the assumed and the implemented semantics of the programming
language do not agree can be minimized by verifying the language implemen-
tation concerned. Of course, this verification will depend on the semantics of
the hardware interpreter concerned—and that can be assured by verifying the
hardware down to, say, a simple gate model. This approach is valuable and
interesting, but it must be careful to address at least two objections.

2



• The lowest model in a verification hierarchy cannot be verified; evidence
for its correctness must be obtained by other means. In addition, purely
logical models become increasingly incomplete as increasingly lower levels
of implementation are considered. For example, formal gate models do not
capture all the relevant properties of hardware implementations: physical
properties such as excessive fan-out or power dissipation, violations of to-
pographical design constraints, metastability, or an excessive clock rate,
not to mention manufacturing defects, can all undermine formal verifica-
tion at the hardware level.

• If we build the wrong system, then it avails us little if the semantics of
the programming language that supports it are implemented perfectly
and run on perfect hardware. In complex systems, the limiting factor
may be imperfect understanding of all the properties required for a given
component or set of components. System failures can often be traced to
the interfaces between components: each component performs as required,
but their interaction produces undesired and unexpected behavior [Lev86].
Again, these issues can be modeled, and perhaps they, rather than the
relatively routine aspects of system implementation, should most urgently
receive the benefit of formal analysis.

The problem of flawed calculations—i.e., unsound proofs—can be minimized
by using mechanical proof checkers built on a very simple and evidently sound
foundation. The class of provers derived from LCF are in this category. The dis-
advantage of this approach is that the provers concerned are orders of magnitude
less effective than those built on more powerful—but less assured—foundations.

The root difficulties of the “verify everything” approach and the use of “slow
but sure” provers are economic. All engineering is about compromise—wisely
chosen and justifiable compromise. In the case of a critical system, we have to
consider not only the absolute value of the resources that should be expended
on its construction and certification, but also how those resources should best
be apportioned. A thousand dollars spent on formal verification will mean
a thousand dollars less for testing, or a thousand dollars less for protective
redundancy. We have to ask: if some formal verification is good, is more always
better?

My own view is that judicious application of formal methods in system
design and documentation is essential—indeed, there is no credible alternative.
Formal methods used for this purpose do not absolutely require mechanical
support; they provide intellectual tools that can be practiced with pencil and
paper. The Oxford Z methodology, discussed by several participants in this
workshop, has this character.

For assurance and certification, formal methods also have much to offer,
but heavy-duty (i.e., mechanically checked) formal verification is just one op-
tion among several, to be applied only where it will be the most effective choice.
The alternative choices include formally-based methods other than conventional
verification (for example, fault-tree analysis, structured walk-throughs, and

3



anomaly detection), empirical testing, and approaches based on error-detection
and fault-tolerance. The overall goal should be the construction of Dependable
Systems: those in which reliance may justifiably be placed on certain aspects of
the quality of service delivered [Lap85].

An important facet of dependability is that it is a systems (i.e., big picture)
concept. Perfection in components and subsystems does not necessarily provide
a dependable system overall—and may not be the best way to achieve depend-
ability. If dependably safe control cannot be guaranteed of digital avionics (and
many believe it cannot), then it may still be possible to build a safe airplane
containing digital avionics—provided the digital control system is not a single
point of failure. At the least, this requires the airplane to be aerodynamically
stable, and that there should be some direct connection between the pilot and
the control surfaces.

The concept of dependability also introduces a significant compromise: we
do not require that every aspect of system functionality should be provided de-
pendably, only that selected aspects should. Thus, for example, although we
would like the digital avionics of passenger aircraft to provide both safe and
fuel-efficient control, we might insist that only safety is assured to the highest
levels of dependability. In these cases, it is possible to work backwards from
hypothesized dependability failures in order to discover whether any errors in
design or implementation can allow those failures to occur. This technique of
“software fault-tree analysis” [LH83] can be considered a formal method but,
because it reasons backwards from hypothesized failures rather than forward
from one supposedly good state to another, it rests on rather different assump-
tions than other methods and can identify faults that have been overlooked in
more conventional analyses.

Direct testing also probes assumptions; it can be used to validate the explicit
assumptions of a formal analysis (just as a wind-tunnel may be used to validate
the assumptions used in an aerodynamic calculation), and it can expose hidden
assumptions and misunderstood or overlooked requirements. Testing is some-
times dismissed by those who espouse the purest of formal methods (“testing
reveals the presence of faults, never their absence”), but I can imagine no serious
approach to the certification of critical systems that does not require explicit
and extensive testing. The interesting challenge is to identify ways in which
testing can reinforce and support formally-based analyses.

The same is true of run-time error checking. Even a verified microprocessor
is vulnerable to surges on its power line, and to strikes by alpha-particles and
bullets. It is only prudent to monitor the progress of a computation in order to
ensure that nothing is going drastically awry. By combining run-time checking
with formal analysis, it should be possible to make stronger and more reliable
statements than is possible with either technique alone [AW78].

If run-time error checking is performed, it is natural to provide some form
of recovery, or fault-tolerance, in response to detected errors. Some degree of
fault tolerance is normally considered essential in high-dependability systems.
Physical components wear out, and the external environment may introduce
unanticipated circumstances. Fault-tolerance requires the monitoring of perfor-

4



mance, and the presence of redundancy. Both add complexity, and may thereby
reduce, rather than enhance, dependability. The algorithms needed to provide
“Byzantine fault-tolerant” synchronization and agreement, for example, are of
considerable difficulty, and the software that manages the coordination, voting,
error-detection, recovery and reconfiguration in a fault-tolerant system becomes
a single point of failure in the overall system. Because of its criticality and
difficulty, it is an excellent candidate for heavy-duty formal verification.

From fault-tolerance intended to protect against component malfunction, it
is but a small step to contemplate redundancy and fault-tolerance as a safeguard
against design faults. “Software-fault tolerance” relies on “diversity” (multiple
designs and implementations for each program module), run-time checking, and
majority voting to safeguard against design faults in critical software [AL86].

Formal Methods and Systems Engineering

Some researchers in the formal methods community are reluctant to involve
themselves with systems that are to be used in the real world. Since the invita-
tion to participate usually comes only from those who are developing systems of
unusual criticality (where conventional methods of assurance are known to be
inadequate), this reluctance is understandable. Many feel that the complexity
of the systems concerned, the constraints that surround them, and the serious
consequences that could attend their failure, are such that formal methods can
provide only partial assurances that could be misinterpreted.

Others believe that the systems concerned are going to be built anyway, and
that it is better to bring some of the benefits of formal methods to bear than
none at all; in the absence of participation by the formal methods community,
other—perhaps inferior—technologies may become entrenched. It should be
noted, for example, that a particular incarnation of software fault tolerance
(“N-version programming” [Avi85]) is the dominant technology for dependable
systems in aerospace, where the flight control computers for the Boeing 737-300
and for the Airbus A310 and A320 are N-version systems; I am unaware of any
deployed flight control system that has been subject to formal verification.

The presentations that we have heard today all describe serious attempts
to apply formal methods to real systems in a limited but responsible manner.
In each case, we have seen that it has been important to consider the system
context: formal methods should be targeted where they will do the most good.
And we have seen that formal methods must be integrated with other approaches
to validation and assurance.

I believe that integration of formal methods with other forms of assurance
is necessary for truly dependable systems. Calling for verification to simply be
used in addition to fault-tree analysis, testing, run-time checking, and fault-
tolerance is trite. What we need is not simple redundancy of analysis, but
integration: we need to know how to use testing and verification in support of
each other, to know how the one can validate the assumptions of the other. And
we need to investigate how run-time checking and fault-tolerance can be used to

5



provide principled detection and response to violated assumptions, rather than
a gamble on the laws of probability.

In summary, I invite those who are willing to essay the application of formal
methods to critical real-world systems to consider the following points:

1. Our techniques are not infallible: any really critical system should be
designed so that it can operate safely (though possibly in a degraded mode)
without the computer system: even if all the flight control computers fail,
it should still be possible to land the plane.

2. Formal methods are not synonymous with mechanically checked formal
verification. The “manual” use of formal methods during design, and for
documentation, may be of considerable benefit.

3. Formal verification, if it is to be employed at all, cannot be applied ev-
erywhere; we need to target its application with great care. Software
components that constitute a single point of system failure (such as those
that manage the fault-tolerance mechanisms) are natural candidates.

4. We need to develop a foundation for the integration of multiple forms of
assurance: formal methods do not stand alone.

The foregoing presentations have shown us some of the opportunities and chal-
lenges that await those who are willing to apply formal methods in a systems
engineering context. I hope more of us will follow their example.

References

[AL86] A. Avižienis and J. C. Laprie. Dependable computing: From concepts
to design diversity. Proceedings of the IEEE, 74(5):629–638, May
1986.

[Avi85] Algirdas Avižienis. The N -Version approach to fault-tolerant soft-
ware. IEEE Transactions on Software Engineering, SE-11(12):1491–
1501, December 1985.

[AW78] T. Anderson and R. W. Witty. Safe programming. BIT, 18:1–8, 1978.

[Bar89] Jon Barwise. Mathematical proofs of computer system correctness.
Notices of the American Mathematical Society, 36:844–851, Septem-
ber 1989.

[Coh89] Avra Cohn. The notion of proof in hardware verification. Journal of
Automated Reasoning, 5(2):127–139, June 1989.

[DLP79] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social
processes and proofs of theorems and programs. Communications of
the ACM, 22(5):271–280, May 1979.

6



[DoD85] Department of Defense Trusted Computer System Evaluation Crite-
ria. Department of Defense, December 1985. DOD 5200.28-STD
(supersedes CSC-STD-001-83).

[Fet88] James H. Fetzer. Program verification: The very idea. Communica-
tions of the ACM, 31(9):1048–1063, September 1988.

[Jac89] Jonathan Jacky. Programmed for disaster: Software errors that im-
peril lives. The Sciences, pages 22–27, September/October 1989.

[Lap85] J. C. Laprie. Dependable computing and fault tolerance: Concepts
and terminology. In Fault Tolerant Computing Symposium 15, pages
2–11, Ann Arbor, MI, June 1985. IEEE Computer Society.

[Lev86] Nancy G. Leveson. Software safety: Why, what and how. ACM
Computing Surveys, 18(2):125–163, June 1986.

[LH83] N. G. Leveson and P. R. Harvey. Analyzing software safety. IEEE
Transactions on Software Engineering, SE-9(5):569–579, September
1983.

[MOD91] Interim Defence Standard 00-55: The Procurement of Safety Critical
Software in Defence Equipment. UK Ministry of Defence, April 1991.
Part 1, Issue 1: Requirements; Part 2, Issue 1: Guidance.

[Nau82] Peter Naur. Formalization in program development. BIT, 22(4):437–
453, 1982.

7


