
Electronic Notes in Theoretical Computer Science 43 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume43.html 14 pages

Analyzing Cockpit Interfaces
Using Formal Methods

John Rushby1

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA

Abstract

Modern passenger aircraft are highly automated, and problems at the interface between
the automation and the pilot are implicated in several accidents. I use a simple example
taken from the autopilot of a widely used aircraft type to demonstrate how formal methods
can be used to analyze some aspects of these interfaces, and to expose potential problems.

This example serves to illustrate the wider thesis that formal methods can find application
in domains outside those traditionally associated with it, provided only that the phenomena
of interest can be modeled effectively in discrete mathematics.

1 Introduction

The calculus was invented to solve problems of bodies in motion. In the few hun-
dred years since Newton and Leibniz created its basic notations and techniques,
the methods of calculus have been applied to a bewildering variety of problem ar-
eas from the motions of fluids to the behavior of biological systems. The reasons
for this fecundity are well known: the fundamental concepts of calculus are very
general and can be used to model many phenomena (indeed, students are usually
introduced to it nowadays as the “science of change”), and it admits effective com-
putational procedures that can be used to calculate answers to practical questions.
The methods of calculation have been adapted to exploit the power of modern com-
puters (indeed, the desire to automate these calculations was one of the spurs to the
development of digital computers).

Formal methods are analogous to calculus in these regards: the basic concepts
are very general (i.e., mathematical logic, which was itself developed to underpin
the whole of mathematics—and which had its earliest roots in classical logic, which

1 This research was partially supported by NASA Langley Research Center through contracts
NAS1-20334 and NAS1-00079.

c©2001 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume43.html


Rushby

sought to codify the processes of rational thought) and can be used to model many
phenomena, and they admit (what are beginning to be) effective computational pro-
cedures (such as model checking and theorem proving) that can be used to calculate
answers to practical questions. These methods of calculation make good use of the
power of modern computers.

I will illustrate these points with an example that applies formal methods to
the “automation surprises” that have become a matter of concern in the cockpit au-
tomation of advanced aircraft (pilot error accounts for the majority of “hull loss”
accidents in civil aviation [9]). This topic has traditionally been studied by aviation
psychologists, cognitive psychologists, and human factors specialists using exper-
imental and descriptive methods (see, e.g., [1]) and has not seemed a likely target
for formal methods. It turns out, however, that cognitive psychologists have estab-
lished the central role played by the “mental model” when a human interacts with
any kind of complex system [13,14,15], and they have further established that these
mental models have certain characteristics and can be described by state machines.

If certain aspects of human cognition can be described by state machines, then
we can use formal methods to specify and model those aspects, and thereby provide
effective means for calculating their properties. The next section describes a simple
example to demonstrate this.

2 Analyzing an Automation Surprise

Automation surprises occur when an automated system behaves differently than its
operator expects. If the actual system behavior and the operator’s mental model are
both described as finite state transition systems, then mechanized techniques based
on model checking can be used automatically to discover any scenarios that cause
the behaviors of the two descriptions to diverge from one another. These scenarios
identify potential surprises and pinpoint areas where design changes, or revisions
to training materials or procedures, should be considered. The mental models can
be suggested by human factors experts, or can be derived from training materials,
or can express simple requirements for “consistent” behavior.

I and my colleagues have previously demonstrated this approach by applying
the Murφ state exploration system to illustrative surprises in the autopilots of the
MD88 [16,17] and A320 [4]. In this paper, I provide another illustration based on
descriptions published by Degani and colleagues [5,6]. This illustration concerns
the autopilot of one of the most widely deployed of all commercial aircraft types,
and differs from previous examples in that it is necessary to model rather more of
the dynamics of the aircraft.

Figure 1 illustrates the main elements of the Guidance Control Panel (GCP) that
the pilot of this aircraft uses to select and control the vertical flight modes of the
autopilot. There are three main modes, each of which is engaged by pressing the
corresponding button.

2



Rushby

VSALT

HOLD VERTICAL

1 1 0 0 + 2 5 00 0

CHANGE

LEVEL ALTITUDE SPEED

Fig. 1. The Guidance Control Panel

Hold Altitude: causes the aircraft to maintain its current altitude.

Change Level: causes the aircraft to fly to the new level indicated in the altitude
window at the top center of the GCP. This value is set by turning the ALT dial in
the center of the GCP. When the desired altitude is reached, the aircraft changes
to Hold Altitudemode.

Vertical Speed: causes the aircraft to climb or descend at the rate indicated in the
vertical speed window at the top right of the GCP (a positive value indicates
climb, a negative one descent). This value can be changed by turning the VS
thumbwheel at the center right of the GCP. If the value set in the altitude window
is “ahead” of the current aircraft position (i.e., it is above the current altitude if
the vertical speed window indicates climb, or below if it indicates descent), then
there is a limit set and the aircraft will level off at the indicated altitude and enter
Hold Altitudemode; otherwise, it will continue to climb or descend indefinitely
at the set vertical speed.

The behaviors just described seem fairly simple. They become more compli-
cated if the ALT dial or VS thumbwheel is moved when a mode is already active.
For example, if the ALT dial is turned while inChange Levelmode, the new alti-
tude will become the target, whereas if the VS thumbwheel is turned, the aircraft
will transition toVertical Speedmode.

The behaviors of interest here are those that occur inVertical Speedmode: if
either the VS thumbwheel or ALT dial is changed when in this mode, then the air-
craft will fly at the rate of climb or descent indicated in the vertical speed window,
with a limit to the climb if the value in the altitude window is “ahead” of the cur-
rent position. This behavior seems fairly straightforward but it is compromised by

3



Rushby

the existence of a specialCapturemode that automatically becomes active when
the aircraft gets close to the target altitude when a limit is set. TheCapturemode
causes the aircraft to make a gentle transition from climb or descent to level flight
at the set altitude.

Before describing how this mode actually works, I describe some scenarios that
it can exhibit. In each case, the scenario begins with the pilot selectingVertical
Speedmode with an ascent rate of 2,000 fpm and a limit of 27,000 feet; the aircraft
will climb as directed and the autopilot will switch automatically toCapturemode
as it passes through 25,000 feet. Now suppose that while passing through 26,000
feet, the pilot changes the ALT dial to a new value. Let us consider the behavior
for different values set in the altitude window.

(i) If the new value is 27,500 feet, the aircraft will continue to ascend and will
level off at this altitude. This seems reasonable because the new value is
“ahead” of the aircraft and the one previously set.

(ii) If the new value is 26,500 feet, the aircraft will continue to ascend and will
level off at this altitude. This also seems reasonable because, although the new
value is lower than the one originally set, it is still “ahead” of the aircraft.

(iii) If the new value is 25,500 feet, the aircraft will change direction and descend
to this altitude and level off. Whereas the previous two cases are consistent
with behavior ofVertical Speedmode, this one is not: the new set altitude is
“behind” the current position of the aircraft—so inVertical Speedmode the
aircraft would now climb without limit. How is a pilot to make sense of the
new behavior? One plausible hypothesis is thatCapturemode behaves some-
what likeChange Levelmode and always targets the set altitude, regardless of
the setting in the vertical speed window.

The actual mechanism that produces these behaviors is rather different than
the mental model hypothesized above. The autopilot notes the altitude at which it
makes its automatic transition toCapturemode, and will capture any new height
set in the altitude window that is “ahead” of that altitude; otherwise, it will change
to Vertical Speedmode and climb or descend without limit.

Our goal is to determine whether the behavior suggested by the mental model
can diverge from that of the actual mechanism. We will explore these behaviors
by modeling them with the state exploration tool (a kind of model checker) called
Murφ [7]. I provided a tutorial introduction to use of Murφ in this domain in an
earlier paper [16] and therefore present the new model without much explanation
of the Murφ constructs used. The point to bear in mind is that a Murφ specification
consists of a number of guardedrule s (or ruleset s): at each step, some rule
whose guard evaluates totrue in the current state is selected for execution. The
body of the selected rule is executed, which will result in changes to the values of
some state variables (and hence a new state). Murφ backtracks to explore different
sequences in which rules may fire and thereby examines all possible behaviors and
all reachable states. In each reachable state, it checks whether specified invariants

4



Rushby

aretrue, and stops and prints a trace of the events (i.e., rule firings) that led to the
current state whenever a violation is detected.

In this domain, rules specify actions by the pilot (e.g., pressing a button, or
changing the value set by a dial), those corresponding to the dynamics of the aircraft
(e.g., a change in the current altitude of the aircraft), and those performed by the
autopilot in response to certain events (e.g., the change toCapturemode when the
aircraft gets close to the target altitude). Unlike the exercise based on the MD-88
autopilot [16], where it was necessary to model only the discrete internal states of
the autopilot, here we also need to model some of the dynamics of the aircraft—
because its autopilot behaviors are determined by the relationships between the
altitudes at which different events occur. However, a very crude model is sufficient:
we abstract altitude to eleven discreteflightlevels (fewer would probably
also be adequate) and allow the aircraft to move between adjacent flightlevels at
each step of the model. We also need to record whether the aircraft is goingup
or down, and the currentvertical mode of its autopilot. These notions are
specified in Murφ as follows.

Const
lo: 20;
hi: 30;

Type
flightlevels: lo..hi;
directions: enum {up, down };
vertical_modes: enum
{none, hold_alt, vert_speed, change_level, capture };

To model the autopilot, we need state variables to record its current
flight mode, and whether there is alimit set to its climb or descent. We
also need to record thecurrent flightlevel of the aircraft, the setting of its
alt dial , and the flightlevel at which it engagedCapturemode (this is the vari-
ablecap start ). The setting of thevspd wheel can be abstracted to whether
it indicatesup or down, and we also need to record the currentdirection of the
aircraft. The values of most of these state variables are presented to the pilot on a
display called theFlight Mode Annunciator(FMA) and may therefore be assumed
also to be present (and correctly represented) in the pilot’s mental model. Conspic-
uously absent from the FMA, however, arecap start (of whose existence pilots
are unaware) andlimit set . The task of the mental model that we are investigat-
ing is to infer the value oflimit set from the other information presented. We
record the value of this inference in the state variablemental capture . These
state variables are specified and initialized in Murφ as follows.

5



Rushby

Var
flight_mode: vertical_modes;
cap_start, current, alt_dial: flightlevels;
direction, vspd_wheel: directions;
limit_set: boolean;
mental_capture: boolean;

startstate
begin

flight_mode := none;
current := (lo+hi)/2;
clear mental_capture;
clear cap_start;
clear alt_dial;
clear direction;
clear vspd_wheel;
clear limit_set;

end;

When the autopilot is disengaged (i.e.,flight mode is none ), we assume
the aircraft is being “hand flown” by the pilot and will move either up or down one
flightlevel at each time step (taking care not to move beyond the allowed range of
flightlevels).

ruleset d:directions do
rule "hand flight" flight_mode = none ==>
begin

if d = up & current<hi then current := current+1;
elsif d = down & current>lo then current := current-1;
endif;

end;
end;

Otherwise, the aircraft is in “auto flight” and will move one flightlevel in its
current direction, provided it is not inhold alt mode, or already at the flightlevel
set in itsalt dial (again taking care not to move beyond the allowed range of
flightlevels).

rule "auto flight"
(flight_mode != none & flight_mode != hold_alt)

& current != alt_dial ==>
begin

if direction = up & current<hi
then current := current+1;

elsif direction = down & current>lo
then current := current-1;

endif;
end;

6



Rushby

The following rule specifies what happens when the pilot presses theVertical
Speedbutton.

rule "Engage vertical speed" flight_mode != vert_speed ==>
begin

flight_mode := vert_speed;
direction := vspd_wheel;
limit_set := (direction = up & alt_dial >= current)

| (direction = down & alt_dial <= current);
mental_capture := limit_set

end;

Thedirection is set from thevspd wheel (how this is set is described below),
and limit set is determined by whether the value set by thealt dial (also
described below) is “ahead” of the current flightlevel. The mental model is the
same as the actual automation in this case, somental capture will be the same
aslimit set .

The rules that specify behavior when the pilot presses theChange Levelor Hold
Altitudebuttons are similar.

rule "Engage change level" flight_mode != change_level ==>
begin

flight_mode := change_level;
if alt_dial > current

then direction := up; else direction := down;
endif;
limit_set := true;
mental_capture := limit_set;

end;

rule "Engage hold alt" flight_mode != hold_alt ==>
begin

flight_mode := hold_alt;
limit_set := false;
mental_capture := limit_set;

end;

The transition intoCapturemode fromChange Levelor Vertical Speedoccurs
autonomously when the aircraft comes “near” to the set altitude and there is a limit
set. We do not need to model exactly what “near” means and simply allow this rule
to fire whenever the basic constraints are satisfied.

7



Rushby

rule "near"
(flight_mode = change_level | flight_mode = vert_speed)

& limit_set ==>
begin

flight_mode := capture;
cap_start := current;

end;

Notice that the current flightlevel is noted in thecap start state variable when-
ever this transition occurs.

The autopilot transitions automatically fromCapturemode toHold Altitude
when it reaches the set altitude.

rule "arrive"
flight_mode = capture & current = alt_dial ==>

begin
flight_mode := hold_alt;
limit_set := false;
mental_capture := false;

end;

Next, we specify what happens when the pilot changes the ALT dial to a
flightlevel h. If the current mode isVertical Speed, then limit set is set or
not depending on whether the new value of thealt dial is “ahead” of thecur-
rent flightlevel; mental capture is set the same way. If the autopilot is in
Capturemode, however, thenlimit set is is reevaluated depending on whether
alt dial is “ahead” of thecap start flightlevel, whereasmental capture
is not changed.

ruleset h: flightlevels do
rule "change ALT dial" h != alt_dial ==>
begin

alt_dial := h;
if flight_mode = vert_speed then

limit_set := (direction = up & alt_dial >= current)
| (direction = down & alt_dial <= current);

mental_capture := limit_set;
elsif flight_mode = capture then

limit_set := (direction = up & alt_dial >= cap_start)
| (direction = down & alt_dial <= cap_start);

flight_mode := vert_speed;
elsif flight_mode = change_level then

if h > current
then direction := up; else direction := down;

endif;
endif;

end;
end;

8



Rushby

Finally, we specify what happens when the pilot changes the vertical speed
thumbwheel. If the current flight mode isVertical Speed, or if it is Hold Altitudeand
the altitude setting has already been changed away from the current flightlevel, then
the flight mode becomesVertical Speedand limit set is set or not depending
on whether the value of thealt dial is “ahead” of thecurrent flightlevel.

ruleset d:directions do
rule "change VS thumbwheel" d != direction ==>
begin

direction := d;
if flight_mode = hold_alt & alt_dial != current then

flight_mode := vert_speed;
limit_set := (direction = up & alt_dial >= current)

| (direction = down & alt_dial <= current);
mental_capture := limit_set;

elsif flight_mode = vert_speed then
limit_set := (direction = up & alt_dial >= current)

| (direction = down & alt_dial <= current);
mental_capture := limit_set;

endif;
end;
end;

Our goal is to check whethermental capture always aligns with
limit set , so we specify the following invariant.

invariant "consistent"
flight_mode != none -> mental_capture = limit_set;

If we now invoke Murφ on this specification, it will explore a few hundred
states in a fraction of a second and report that the invariantconsistent can be
falsified, and it will exhibit a trace such as that shown in Figure 2 that manifests this
behavior.2 This trace is similar to the scenarios described on page 4, except that the
new value set in the ALT dial is “behind” that at which the automatic transition into
Capturemode takes place—but the behavior of the aircraft is completely different
in this case. Whereas the aircraft captured the new altitude in the previous cases,
here it climbs without limit.

The insight provided by the Murφ trace allows us to construct the following
addition to the scenarios on page 4.

(iv) If the new value is 24,500 feet, the aircraft will climb without limit.

Observe how apparently small changes in inputs, namely the new value set in the
altitude window, cause widely different behaviors, as tabulated below.

2 Actually, Murφ finds a much shorter counterexample trace than this; to simplify comparison
with other scenarios, I disabled the rulesEngage change level andchange VS thumb-
wheel , and added the expressioncurrent>cap start & alt dial> (lo+hi)/2 to the
antecedent inconsistent , thereby causing Murφ to find this particular trace.

9



Rushby

Startstate Startstate 0 fired.
flight_mode:none
cap_start:20
current:24
alt_dial:20
direction:up
vspd_wheel:up
limit_set:false
mental_capture:false
----------
Rule change_GCP_alt, h:27 fired.
alt_dial:27
----------
Rule Engage vert speed fired.
flight_mode:vert_speed
limit_set:true
mental_capture:true
----------
Rule auto flight fired.
current:26
----------
Rule auto flight fired.
current:27
----------
Rule near fired.
flight_mode:capture
cap_start:27
----------
Rule change_GCP_alt, h:26 fired.
The last state of the trace (in full) is:
flight_mode:vert_speed
cap_start:27
current:28
alt_dial:26
direction:up
vspd_wheel:up
limit_set:false
mental_capture:true
----------
End of the error trace.

Fig. 2. Counterexample Trace Found by Murφ

10



Rushby

Value in Altitude Window Behavior

26,500 climb and capture

25,500 descend and capture

24,500 climb without limit

Our analysis with Murφ has revealed a circumstance in which the hypothe-
sized mental model differs from the behavior of the actual automation, and thereby
highlights a potential automation surprise. This exact surprise was experienced by
a crew in 1989. Degani and Heymann [5] provide the following incident report,
paraphrased from [2].

“On climb to 27,000 feet and leaving 26,500 feet, Memphis Center gave us a
clearance to descend to 24,000 feet. The aircraft had gone to ‘Capture’ mode
when the First Officer selected 24,000 feet on the GCP altitude setting. . . the
aircraft continue to climb at approximately 300 feet-per-minute. There was no
altitude warning and this ‘altitude bust’ went unnoticed by myself and the First
Officer, due to the slight rate of climb. At 28,500 feet, Memphis Center asked our
altitude and I replied 28,500 and started an immediate descent to 24,000 feet.”

An “altitude bust” is pilot jargon for the situation where an aircraft departs from
its assigned altitude—potentially encroaching into airspace assigned to another air-
craft and thereby causing a hazard.

We hypothesized the mental model that leads to this surprise by noting that in
most common circumstances, the aircraft does capture the new altitude. Javaux
and Polson [12] note that pilot’s mental models focus on the common cases, so
this model is psychologically plausible. However, pilots aresupposedto operate
the aircraft in accordance with the manufacturer’s and their company’s established
procedures. I do not have access to descriptions of such procedures, but Degani
et al. [6] present information from the training manual of the autopilot concerned.
Part of the purpose of a training manual is to induce appropriate mental models, so
it is worth examining this description.

The training manual indicates that changing the ALT dial when inCapture
mode causes a reversion toVertical Speedmode; implicitly, the usual rules for
entering this mode will determine whether or not there will be a limit to the climb
or descent (i.e., a limit will be set if the new value is “ahead” of the current altitude).
It requires changing only a couple of lines in the Murφ specification to implement
this change to the operation ofmental capture . Murφ then produces a coun-
terexample trace similar to that of Scenario (iii) on page 4, showing that this mental
model also admits surprises.

It is easy to establish that the model induced by the training manual leads to
surprises only of the kind where the aircraft flies a capture when the mental model
expects an unconstrained climb or descent, whereas the original “folk model” leads
only to surprises of the opposite kind. Is it possible that some “compromise” model
could eliminate these surprises altogether?

11



Rushby

Unfortunately, this is not possible. Certain behaviors of the autopilot are de-
termined by the relationship between a new value set in the altitude window and
the altitude at whichCapturemode was entered. This latter information (i.e., the
cap start altitude) is simply not presented to the pilot3 and it is therefore im-
possible to construct a mental model whose states are based on information avail-
able to the pilot that accurately tracks the behavior of the real autopilot.

My opinion (shared with others who have considered this example [5,6]), is
that the behavior of this autopilot is unacceptable, and it should be considered a
flawed design. An automated system may have complex internal logic, and that
logic may depend on state variables that are not displayed at its user interface, but
its operation should be such that a relatively simple mental model can accurately
predict the consequences of actions by its user. The victims of the automation
surprise reported on page 11 rightly attributed it to a design flaw and suggested a
correction (paraphrased from [2]).

“This problem could have been alleviated during certification, if the FAA had
required the manufacturer to put the logic into the computer so as not to allow
the aircraft to climb above the last assigned altitude when a lower one is se-
lected before reaching your cruise altitude. This is a design flaw, and should be
corrected.”

The suggested correction would avoid the altitude bust but would not, in my
opinion, support a simple and accurate mental model. Corrections that would sup-
port such a model include a light by the altitude window that is illuminated if a
capture will occur (i.e., iflimit set is true), or a more radical redesign in which
turning the ALT dial when inCapturemode causes a reversion toLevel Change
(rather thanVertical Speed) mode.

3 Discussion

A limitation to the method of analysis presented here is that we are modeling only a
small fragment of the cognitive processes involved in human-computer interaction.
The method is silent, for example, on problems that might be due to an operator’s
difficulty in recalling the right mental model, or to excessive demands on an op-
erator’s attention. There is very interesting work by Bowman and Faconti [3] and
by Duke and Duce [8] that applies formal methods to deeper models of cognition,
and this allows them to detect different kinds of issues than the automation sur-
prises described here. I consider all these approaches complementary to each other
and representative of a very promising general direction: the detection of poten-
tial human factors problems by explicitly comparing the design of a system against
a model of some aspect of human cognition using mechanized formal methods.
Models of different aspects of cognition are likely to reveal different kinds of prob-

3 A pilot could monitor the FMA for the transition toCapturemode and then note the altimeter
reading, but this seems feasible only in theory, and is not consistent with the real responsibilities of
flying an aircraft, nor with the intent of cockpit automation.

12



Rushby

lems. The approach described here uses simple mental models to find design flaws
that lead to automation surprises, and it seems very effective for that purpose.

Murφ was developed to support modeling and analysis of asynchronous com-
munication protocols, and its main applications have been processor cache co-
herence protocols (see the Murφ home page athttp://verify.stanford.
edu/dill/murphi.html ). Yet, I have found it quite convenient for modeling
autopilots and their mental models. In my opinion, the key to successful use of
formal methods “elsewhere” than to their traditional applications of hardware and
protocol designs is use of effective tools that are not overly committed to a partic-
ular mode of expression or model of computation. Murφ, with its simple guarded
rules and its convenient notation for programming their bodies, has proved effec-
tive in domains quite far from its original applications (e.g., my colleagues and I
have also used it to gain quantitative estimates of the fault tolerance of different al-
gorithms [10]). Research in many traditional sciences, such as physics, chemistry,
biology—and even psychology, recently has come to be based on simulation and
computation over mathematical models. I believe that formal methods, by provid-
ing effective methods for enumeration of finite models, and symbolic exploration
of infinite ones, will become a key technology in these sciences, and in many other
fields of endeavor far “elsewhere” from its origins.

References

[1] Kathy Abbott, Jean-Jacques Speyer, and Guy Boy, editors.International Conference
on Human-Computer Interaction in Aeronautics: HCI-Aero 2000, Toulouse, France,
September 2000. Ćepadùes-́Editions.

[2] ASRS report 113722. NASA Aviation Safety Reporting System (ASRS), June 1989.
ASRS database search is available athttp://nasdac.faa.gov/asp/asy_
asrs.asp .

[3] Howard Bowman and Giorgio Faconti. Analysing cognitive behaviour using LOTOS
and Mexitl. Formal Aspects of Computing, 11(2):132–159, 1999.

[4] Judith Crow, Denis Javaux, and John Rushby. Models and mechanized methods that
integrate human factors into automation design. In Abbott et al. [1], pages 163–168.
http://www.csl.sri.com/reports/html/hci-aero00.html .

[5] Asaf Degani and Michael Heymann. Pilot-autopilot interaction: A formal perspective.
In Abbott et al. [1], pages 157–168.

[6] Asaf Degani, Michael Heymann, George Meyer, and Michael Shafto. Some formal
aspects of human-computer interaction. Technical Report NASA/TM–2000–209600,
NASA Ames Research Center, Moffett Field, CA, April 2000.

[7] David L. Dill. The Murφ verification system. In Rajeev Alur and Thomas A.
Henzinger, editors,Computer-Aided Verification, CAV ’96, volume 1102 ofLecture
Notes in Computer Science, pages 390–393, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

13

http://verify.stanford.edu/dill/murphi.html
http://verify.stanford.edu/dill/murphi.html
http://nasdac.faa.gov/asp/asy_asrs.asp
http://nasdac.faa.gov/asp/asy_asrs.asp
http://www.csl.sri.com/reports/html/hci-aero00.html


Rushby

[8] David Duke and David Duce. The formalization of a cognitive architecture and
its application to reasoning about human computer interaction.Formal Aspects of
Computing, 11(6):665–689, 1999.

[9] The interfaces between flightcrews and modern flight deck systems. Report of the
FAA human factors team, Federal Aviation Administration, 1995. Available athttp:
//www.faa.gov/avr/afs/interfac.pdf .

[10] Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement with authentication:
Observations and applications in tolerating hybrid and link faults. In Ravishankar K.
Iyer, Michele Morganti, W. Kent Fuchs, and Virgil Gligor, editors,Dependable
Computing for Critical Applications—5, volume 10 ofDependable Computing and
Fault Tolerant Systems, pages 139–157, Champaign, IL, September 1995. IEEE
Computer Society.

[11] Denis Javaux and V́eronique De Keyser, editors.Proceedings of the 3rd Workshop
on Human Error, Safety, and System Development (HESSD’99), University of Liege,
Belgium, June 1999.

[12] Denis Javaux and Peter G. Polson. A method for predicting errors when interacting
with finite state machines. In Javaux and Keyser [11]. Also to appear inReliability
Engineering and System Safety.

[13] Philip N. Johnson-Laird. Mental Models, volume 6 ofCognitive Science Series.
Harvard University Press, Cambridge MA, 1983.

[14] Philip N. Johnson-Laird.The Computer and the Mind : An Introduction to Cognitive
Science. Harvard University Press, 1989.

[15] Steven Pinker.How the Mind Works. W. W. Norton, New York, NY, 1997.

[16] John Rushby. Using model checking to help discover mode confusions and other
automation surprises. In Javaux and Keyser [11]. Revised version to appear in
Reliability Engineering and System Safety; Preprint available athttp://www.csl.
sri.com/papers/hessd99/ .

[17] John Rushby, Judith Crow, and Everett Palmer. An automated method to
detect potential mode confusions. In18th AIAA/IEEE Digital Avionics Systems
Conference, St Louis, MO, October 1999. http://www.csl.sri.com/
papers/dasc99/ .

14

http://www.faa.gov/avr/afs/interfac.pdf
http://www.faa.gov/avr/afs/interfac.pdf
http://www.csl.sri.com/papers/hessd99/
http://www.csl.sri.com/papers/hessd99/
http://www.csl.sri.com/papers/dasc99/
http://www.csl.sri.com/papers/dasc99/

	Introduction
	Analyzing an Automation Surprise
	Discussion
	References

