
Partitioning in Avionics Architectures:
Requirements, Mechanisms, and Assurance

�

JohnRushby
ComputerScienceLaboratory

SRI International
MenloParkCA 94025USA

TechnicalReport
March1999

�
This work was sponsoredby the FAA TechnicalCenterand NASA Langley ResearchCen-

ter throughcontractNAS1-20334,andby DARPA andNSA throughAir ForceRomeLaboratory
ContractF30602-96-C-0204.

ii

Abstract

Automatedaircraft control hastraditionally beendivided into distinct functionsthat
areimplementedseparately(e.g.,autopilot,autothrottle,flight management);eachfunction
hasits own fault-tolerantcomputersystem,anddependenciesamongdifferent functions
are generallylimited to the exchangeof sensorand control data. A by-productof this
“federated”architectureis thatfaultsarestronglycontainedwithin thecomputersystemof
thefunctionwherethey occurandcannotreadilypropagateto affect theoperationof other
functions.

More modernavionics architecturescontemplatesupportingmultiple functionson a
single,shared,fault-tolerantcomputersystemwherenaturalfault containmentboundaries
arelesssharplydefined.Partitioning usesappropriatehardwareandsoftwaremechanisms
to restorestrongfault containmentto suchintegratedarchitectures.

This reportexaminesthe requirementsfor partitioning,mechanismsfor their realiza-
tion, andissuesin providing assurancefor partitioning. Becausepartitioningsharessome
concernswith computersecurity, securitymodelsare reviewed and comparedwith the
concernsof partitioning.

iii

Acknowledgments

I wish to acknowledgemy deepappreciationfor thesupportof PeteSaraceniof theFlight
SafetyResearchBranchof theWilliam J.HughesFAA TechnicalCenterandRicky Butler
of theNASA Langley ResearchCenter. As oftenbefore,they providedencouragementand
excellenttechnicaladvicethroughoutpreparationof thisreportanddisplayedstoicpatience.

I amalsovery gratefulto otherresearchersandto engineersin severalaerospacecom-
panieswho took the time to explain their concernsandapproachesto me. I particularly
benefitedfrom extensive discussionswith David Hardin,DaveGreve,andMatt Wilding of
Collins; with Kevin Driscoll andAaronLarsenof Honeywell; andwith HermannKopetz
of theViennaTechnicalUniversity. Bendi Vito of NASA Langley providedexcellentcom-
mentsandposedtaxingquestionsonadraft versionof this report.

iv

Contents

1 Motivation and Introduction 1

2 Informal Requirements 3
2.1 IntegratedModularAvionics . 3
2.2 Partitioning . 8

3 Issues and Mechanisms 13
3.1 PartitioningWithin aSingleProcessor. 13

3.1.1 SpatialPartitioning . 13
3.1.2 TemporalPartitioning . 20

3.2 PartitioningAcrossaDistributedSystem. 29
3.3 Summary . 34

4 Comparison With Computer Security 37
4.1 DataandInformationFlow . 37

4.1.1 AccessControl . 38
4.1.2 Noninterference. 40
4.1.3 Separability. 45

4.2 Integrity Policies . 47
4.3 Timing ChannelsandDenialof Service 48
4.4 Applicationto Partitioning . 49

5 Conclusion 51

References 53

v

List of Figures

2.1 Alternative OperatingSystem/PartitioningDesigns 7

3.1 DifferentOperatingSystemSoftwarefor DifferentPartitions 28

4.1 AllowedInformationFlows for anEncryptionController 43

vi

Chapter 1

Motivation and Introduction

Digital flight-controlfunctionsin currentaircraftaregenerallyimplementedby a federated
architecturein which eachfunction(e.g.,autopilot,flight management,yaw damping,dis-
plays)hasits own computersystemthatis only looselycoupledto thecomputersystemsof
otherfunctions.A greatadvantageof thisarchitectureis thatfault containmentis inherent:
thatis to say, a fault in thecomputersystemsupportingonefunction,or in thesoftwareim-
plementingthat function, is unlikely to propagateto otherfunctionsbecausethereis very
little that is sharedacrossthedifferentfunctions.To besure,somefunctionsinteractwith
others,but theseinteractionsareaccomplishedby theexchangeof data,andfunctionscan
bedesignedto detectandtoleratea faultyor erraticdatasource.

The obvious disadvantageto the federatedapproachis its profligateuseof resources:
eachfunctionneedsits own computersystem(which is generallyreplicatedfor fault toler-
ance),with all theattendantcostsof acquisition,space,power, weight,cooling,installation,
andmaintenance.IntegratedModularAvionics (IMA) hasthereforeemergedasa design
conceptto challengethe federatedarchitecture[1,78]. In IMA, a singlecomputersystem
(with internalreplicationto providefaulttolerance)providesacommoncomputingresource
to severalfunctions.As asharedresource,IMA hasthepotentialto diminishfault contain-
mentbetweenfunctions:for example,a faulty functionmight monopolizethecomputeror
communicationssystem,denying serviceto all theotherfunctionssharingthatsystem,or
it might corrupt the memoryof other functionsor sendinappropriatecommandsto their
actuators.It is almostimpossiblefor individual functionsto protectthemselvesagainstthis
kind of corruptionto the computationalresourceon which they depend,so any realiza-
tion of IMA mustprovide partitioning to ensurethatthesharedcomputersystemprovides
protectionagainstfault propagationfrom onefunctionto anotherthat is equivalentto that
which is inherentto thefederatedarchitecture.

Thepurposeof this reportis to identify therequirementsfor partitioningin IMA andto
exploretopicsin achieving thoserequirementswith veryhighassurance.Thenext chapter,
therefore,is concernedwith the generalrequirementsfor IMA andpartitioning,and the
onefollowing with issuesin theimplementationof IMA andthemechanismsfor partition-

1

2 Chapter1. MotivationandIntroduction

ing. Thediscussionin thesechaptersis deliberatelymoregeneralthanthat in ARINC 651
(“DesignGuidancefor IntegratedModularAvionics”) [1]: the ARINC documentreflects
aircraft practice;whereas,we take a computerscienceperspective—in the hopethat this
will casta new or different light on the issues. For this reason,our terminologyis also
moregeneric(e.g.,we speakof processorsandotherbasiccomponentsratherthanline re-
placeablemodules(LRMs)) andsoarethecomponentpropertiesthatweconsider(e.g.,we
considerbusesin general,not justavionic busessuchasARINC 629[3]). In Chapter4, we
considermethodsdevelopedfor specifyingandanalyzingcomputersecuritypolicies,since
thesesharesomeconcernswith partitioningandhavebeentheobjectof considerablestudy.
Weendwith conclusionsandsuggestionsfor futurework.

Chapter 2

Informal Requirements

To gaininsightinto therequirementsfor partitioning, wefirst needto examinethecontext
providedby IMA andrelateddevelopmentsin avionics.

2.1 Integrated Modular Avionics

It canbearguedthatthesimplestinterpretationof IMA envisionsanarchitecturethattech-
nology hasalreadyrenderedobsolete:an embeddedsystemsversionof the centralized
time-shared“mainframe.” Thanksto recenttechnologicaldevelopments,powerful proces-
sors,large memories,andhigh-bandwidthlocal communicationsareall availableasreli-
ableand inexpensive commodityitems, and thesedevelopmentssurely favor lessrather
thanmorecentralization. Thus, this argumentproceeds,a modernavionics architecture
shouldbe more,not less,federated,with existing functions“deconstructed”into smaller
components,andeachhaving its own processor.

Thereis someplausibilityto thisargument,but thedistinctionbetweenthe“morefeder-
ated”architectureandcentralizedIMA provesto bemootoncloserinspection.A federated
architectureis onewhosecomponentsareverylooselycoupled—meaningthatthey canop-
eratelargely independently. But thedifferentelementsof a function—forexample,vertical
andhorizontalflight pathcontrol in an autopilot—usuallyarerathertightly coupled(and
it is arguedbelow that they shouldbecomeevenmoretightly coupled)so that thedecon-
structedfunctionwould not bea federatedsystemsomuchasa distributedone—meaning
a systemwhosecomponentsmay be physicallyseparated,but which mustcoordinateto
achieve somecollective purpose.Dually, a centralizedIMA architecturewould not be a
simplemainframe—fora computersystemsupportingflight functionsmustprovide repli-
catedandphysicallydistributedhardwarefor fault tolerancetogetherwith mechanismsfor
redundancy management.Consequently, a conceptuallycentralizedarchitecturewill be,
internally, a distributedsystem,andthe basicservicesthat it provideswill not differ in a
significantway from thoserequiredfor themorefederatedarchitecture.

3

4 Chapter2. InformalRequirements

Anothercontrarianpointof view is thatneithercentralizedIMA nor themorefederated
architectureofferssignificantbenefitsover currentpractice;thepresentfederatedarchitec-
turehasbeenvalidatedby experience,andmodernhardwaretechnologywill reduceits cost
penalty—sothereis no reasonto changeit. Theargumentagainstthis pointof view is that
it takesa very narrow interpretationof the costsassociatedwith the currentarchitecture
andthereforegrosslyunderestimatesthem. Oneneglectedcostis safety:thefederatedar-
chitecturehasthe advantageof naturalfault containment,but it imposesa cost in poorly
coordinatedcontrolandcomplex andfault-pronepilot interfaces.

Thecurrentallocationof flight automationto separatefunctionsis theresultof largely
accidentalhistoricalfactors.Consequently, certaincontrolvariablesthataretightly coupled
in a dynamicalsenseare managedby different functions: for example,enginethrust is
managedby the autothrottleandpitch angleby theautopilot. Sincea changein eitherof
thesevariablesaffectstheotherandthereis no higher-level functionthatmanagesthemin
a coordinatedmanner, suchconceptuallysimpleservicesascruisespeedcontrol,altitude
select,andverticalspeedhave complex andimperfectimplementationsthataredifficult to
manage.For example,Lambregts[59, page4] reports:

“Becausetheactionsof theautothrottlearenot tacticallycoordinatedwith the
autopilot, the autothrottlespeedcontrol constantlyupsetsthe autopilotflight
pathcontrolandvice versa,resultingin a notoriouscouplingproblemfamil-
iar to every pilot. It manifestsitself especiallywhenexcitedby turbulenceor
windshear, to the point wherethe trackingperformanceandride quality be-
comesunacceptable.Theold remedyto breakthecouplingwasto changethe
autopilotmodeto ALTITUDE HOLD (e.g.,theolderB747-200/300).Onnewer
airplanes,this problemhasbeenreducedto anacceptablelevel for thecruise
operationaftera very difficult andcostlydevelopmentprocess,implementing
provisionssuchasseparationof the control frequency by going to very low
autothrottlefeedbackgain, applicationof ‘energy compensation,’ turbulence
compensation,andnonlinearwindsheardetections/compensation.”

And again:

“Due to the lack of propercontrolcoordination,theautopilotALTITUDE SE-
LECT and VERTICAL SPEED modesnever functionedsatisfactorily. . . these
problemsresultedin developmentof the FLIGHT LEVEL CHANGE (FLC)
modethatwasfirst implementedon theB757/B767.. .however themodelogic
dependson certainassumptionsthat arevalid only for certainoperations,so
the logic canbe tricked andcausean incorrector poorly coordinatedcontrol
response.. .asa result therehave beena numberof incidentswherethe FLC
modedid notproperlyexecutethepilot’s command.”

Thelackof properlyintegratedcontrolcausedby theartificial separationof functionsin the
federatedarchitectureis oneof thefactorsthat leadsto thecomplex modesandsubmodes

2.1. IntegratedModularAvionics 5

usedin thesefunctionsandthenceto the “automationsurprises”and“mode confusions”
thatcharacterizeproblemsin the“flightcrew-automationinterface.” Numerousfatalcrashes
andother incidentsareattributed to suchhumanfactorsproblems[27, AppendixD], but
it is clear from their origins in the artificial separationof functionsthat theseproblems
areunlikely to be solved by local improvementsin the interfacesandcuespresentedto
pilots. Theplethoraof modes,submodes,andtheir correspondinginteractionsalsoexacts
a high cost in development,implementation,andcertification. If this analysisis correct,
thetraditionalfederatedarchitectureis a majorobstacleto a morerationalorganizationof
flight functions,andIMA is thebesthopefor removing thisobstacle.

The topicsconsideredso far suggestthat theappropriatecontext in which to examine
partitioningfor IMA is adistributedsystemin which flight functions(whichmight well be
definedandsubdivided differently thanin the traditionalfederatedarchitecture)areeach
allocatedto separateprocessors(replicatedasnecessaryfor fault tolerance).In this model,
we would needto considerpartitioningto limit fault propagationbetweenthe processors
supportingeachfunction, but not within them. This model, however, overlooksa new
opportunitythatcouldbecreatedby morefine-grainedpartitioning.

If functionshave no internalpartitioning,thenall their softwaremustbe assuredand
certifiedto the level appropriatefor that function. Thus,all the software in an autopilot
functionis likely to requireassuranceto Level A of DO-178B(this,thehighestlevel of DO-
178B, the guidelinesfor certificationof airbornesoftware[29,84], is for softwarewhose
malfunctioncouldcontributeto a catastrophicfailurecondition[28]), andthis discourages
theinclusionof any softwarethatis notstrictly essentialto thefunction.While thismaybe
a goodthing in general,it alsodiscouragesinclusionof servicesthatcouldhave a positive
safetyimpact,suchascontinuousself-test,or for-information-onlymessagesto the pilot.
More generally, partitioningwithin a processorcould allow an individual function to be
divided into softwarecomponentsof differentcriticalities; eachcould thenbe developed
andcertifiedto the level appropriateto its criticality; therebyreducingoverall costswhile
allowing assuranceeffort to befocusedon themostimportantareas.Without partitioning,
the concernthat a fault in lesscritical softwarecould have an impacton the operationof
morecritical softwarenecessarilyelevatesthe criticality of thefirst to that of thesecond;
partitioningwould remove thedangerof fault propagationandallow thecriticality of each
softwarecomponentto beassessedmorelocally.

Theconsiderationsof thepreviousparagraphsuggestthatfor partitioningwithin a sin-
gle processorit might be appropriateto limit attentionto the casewherethe processoris
sharedby thecomponentsof only a singlefunction. We might supposethat thesecompo-
nentsconsistof oneimplementingthemainfunctionandseveralothersprovidingsubsidiary
services.Sinceafault in themaincomponentamountsto afault in (thisreplicaof) theover-
all function,thereseemslittle point in protectingthesubsidiarycomponentsfrom faultsin
the main component,and this suggeststhat partitioningcould be asymmetric(the main
componentis protectedfrom thesubsidiaryones,but notviceversa).It is notclearwhether
suchasymmetrywouldprovideany benefitin termsof simplicity or costof thepartitioning

6 Chapter2. InformalRequirements

mechanisms,but thepoint is probablymootsinceotherscenariosrequirea symmetricap-
proach.Onescenariois supportfor severalminor functions,for exampleundercarriageand
weatherradar, onasingleprocessor. Wherethefunctionsarenotrequiredat thesametime,
partitioningcouldperhapsbeachieved by giving eachonesolecommandof its processor
while it isactive(thisis similarto “periodsprocessing”in thesecuritycontext), but themore
generalrequirementis for simultaneousoperationwith symmetricpartitioning.Thesecond
scenarioconcernsvery cost-sensitive applications,suchassingle-enginegeneralaviation
aircraft. Hereit may be desirableto run multiple major functions(suchasautopilotand
rudimentaryflight management)on a single(possiblynon-fault-tolerant)processor. There
areevenproposalsto hostthesefunctionson mass-market systemssuchasWindows NT.
Althoughonecanbeskepticalof this proposal(particularlyif “free flight” air traffic con-
trol makesflight managementdatafrom generalaviationaircraftcritical to overallairspace
safety),it seemsworth examining the technicalfeasibility of symmetricpartitioning for
critical functionswithin asingleprocessor.

The currentfederatedarchitecturenot only usesa lot of computersystems,it usesa
lot of different computersystems:eachfunction typically hasits own uniquecomputer
platform. Thereis a high costassociatedwith developingandcertifying software to run
on theseidiosyncraticplatforms. Logically independentof IMA, but coupledto it quite
stronglyin practice,aremovesto definestandardizedinterfacesto theplatformsthatsup-
port flight functionsandto introducesomeof theabstractionsandservicesprovidedby an
operatingsystem.TheARINC 653(APEX) [4] standardrepresentsastepin thisdirection.
Developmentssuchasthis couldsignificantlyreducethecostof avionics softwaredevel-
opmentandmight stimulatecreationof standardmodulesfor commontasksthatcouldbe
reusedby differentfunctionsrunningondifferentplatforms.

Thedesignchoicesfor partitioninginteractwith thosefor providing operatingsystem
services.Themajordecisionis whetherpartitioningis providedabove anoperatingsystem
layer(figure2.1(a)),or above a minimal kernel(or executive) with mostoperatingsystem
servicesthenprovided separatelyin eachpartition (figure 2.1(b)). The first choiceis the
way standardoperatingsystemsarestructured(with partitionsbeingclient processes),but
it hasthe disadvantagethat partitioning then relies on a greatdeal of operatingsystem
software.Thesecondchoiceis sometimescalledthe“virtual machine”approach,andit has
theadvantagethatpartitioningreliesonly on thekernelandits supportinghardware.�

AnotherareawhereIMA hasthepotentialto reducecostsis throughimproveddispatch
reliability. Critical flight functionsmusttoleratehardwarefaults,andsothey run on repli-
catedhardware(typically quad-redundantor greaterfor primaryflight controlanddisplays,
triple for autopilotandautoland,dualfor flight managementandyaw damping,andsingle
�
Someoperatingsystemsusethesecondmodel.It wasfirst employedin VM/370 [70], whichservedasthe

basisfor amajorearlysecuresystemdevelopment[7,35]. Fully virtualizing theunderlyinghardwareis expen-
sive, so later “ � -kernels”suchasMachandChorusprovideda moreabstractinterface. Thesealsoproved to
havedisappointingperformance.Second-generation� -kernelsandcomparabletoolkitssuchasExokernel[49],
Flux [31], L4 [38], andSPIN[11] achievegoodperformanceandintroduceseveralimplementationtechniques
relevantto thedesignof partitionedsystems.

2.1. IntegratedModularAvionics 7

PartitionA PartitionB

OperatingSystem

Hardware

(a)

Hardware

PartitionA PartitionB

Kernel

OSServicesA OSServicesB

(b)

Figure2.1: Alternative OperatingSystem/PartitioningDesigns

for autothrottle).But despitethemassivecostof providing afault-tolerantplatformfor each
functionanddespitethe largenumberof separateprocessorsandothercomponentsavail-
able(therecanbeasmany as50 processorsamongthemajor functionsof a largemodern
transportplane),thefederatedarchitecturedoesnot provide a largemargin of redundancy
noroperationalflexibility. A singlefaultyprocessorin any functionmaybeenoughto pre-
venttakeoff (therebyrequiringmaintenancein possiblylessthanidealcircumstances),and
multiplefaultsafflicting suchafunctionduringflight might triggeradiversionor haveeven
moreseriousconsequences.With IMA, in contrast,replicatedprocessorsarenot bound
to a specificfunction,but canbe allocatedasrequired:normaloperationcancontinueas
long asthe total numberof nonfaulty processorsis sufficient to provide therequiredlevel
of replicationto eachfunction. This increasesoverall safetymargins,while alsoallowing
maintenanceto bedeferred(e.g.,until theaircraft’s schedulebringsit to a majormainte-
nancebase)[40].�

Theability to exploit this increasedredundancy andflexibility dependsonasystematic
approachto fault tolerancewithin functions(sothatthey arenot tightly boundto aspecific
processor)andacrossthedistributedcoordinationmechanismsof theIMA platformitself.
Designof fault-tolerantsystemsis notonly amassively difficult andexpensive activity (the
basicmechanismsof fault toleranceconcernthecoordinationof distributed,real-timesys-
temsoperatingin thepresenceof faults,whichareamongthehardestproblemsin computer
science)but is oftenapervasiveone:thatis,mechanismsfor fault toleranceandredundancy
managementin avionicsareseldomencapsulatedasanoperatingsystemor middlewareser-
vicebut insteadaffect thedesignof everypieceof softwarewithin thefunction.As aresult,
it is generallyimpossibleto take software—oreven the designfor a pieceof software—
from one function and reuseit in another, or on anotherplatform, even whenstandards
suchasAPEX areused,for thesestandardsconcernonly themechanicsof systemcallsand
do not addressthedeeperconcernsof systematicandtransparentfault tolerance.Another
reasonfor the pervasive influenceof fault tolerancein currentsystemdesignsis that the
�
Currentimplementationsof IMA allocatefunctionsto processorsat startuptime; reconfigurationin flight

is a futureprospect.

8 Chapter2. InformalRequirements

thesemechanisms(andmostothersthat involve coordinationacrossmultiple processors
andfunctions)areseldomcompositional—meaningthatthereis no a priori guaranteethat
elementsthateachwork ontheirown will alsowork in combination.Themassiveresources
expendedon systemsintegrationarea symptomof the lack of compositionalityprovided
by currentdesignpractices.

Thus,full realizationof thebenefitsof IMA requiresadoptionof modernconceptsfor
systematic,compositional,fault-tolerantreal-timesystemdesign[55]. Thesewould re-
ducethepervasive impactof fault tolerancein avionicssoftwaredevelopmentandprovide
costsavings andopportunitiesfor reusethat could be muchgreaterthan thoseprovided
by lower-level standardssuchasAPEX. Takento their conclusion,suchapproachescould
completelydecoupletheimplementationof flight functionsfrom thatof their fault-tolerant
platform andpossiblyenableeachto be certifiedseparately. The impactof suchdevel-
opmentsonpartitioningis, first, a requirementthatthedistributedpartitioningmechanisms
mustthemselvesberobustly fault tolerantand,second,thatthesemechanismsmustcooper-
atewith operatingsystemor kernelfunctionsto providetheservicesrequiredfor systematic
andtransparentfault tolerancein theimplementationsof flight functions.

Summarizingthisreview of issuesin IMA, weseethatpartitioningshouldbeconsidered
both within a single processorand acrossa distributed systemand that partitioninghas
interactionswith theprovisionof operatingsystemservicesandtransparentfault tolerance.
In thenext sectionweexaminetherequirementsfor partitioninga little moreclosely.

2.2 Partitioning

Thepurposeof partitioningis fault containment:a failure in onepartitionmustnot prop-
agateto causefailure in anotherpartition. However, we needto be careful aboutwhat
kindsof faultsandfailuresareconsidered.Thefunctionin a partitiondependson thecor-
rectoperationof its processorandassociatedperipherals,andpartitioningis not intended
to protectagainsttheir failure—thiscanbe achieved only by replicatingfunctionsacross
multiple processorsin a fault-tolerantmanner. After all, eachfunction would be just as
vulnerableto hardwarefailureif it hadits own processor. Rather, theintentof partitioning
is to control theadditionalhazardthat is createdwhena functionsharesits processor(or,
moregenerally, a resource)with otherfunctions.Theadditionalhazardis thatfaultsin the
designor implementationof onefunctionmayaffect theoperationof otherfunctionsthat
shareresourceswith it. � Now adesignor implementationfault in aflight functionis surely
a very seriouseventandit might besupposedthat(a) suchfaultsaresoseriousthatit does
not matterwhatelsegoeswrong,or (b) certificationensuresthatsuchfaultscannotoccur.
Bothsuppositionswould, if true,diminishtherequirementsfor partitioning.

�
Partitioningcanalsolimit the consequencesof transienthardwarefaults(by containingthemwithin the

partitionthatis directlyaffected),but thatis asidebenefit,nota requirement.

2.2. Partitioning 9

The first point is easilyrefuted: the whole thrustof aircraft certificationis to ensure
that failuresareindependent(andindividually improbable)if their combinationcould be
catastrophic.Thus,while a designfault in, say, theautothrottlefunctionwould beserious,
appropriatedesignandsystem-level hazardanalysiswill ensurethat it is not catastrophic,
providedotherfunctionsdo not fail at thesametime. Allowing a fault in this functionto
propagateto another(e.g.,autoland)wouldviolatetheassumptionof independentfailures.
Thus,far from a fault in a critical functionbeingso seriousasto renderconcernfor par-
titioning irrelevant, it is theneedto containthe consequencesof sucha fault that renders
partitioningessential(andelevatesits criticality to at leastthatof themostcritical function
supported).

It could be arguedthat both functionswill certainlybe lost if their sharedprocessor
fails, so they surelywould not besharingif their correlatedfailure couldbecatastrophic.
This overlooksa coupleof points.First,malfunctionor unintendedfunctionis oftenmore
seriousthansimplelossof function,andthe consequencesof a propagatingfault (unlike
thoseof aprocessorfailure)maywell beof thesemoreseriouskinds.For example,abuffer
overflow in onefunctionmight overwritedatain another, leadingto unpredictableconse-
quences.(The PhobosI spacecraftwas lost in just this circumstance—whena keyboard
buffer overflowedinto thememoryof acritical flight controlfunction[14,17].) Second,the
increasedinterdependency wroughtby IMA may introducesharedresources—andhence
pathsfor fault propagation—thatarelessobviousandmoreeasilyoverlooked thanshared
processors.For example,functionsin separateprocessorswherecorrelatedfailure would
notbeanticipated(andwouldnotoccurin a federatedarchitecture)mightbecomevulnera-
ble to fault propagationthroughasharedbusin anIMA architecture.

Returningto thesecondpoint raised(that certificationoughtto ensuretheabsenceof
designandimplementationfaults),notethatcertificationrequiresassuranceproportionalto
the consequencesof failure. In a federatedarchitecture,suchconsequencesaregenerally
limited to thefunctionconcerned,sothatassuranceis relatedto thecriticality of thatfunc-
tion. But, if thefailureof onefunctioncouldpropagateto others,thena low-criticality (and
correspondinglylow-assurance)functionmightcauseahigh-criticalityfunctionto fail. This
meansthateitherall functionsthatshareresourcesmustbeassuredto thelevel of themost
critical (suchelevationin assurancelevelsis directlycontraryto oneof thegoalsof IMA) or
thatpartitioningmustbeusedto eliminatefault propagationfrom low-assurancefunctions
to thoseof highcriticality. Whendifferentfunctionsalreadyhappento have thesamelevel
of assurance,theneedfor partitioningmaynot besogreat,andit hasbeensuggestedthat
functionswith softwareassuredto Level A of DO-178Bmaybeallowedto shareresources
withoutpartitioning.Note,however, thata fault thatcausesonefunctionto induceafailure
in anothermight not affect the operationof the first (asnotedabove, a temporarybuffer
overflow canhave this property).And althoughcertificationrequiresassuranceof theab-
senceof suchunintendedeffectsaswell aspositive assurancethattheintendedfunctionis
performedcorrectly, it is generallymuchharderto provide thefirst kind of assurancethan
thesecond.Furthermore,sharedresourcescreatenew pathwaysfor thepropagationof un-

10 Chapter2. InformalRequirements

intendedeffects,andthesepathwaysmight not have beenconsideredwhenassurancewas
developedfor the individual functions. Consequently, partitioningseemsadvisableeven
whenthefunctionsconcernedareof thesamelevel of criticality andall softwareis assured
to thesamelevel.

Summarizingthe discussionin this chapter, we mayconcludethat futureavionics ar-
chitectureswill have the characterof distributed, ratherthanfederated,systemsandthat
multiplefunctions,of possiblydifferentlevelsof criticality andassurancewill besupported
by the samesystem. Resources,suchasprocessors,communicationsbuses,andperiph-
eraldevices,maybesharedbetweendifferentfunctions. Sharedresourcesintroducenew
pathwaysfor faultpropagation,andthesehazardsmustbecontrolledby partitioning.

Becausepartitioningis requiredto preventfault propagationthroughsharedresources,
asuitablebenchmarkor “Gold Standard”for theeffectivenessof partitioningwouldseemto
beacomparablesystem(intuitively afederatedone)in whichtherearenosharedresources.
This is capturedin thefollowing.

Gold Standard for Partitioning

A partitionedsystemshouldprovide fault containmentequivalent to an ide-
alizedsystemin which eachpartition is allocatedan independentprocessor
andassociatedperipheralsandall inter-partition communicationsarecarried
ondedicatedlines.

Although this Gold Standardprovidesa suitablementalbenchmarkfor designersand
certifiersof partitioningmechanismsfor IMA, it is lessusefulasa“contract”with the“cus-
tomers”of suchmechanisms.Thesecustomers—thatis, thosewho develop softwarefor
the functionsthatwill run in thepartitionsof an IMA architecture—areassuredthat their
softwarewill beaswell protectedin a partitionasif it hadits own dedicatedsystem,but
they arenot provided with a concreteenvironmentin which to develop, test,andcertify
thatsoftware.TheGoldStandardimpliesthattheenvironmentprovidedby thepartitioned
systemto aparticularapplicationfunctionmustbeindistinguishablefrom anidealizedsys-
tem dedicatedto that functionalone,but this idealizedsystemis just that—animaginary
artifact—andnot onesuitablefor testingandevaluatingreal-world software.Theonly en-
vironmentactuallyavailableis thepartitionedsystemitself, soits customersneedacontract
expressedin termsof thatenvironment.Thiscanbedoneasfollows:	 insteadof comparing
theenvironmentperceived by thesoftwarein a partitionto thatof an idealized,dedicated
system,we requirethattheenvironment(whatever it is) is onethatis totally unaffectedby
thebehavior of softwarein otherpartitions.Thisleadsto thefollowing alternativestatement
of ourGoldStandard.

I amgratefulto David Hardin,DaveGreve,andMatt Wilding of CollinsCommercialAvionicsfor explain-

ing thisapproachandits motivationto me[113].

2.2. Partitioning 11

Alternative Gold Standard for Partitioning

Thebehavior andperformanceof softwarein onepartitionmustbeunaffected
by thesoftwarein otherpartitions.

This formulationis not only simplerandmoredirect thanthat involving an idealized
system,but it alsosuggestshow thecustomersof apartitionedsystemcandevelopandeval-
uatetheirsoftware—forif softwarein onepartitionis unaffectedby thatin otherpartitions,
it will runthesame(in termsof bothbehavior andperformance)whethertheotherpartitions
areinhabitedor empty. Thus,in particular, individual softwarefunctionscanbedeveloped
andcertifiedusingtherealenvironmentof thepartitionedsystem,but with theotherparti-
tionsempty(or, morelikely, containingstubsto providethedatasourcesandsinksrequired
by thefunctionunderexamination).TheAlternative Gold Standardensuresthat thecerti-
fiedsoftwarewill behave exactly thesamewhenthoseotherpartitionsareinhabitedby real
(andpossiblyfaulty) functions.

A problemwith the Alternative Gold Standardis apparentin the mentionof “data
sourcesandsinks” in thepreviousdiscussion:softwarefunctionsresidingin separatepar-
titions areseldomcompletelyindependent—someprovide dataor control inputsto others.
This meansthat “unaffectedby the software in otherpartitions” needsto be qualifiedin
someway that allows the effectsof intendedcommunicationswhile excluding thosethat
areunintended.Thus,althoughthe Alternative Gold Standardis moreattractive thanthe
originaloneasa requirementsdefinitionfor partitioningisolatedfunctions,it needsfurther
developmentbeforeit canserve asagoldstandardfor themoregeneralcaseof partitioned
but interactingfunctions.Whenrestrictedto isolatedfunctions,thebasicandtheAlterna-
tiveGoldStandardsareverysimilar; indeed,if suitablyformalized,eachwouldbedefinable
in termsof theother.

Theoriginal formulationof theGold Standardhastheadvantagethat it focusesatten-
tion on thestructuraldifferencesbetweena partitionedsystemanda federatedone.These
structuraldifferencesintroducetwo classesof hazardsinto a partitionedsystem:a fault
in onepartition could corruptcode,control signals,or data(in memoryor in transit)be-
longingto another, or it couldaffect theability of anotherpartitionto obtainaccessto, or
servicefrom, a sharedresource(suchasthe processoror a bus). In consideringissuesin
the designandassuranceof partitionedsystems,it is thereforeuseful to distinguishtwo
dimensions—spatialandtemporal—corresponding to thesetwo classesof hazards.

Spatial Partitioning

Spatialpartitioningmustensurethat softwarein onepartitioncannotchange
thesoftwareor privatedataof anotherpartition(eitherin memoryor in transit)
norcommandtheprivatedevicesor actuatorsof otherpartitions.

12 Chapter2. InformalRequirements

Temporal Partitioning

Temporalpartitioningmustensurethat the servicereceived from sharedre-
sourcesby thesoftwarein onepartitioncannotbeaffectedby thesoftwarein
anotherpartition.This includestheperformanceof theresourceconcerned,as
well astherate,latency, jitter, anddurationof scheduledaccessto it.

Themechanismsof partitioningmustblock thespatialandtemporalpathwaysfor fault
propagationby interposingthemselvesbetweenavionicssoftwarefunctionsandtheshared
resourcesthatthey use.In this way, thepartitioningmechanismscancontrolor “mediate”
accessto sharedresources.In the next chapter, we considerthe mechanismsthat canbe
usedto providemediationin eachof thetwo dimensionsof partitioning.

Chapter 3

Issues and Mechanisms

As discussedin the previous chapter, issuesin partitioningariseat two levels: within a
singleprocessorandacrossa distributedsystem. Issuesin partitioningalsointeractwith
thosein fault tolerance. We considerthesetopicsseparatelybelow and further separate
theminto considerationof spatialandtemporalpartitioning.

3.1 Partitioning Within a Single Processor

We startby consideringpartitioningwithin a singleprocessor. We sometimesusetheneu-
tral termapplicationto referto thecomputationalentitywithin eachpartition;thiscouldbe
a completeavionicsfunction(e.g.,a yaw damper)or a partof one. Dependingon theim-
plementation,anapplicationcouldcorrespondto theoperatingsystemnotionsof processor
virtual machine, or it couldbesomedifferentnotion.An applicationwill generallybecom-
posedof smallerunitsof computationthatarecalledor scheduledseparately;wegenerally
refer to theseas tasks. Again dependingon the implementation,thesemaycorrespondto
anoperatingsystemnotionsuchasthreador lightweightprocess. Partitioningmustprevent
applicationsinterferingwith oneanother, but the taskswithin a singleapplicationarenot
protectedfrom eachother. We focusfirst onpartitioningin thespatialdimension.

3.1.1 Spatial Partitioning

The basicconcernof spatialpartitioning is the possibility that software in one partition
might write into the memoryof another: memory is often picturedas a one- or two-
dimensionalgrid; hence,thereferenceto thespatialdimensionfor this aspectof partition-
ing. Memory includesthatusedto storeprogramsaswell asdata;although,in embedded
systems,it is sometimespossibleto hold theformerin ROM whereit cannotbeoverwritten
by errantsoftware.

Hardwaremediationprovidedby amemorymanagementunit (MMU) is theusualway
to guardagainstviolations of spatialpartitioning. The detailsvary from one processor

13

14 Chapter3. IssuesandMechanisms

designto another, but thebasicideais thattheprocessorhas(at least)two modesof oper-
ationand,whenit is in “user” mode,all accessesto memoryaddressesareeitherchecked
or translatedusingtablesheld in the MMU. A layer of operatingsystemsoftware(gen-
erally calledthe kernel) managesthe MMU tablesso that the memorylocationsthat can
be readandwritten in eachpartition aredisjoint (apart,possibly, from certainlocations
usedfor inter-partition communications).Thekernelalsousesthe MMU to protectitself
from beingmodifiedby softwarein its client partitionsandmustbecarefulto managethe
user/supervisormodedistinctionsof the processorcorrectlyto ensurethat the mediation
provided by the MMU cannotbe bypassed.(In particular, entry andexit from the kernel
needsto behandledcarefullysothatsoftwarein a partitioncannotgainsupervisormode;
someprocessorshave haddesignflaws thatmake this especiallydifficult [43].)

Softwareexecutingin apartitionaccessesprocessorregisterssuchasaccumulatorsand
index registersaswell asmemory. Generally, thekernelarrangesthingssothatthesoftware
in onepartitionexecutesfor awhile, thenanotherpartitionis givencontrol,andsoon;when
onepartitionis suspendedandanotherstarted,thekernelfirst savesthecontentsof all the
processorregistersin memorylocationsdedicatedto thepartitionbeingsuspendedandthen
reloadstheregisters(includingthosein theMMU thatdeterminewhich memorylocations
areaccessible)with valuessaved for thepartition that executesnext. The softwarein the
partitionresumeswhereit left off andcannottell (apartfrom thepassageof time while it
wassuspended)thatit is sharingtheprocessorwith otherpartitions.

Thedescriptionjustgivenresemblesclassicaltime-sharing,wherepartitionscanbesus-
pendedat arbitrarypointsandresumedlater. Somevariationsarepossiblefor embedded
systems.For example,if partitionsareguaranteedanuninterruptibletime sliceof known
duration,they canbeexpectedto have finishedtheir tasksbeforebeingsuspendedandcan
thenberestartedin somestandardstateratherthanresumedwherethey left off. Thiselim-
inatesthecostof saving theprocessorregisterswhena partitionis suspended(but at least
someof them—includingtheprogramcounter—mustberestoredto standardvalueswhen
thepartitionis restarted).Wecanreferto thetwo typesof partitionswappingarrangements
astherestoration andrestartmodels,respectively.

In eithercase,the requirementon the mediationmechanismsmanagedby the kernel
is that thebehavior perceivedacrossa suspensionby thesoftwarein eachpartitionis pre-
dictablewithout referenceto anything externalto thepartition. In the“restoration”model,
theprocessorstatemustberestoredto exactlywhatit wasbeforesuspension;in the“restart”
model,it mustberestoredto someknown state.It maybeacceptablein the lattercaseto
specifythatsomeregistersmaybe“dirty” on restartandthat thesoftwarein a partitionis
requiredto work correctlywithoutmakingassumptionsontheir initial contents—thissaves
thecostof restoringtheseregistersto standardvalues(obviously, theprogramcounterand
MMU registersmustberestored).� Therequirementto make behavior predictableacross
thesuspensionandresumptionof a partitiongeneratesin turn therequirementthattheop-
�
Althoughpartitioninghasmuchin commonwith computersecurity, this is oneaspectwherethey differ:

“dirty” registersareanathemain computersecuritybecausethey provide a channelfor informationflow from

3.1. PartitioningWithin aSingleProcessor 15

erationof theprocessormustbespecifiedpreciselyandaccuratelywith respectto all of its
registers—forit is importantthat registersaving andrestorationor reinitializationshould
not overlookvisibleminor registerssuchasconditioncodesandfloatingpoint/multimedia
modesandthat hiddenregisters,suchas thoseassociatedwith pipelinesandcaches,re-
ally arehidden. (Again, processorsoften have designglitchesor errorsandomissionsin
documentationthatmake it difficult to accomplishthis [98].)

In theapproachjust outlined,themechanismsof spatialpartitioningcomprisethepro-
cessorandits MMU andthekernel.Thereis muchadvantage,from thepointof view of as-
suranceandformalspecification,if thesemechanismsaresimple.Unfortunately, commod-
ity processors,their MMUs, andassociatedfeaturessuchasmemorycachesaregenerally
designedfor highperformanceandextensive functionalityratherthansimplicity. Although
afastprocessoris oftendesired,thefunctionalityof MMUs andcachecontrollersgenerally
exceedsthat requiredfor embeddedsystems;MMUs, in particular, areusuallydesigned
to provide a flexible virtual memoryandcontainlargeassociative lookuptables—whereas
for partitioning,a simplefixedmemoryallocationschemewould beadequate.� Thelatter
would alsobe far lessvulnerableto bit-flips causedby single-event upsets(SEUs)thana
traditionalmillion-transistorMMU. However, becausethey areusuallyhighly integrated
with theirprocessor, it canbedifficult or evenimpossibleto replaceMMUs andcachecon-
trollerswith simplerones,but considerationshouldbegivento this issueduringhardware
selection.

An alternative to spatialpartitioningusinghardwaremediationis SoftwareFault Isola-
tion (SFI) [109]. Theideahereis similar to arrayboundscheckingin high-level program-
ming languagesexceptthatit is appliedto all memoryreferences,not just thosethatindex
into arrays. By examiningthe machinecodeof the software in a partition, it is possible
to determinethe destinationsof somememoryreferencesandjumpsandhenceto check,
statically, whetherthey aresafe.Memoryreferencesthatindirectthrougha registercannot
becheckedstatically, soinstructionsareaddedto theprogramto checkthecontentsof the
registerat runtime,immediatelyprior to its use.By usingmoreelaboratestaticanalysisor
programverificationtechniques(e.g.,to ensurethatanindex registerhasnotbeenchanged
sincelastchecked),it is possibleto minimizethenumberof runtimechecks;by usingmod-
estoptimizationsof this kind, an overheadof just 4% hasbeenreportedfor the runtime
checksof SFI [109].

onepartitionto its successor. Theissuesunderlyingthisdifferenceareconsideredin Section4.4Applicationto
Partitioning.�

MMUs arealsoheavily optimizedfor speed:in somearchitectures,the MMU will starta readfrom the
memoryusing the currentpagemap beforeit hasdeterminedwhetherthat is still valid; if it is not valid,
theMMU squashesthebusreadtransactionbeforeit completes.Also, for efficiency, multiple copiesmaybe
maintainedfor someof theassociative lookuptables,andthesemustbekeptconsistentwith eachother. All this
is donein thecontext of speculative out-of-orderexecutionwhereproviding assurancefor correctnessof these
optimizationsis nontrivial. A separateproblemis the timing uncertaintyintroducedby theseoptimizations:
ratiosof 2 to 1 betweenaverage-caseandworst-casetimingsarenotuncommon[52] (seealsohttp://www.
intelligentfirm.com/).

16 Chapter3. IssuesandMechanisms

Static(i.e.,compile-time)analysisof informationflow within individualprogramswrit-
tenin high-level languageshaslongbeenatopic in computersecurity. In its simplestform,
someof thevariablesusedby theprogramarelabeledHIGH andsomeLOW, andthegoalis
to checkwhetherinformationfrom aHIGH variablecanever influencethefinal valueof one
labeledLOW. Techniquesfor informationflow analysisincludeapproximatemethodssim-
ilar to typechecking[21,107]or to dataflow analysis[6] aswell asexactmethods[63] and
thosethatrely onformalproof[81]. It is possiblethatapproachesbasedonthesetechniques
couldreduce,or eveneliminate,theruntimeoverheadof SFI.

AlthoughSFI usuallyimposesa smalloverheadon memoryreferenceswithin a parti-
tion, it cangreatlyreducethe costof controlledreferencesor procedurecalls acrosspar-
titions (comparedwith hardwaremediation,sincethecostof a partitionswap is avoided).
However, for reasonsdiscussedlater(page26),suchcross-partitionreferencesmaynot be
acceptablein somepartitionedarchitectures,sotheadvantagewouldbemootin thosecases.

A disadvantageof SFIcomparedwith hardware-mediatedpartitioningis thatit imposes
anadditionalanalysisandcertificationcostoneveryprogram;whereashardwaremediation
hasthe one-timecostof designing,implementing,andcertifying the partitioningmecha-
nismsof thekernelandits supportinghardware. On theotherhand,theanalysisrequired
for SFI lendsitself to powerful automation(cf. “extendedstaticchecking”[22], and“proof
carryingcode”[80]) wherethecertificationcostwould betransferredto theone-timecost
of certifying thetools.

Even without automation,SFI may have advantagesof costandsimplicity in “asym-
metric” applicationswherea singlefunction is allocatedto a processorbut it is desiredto
includesomelesscritical “nice-to-have” features.Thesecouldbepartitionedfrom themain
safety-criticalfunction by SFI, while the latter runsunchanged.SFI might alsobe cost-
effective in partitioningfunctionsof similarassurancelevelsthatalreadyrequiresignificant
analysis(e.g.,two Level A functions). And SFI could alsobe usedto provide additional
protectionwithin partitions(i.e.,amongtasks)establishedby hardwaremediation.

OneconcernaboutSFI,especiallywhenstaticanalysisis usedto optimizeawaymany
of theruntimechecks,is thatit provideslittle protectionagainsthardwarefaults(e.g.,SEU-
inducedbit-flips) thatcausememoryaddressesthatwerecorrectwhenanalyzedto beturned
into onesthatareincorrectwhenexecuted.Thebadmemoryreferencewill becaughtonly
if a runtimecheckis in the right place;a hardware MMU, on the otherhand,mediates
everyreferenceat its timeof execution.It wasearlierstatedthatthepurposeof partitioning
is to protectfunctionsagainstfaultsof designandimplementationin otherfunctions,not
to guardagainsthardware faults—sincethesecould afflict the function even if it had its
own dedicatedprocessor—but a hardwarefault that leadsto a violation of partitioningis
not a fault that would have afflicted the function if it had its own processor, so it seems
thattheconcernis legitimate.However, a little analysisshows thattheincreasedexposure
to hardware faults is small. Supposethe function in which we are interestedsharesits
processorwith � otherfunctionsof similar sizeandthat theprobabilityof anSEUhitting
any oneof themis � . Supposefurther that the probability that an SEU in one function

3.1. PartitioningWithin aSingleProcessor 17

will causeit to violate SFI partitioningandto afflict someotherfunction is
 . Thenthe
probabilityof anSEUdirectly or indirectly affectingtheoriginal functionchangesfrom �
to ������
���� whenthefunctionis movedfrom adedicatedto asharedprocessor. (Noticethat
this is independentof � : thechanceof anSEUhitting somewhere increasesby afactorof � ,
but thechancethattheconsequentmemoryerroraffectsthefunctionconcernedis reduced
by thesamefactor.) This small increasein probabilityis unlikely to besignificant,andwe
concludethatthepossibilityof SEU-inducedaddressingerrorsdoesnot invalidateSFI.

Perhapssurprisingly, it is someimplementationsof hardware-mediatedpartitioningthat
seemmorevulnerableto this kind of fault scenario. Although an SEU in an individual
functioncannotleadto a violation of partitioningwhenmemoryreferencesaremediated
by anMMU, anSEUin theMMU itself couldbequitedangerous.If theMMU is a large
device with millions of transistors,thenthe possibilityof anupsetcannotbe overlooked,
andachangeto onebit in anaddresstranslationregistermaycausethememoryreferences
of onepartitionsystematicallyto infringeon thememoryof another. It seemsto methatin
designswhereit is possibleto provide a customMMU, it would beprudentto ensurethat
this is eitherfault tolerantor that it merelychecksratherthantranslatesaddresses(sothat
a doublefault would be neededto violatepartitioning);bestof all might be relocationor
checkingwith hardwiredvalues.

Sofar, ourconsiderationof partitioninghasconsideredonly theprocessorandthemem-
ory andhasassumedthatdifferentpartitionsaremeantto be isolatedfrom eachother;we
now needto considerinter-partitioncommunicationsanddevices. Like partitioningitself,
therearetwo dimensionsto inter-partition communication:the spatialdimensionis con-
cernedwith whereandhow datais transferredfrom onepartitionto another, andthetem-
poraldimensionis concernedwith whetherandhow synchronizationis performedandhow
onepartition invokesservicesfrom another. We postponeconsiderationof the latter top-
ics to thediscussionof temporalpartitioningin Section3.1.2andfocushereon thespatial
dimension.

Theobviousway to communicatedatafrom onepartitionto anotheris to copy it from
a buffer in memorybelongingto thefirst partitioninto a separatebuffer in thememoryof
thesecond.Becauseonly thekernelhasaccessto thememoryof bothpartitions,it must
performthecopying and,sinceit generallyrunswithoutmemoryprotection,it mustcheck
carefullyagainstbuffer overruns.A moreefficient schemeusesa singlebuffer in memory
locationsthat areamongthosethe sendingpartition canwrite andthe receiver can read
(bothMMU andSFI formsof memoryprotectioncando this);datacanthenbecopiedinto
thesharedbuffer by thesendingpartitionwithout theactiveparticipationof thekernel.The
receiving partitionmustassumethat thesendingonecanwrite arbitrarydataanywherein
their sharedbuffers whenever it hascontrol,andits verificationmustbeperformedunder
thisassumption.It seemscleanestif separatebuffersareusedfor eachdirectionof transfer,
but bidirectionalbuffers may alsobe acceptable.It is, however, importantthat separate
buffersareusedfor eachpair of partitions(otherwise,partitionA couldoverwritethedata
of B in C’ssingleinputbuffer).

18 Chapter3. IssuesandMechanisms

Observe that it is importantto restrictinter-partitioncommunicationsto thosethatare
intended:onepartitionshouldbeableto senddatato anotheronly if thatcommunication
is authorizedin the specificationof the systemconfiguration(andthe receiving partition
mustthenhave a buffer to receive it). A relatedtopic is how onepartitionshouldnamethe
otherpartitionswith which it communicates.Absoluteaddresses(e.g.,“sendthisdatumto
Partition7”) leadto a rigid andfragilesystemorganizationandareto bedeprecatedon this
account.Functionaladdresses(e.g.,“sendthis datumto thepitch autopilot”) arelittle bet-
ter: they build assumptionsaboutthesystemstructureinto individualapplicationsandlimit
theopportunitiesfor reuseandreconfiguration.Relative addressing(e.g.,“sendthis datum
out on my Port7”) allows thebindingof namesto specificinter-partitioncommunication
channelsto be postponeduntil systemconfigurationtime (andmay allow somedynamic
reconfiguration),but requiresa databaseto recordwhattypeof dataor serviceis provided
(or expected)on a givenport. Thebestarrangementmaybeonewherepartitionsusethe
typeof dataor serviceprovidedor expectedasthenameof theport concerned(e.g.,“send
thisdatumoutonmyair-data-samplesport,” or “get meanair-data-sample”);
thebindingof thesenamesto inter-partitionchannelscanbedoneduringsystemconfigu-
ration,or at runtime. In the lattercase,we have somethinglike a publish-subscribearchi-
tecture[82]; thisprovidesexcellentsupportfor dynamicreconfiguration,but its application
to life-critical systemsis still an issuefor research.(Someavionicssystemsusethis type
of namingor addressingscheme,but not in a way thatis tightly integratedwith their fault-
tolerancemechanisms.)

Softwarein onepartitionshouldnot make assumptionsaboutwhentasksin otherpar-
titions arescheduled(taskswithin somepartitionsmay be dynamicallyscheduled);this,
combinedwith normally asynchronouscommunication,meansthat careis neededwhen
communicatingtime-sensitive data.For example,a taskthatcollectsfrom its inputbuffer a
sensorsamplecontributedby anotherpartitionneedsto know whenthatsamplewastaken.
The usualarrangementis to attacha time stampto the sample(sinceboth partitionsare
runningin thesameprocessor, they have accessto a commonclock). However, theutility
andinterpretationof a sensorsampledependsnot only on its age,but alsoon its accuracy
andthedynamicsof thephysicalprocessbeingmeasured(e.g.,analtimeterreadingthatis 1
secondold is muchlessusefulif theaircraftis landingthanif it is in cruise).Someof these
factorsarelikely to bemuchbetterknown to thepartitionthatprovidesthesensorsample
thanto theonethat receivesit, andduplicatingtheknowledgein bothplacesis expensive
andraisestheproblemof ensuringconsistency. Instead,it seemsbestif theprovider of the
dataalsoprovidesa compactdescriptionof its temporalinterpretation.Kopetzhasmade
aninterestingproposalof this kind underthenametemporal firewall [53,57], whichexists
in two variants.A phase-insensitivesensorsampleis providedwith a timeanda guarantee
thatthesampledvalueis accurate(with respectto aspecificationpublishedby thepartition
thatprovidesit) until theindicatedtime. For example,supposethatengineoil temperature
maychangeby at most1% of its rangepersecond,that its sensoris completelyaccurate,
andthatthedatais to beguaranteedto 0.5%.Thenthesensorsamplewill beprovidedwith

3.1. PartitioningWithin aSingleProcessor 19

atime500msaheadof theinstantwhenit wassampled,andthereceiverwill know thatit is
safeto usethesampledvalueuntil theindicatedtime. This is muchmoreusefulthanatime
stampthatmerelyrecordswhenthesamplewastaken.A phase-sensitivetemporalfirewall
is usedfor rapidly changingprocesseswherestateestimationis required;in addition to
sensorsampleandtime, it providestheparametersneededto performstateestimation.For
example,alongwith thesampledaltitudeit maysupplyverticalspeed,sothataltitudemay
beestimatedmoreaccuratelyat thetimeof use.

In additionto communicationsbetweenpartitions,we mustexaminecommunications
betweenpartitionsanddevices. Devices,which includesensorsandactuatorsaswell as
peripheralssuchas massstorage,have implicationsfor both temporaland spatialparti-
tioning. Most devicesraisean interruptwhendatais availableor whenthey needservice.
Suchinterruptsaffect thetiming andlocusof control,andconsiderationof their impactis
postponedto thediscussionon temporalpartitioningin Section3.1.2;herewe concentrate
on therelationshipof devicesto spatialpartitioning.Devicesimpactspatialpartitioningin
threeways: they needto beprotectedagainstaccessby thewrongpartition,they mustnot
beallowedto becomeagentsfor violatingpartitioning,andthey maythemselvesneedto be
partitioned.

The simplestcaseis wherea device “belongs” to somepartition and shouldnot be
accessedby others. Most modernprocessorsusememory-mappedI/O, meaningthat in-
teractionwith devicesis conductedby readingandwriting to registersthatarereferenced
like ordinarymemorylocations. In thesecases,the mechanisms(MMU or SFI) usedto
provide ordinarymemoryprotectioncanalsoprotectdevices. If memoryprotectionis in-
sufficiently fine-grainedto permitdevicesto beallocatedto partitionsasdesired,thenit will
be necessaryto createspecialdevice managementpartitionsthat own several devicesbut
aretrustedto keepthemseparate.Similararrangementswill benecessaryif severaldevices
areattachedto a databusor remotedataconcentrator(andmayalsobeusefulif multicast
communicationservicesaredesired).Of course,the trust in suchmultiplexing partitions
needsto be justified by suitableverificationand assurance.An alternative to providing
device managementpartitionsis to performthesefunctionsin the kernel. The argument
againstdoingthis is thatthepropertiesof thekernelmustbeassuredto averyhighdegree,
so thereis muchadvantageto keepingits functionality assimpleaspossible. It should
beeasierto provide assurancefor a kernelthatprovidesmemoryprotection,plusseparate
device managementpartitions,thanfor akernelhaving bothfunctions.

Somedevicesmay be sharedby morethanonepartition. Suchdevicescomein two
forms: thosethatneedprotectionandthosethatdonot. An exampleof theformeris a sen-
sorthatperiodicallyplacesa samplein a device register. Thereseemsno harmin allowing
two partitionsbothto have readaccessto thememorylocationcontainingthatdevice reg-
ister. Devicesthatacceptcommandsaremoreproblematicalin that faulty softwarein one
partitionmay issuecommandsthat renderthe device inoperableor otherwiseunavailable
to otherpartitions.Protectionby aspecialdevicemanagementpartitionseemsnecessaryto
mediateaccessin thesecases.(TheClementinespacecraftwaslost whena softwarefault

20 Chapter3. IssuesandMechanisms

causedgarbageto besentover anunmediatedbus,whereit wasinterpretedby anattached
device asacommandto fire all thethrusterswithout limit.) Noticethatsuchadevice man-
agementpartitionmustplay a moreactive role in checkingor controlling thedevice than
thesimplemultiplexing device managementpartitionsdescribedearlier.

Device managementpartitionsalsoarenecessaryto mediateaccessto truly sharedde-
vicessuchasmassstorage.In thesecases,it is usualfor thedevice managerto synthesize
a service(e.g.,a file system)ratherthanjust mediateaccessto theraw device (e.g.,a disk)
andto partitiontheserviceappropriately(e.g.,with aseparate“virtual” file systemfor each
clientpartition).A devicemanagerof thiskind poseschallengesto assurancethataresimi-
lar to thoseof themainmemorypartitioningmechanism,sinceflawscouldallow oneclient
partitionto write into areasintendedfor another.

Massstorageandotherdevicesthat transferlarge amountsof dataat high speedgen-
erally do soby directmemoryaccess(DMA) ratherthanthroughmemory-mappeddevice
registers(which are limited to a few bytesat a time). Dependingon the processorand
memoryarchitecture,DMA devicesmaybeableto addressmemorydirectly, without the
mediationof the MMU. This arrangementhasthe potentialto violate partitioningsince
faulty softwaremayinstructthedevice to usea region of memorybelongingto somepar-
tition otherthanits own; a fault in thedevice itself couldhave a similar effect. A simple
solution is to interposesomecheckingor limiting mechanisminto the device’s memory
addresslines(e.g.,by cuttingor hard-wiringsomeof them)sothattherangeof addressesit
cangenerateis restrictedto lie within thatof thepartitionthatmanagesit. Anothersolution
is to isolateeachDMA device to a private bus with a dual-portedmemorybridging the
privateandmainsystembuses.

3.1.2 Temporal Partitioning

Our context is real-timeembeddedsystems,wherecorrectnessrequiresnot only that the
right resultsare produced,but that they areproducedat the right time. The concernof
temporalpartitioningis to ensurethatactivities in onepartitiondonotdisturbthetiming of
eventsin otherpartitions.

Themostgrossconcernsarethatfaultysoftwarein onepartitionmightmonopolizethe
CPU,or thatit mightcrashthesystemor issuea HALT instruction—effectively denying ser-
viceto all otherpartitions.Otherscenariosthatcancauseapartitionto fail to relinquishthe
CPUon time includesimplescheduleoverruns,whereparticularparametervaluescausea
computationto take longerthanits allottedtime,andrunawayexecutions,whereaprogram
getsstuckin a loop.

Although their manifestationsare in the temporaldimension,systemcrashesand in-
structionsthathalttheCPUareusuallypreventedby themechanismsof spatialpartitioning.
In particular, HALT andotherdangerousinstructionsusuallycannotbe issued(or, rather,
they causea trapto thekernel)whenin usermode.Therearereports,however, thatsome
steppingsof somecommodityprocessorshaveuntrappedinstructionsthatcanhalt theCPU,

3.1. PartitioningWithin aSingleProcessor 21

or user-modeinstructionsthatcan“hang” whensuppliedwith certainparameters(e.g.,see
http://www.x86.org; alsoreference98notes102bugsreportedupto 1995in various
versionsandsteppingsof theIntel 80X86architecture,andreference8 documentsacompa-
rablenumberin laterprocessors).It is importantto know thesecharacteristicsof theprecise
steppingof theprocessoremployed(which mayrequirea nondisclosureagreement),but it
is difficult to provide a completesolutionto suchuntrappedhardwareflaws. Perhapsthe
bestthat canbe doneis to useSFI-like techniquesandto scanthe machinecodeof each
applicationandinsertruntimechecksasnecessaryto prevent executionof dangerousin-
structionsor parametervalues(a purelystaticcheckwill beinadequateif parametervalues
canbeconstructedor modified—eitherunderprogramcontrolor by anSEU—atruntime).

The last-ditchescapefrom a haltedor locked-upCPU is a watchdogtimer interrupt
managedby thekernel. This is not certainto provide recovery, however, unlessthebasic
kernel designis correct: for example,designfaults in the Magellanspacecraftled to a
runawayexecutionin whichaprogramsatin a loopthatdid nothingbut resetthewatchdog
timer [18, pp. 209–221][25,51],� andnot all haltedor “hung” processorsrespondto the
timer interrupt.Recovery in thesedire casesusuallydependson a systemreset(or cycling
thepowersupply, whichcausesareset),whichmaybeinvokedeithermanuallyor by other
componentsin adistributedfault-tolerantsystem(which is how Magellanrecovered).

Runaway executionsin the kernel, lockups,anduntrappedhalt instructionscould all
afflict a processordedicatedto a single function, and so their treatmentis more in the
domainof system-level designverificationor fault tolerancethanpartitioning. Overruns
or runawayswithin a function,however, aregenuinelytheconcernof partitioningandare
usuallycontrolledthroughtimer interruptsmanagedby thekernel: thekernelsetsa timer
whenit givescontrol to a partition; if thepartitiondoesnot relinquishcontrolvoluntarily
beforeits time is up, the timer interruptwill activatethekernel,which thenwill thentake
controlaway from theoverrunningpartitionandgive it to anotherpartitionunderthesame
constraints.

Merely takingcontrolawayfrom anoverrunningpartitiondoesnotguaranteethatother
partitionswill beableto proceed,however, for theoverrunningpartitioncouldbeholding
someshareddevice or otherresourcethat is neededby thoseotherpartitions. The kernel
couldbreakany locksheldby theerrantpartitionandforcibly seizetheresource,but this
maydolittle goodif theresourcehasbeenleft in aninconsistentstate.Theseconsiderations
reinforcetheearlierconclusionthatdevicesandotherresourcescannotbedirectly shared
acrosspartitions.Instead,amanagementpartitionmustown theresourceandmustmanage
it in sucha way thatbehavior by oneclient partitioncannotaffect theservicereceivedby
another.

�
The flaw in Magellanwasin the designof its kernel(sensitive datastructuresweremanipulatedoutside

the protectionof a critical section,so an interrupt could leave them in an inconsistentstate). Suchflaws
wouldbeunconscionablein asafety-criticalsystem:thedesignof thecorehardwareandsoftwaremechanisms
simplyhave to becorrectin thesesystems.In additionto skilledandexperienceddesigners,formalmethodsof
specificationandanalysismaybevaluablefor thispurpose(designdiversityis implausibleat theselevels).

22 Chapter3. IssuesandMechanisms

Anotherproblemcanariseif theoverrunningpartition is performingsomeserviceon
behalfof anotherpartition: it will generallybenecessaryto notify theinvokingpartition(the
next time it is scheduled)of thefailureof theserviceprovidedby theother. Theinvoking
partition musthave enoughfault tolerancethat it can do somethingsensibledespitethe
failure of the service. It may alsobe necessaryfor the kernel to performsomeremedial
actionon the partition that overranits allocation. This could force that partition to do a
restartnext time it is scheduled,or couldsimplynotify thepartitionof its failureandleave
recovery (e.g., the killing of orphans)to the operatingsystemfunctionsresidentin that
partition.

Timeoutmechanismssuchas thosejust describedensurethat eachpartition will get
enoughaccessto theCPUandotherresources,but real-timesystemsneedmorethanthis:
thetaskswithin partitionsneedto getaccessto theCPUandto devicesandotherresources
at the right time and with greatpredictability. This meansthat discussionof temporal
partitioning cannotbe divorcedfrom considerationof schedulingissues. The real-time
taskswithin a partitiongenerallyconsistof iterative tasksthat mustbe run at somefixed
frequency (e.g.,20 timesa second)andsporadic tasksthat run in responseto someevent
(e.g.,whenthe pilot pressesa button); iterative tasksoften requiretight boundson jitter,
meaningthat they mustsamplesensorsor deliver outputsto their actuatorsat very precise
instants(e.g.,within a millisecondof their deadline),andsporadictasksoften have tight
boundson latency, meaningthat they mustdeliver anoutputwithin someshortinterval of
theeventthattriggeredthem.

Therearetwo basicwaysto schedulea real-timesystem:staticallyor dynamically. In
a staticschedule,a list of tasksis executedcyclically at a fixedrate. Tasksthatneedto be
executedatafasterrateareallocatedmultipleslotsin thetaskschedule.Evensporadictasks
arescheduledcyclically (topoll for inputandprocessit if present).Themaximumexecution
timeof eachtaskis calculated,andsufficient time is allocatedwithin thescheduleto allow
it to run to completion: thus,one tasknever interruptsexecutionof another(althougha
taskmay be terminatedif it exceedsits allocation). Notice that this meansthat a long-
durationtaskmay needto be broken into several smallerpiecesto make room for short
taskswith higheriterationrates.Thescheduleis calculatedduringsystemdevelopmentand
is notchangedat runtime(althoughit maybepossibleto selectamongafixedcollectionof
differentschedulesat runtimeaccordingto thecurrentoperatingmode).

In a dynamicschedule,on theotherhand,thechoiceandtiming of which tasksto dis-
patchis decidedat runtime.Theusualapproachallocatesa fixedpriority to eachtask,and
thesystemalwaysrunsthehighest-prioritytaskthatis readyfor execution.If ahigh-priority
taskbecomesready(e.g.,dueto a timeror externalinterrupt)while a lower-priority taskis
running,the lower-priority taskis interruptedandthehigh-priority taskis allowed to run.
Notethatthis requiresa context-switchingmechanismto save andlaterrestorethestateof
the interruptedtask. Thechallengein dynamicschedulingis to allocatepriorities to tasks
in sucha way that overall systembehavior is predictableandall deadlinesaresatisfied.
Originally, variousplausibleandadhocschemesweretried(suchasallocatingprioritieson

3.1. PartitioningWithin aSingleProcessor 23

thebasisof “importance”),but thefield is now dominatedby theratemonotonicscheduling
(RMS)schemeof Liu andLayland[66]. UnderRMS,prioritiesaresimplyallocatedon the
basisof iterationrate(thehighestprioritiesgoingto the taskswith thehighestrates)and,
undercertainsimplifying assumptions,it canbeshown thatall taskswill meettheir dead-
linesaslong astheutilizationof theprocessordoesnotexceed69%(thenaturallogarithm
of 2—higherutilizationsarepossiblewhenthe taskiterationratessatisfycertainrelation-
ships).Someof thesimplifying assumptions(e.g.,thatthecontext-switchtime is zeroand
thattasksdonotshareresources)have beenlifted or reducedrecently[62,69,96].

The choicebetweenstaticanddynamicschedulingis a contentiousone(Locke [67]
providesagooddiscussion).Thebasicargumentsin favor of staticschedulingareits com-
pletepredictabilityandthesimplicity of its implementation;theargumentsagainstarethat
all tasksmustrunatamultipleof thebasiciterationrate(sothatsomerunmoreor lessfre-
quentlythanis ideal for their control function),thehandlingof sporadictasksis wasteful,
andlong-runningtasksmustbebrokeninto multiple,separatelyscheduledpieces(to make
roomfor taskswith fasteriterationrates).Theargumentsin favor of dynamicscheduling
arethat it is moreflexible andcopesbetterwith occasionaltaskoverruns;the arguments
againsthingeon the difficulty of giving completeassurancethat a given tasksetwill al-
waysmeetits deadlinesunderall circumstances.(Thefactorsthatmustbeconsideredare
complex andnot all arefully characterized;errorsof understandingor judgmentarenot
uncommon.For example,themuchpublicizedcommunicationsbreakdowns betweenthe
1997Mars Pathfinderandits Sojournerrover weredueto priority inversionsin its RMS
scheduler.	 Priority inversionsarea well-understoodproblemin dynamicallyscheduled
systems,with a well-characterizedsolutioncalled“priority inheritance”[20,96] that was
available,but notused,in thecommercialreal-timeexecutive usedfor Pathfinder.)

Themechanismsof bothstaticanddynamicschedulinghave to bemodifiedto operate
in a partitionedenvironment,andthesemodificationschangesometraditionalexpectations
aboutthetradeoffs betweenthetwo approaches;in addition,partitioningcreatesopportuni-
tiesfor hybridapproachesthatcombineelementsof bothbasicmechanisms.Thetraditional
schedulingproblemis to ensuresatisfactionof all deadlines,given informationaboutthe
rateanddurationof the tasksconcerned.It is assumedthat this informationis accurate;
if it is not—if, for example,sometask runs longer or requestsservicemore often than
expected—thenthesystemmayfail. Whenall the tasksin thesystemarecontributing to
somesingleapplication,sucha failuremaybeundesirablebut will not have repercussions
beyondthoseconsequenton thefailureof theapplicationconcerned.In a partitionedsys-
tem,however, it is necessaryto ensurethatfaultyassumptionsaboutthetemporalbehavior
of tasksbelongingto oneapplicationcannotaffect thetemporalbehavior of applicationsin
differentpartitions.

Thereseemto be two ways to achieve this temporalpartitioning: one is a two-level
structurein which the kernel schedulespartitions, with the applicationin eachpartition

Seehttp://www.research.microsoft.com/research/os/mbj/Mars_Pathfinder/

Authoritative_Account.html.

24 Chapter3. IssuesandMechanisms

thenresponsiblefor locally schedulingits own tasks;theotheris a single-level structurein
which thekernelschedulestasks, but with a quotasystemto limit theconsequencesof any
faults—orfaultyassumptions—tothepartitionthatis in violation.

The first approachusuallyemploys staticschedulingat the partition level: the kernel
guaranteesserviceto eachpartition for specifieddurationsat a specifiedfrequency (e.g.,
20 ms every 100 ms) and the partitionsthenscheduletheir taskswithin their individual
allocationsin any way they choose;in particular, partitionsmayusedynamicscheduling
for their own tasks. Any partition that schedulesits tasksdynamicallymust provide a
mechanismfor interruptingonetaskin favor of another. Suchsupportfor taskswappingis
oneof the reasonsfor preferringdynamicover staticscheduling:it simplifiesapplication
programmingby allowing long-running,low-frequency tasksto be interruptedby shorter
high-frequency tasks;whereas,statically scheduledsystemshave to breaklong-running
tasksinto separatelyscheduledfragmentsthat perform their own saving and restoration
of local statedatato createroom for the higher-frequency tasks. If partition swapping
usestherestorationmodel,however, it providesanalternative mechanismfor dealingwith
long-runningtaskswithin a staticallyscheduledenvironment: a singleapplicationcanbe
divided into partsthat are allocatedto separatepartitionsthat are scheduledat different
rates.Thepartition-swappingmechanismthentakescareof interruptingandrestoringthe
long-runningtasks,therebysimplifying theirconstruction.

Opportunitiessuchasthismakestaticschedulingfor bothpartitionsandtasksrelatively
attractive. Conversely, theconstraintsof staticpartitionschedulingrenderits combination
with dynamictaskschedulingratherlessattractive. Oneof the conveniencesof dynamic
schedulingis that it allows new tasksto be introduced—orthe frequency anddurationof
existing tasksto bechanged—withrelative ease.But this easeis vitiatedwhenpartitions
arestaticallyscheduledbecause,for example,a new 10-Hz taskcanonly be fitted into a
partitionthatis alreadyscheduledat this rate(or somemultipleof it), sothattherigidity of
thepartition-scheduling mechanismdominatesany flexibility in taskscheduling.

This drawbackcouldbe overcome,however, if partitionscould bescheduledat itera-
tion ratesvery muchhigherthanthoseof any task—say1,000timesa second.Underthe
restorationmodelof partitionswapping,apartitionthatis scheduledatsucha rateandthat
is guaranteed,say, onetenthof the CPU (i.e., 100 � s every millisecond)could, for most
purposes,be regardedasrunningcontinuouslyon a CPU that hasonetenththe power of
therealone,andits taskscouldbedynamicallyscheduledwithout regardto theunderlying
partition schedule.Partition swapsarerelatively expensive on traditionalprocessors(be-
causethereis a large amountof stateinformationthat hasto besaved andrestored),and
this renderskilohertzpartitionschedulesinfeasibleon suchhardware(all theresourcesof
the systemwould be expendedin swapping). However, specializedprocessorsareunder
developmentwherepartitionswappingis performedat themicrocodeandhardwarelevels,
andthesearebelievedto becapableof supportingpartitionschedulesin thekilohertzrange
with no morethan5% to 10%of thesystemresourcesexpendedon swapping.Noticethat
the taskswappingrequiredfor dynamicschedulingwithin eachpartitioncanberelatively

3.1. PartitioningWithin aSingleProcessor 25

lightweight (sincetaskswithin a partition arenot protectedfrom eachother)andwill be
activatedata frequency comparableto thefastesttaskiterationrateandnot themuchfaster
partitionswappinggoingonbeneathit.

Theradicalcombinationof astaticpartitionscheduleoperatingatkilohertzratesanddy-
namictaskschedulingwithin eachpartitionis anattractiveone:it seemsto provideboththe
convenienceof dynamicschedulingandthe predictabilityof staticscheduling.However,
oneof theconveniencesof dynamicschedulingis theeasewith which it canaccommodate
aperiodicactivitiesdrivenby externaleventssuchasoperator(e.g.,pilot) inputsanddevice
interrupts,andit requirescareto supportthis on top of staticpartition scheduling—even
whenthis is runningat kilohertzrates.Thebasicconcernis thatexternaleventsof interest
to onepartitionmustnot disturbthetemporalbehavior of otherpartitions.If partitionsare
scheduleddynamically, useof suitablequotaschemescanallow temporalpredictabilityto
coexist with aperiodicevent-driventaskactivations(this is discussedonpage27),but static
partitionschedulingensurespredictabilitythroughtemporaldeterminismandthis imposes
strongrestrictionsonevent-drivenactivations.

First andmostobviously, a staticpartitionscheduledoesnotallow anexternaleventto
initiate a partitionswap: thepartitionscheduleis drivenstrictly by theprocessor’s internal
clock,sothat if aneventrequirestheservicesof a taskin a partitionotherthanthecurrent
one,it mustwait until the next regularly scheduledactivation of the partition concerned.
This increaseslatency, but may not be a problemif partitionsarescheduledat kilohertz
rates. Lessobvious, perhaps,arethe consequencesof the requirementthat the currently
executingpartitionshouldseeno temporalimpactfrom the arrival of eventsdestinedfor
otherpartitions.Even thecostof a kernelactivation to latchan interruptfor delivery to a
laterpartition reducesavailability of theCPUto thecurrentpartitionandmustbestrictly
controlled. It is possibleto addpaddingto the time allocatedto eachpartition to allow
for the costof kernelactivity usedto latchsomepredictednumberof interruptsfor other
partitions.But this makestemporalcorrectnessof onepartitiondependenton theaccuracy
of informationprovidedby others(i.e., thenumberandrateof their externalevents)—and
evenoriginally accurateinformationmaybecomeuselessif a fault causessomedevice to
generateinterruptsconstantly.

This concernis a manifestationof a moregeneralissue:temporalpartitioningrequires
notonly thateachpartitionhasaccessto theresourcesof thesystematguaranteedintervals,
but that thoseresourcesprovide their expectedperformance.A CPU whoseperformance
is degradedby thecostof latchinginterruptsfor laterdelivery is just oneexample;others
includea memorysubsystemdegradedby DMA transferson behalfof otherpartitionsor
anI/O subsystemthatis busyon theirbehalf.

Understaticpartitionscheduling,temporalpartitioningis predicatedon determinism:
becauseit is difficult to boundthebehavior of faulty partitions,theavailability andperfor-
manceof eachresourceis ensuredby guaranteeingthatno otherpartitioncaninitiate any
activity thatwill competewith thepartitionscheduledto accesstheresource.This means
thatnoCPUor memorycyclesmaybeconsumedotherthanat thebehestof thesoftwarein

26 Chapter3. IssuesandMechanisms

thecurrentlyscheduledpartition.Thus,in particular, therecanbenoservicingof devicein-
terruptsnorcycle-stealingDMA transfersotherthanthoseinitiatedby thecurrentpartition.
Theserequirementscanbeviolatedin two ways:apreviouslyscheduledpartitionmayhave
hadsomeI/O activity pendingwhen it wassuspended,or the externalenvironmentmay
generateaninterruptspontaneously(e.g.,to indicatethatabuttonhasbeenpressed).

Draconianmeasuresseemnecessaryto prevent thesesourcesof temporaluncertainty.
Externaleventseithershouldnot generateinterrupts(therelevantpartitionshouldpoll for
theeventinstead),or it shouldbepossibleto deferhandlingthemuntil therelevantpartition
is running(whetherthis is possibledependson the natureof the device andthe interrupt
andonhow selectively theCPUarchitectureallows interruptsto bemaskedoff). Similarly,
interruptsdueto pendingI/O from a device commandedby a previouspartitionshouldbe
masked off. If interruptscannotbe masked with sufficient selectivity, we could require
the kernel to issuecommandsthat quiet the devices of the previous partition as part of
theprocessof suspendingthat partitionandstartingthenext. Alternatively, if devicesgo
quietwhenuncommandedfor someshorttime, thekernelcouldmake thedevice registers
unavailable(e.g.,by changingthe MMU table)during the final few millisecondsof each
partition’s schedule.

Therestrictionsjustdescribedasnecessaryto ensurethattemporalcorrectnessof tasks
in onepartitionareunaffectedby softwarein otherpartitionshave consequencesfor inter-
partitioncommunications.With staticschedulingof partitions,ataskthatneedstheservices
of softwarein anotherpartition(e.g.,to accessa shareddevice) cannotsimply issuea pro-
cedurecall. In fact,therecanbeno synchronousservices(i.e.,wherethecallerblocksand
waitsfor theserviceprovider to reply)acrosspartitionsbecause(a)onepartitionshouldnot
dependon another(thatmaybefaulty) to unblockits progress,and(b) it would imposea
largeperformancepenalty:thecallerwouldblock at leastuntil its next slot in theschedule
after the serviceprovider’s slot. Instead,all inter-partition communicationmustbe asyn-
chronous(wherethe callerplacesrequestsin the input buffers of tasksin otherpartitions
andcontinuesexecution;whennext activated,it looks in its own input buffers for replies,
requests,andunsoliciteddatafrom otherpartitions). Becausefaulty softwarecould gen-
erateanexcessive numberof requestsfor serviceby anotherpartition, it seemsnecessary
thatfixedquotasshouldbe imposedon thenumberor rateof servicerequeststhatwill be
honoredfrom eachpartition.

Someof therestrictionsthatarenecessarywhenpartitionsarescheduledstaticallymay
possiblyberelaxedwhenthey arescheduleddynamically. It makeslittle senseto schedule
partitionsdynamicallyandtasksstatically, andwhenboth partitionsandtasksaresched-
uleddynamicallythereis little point in maintainingtwo levelsof scheduling,sotheunit of
schedulingwill actuallybethetask.However, theconcernfor temporalpartitioningwill in-
fluencewhich tasksareeligible for execution.Whereasstaticschedulingensurestemporal
partitioningthroughstrictpreplanneddeterminism,dynamicschedulingrelieson theorems
from the mathematicalstudyof (for example)RMS. Thereare two problemsin apply-
ing this theoryin thecontext of partitioning: oneis thata faulty partitionmayviolate the

3.1. PartitioningWithin aSingleProcessor 27

assumptionsunderlyingthetheoremconcerned;theother(related)problemis thatthesim-
plest (andtherefore,for life-critical applications,preferred)theoremsmake the strongest
assumptions(e.g.,that context switchestake no time); whereas,thosewith morerealistic
assumptionsreston moreelaborateandlesswell-establishedtheory. Both problemscan
probablybeovercomeby having thekernelandits schedulerenforcequotas.

For example,if schedulabilityof a tasksetis predicatedon a givenpartitiontakingno
morethan20% of the available time in eachcycle, thenthe kernelcansimply refuseto
make any of its taskseligible for schedulingoncethat20%quotahasbeenreached.The
problemwith this simpleschemeis that a faulty partitionmayconsumeits quotain very
many smallbursts(or a device maygenerateinterruptsat a rapidrate).Themany partition
swapsentailedtherebymayhave a moredeleteriouseffect on thetasksof otherpartitions
than the CPU time directly consumedby the faulty task. A plausibleway to overcome
this problemis to subtractthe costof a partition swap (andthe performancedegradation
causedby disturbingthecaches)from thequotaof thetaskthatcausesit. Quotasmanaged
in thiswayprovidemany of theguaranteesof staticschedulingwhile retainingsomeof the
flexibility of dynamicscheduling.For example,sucha schemecould allow synchronous
aswell asasynchronousinter-partitioncommunicationstogetherwith theability to service
aperiodiceventsandinterrupts.(ModernoperatingsystemssuchasScoutusea somewhat
similarapproachin whichaccountingfor resourceusageis performedonabstractionscalled
paths[102].) However, many of therestrictionsandconcernsdiscussedfor staticpartition
schedulingremainrelevant for dynamicscheduling:for example,it still seemsnecessary
to eliminatecycle-stealingDMA transfersandotherperformance-degradingactivities that
cannoteasilybecontrolledby quotas,andit is alsonecessaryto ensurethatinterruptsfor a
partitionthathasexceededits quotaaremaskedor latchedattruly zerocost.Otherpotential
sourcesof cross-partitioninterferencesuchaslocksandsemaphoresmustalsobesuitably
controlled(probablyby elimination).

Quota-baseddynamicschedulingmayprovide simpleguaranteesthatthetasksof non-
faultypartitionsreceive theirexpectedallocations(i.e.,they receiveenoughtime),but guar-
anteesthatthey will hit theirdeadlines(i.e., they getit at theright time)aremoreproblem-
atical(thereare,for example,scenariosunderRMSwheretheearlycompletionof onetask
causesanotherto missits deadline[85]). In practice,relatively few tasksmayneedto be
scheduledwith greattemporalprecision: it is generallynecessaryto samplesensorsand
controlactuatorswith very low jitter, but it doesnot greatlymatterwhenthecontrol laws
areevaluatedprovidedtheirresultsarereadywhenneeded.Thus,wecanenvisageascheme
in which certaintasks(thoseassociatedwith sensorsandactuators)areguaranteedto exe-
cutewith greattemporalaccuracy, while othersareguaranteedonly to get their allocation
of resourcessometimeduring their period. To achieve this, the sensorandactuatortasks
could run in separateprocessorsthat arestaticallyscheduled(andcommunicatewith the
dynamicallyscheduledcomputationaltasksthroughdual-portedmemory),or they could
run at thehighestpriority in thedynamicallyscheduledsystem;justificationfor the latter
schemewould requiredeepertheoremsthantheformer.

28 Chapter3. IssuesandMechanisms

Whetherpartitionsandtasksarestaticallyor dynamicallyscheduled,the kernelmust
collaboratewith othersoftwareto providesomeof theservicesof anoperatingsystem—at
the very leastit will be necessaryto serviceinterrupts.Understaticpartitionscheduling,
interruptsfrom externaldevicesareallowedonly whentheirpartitionis running;thismeans
it is possibleto vectorinterruptsdirectlyto handlersin thepartitionratherthanhandlethem
in thekernel.Theadvantageof theformerarrangementis thatit minimizesthecomplexity
of thekernel; its difficulty is that interruptsareoftenvectoredin supervisormode,which
canthreatenhardware-mediatedspatialpartitioning. Compromisearrangementshave the
kernelfielding thehardwareinterrupt,but thenpassingit in a safeway to thepartitionfor
service.Argumentsagainstdevicehandlingin apartitionarethatthis really is anoperating
systemservicethat is betterdoneby an operatingsystem.A conventionaloperatingsys-
temis unattractive in apartitionedenvironmentbecause,asportrayedin figure2.1(a),it is a
largesharedresourcethatmustbeshown to respectpartitioningaswell asto befreeof other
faults. A moresuitablearrangementprovidesoperatingsystemservicesseparatelywithin
eachpartition,asportrayedpreviously in figure2.1(b).Thisarrangementhastheadditional
benefitthatdifferentpartitionscanusedifferentsetsof operatingsystemservices:for ex-
ample(seefigure3.1),a critical functionmight usea minimal setof services(PartitionC),
while a lesscritical but morecomplex functionmight employ somethingcloseto a COTS
operatingsystem(PartitionB), andadevice managementpartitionmight consistlargely of
standardizedoperatingsystemservicesfor device management.Operatingsystemservices
cannotaffect basicpartitioningin this arrangement;however, they mustbeusedwith great
circumspectionin partitionsthatencapsulatea sharedserviceor resource(e.g.,a partition
thatprovidesa sharedfile system).Suchpartitionsarelogically anextensionof thekernel
andmustbeshown to partitiontheir serviceor resourceappropriately—whichis likely to
bemoredifficult themoresoftwarethey contain.

PartitionA

OSServicesA

Hardware

Kernel

OSServicesfor
Devicemanagement

OSServicesC

PartitionB

OSServicesB

PartitionC

DeviceManagement
Partition

Figure3.1: DifferentOperatingSystemSoftwarefor DifferentPartitions

3.2. PartitioningAcrossaDistributedSystem 29

3.2 Partitioning Across a Distributed System

A distributedsystemresemblesour original Gold Standard—aseparateprocessorfor each
partition—morecloselythana singlesharedprocessorandmight seemto raisefew new
issueswith respectto partitioning: if we acceptthat the partitioning mechanismsem-
ployed within individual processorsaresound,thenconnectingseveral suchsystemsto-
gethersurelycannotdo any harm.This would betrueif we couldarrangededicatedphys-
ical point-to-pointcommunicationsbetweenpartitionsin differentprocessors,but theonly
physicalcommunicationsthatcanbeprovidedarebetweenprocessors. Thislimitationhasa
fairly significantimpact,which is compoundedwhenweconsidersharedcommunications,
suchasbuses.

To startwith, supposewe wish to communicatedatafrom partition � � of processor�
to partition � � in a differentprocessor� andthat we have a suitablecommunications

line from
�

to � . Interruptswill begeneratedat � asthedatastartsto arrive and,aswe
discoveredin theprevioussection,somecareis neededto ensurethat thesedo not disturb
temporalpartitioningin � . If � is dynamicallyscheduled,the quotaschemesdiscussed
previously maybeall thatis needed,but matterscanbemorecomplicatedwhenpartitions
arescheduledstatically. Understaticscheduling,we mustrequireeitherthattheinterrupts
canbe latchedat no costuntil the scheduledexecutionof partition � � (partitionsmustbe
scheduledat high-frequency to make it feasibleto servicecommunicationsin this way) or
that partition � � (or somedevice managementpartition that handlesthe communications
line) is guaranteedto be executingwhenthe interruptsarrive. The latter clearly requires
synchronizationbetweenthepartitionschedulesof processors

�
and � and,by extension

to otherprocessors,this impliesglobalsynchronizationof schedulesacrossall processors.
Theonly wayto avoid theseconsequenceswhenstaticpartitionschedulingis employed

is to have a dataconcentratordevice at � that buffers incomingdatawithout imposinga
loadontheCPUor its buses.Thepartition � � canthenretrieve incomingdatafrom thedata
concentratoraspart of its normally scheduledactivity. A moreaggressive designwould
allow the dataconcentratorto write incoming datadirectly into buffers associatedwith
eachpartitionusingdual-portedRAM. Eventhesedesignsdonotnecessarilyeliminatethe
needfor globalsynchronization,however, becauseof theneedto control “babbling idiot”
failuresin partitionsandprocessors.

Thesearefailureswherea transmittersendsdataconstantly—possiblyoverwhelming
its recipientor denying serviceto othertransmitters.Onescenariowould bea runaway in
partition � � thatcausesit to transmitto � � throughoutits scheduledexecution.We needto
besurethat this heavy loadon thecommunicationsline from

�
doesnot affect theability

of the recipient(� or its dataconcentrator)to serviceits otherlines. This requireseither
somekind of quotaschemeat the recipientor a global schedulethat excludessimultane-
oustransmissions.A babblingpartitioncando soonly during its scheduledexecution,so
a global schedulemay be ableto ensurethat no two processorssimultaneouslyschedule
partitionsthat transmitto thesamerecipient.An alternative if � � doesnot drive thecom-

30 Chapter3. IssuesandMechanisms

municationsline directly, but insteadsendsdatato a device managementpartition, is for
themanagementpartitionto imposeaquotaon thequantityof datathatit will acceptfrom
any onepartition. A babblingprocessoris anevenmoreseriousproblemthana babbling
partition;eithertherecipientmustbeableto toleratethefaultor it mustbepreventedat the
transmitter—mechanismsto do thisarediscussedin thecontext of buscommunications.

The measurespreviously discussedaddresstemporalpartitioning in inter-processor
communications;we alsoneedto considerspatialpartitioning. The spatialdimensionto
partitioningrequiresmechanismsto ensurethatpartition � � of processor

�
cansenddatato

partition � � in a differentprocessor� only if thatcommunicationis authorized.No addi-
tional mechanismsarerequiredto ensurethis whena communicationline is dedicatedto a
specificinter-partitionchannel;additionalmechanismsareneeded,however, whenoneline
is sharedamongmultiple receiving partitions.In this case,theaddressof the intendedre-
cipientmustbeindicatedin eachtransmission.Thiscanbedoneexplicitly by includingthe
addressin thedatatransmittedor implicitly throughthetimeat which it is sent(thesched-
ulesof thesendingandreceiving processorsmustbecoordinatedin this case).A concern
with explicit addressesis thatacommunicationsfaultcouldtransformadatumaddressedto
partition � � into oneaddressedto � � . This is afault-toleranceissueandis generallyhandled
by checksumsor similar techniquesto ensuretheintegrity of transmitteddata.Therelated
partitioningissueis theconcernthata fault in thesendingpartition � � couldcauseit to ad-
dressdatadirectly to anunauthorizedrecipient� � —this fault will notbedetectedby check
sums,sinceit occursoutsidetheirprotection.Theonly certainwayto containthisfault is to
mediatethecommunicationwith sometrustedentitythathasindependentknowledgeof the
authorizedinter-partitioncommunications.This canbeperformedeitherat thetransmitter
(e.g.,if adevice managementpartitionis usedto accessthecommunicationsline) or at the
receiver (e.g.,in adataconcentrator).A probabilisticmethodto containthefault is to allo-
catepartitionaddressesrandomlyfrom avery largespace;thechancethata fault in � � will
causeit to manufacturethelegitimateaddress� � is thencorrespondinglysmall. In thecase
of implicit addresses,theconcernis thatby sendingdataat thewrongtime,thetransmitting
partitionwill causeit to bereceived by anunintendedrecipient. Mediationis requiredto
containthis fault,which is consideredin moredetailin thecontext of buscommunications.

Somearchitecturesallow the componentsof a distributed systemto communicate
without addingexplicit addressesto namethe intendedrecipient. In “publish-subscribe”
architectures[82], for example, data is taggedwith a descriptionof its content (e.g.,
air-data-samples) andrecipients“subscribe”to datacarryinggiven tags. Theseis-
suesof namingandbindingwerediscussedearlierin thecontext of individual processors,
andsimilar considerationsapplyhere,but with theaddedconcernfor fault tolerancewith
respectto communicationsfaults.

Usingseparatecommunicationslines to connecteachpair of processorsis expensive,
sobusesaregenerallyusedin practice.A busis a departurefrom theGold Standard—itis
a resourcesharedby all processorsandall partitions—andit is thereforecrucialto provide
partitioningsothata fault in onepartitionor processorcannotaffect others.Thefaultsof

3.2. PartitioningAcrossaDistributedSystem 31

greatestconcernwith busesarethosewherea partitionor processoreitherbabblesor fails
to follow theaccessprotocolin someway, sothatotherpartitionsor processorsaredenied
timely accessto thebus.

A babblingor misbehaving partitioncannotinterferewith busaccessby otherpartitions
in its own processor(becauseapartitioncanaccessthebusonly whenit is scheduled),but it
caninterferewith accessbyotherprocessors(bycontendingfor thebusif thisis mediatedor
by sendingtransmissionsthatcollidewith thoseof otherprocessorsif it is not),andit may
overwhelmits receivers.A babblingor misbehaving processoris evenmoredisruptive than
a babblingpartitionbecauseit is not constrainedby its own scheduleandcanmonopolize
the bus. Notice that processorfaultssuchas this arepartitioning—notfault-tolerance—
issues,becausetheir consequenceswould not be so seriousif the buseswerenot shared.
Dual or multiple busescanbe used,in the hopethat a babblerwill confineitself to just
oneof them,but this cannotbeguaranteed.Theonly certainway to preventbabblingis to
mediateeachprocessor’s accessto thebusby somecomponentthatwill fail independently.
Thequestionthenis how doesthemediatorknow whatis alegitimatetransmissionandwhat
is babbling?Theanswerdependsonwhethercommunicationsaretimeor eventtriggered.

In a time-triggeredsystem,transmissionsaredeterminedby a schedule,andthe me-
diatingcomponentneedonly have anindependentcopy of its processor’s scheduleandan
independentclockin orderto determinewhetherits processorshouldbeallowedto transmit
on thebus. The schedulesthatgovern time-triggeredtransmissionscanbeeitherlocal or
global. A local scheduletreatseachprocessorindependentlyso that differentprocessors
maycontendfor thebusandthereceiving partitionneednotbescheduledat thesametime
asthetransmitter. A globalschedule,on theotherhand,coordinatesall processorandbus
activity so that thereis no bus contention.Although it is perfectlyfeasibleto useglobal
schedulingwith contentionbusessuchasEthernetor CAN (globalsynchronizationmeans
thattheir ability to resolve contentionwill never beexercised,but thesystembenefitsfrom
the low costandhigh performanceof the network interfacehardware),somespecialized
buseshave beendevelopedspecificallyto supportandexploit staticglobalscheduling.Ex-
amplesincludethe ARINC 659 SAFEbusTM [2, 41] andthe Time TriggeredProtocoland
its associatedArchitecture(TTP/TTA) [58]. With globalscheduling,thereis no realneed
to includea destinationaddresswith thedata(becausethis is implicit in thetime themes-
sageis sent)andsomeglobally scheduledbuses(e.g.,ARINC 659) do eliminateexplicit
addressestherebyreducingthenumberof bitsthatneedto becommunicatedandincreasing
theusefulcapacityof thebus.

Theclockof abusmediationcomponentneedstobeindependentof thatof its processor,
but synchronizedwith it. With localscheduling,thepurposeof themediatingcomponentis
to controlthepacingof busaccesses,but nottheirabsolutetiming and,for thispurpose,it is
adequatefor themediatorandits processorto synchronizelocally (obviously, this mustbe
donecarefullyto maintainplausibilityof theindependentfailureassumption).With global
scheduling,however, theclocksof all processorsandmediatorsmustbeglobally synchro-
nized,and the mediatingcomponentsshouldperformthe synchronizationindependently

32 Chapter3. IssuesandMechanisms

of their processors.If clock synchronizationis achievedby a high-level protocol,thenthe
mediatingcomponentsmustbecapableof interpretingthefull protocolhierarchy, andthis
greatlycomplicatestheirdesign.For this reason,themediatingcomponentsin TTA (called
busguardians) do not performindependentclock synchronization,but take synchronizing
signalsfrom their hostprocessors[103]. This designpreventsbabbling,but a processor
thatlosesclocksynchronizationwill take its busguardianwith it andwill still beableto ac-
cessthebusat thewrongtime,thoughonly for shortperiods.However, theunsynchronized
processor/guardianpairwill alsobeunableto receivemessagescorrectly(becausesynchro-
nizationis requiredto satisfytheCRCchecksoneachmessage),andtheguardianwill shut
off all busaccessafterfailing to receive asetnumberof expectedmessages.An alternative
approachperformsclock synchronizationasa low-level protocolthatcanbeperformedby
simplemediatingcomponents.This approachseemsto requiresuitableelectricalproper-
tiesof thebusandits drivers. In SAFEbus,for example,thesignalsfrom separatedrivers
areconnectedtogetheron the bus in a logical OR fashion,andthis allows a very simple
synchronizationprotocolthat is performeddirectly in themediatingcomponents(they are
calledBusInterfaceUnits in SAFEbus)[2].

Whereasglobally scheduledsystemsguaranteethat the bus will be free whena pro-
cessoris scheduledto transmit,locally scheduledandevent-triggeredsystemsmustcope
with contentionbetweenprocessorsattemptingto transmiton the bus. In busesintended
for control applications,contentionis not resolved probabilisticallyfollowing collisions
as it is in classicEthernet,but deterministicallyusingpreassignedslots(as in Echelon’s
LON), a circulatingtoken (asin PROFIBUS [ProcessField Bus] [23]), or a priority arbi-
trationscheme(asin CAN [ControllerAreaNetwork] [47]) to provide distributedmutual
exclusionandtherebyprevent collisions. This determinismdoesnot provide very strong
guaranteeson how long a processormustwait to accessthe bus, however. In CAN, for
example,a processorthat wishesto transmitmustfirst wait for any currenttransmission
to finish andthenit mustcontendwith any otherprocessorsthatalsowish to transmit. In
CAN, the lowest-numberedprocessoralwayswins thearbitrationandmay thereforehave
to wait only aslong asthelongestmessagetransmission,while otherprocessorsalsohave
to wait while any lower-numberedprocessorsperformtheir transmissions.� It follows that
only probabilisticguaranteescanbegivenonthebus-accessdelayin suchsystems,andthat
theseguaranteeswill be quite weakin the presenceof faults[105], even if bus accessis
mediatedto controltheworstmanifestationsof babbling.

It is not straightforward to mediatea processor’s accessto thebuswhenthataccessis
eventtriggered—thatis to say, triggeredby theprocessor’s internalcomputations,possibly
�
TheEchelonLON protocolhassimilar characteristics:stochasticflow controlis usedto reducethelikeli-

hoodof collisions;if acollisiondoesoccur, processorsbackoff andaccessthebusin orderof their “contention
slots.” Themainapplicationof theLON protocolis in automatingbuildings,wheretight real-timeguarantees
areunlikely to berequired,but theEchelonwebsitehttp://www.lonworks.echelon.com reportsthat
Raytheonusesthis technologyin its Control-By-LightTM fault-tolerantfiber optic distributedcontrol system,
which is currentlyundergoingFAA Part 25 certificationfor usein commercialaircraft;however, it seemsthat
mechanismsin additionto theLON protocolareemployedin thisapplication.

3.2. PartitioningAcrossaDistributedSystem 33

basedondatait hasreceived—forthereis nowayto know whetheraneventhaslegitimately
occurredwithout independentlycopying thedatareceivedandreproducingthecomputation
performedby thatprocessor. A master-checker dual-processorarrangementsuchasthis is
a very expensive way to prevent babbling. Redundantprocessorsareobviously required
for fault tolerancein IMA, but suchredundancy shouldbemanagedflexibly at thesystem
level, not committedto pairing. Without master-checker pairs, the bestthat canbe done
to controlbabblingin anevent-triggeredsystemseemsto bethe impositionof somelimit
on the rateat which a processormay transmiton thebus. TheARINC 629avionics data
bus[3] hasthiscapability(thebususestimeslotsto controlaccess,but it canbeusedin the
largercontext of anevent-triggeredsystem).

Becausethepurposeof partitioningis to controlfaultpropagation,someaspectsof par-
titioning arevery closeto fault tolerance—forexample,thecontrolof babblingdiscussed
in the previous paragraphshaselementsof both. Mechanismssuchas theseareneeded
to preserve the integrity of the serviceprovided by an IMA architectureto the avionics
functionsthatit supports.In addition,theavionicsfunctionsoftenneedto befault tolerant
themselves,andanIMA architecturemustthereforesupportthedevelopmentof suchfault-
tolerantapplications.Thereis a choicein how muchfault toleranceshouldbeprovidedby
theIMA architecture,andhow muchby thefunctionsthemselves.Faultssuchasbabbling,
which areoutsidethecontrolof any singlefunctionandthatcanhave system-wideramifi-
cations,mustclearlybetoleratedby mechanismsof theIMA architecture.Sensorfailure,
on theotherhand,seemsmorenaturallytheresponsibilityof thefunctionthatusesthesen-
sor, while failureof a processorseemsto fall somewherein between—thedesignersof the
functionmaybestknow how to handlesucha fault,but mayneedservicesprovidedby the
IMA architectureto implementtheir strategy.

As mentionedin section2.1, thetrendtowardIMA runsin parallelwith anothertrend
toward developing avionics functionson top of a layer that provides standardoperating
systemservicesand, possibly, additionalservicesto supportsystematicfault tolerance.
Fault tolerancein critical systemsis usually basedon active redundancy; errorsare de-
tectedor maskedthroughcomparisonor voting of theredundantlycomputedvalues.Fault
tolerantarchitecturesdiffer in whetherthe redundantreplicasperform the sameor dif-
ferent computationsand in whethertheir statesare synchronized(to allow exact-match
voting). Someof the architecturalchoicesfor fault tolerancearestronglycontingenton
otherchoices—forexample,thatbetweentime-andevent-triggeredarchitectures—thatare
themselvesstronglytied to choicesin partitioningmechanisms.Kopetzpresentspersua-
sive argumentsthat time-triggeredarchitecturesare the bestchoicefor critical real-time
applications[54–56] andthis choicealsofits well with therequirementsandmechanisms,
discussedin theprevioussection,for ensuringtemporalpartitioningin adistributedsystem.

34 Chapter3. IssuesandMechanisms

3.3 Summary

Thetopicsexaminedin thischaptershow thatpartitioninginteractsratherstronglywith sev-
eralotherissuesin systemdesign:for example,scheduling,communication,distribution,
andfault tolerance.By “interactswith” I meanthatdesignfreedomin thesedimensionsis
curtailedwhenpartitioningis a primarysystemgoal. This is not necessarilya badthing,
however, becausetherestrictionsimposedby partitioningareexactly thosethatpreventun-
expectedinteractionsamongsystemcomponentstherebypromotingcompositionality(i.e.,
thepropertythatcomponentsthatwork ontheirown continueto dosowhencombinedwith
othercomponents)andreducingintegrationcosts.

Becausepartitioningis critical to the safedeploymentof IMA, thedesignandimple-
mentationof its mechanismsmustbe assuredto very high standards.Guidelinesfor the
assuranceandcertificationof safety-criticalairbornesoftwarearespecifiedin thedocument
known asDO-178Bin theUSA andED-12B in Europe[84]. Theseguidelinescall for a
very rigorous—if traditional—processof reviews, analysis,anddocumentation;however,
anappendixincludesformalmethodsamongthe“alternativemethods”that“may beusedin
satisfyingoneor moreof theobjectives”describedin thedocument.Theideabehindformal
methodsis to constructamathematicalmodelof asoftwareor systemdesignsothatcalcu-
lationsbasedon themodelcanbeusedto predictpropertiesof theactualsystem—inmuch
theway thatfinite elementanalysisof a structuralmodelfor anairplanewing canbeused
to predictmechanicalpropertiesof the actualwing. Becausethe appropriatemathemati-
cal domainfor modelingsoftwareis mathematicallogic, where“calculation” is performed
by so-called“formal deduction”(asopposedto, say aerodynamics,wherethe appropri-
atemathematicaldomainis partialdifferentialequations,andcalculationis performedby
numericalmethods),thisapproachis referredto asuseof “formal methods.”

The utility of calculation—as an adjunct to, or replacement for, physical
experimentation—iswell understoodin other branchesof engineeringand is similar in
computerscience.In fact,its utility is potentiallygreaterin computersciencethanin other
engineeringdisciplinesbecausecomputersciencedealswith discreteor discontinuousphe-
nomenawhereexperimentationandtestingareof limited valueasassurancemethods.With
discontinuoussystemstheremaybelittle relationshipbetweenthebehavior of thesystem
in onecircumstanceandits behavior in another“similar” circumstance;consequently, ex-
trapolationfrom testedto untestedcasesis of doubtfulvalidity. Thiscontrastswith physical
systems,wherecontinuityjustifiessafeextrapolationfrom limited testcases.Formalmeth-
odsaugmenttestingby allowing all the behaviors of a systemto be examined. Formal
methodsconsidera modelof the system,whereastestingexaminesthe real thing, so the
two approachescomplementeachother. An elementarydescriptionof formal methods,
andtheir applicationto thecertificationof avionics is presentedin [92], with moredetail
availablein [91].

In additionto their role in assurance,the modelsconstructedin formal methodscan
oftenhelpclarify requirementsanddesignchoicesandcanleadto improvedunderstanding

3.3. Summary 35

of designproblems. They do this by abstractingaway all detail consideredirrelevant to
theproblemat handandby formulatingtheremainingissueswith mathematicalprecision.
Formalmodelsfor partitioningcouldthereforehelprefineour understandingof this topic.
Now, partitioninghasmuchin commonwith certainissuesin computersecurity, andthose
issueshave beenthe target of considerableresearchin formal modelingextendingover
morethantwo decades.Thenext chapter, therefore,examinesissuesin computersecurity
relatedto partitioningandoutlinestheformalmodelingtechniquesthathave beentried.

36

Chapter 4

Comparison With Computer
Security

Computersecurityis relatedto partitioningin that both areconcernedwith the ability of
onesoftwareapplicationto influenceanother. Theconcernsarethatsensitive information
might “leak” from onepartition to another(this is called informationflow in the security
context) or that doubtful informationmight contaminatehigh-qualityinformation(this is
calledinformationintegrity in thesecuritycontext) or thatonepartitionmight monopolize
or reducetimely accessto theCPUor someotherresource(this is calleddenialof service
in thesecuritycontext). Muchwork overmany years(see,for example,asurvey published
in 1981[61]) hassoughtto provide a firm understandingof thesesecurityissuesandtheir
enforcementmechanisms,andwe might hopeto applysomeof this work—or at leastthe
underlyingideas—topartitioning.In addition,researchin computersecurityhassoughtto
provide rigorous,formalapproachesto thespecificationandverificationof securesystems,
andthereis hopethattheseapproachescouldcontributeto thedevelopmentof strongassur-
ancetechniquesfor partitioningin avionics. The following sectionsreview thesesecurity
issuesandtheformalmodelingtechniquesthathavebeenappliedto them.Thegoalhereis
to explainthebasicideasandapproaches,sowemerelydescribetheformal techniquesthat
have beenusedratherthanpresenttheactualformalism.

4.1 Data and Information Flow

Themoststudiedaspectof computersecurityis somethingof adualto oneof theconcerns
of spatialpartitioning. In spatialpartitioning,a concernis that onepartition might write
datainto a secondandtherebydisrupt its operation. In securitywe aremoreconcerned
with thedatathatis written: if datain thefirst partitionis consideredhighly classified,then
writing it into a morelowly classifiedpartition is tantamountto disclosingit. Reflecting
this concern,computersecuritygenerallyusesthemoreneutraltermprocessfor whatwas

37

38 Chapter4. ComparisonWith ComputerSecurity

calleda partitionin thepreviouschapter(indeed,thecomputersecuritynotionthatis clos-
est to partitioningis called“processsecurity” [9]). Data flow securityis concernedwith
controllingchannelsfor disclosure;informationflow securityis concernedwith moresub-
tle channelsin which datais not written directly, but its informationcontentis disclosed
justaseffectively.

4.1.1 Access Control

A basicmechanismin enforcingbothpartitioningandinformationflow securityis called
accesscontrol: the computersystemis assumedto have somemeans(typically, supervi-
sor/usermodedistinctionsandmemorymanagementhardware)for limiting the primitive
resourcesthata processcanaccessandthewaysin which it canaccessthem. Thensome
higher-level resourcesaresynthesized(e.g.,a file system),andrulesgoverningaccessto
thoseresourcesaredefinedandimplementedin termsof themoreprimitive resourcesand
protections.The rulesconstitutean accesscontrol policy. A familiar exampleis that of
theUnix file system:eachfile is associatedwith a particularownerandgroup,andwe can
specifyseparatelywhethertheowner, membersof thegroup,or otheruserscanread,write,
or executethe file. This exampleraisestwo importanttopics in accesscontrol: the first
concernsthechoiceandspecificationof theaccesscontrolpolicy thatis to beenforced,and
thesecondconcernsthecompletenessof thatenforcement.

The Unix file systemprovidesa discretionaryaccesscontrol policy: userswho have
readaccessto a file can,at their discretion,copy it andgrantaccessto thecopy in any way
they choose.This maybe contraryto the intent of the original owneror to someorgani-
zationalpolicy. To dealwith theseconcerns,variousmoreconstrainedkindsof mandatory
accesscontrolpolicieshave beendefined.Thesimplestexampleis themultilevel security
policy that is intendedto reflectpracticesfor handlingclassifiedmilitary information.In a
multilevel policy, every resourceandevery process(computersecurityusesthe termsob-
jectandsubjectfor these)is givena labelfrom someorderedset(typically UNCLASSIFIED,
CONFIDENTIAL, SECRET, andTOP SECRET), andasubjectmayhave readaccessto anob-
jectonly if thesubject’s label(its clearance) is equalto or greaterthanthatof theobject(its
classification). � This rule (it is calledthesimplesecurityproperty) doesnot stopa subject
from creatinga copy of anobjectat a lower classificationandtherebyviolating the intent
of the policy, so it is augmentedby anotherrule calledthe � -property (pronounced“star
property”) that saysthat a subjectmay have write accessto an objectonly if the object’s
labelis equalto or greaterthanthatof thesubject.Thecombinationof thesimpleandthe �
properties(i.e.,a subjectcanonly read“down” andwrite “up” in securitylevel) constitute
thehistoricallysignificantBell andLa Padulasecuritypolicy [10]. Underfurtherexamina-
tion, thispolicy raisesimportantquestionsthatwill beconsideredshortly. First, though,we
returnto therelatedquestionof completenessof anaccesscontrolpolicy.
�
Mattersarecomplicatedin practiceby the useof compartments(e.g., NATO, NOFORN) in combination

with thebasicclassificationsto createapartialordering.

4.1. DataandInformationFlow 39

Theaccesscontrolpolicy of theUnix file systemcanbebypassedif userscandirectly
reador write the contentsof the disk on which thosefiles arestored.Thus,althoughour
interestis in protectingfiles, we alsoneedto be concernedaboutthe disk, andpossibly
otherelementsof thesystemaswell. So the issueof completenessin accesscontrolcon-
cernshow muchof thesystemneedsto beplacedunderaccesscontrol,andin whatway,
for usto besurethat theresourcewe actuallywant to protectis, indeed,protectedagainst
all possibleattacks.This issueis complicatedby thefact thatsecurityis really aboutpro-
tectinginformation, not meredata,so thatany channel(a metaphoricalexamplewould be
by tappingon thewalls in Morsecode)thatallows the informationcontentof a file to be
conveyedto anunauthorizeduseris asdangerousastheability to copy afile directly.

Thepossiblechannelsfor informationflow canbequitesubtleandhardto detect(there
wereat leasttwo in Bell andLa Padula’s “Multics Interpretation”[10]). For example,sup-
posewehadaspecialUnix systemthatimposedtheBell andLaPadulapolicy onfile access,
but with theadditionalpropertythatfile namesarerequiredto beuniqueacrossall users:an
attemptto createafile with anexistingnamereturnsanerrorcode.Then,aSECRET process
canconvey informationto anUNCLASSIFIED oneby creatingfileswith prearrangednames:
the UNCLASSIFIED processretrievesthe informationby checkingwhetheror not it is able
to createfiles with thosenames.This is anexampleof a “covert” channel;moreparticu-
larly, it is a covert storage channel(becauseit exploits informationstoredin thedirectory
structureof the file system;the otherkind of channelusestiming information—seesec-
tion 4.3) [60,65]. Thechannelis noisy(someother, innocent,processmight have created
files with thosenames),but codingtechniquesallow informationto betransmittedreliably
over noisy channels.Covert channelsareof concernfor two reasons:first, they canbe
usedto transmitinformationatsurprisinglyhighbandwidth(oneearlydemonstrationdrove
a teletypeat full speedusinga channelthat dependedon sensingwherea disk headwas
positioned[95]), andsecond,they areno differentin conceptfrom moreblatantchannels
(e.g.,theunprotecteddisk) that leave a resourceopento directaccess(botharesymptoms
of incompleteness)—sothatunlesswe have methodsof specificationandverificationthat
areableto eliminatesubtlecovert channelswe have little guaranteethatwe caneliminate
any channelsat all.

It might seemthat informationflow andcovert channelsareesotericsecurityconcerns
and that only basicaccesscontrol is relevant to partitioning. However, while it is true
thatcovert informationflow maybeof little concernfor partitioning(becauseit dependson
collusionbetweensenderandreceiverandis thereforeimplausibleasafaultmanifestation),
the mechanismsusedfor suchflow definitely areof concern.Consider, for example,the
unique-file-namechanneldescribedabove. This servesasa channelfor informationflow
becauseonesubjectcanaffect thebehavior perceived by another(i.e., whetheror not the
attemptto createa file returnsanerror),andthis is surelycontraryto the expectationsof
partitioning—foroneinterpretationof thoseexpectationsis thatthebehavior perceivedby
softwarein any given partitionshouldbe independentof the actionsby softwarein other
partitions. We might try to arrangefor this expectationto be satisfiedin the presenceof

40 Chapter4. ComparisonWith ComputerSecurity

the unique-file-namerestrictionby allocatingdisjoint namespacesto eachpartition. But
thena fault in the softwareof onepartition could causeit to createa file from another’s
namespace—andtherebycausea subsequentfile creationin that otherpartition to fail.
Thisexampleshows thatcovert channelsfor informationflow raiseissuesthatarerelevant
to partitioningandthatexaminationof how securityhasdealtwith thesechannelsmaybe
of usein partitioning.

Anotherpotentialproblemwith accesscontrolformulationsof securityis thatthey de-
pendon informalunderstandingsof what“read” and“write” accessesreallymean.Wecan
constructperversesystemsin which thesetermsaregiven incorrect(e.g.,reversed)inter-
pretationsandthatsatisfytheletterof anaccesscontrolpolicy while violatingits spirit [72].

Covert channelsandperverseinterpretationsareboth symptomsof the real problem
with accesscontrolaswe have usedit: it is a mechanismfor implementing, not an instru-
mentfor specifying, securitypolicies.An adequatespecificationshouldgetat the“intent”
thatunderliesa securitypolicy in a convincing manner. It shouldthenbepossibleto prove
thatan implementationin termsof accesscontrolcorrectlyenforcesthepolicy. Problems
of completeness,covert channels,andperverseinterpretationsshouldall beeliminatedby
asoundapproachof thiskind. Thenext sectionexaminessuchapproaches.

4.1.2 Noninterference

To repairtheproblemswith accesscontrol,we needto bemoreexplicit aboutour system
model:weneedto specifyhow asystemcomputesandinteractswith its environment,how
inputsandoutputsareobserved,andhow subjectsandobjectsareidentified.Thenwe can
specifysecurityin termsof constraintson the observablebehavior of the systemwithout
needingto describemechanismsto enforcethoseconstraints(althoughwe would hopeto
beableto describesuchmechanismsata laterstageof developmentandto verify thatthey
enforcethedesiredpolicy).

The mostsuccessfultreatmentsof this kind areall variationson a formulationcalled
noninterferencethat wasintroducedby GoguenandMeseguerin 1992[33], althoughthe
key ideawasadumbratedfive yearsearlier[30]. That key ideais that if thereis no flow
of informationfrom onesecurityclassificationto another, thenthebehavior perceived by
subjectsof the second(“lower”) classificationshouldbe independentof any activity by
subjectsof the first (“higher”) classification.In particular, the behavior perceived by the
secondclassificationshouldbeunchangedif all activity by thefirst is removed.Theprecise
detailsdependon theformalmodelof computationemployed,but thetraditionaltreatment
usesa finite automatonasthesystemmodel: theautomatonchangesstateandproducesan
outputin responseto inputs,which arelabeledwith their securitylevel. A relation� �

indicateswhetherlevel � is allowed to convey informationto or interfere with level
 ; its
negationis thenoninterferencerelation !� , whichisconsideredaspecificationof thedesired
securitypolicy. A sequenceof inputs " is purged for level � by removing all inputsfrom
levels that may not interferewith � ; this purgedinput sequenceis denoted"$#%� . Starting

4.1. DataandInformationFlow 41

from someinitial state &(' , the stateof the automatonafter consumingthe input sequence
" is)+*-,.�/& '10 ".� , while that after consumingthe purged sequenceis)+*-,.�/& '10 ".#%�2� . The
noninterferenceformulationof securitythenrequiresthat any level � input mustproduce
thesameoutputin both thesestates.The intuition is that this ensuresthatno experiment
conductedat level � canreveal anything aboutthe presenceor absenceof earlier inputs
from levelsthatshouldnot interferewith � .

Thenoninterferenceformulationof securityis statedin termsof asystem’s behavior in
responseto asequenceof inputs.An unwindingtheoremreducesthis to threeconditionson
its behavior with respectto individual inputs.Theseconditionsarestatedin termsof each
level’s “view” of thesystemstate(intuitively, if thesystemstateis thoughtof asconsisting
of differentcomponents“belonging”to eachlevel, thenlevel � ’sview of thestatecomprises
its own componentandthecomponentsof all the levels thatareallowed to interferewith
�). If thelevel � views of two statesarethesame,we saythesestates“look thesameto � ”
(technically, this is anequivalencerelationonstates).

Output Consistency: if two stateslook thesameto � , thena level � input mustproduce
thesameoutputin bothstates.

Step Consistency: if two stateslook thesameto � , thenthestatesthatresultfrom applying
thesameinput (of any level) to bothstatesmustalsolook thesameto � .

Local Respect (for �): thesystemstatemustlook thesameto � beforeandafteraninput
of a level thatis noninterferingwith � .

It is straightforward to prove that theseconditionsaresufficient to imply noninterference.
Theproof is formalizedandmechanicallyverifiedin oneof thetutorialsfor thePVSveri-
ficationsystem[94].

A connectionbetweenthenoninterferenceandaccesscontrolnotionsof securitycanbe
establishedby interpretingtheunwindingconditionsin accesscontrol terms.We suppose
that the systemstateis a function from objectsto valuesandthateachobjecthasa level.
Inputsof level � arereinterpretedasactionsperformedby a subjectof level � . Thenwe
supposethataccesscontrolenforcesthefollowing ReferenceMonitor Assumptions.

3 Theoutputproducedby anactiondependsonly on thevaluesof objectsto which the
subjectperformingtheactionhasreadaccess.

3 If anactionchangesthevalueof any object,thenits new valuedependsonly on the
valuesof objectsto which theperformingsubjecthasreadaccess.

3 An actionmaychangethevaluesonly of objectsto whichtheperformingsubjecthas
write access.

With theseassumptions,accesscontrolcanenforcetheunwindingconditionsby setting
up thecontrolsasfollows (theseareessentiallytheBell andLa Padulaconditions).

42 Chapter4. ComparisonWith ComputerSecurity

1. If �4�
 , thenthe objectsto which subjectsof level � have readaccessmustbe a
subsetof thoseto whichsubjectsof
 have readaccess,and

2. A subjectof level � mayhave write accessto anobjectfor which asubjectof level

hasreadaccessonly if �5�6
 .

The connectionbetweenthe two formulationsis establishedby interpretinga subject’s
“view” as the valuesof all the objectsto which it has readaccess. A proof is given
in [90, section2.1]. The proof requiresformalizing the referencemonitor assumptions,
which is surprisinglydifficult to do correctly(PopekandFarber[83], whofirst recognized
theimportanceof theseconditions,madeerrorsin formalizingthem).

Contraryto early expectations(e.g., reference34), standardnoninterferencerequires
the interferesrelation � to be transitive [90]. All suchtransitive relationsareequivalent
to multilevel securitypolicies,andthetwo conditionson accesscontrolenumeratedin the
previous paragraphare likewise equivalent to the Bell andLa Padulapropertiesin these
cases[90, section3.1].

Becausethey imply apartialorderingonsecuritylevels,multilevel securitypoliciesdo
not seemto capturethe concernsof partitioningall that closely, but intransitivepolicies
(that is, thosewhere� is not requiredto betransitive) seemmorepromising.Intransitive
policiescapturetheadditionalsecurityrestrictionsknown aschannelcontrol [88] or type
enforcement[13], which areconcernednot only with whetherinformationmayflow from
oneplaceto anotherbut with thepathsthroughwhichit mayflow. Channelcontrolsecurity
policiescanberepresentedby directedgraphs,wherenodesrepresentsecuritydomainsand
edgesindicatethedirectinformationflowsthatareallowed.Theparadigmaticexampleof a
channel-controlproblemisacontrollerfor end-to-endencryption,asportrayedin figure4.1.

Plaintext messagesarriveat theRED sideof thecontroller;theirbodiesaresentthrough
theencryptiondevice (CRYPTO); their headers,whichmustremainin plaintext sothatnet-
work switchescan interpretthem,aresentthroughthe BYPASS. Headersandencrypted
bodiesarereassembledin theBLACK sideandsentoutontothenetwork. Thesecuritypol-
icy we would like to specifyhereis therequirementthattheonly channelsfor information
flow from RED to BLACK mustbethosethroughtheCRYPTO andtheBYPASS (it is a sepa-
rateproblemto specifywhatthosecomponentsmustdo). Noticethat theedgesindicating
allowedinformationflows in thisexamplearenot transitive: informationis allowedto flow
from RED to BLACK via theCRYPTO andBYPASS, but mustnotdosodirectly.

Noninterferencecanbe extendedto intransitive policiesby substitutinga morecom-
plicatedpurge function for the standardone. When �7!�
 , the usualrequirementis that
deletingall actionsperformedby � shouldproducenochangein thebehavior of thesystem
asperceived by
 . This is too strongif we alsohave the assertions�8� 9 and 9:�
 .
Surelywe shouldonly deletethoseactionsof � that arenot followed by actionsof 9 (in
the CRYPTO example,RED, BLACK, andBYPASS or CRYPTO take the rolesof � 0
 0 9 , re-
spectively). This insight,anda definitionof thegeneralizedpurge function,weregivenby
HaighandYoung[37], togetherwith correspondingunwindingconditions.Unfortunately,

4.1. DataandInformationFlow 43

;;

<

;

=

;

Crypto

BlackRed

Bypass

Figure4.1: AllowedInformationFlows for anEncryptionController

oneof their unwindingconditionsis incorrect;correctconditionsweregiven,andformally
verified,by Rushby[90]. Theseunwindingconditionssimply replacethestepconsistency
conditionby aweakform.

Weak Step Consistency: if two stateslook thesameto � , andalsolook thesameto
 , then
thestatesthatresultfrom applyingthesameinput of level
 to bothstatesmustalso
look thesameto � .

Thecorrespondingconditionsfor accesscontrolenforcementconsistsimply of thesecond
of thetwo conditionsgivenonpage41.�

Theformalstatementsof standardandintransitive noninterferenceuseanautomatonas
theirformalsystemmodelandthereforeapplystraightforwardlyonly to asinglemonolithic
system.To examinetheinteractionsof multiple,distributedsystems,moregeneralmodels
arerequired—forexample,transitionrelationsor processalgebras—andit is necessaryto
admit nondeterminism.Nondeterminismarisesnaturally in concurrentsystemsbecause
thereis generallyno system-widecoordinationof the rateat which differentcomponents
proceed;hence,interactionscanoccurin differentordersin otherwiseidenticalruns,and
thebehaviorsperceivedin thoserunscandivergemarkedly(thisis why it is sohardto debug
�
This might seemto suggestthatthefirst conditionon page41 is impliedby thesecondwhenthepolicy is

transitive. In fact,this is notnecessarilysofor agivensetof accesscontrols,but it will bepossibleto construct
anotherset(i.e.,a differentassignmentof readandwrite permissions)thatwill satisfybothconditions.This is
aconsequenceof the“nestingproperty”for transitivepolicies[90, Theorem5].

44 Chapter4. ComparisonWith ComputerSecurity

concurrentsystems).To accommodatethis system-level nondeterminism,noninterference
for concurrentsystemsis formulatedto requirethatthesetof behaviors possiblein a given
scenariois unchangedat a given level wheninteractionsarepurgedin somesuitableway.
Oneproblemwith thisformulationis thatit doesnotdefineapropertyin thetechnicalsense.

A systemcanbeidentifiedwith thesetof runsthat it canproduce(a run is a sequence
or “trace” of inputs,outputs,andothersignificantinteractions).A specificationis likewise
a setof runs,anda systemsatisfiesa specificationif its runsarea subsetof thoseof the
specification.A setof runsis calleda property, sothatspecificationsandsystemscanboth
be consideredproperties.Specialclassesof propertiescalledsafetyand livenessplay an
importantrole in formal methodsof analysis,andit canbeshown thatevery propertycan
beexpressedastheconjunctionof asafetyandalivenessproperty[5]. Security, however, is
nota propertyin thissense:it is nota setof runs,but asetof setsof runs[73]. Thismeans
that standardmethodsfor deriving or verifying an implementationthat satisfiesa given
specificationdonotwork for security—becausethesemethodsapplyonly to properties.

Anotherproblemwhennoninterferenceis extendedto concurrentsystemsin themanner
just describedis that it is not compositional: that is, two systemsindividually satisfying
somenoninterferencepolicy canbe combinedto yield a compositesystemthat doesnot
satisfythatpolicy [71]. Many alternativeformulationsof noninterferencewereproposedfor
concurrentsystemsin theattemptto overcomethisunattractive result.Unfortunately, those
that were compositionalwere either very unintuitive (having no plausibleinterpretation
asa naturalsecurityconcern)or wereexcessively restrictive (andunlikely to be satisfied
by practicalsystems).A partial resolutionwasprovided by Roscoe,who suggestedthat
the difficulty wasdueto a failure to appreciatethe significanceof nondeterminismwhen
contemplatingsecurity[86].

Theproblemwith nondeterminismis thatit cansometimesberesolvedin awaythatde-
pendsonunsecureinformationflow. A typicalexamplewouldbeasystemwith two levels,
LOW andHIGH whereHIGH is requiredto benoninterferingwith LOW. Inputsto LOW cause
the outputsodd or even to be generatednondeterministicallyunlesstherehave beenhigh
inputs,in whichcasetheLOW outputis oddor evenaccordingto theoddnessor evennessof
thelastHIGH input(theHIGH inputsareassumedto bepositive integers).Thisexamplesat-
isfiesmostdefinitionsof noninterferencefor concurrentsystemsbecausethesetof possible
behaviors observableat the LOW level is unchangedby thepresenceor absenceof HIGH-
level activity—yet it plainly violatesany reasonableinterpretationof “securesystem.” The
violation is exposedwhenthesystemis composedwith onethatgeneratesonly evennum-
berson theHIGH input. Roscoeexcludedsuchparadoxicalconstructionsby requiringtheir
componentsystemsto have behavior that is deterministicat eachsecuritylevel. Roscoe’s
insistenceon determinismalsosuggestsa resolutionto anotherdifficulty thathadplagued
mostearliertreatments:noninterferenceis not preservedunderrefinement.Refinementin
this (processalgebra)context meansa reductionin nondeterminism,andit posesthesame
challengeto noninterferenceascomposition.Roscoe’s treatmentis couchedin theformal-
ismof CSP[39], whereaprocessis deterministicif it is freeof “divergence”andnever has

4.1. DataandInformationFlow 45

a choicebetween“accepting”and“refusing” anevent [87]. Therelationshipbetweenthis
treatmentandtraditional interpretationsof determinismandsecurityin statemachinesis
onethatrequiresclarification.

Thereis anothersenseof refinementfor which securityin general(not only its non-
interferenceformulations)is not preserved. This is the notion of refinementin the sense
of elaboration,wheremoremechanismsanddetailsareaddedto a specificationin order
to obtainan implementationthat is effectively executable.Under the standardnotion of
correctnessfor suchrefinements,it is necessaryonly to show that the propertiesof the
specificationareimplied by thoseof the implementation:the implementationis required
to do at leastasmuchasthe specification,but it is not prohibitedfrom doing more. An
implementationof the specificationsuggestedby figure 4.1, for example,must provide
at leastthe four communicationschannelsshown, but the standardnotion of correctre-
finementwould not prevent it addinga direct communicationschannelbetweenRED and
BLACK—despitethe fact that theabsenceof sucha channelis thewholepoint of the de-
sign. For security, it is necessaryto constrainthenotionof correctrefinementso that the
implementationdoesnot addcapabilitiesthat areabsentin the specification.Clearly the
implementationmustcontainmoredetailsandmechanismsthanthe specification(elseit
is surelynot an implementation),but for securerefinementthesemechanismsanddetails
musthave no consequenceson the behavior that canbe perceived at the originally speci-
fied interfaces.Theformalcharacterizationof this requirementis givenin termsof faithful
interpretationsandis dueto Moriconi, Qian,Riemenschneider, andGong[75].

4.1.3 Separability

UsingRoscoe’s perspective, anadequatetreatmentfor distributedchannel-controlsecurity
might be achieved by taking the nondeterministiccompositionof deterministicsystems,
eachcharacterizedby intransitive noninterference.Somearchitecturalrefinementto amore
detailedimplementationlevel could beobtainedusingfaithful interpretations,andthe re-
strictionswithin eachsystemcouldthenbeenforcedby accesscontrol,usingthederivation
from theunwindingconditionsdescribedearlier. (As farasI know, nobodyhasdetermined
whethertheformaldetailsof thevariousmodelssupportthiscombination,norwhethersat-
isfactorypropertiescanbederived for thecombination,but it seemsplausible.)However,
the resultingmodelwould still be ratherabstractfor the purposeof deriving, for exam-
ple,conditionsonhow asingleprocessorshouldimplementtheRED, BYPASS, andBLACK

componentsof figure4.1(theCRYPTO is usuallyanexternaldevice).
An approachcalledseparability wasproposedfor this problemby Rushby[88]. The

idea is easiestto understandwhenno communicationsareallowed betweenthe separate
components.Thenthe ideais that the implementationshouldprovide theappearanceof a
separate,dedicatedprocessorto eachcomponent.Therealprocessoris timeshared,sothat
it sometimesperformsinstructionson behalfof onecomponentandsometimeson behalf
of another. The requirementsfor separabilitycan be expressedin termsof abstraction

46 Chapter4. ComparisonWith ComputerSecurity

functionsthatgive the“view” of theprocessorperceivedby eachcomponent.For example,
if we have just two components,RED andBLACK, and >@? and >@A denotetheir respective
abstractionfunctions,thentherequirementwhentheprocessoris executinginstructionson
behalfof RED is thatthefollowing diagramshouldcommute.

< ;

;

<

> ?> ?

B � ?

B �
Thatis to say, thestatechangein thephysicalprocessorcausedby executingtheinstruction
op shouldbeconsistentwith executionof the “abstract”operationC+D ? on RED’s view of
theprocessor. At thesametime, BLACK ’s view of theprocessorshouldbeunchanged,as
expressedby thefollowing diagram.

;B �

>@A >@A

E F

BecauseI/O devicescandirectlyobserve andchangeaspectsof therealprocessor’s in-
ternalstate(by readingandwriting its deviceregisters,for example),andcanalsoinfluence
its instructionsequencingmechanism(by raisinginterrupts),theactivity of thesedevices
is relevant to security. Consequently, we must imposeconditionson their behavior. Ex-
pressedinformally (andonly from the RED component’s point of view), theseconditions
arethefollowing.

1. If > ? �HGI�KJL> ? �HMN� andactivity by a RED I/O device changesthe stateof the real
processorfrom G to G2O , andthesameactivity wouldalsochangeit from M to M-O , then
> ? �HG O �PJQ> ? �HM O � (i.e., statechangesin the RED view causedby RED I/O activity
mustdependonly on theactivity itself andthepreviousstateof theRED view).

2. If activity by a non-RED I/O device changesthestateof therealprocessorfrom G to
M , then >@?R�HGI�PJS>@?T�HMN� (i.e., non-RED I/O devicescannotchangethe stateof the
RED view).

3. If > ? �HGI�UJV> ? �HMN� , thenany outputsproducedby RED I/O devicesmustbethesame
in bothcases.

4. If > ? �HGI�WJX> ? �HMN� , thenthenext operationexecutedonbehalfof theRED component
mustalsobethesamein bothcases.

4.2. Integrity Policies 47

Separabilitywasproposedbeforeformal treatmentsof concurrentsystemshad been
fully developed,so the justificationof the above conditionspresentedin [89] is not fully
satisfactory. Furthermore,neitherthe informal nor the formal presentationdealswith al-
lowedcommunicationschannelsbetweencomponents.Theproposalin [88] is to remove
the mechanismsintendedto provide the desiredcommunicationschannelsand thenver-
ify, usingthe conditionsabove, that the componentsof the resultingsystemareisolated.
Jacob[48] notedthat this doesnot excludea particularkind of covert channel(calleda
“legitimate”channel)thatpiggybacksundesiredclandestinecommunicationon thedesired
channel.

A moremoderntreatment[93] derivestheconditionsfor separabilitywith communica-
tions from thosefor intransitive noninterference.This treatmentweakensthe “triangular”
commutative diagramof strict separabilityso that it appliesonly if RED !� BLACK (this
derivesfrom the“local respectfor !� ” unwindingcondition)and,whenRED � BLACK, it
replacesthe“rectangular”diagramby thefollowing condition(whichis basedonthe“weak
stepconsistency” unwindingcondition).

> ? �HGI�UJV> ? �HMN��YZ> A �HGI�UJV> A �HMN�\[]> A �^C+DW�HGI�^�WJV> A �^C+DU�HMN�^�

Notice that this last conditiondoesnot usethe abstractoperationB � ? that appearsin the
“rectangular”commutative diagram. This is becausewe do not really carewhat this op-
erationis, only that > A �^C_DU�HGI�^� shouldbe functional in > A �HGI� , and the formula above
expressesthisdirectly.

4.2 Integrity Policies

The previous sectionshave consideredcomputersecuritynotionsrelatedto the undesired
disclosure of information.Therearesimilarnotionsrelatedto themodificationof informa-
tion, wherethemainconcernis to ensureintegrity of theprotectedinformation.Integrity is
relatedto the“reliability” or “quality” of information:informationof high integrity should
not beallowedto becomecontaminatedby informationof low integrity. This requirement
canbe treatedasa strict dual to the Bell andLa Padulasecuritypolicy (that is, a subject
canonly read“up” andwrite “down” in integrity level) andis known astheBiba integrity
policy [12].

Clark andWilson [15] arguedthattheintegrity of informationis alsoa functionof the
operationsthatareperformedonit andtheidentityof thosewhoinvoke thoseoperations.A
usershouldnotbeableto invokearbitraryoperationsonhigh-integrity information,but only
certainwell-formedtransactions, andtheadmissibletransactionsmight bedeterminedby
thestateof thedata,theidentityof theuser, andotherfactors.In commercialenvironments,
the transactionsavailable to a userareoften governedby requirementsfor separation of
duties: auserwhoauthorizesapurchaseshouldnotbethesameastheonewhoselectsthe
vendor.

48 Chapter4. ComparisonWith ComputerSecurity

Othersimilarmodelsfor integrity have beenproposed,andtherehasbeenconsiderable
investigationof whethertheseor theClark-Wilson modelcanbeenforcedby adaptations
of securitymechanismsdevelopedto controldisclosure[79].

4.3 Timing Channels and Denial of Service

Most work on formalizing securityhasfocusedon the dataand informationflow issues
describedin theprevioussections.In partitioningterms,theseall concernissuesin spatial
partitioning.Thereare,however, two topicsin computersecuritythatcorrespondto issues
in temporalpartitioning:timing channelsanddenialof service.

Timing channels(they were called “covert channels”when first identified [60]) are
mechanismsfor clandestineinformationflow thatwork by modulatingthetimewhensome
eventsoccuror therateat which they occur. For example,aprocesscanchoosewhetheror
not to give up its time sliceearly. If only two processesarerunning,theotherprocesscan
usethetimeat which it receivescontrolto infer thechoicemadeby theotherprocess[60].
More generally, the decisionsof a real-timeschedulercan be manipulatedto provide a
channelfor informationflow [16]. Othertiming channelsmodulatetheloador contention
on somesystemresource(e.g.,the systembus [42]) or parametersaffecting performance
(e.g.,thetime to seeka disk trackis affectedby whetherthepreviousseekwasto a nearby
or distanttrack[50]; thetimeto accessamemorypagewill beaffectedby whetheror not it
waspreviouslyswappedout to disk [95]).

Wherethey cannotberemoved,timing channelsaretypically renderedharmlesseither
by reducingcontentionor by introducingrandomnessinto the behavior of the resource
beingmanipulated[36,68,104] or by reducingtheprecisionof thevarious“clocks” (e.g.,
time-of-dayclocks, timers, instructionloops, asynchronousI/O performance)by which
a processcanmeasurethe passageof time [42]. Thesemeasuresdo not block a timing
channel,but they introducesufficientnoisethatits bandwidthis reducedto acceptablelevels
(typically lessthan10bitspersecond).

Whereasthe concernsof partitioningandsecurityarequite closein the caseof stor-
agechannels,they diverge for timing channels.Thevery existenceof a timing channelis
unacceptablein a partitionedsystem,sinceit indicatesthat onepartition canchangethe
temporalbehavior observedby another. Similarly, theremediesusedin securityto reduce
thebandwidthof timing channelsareworsethantheoriginalproblemfrom theperspective
of partitioningbecausethey introducefurtherunpredictabilityinto systembehavior.

Formal analysisof pure timing channelsis generallybasedon information theory
(e.g.,[76,77]), but thereis disputeoverwhethersomechannels(e.g.,thediskarmchannel)
really aretiming channels,storagechannels,or a combinationof the two [114]. Conse-
quently, formaldescriptionandanalysisof suchchannelsis difficult, andinformalmethods
aregenerallyemployed. As describedin Section3.1.2,staticpartitionschedulingrequires
implementationchoices(strict determinism,no concurrentI/O) that eliminatethemecha-
nismsthatcouldserve astiming channels.In systemsthatdonot requiresuchstrict tempo-

4.4. Applicationto Partitioning 49

ral partitioning,thetechniquesusedin computersecurityto identify timing channels[114]
mighthelprevealunexpectedsourcesof temporalinterference.

Denialof servicecanbeseenasanextremetypeof timingchannel:theperceivedperfor-
manceof someresourceis reducedto anunacceptablelevel, ratherthanmerelymodulated.
In thelimit, theresourcemaybecomeunavailableto someprocesses.Thepossibilityof this
limiting caseis usuallyequivalentto theexistenceof astoragechannel.For example,if file
spaceis sharedbetweentwo processes,thenonecandeny serviceto theotherby consuming
all availablespace—but this is alsoachannelby whichoneprocesscanconvey information
to another(thereceiving channelattemptsto createafile: successis takenasa1 bit, failure
asa0; thetransmittingprocessdeterminestheoutcomeby consumingandreleasingspace).
Becausedenialof serviceis relatedto timing andstoragechannels,it canbepreventedby
enforcingstrictspatialandtemporalpartitioning.In general-purposesystems,thestrictness
of thesemechanismsmaybeconsideredundesirable:they wouldrequire,for example,fixed
per-processallocationsof file space.Attemptsto provide flexible resourceallocationwith-
out incurringtherisk of denialof servicerequire“useragreements”thatplacelimits on the
demandsthateachprocessmayplaceoneachresourceandthatareenforcedby a“resource
allocationmonitor” or “denialof serviceprotectionbase”[64,74] (thesearesomewhatsim-
ilar to the quality of serviceideasusedin multimediasystems[102]). Formalizationsof
theseapproachesarestatedin termsof fair or maximumwaiting times[32,115].

Thesemore elaboratetreatmentsof denial of serviceare probablyunacceptablein
strictly partitionedsystemsbecausethey still allow the responseperceived by oneappli-
cationto be influenced,even if not denied,by another. They mayalsobeunnecessaryin
partitionedsystemsbecausetherequirementsfor temporalpartitioningseemstrongerthan
thosefor denialof service:thus,denialof serviceshouldautomaticallybeexcludedin any
systemthatprovidesstrict temporalpartitioning.Formal justificationfor this claim would
beaninterestingandworthwhileexercise.

4.4 Application to Partitioning

The formal models for computersecurity reviewed in the previous sectionsprovide
several ideas that seemapplicableto partitioning. In particular, the central idea of
noninterference—thatthe behavior perceived at onesecuritylevel shouldbe independent
of actionsat higherlevels—canbereinterpretedin thecontext of partitioningandfault tol-
eranceby supposingthatordinarybehavior shouldbeindependentof faults: that is, faults
areactionsinvoked by the environment,which is at a level that shouldbe noninterfering
with thelevel of ordinaryusers.This approachhasbeenexploredby Weberandby Simp-
son[99,100,110,111]. It workswell asa specificationfor partitioningwhenthepartitions
arecompletelyisolated(in which caseit is equivalentto thestrict form of separability):if
we have two partitionsA andB thatdo not communicatein any way, thensayingthat the
behavior of B mustbe independentof thatof A is a goodway to saythat faultsin A must
not affect B. It works lesswell whenA hasto communicatewith B: noninterferencesays

50 Chapter4. ComparisonWith ComputerSecurity

only thatA interfereswith B anddoesnotdiscriminatebetweenlegitimateinterference(the
known communicationstream)andillegitimate(e.g.,changesto B’sprivatedata).

This exampleshows that theconcernsof securityare,in a certainsense,too coarseto
capturethoseof partitioning:securityis concernedonly with whetherinformationcanflow
from A to B, not with how the flow canaffect B. Channelcontrol and its formalization
by intransitive noninterferencedoesallow the desireddiscrimination,but only at the cost
of introducinga third componentC to representthe buffer usedfor the intendedA to B
communicationstream. Using intransitive flows, we would specify

� � `Q� � and� !� � . This approachseemsto capturesomeof the concernsof partitioning,but the
introductionof thethird componentis artificial andunattractive.

A morefundamentalobjectionto the ideathat noninterferencecanserve asa model
for partitioningis that partitioningis a safetyproperty(becauseviolationsof partitioning
occurat specificpointsin specificruns)whereasnoninterferenceis not evena “property”
(recall page44). This suggeststhat noninterferenceis an unnecessarilysubtlenotion for
partitioning,andthatsomethingsimplershouldsuffice.

Thereis anothersensein which the concernsof securitydiverge from thoseof parti-
tioning: securityassumesthatall componentsareuntrustworthy andthat themechanisms
of securitymustbesetup sothatonly allowedinformationflowsoccur, nomatterhow the
componentsbehave. In partitioning,however, we areconcernedonly with misbehavior by
faultypartitionsandarewilling to trustnonfaultycomponentsto safeguardtheirown inter-
ests.For example,supposethattwo components

�
and � arestaticallyscheduledandthat

eachbegins executionat a known entry point eachtime it is scheduled(this is the restart
modelof partitionswapping).Supposefurtherthateachhasanareaof “scratchpad”mem-
ory thatis assumedto be“dirty” at thestartof eachexecution:thatis, thesoftwarein each
of A andB is verifiedto performits functionswith noassumptionsontheinitial contentsof
thescratchpadmemory. Finally, supposethatA andB arerequiredto beisolatedfrom one
another. ThenthescratchpadcanbesharedbetweenA andB underthepartitioninginter-
pretationof isolation,but not underthecorrespondingsecurityinterpretation.Thereason
is that whenB receivescontrol, the scratchpadmay containdatawritten by A; underthe
securityinterpretationwemayassumenothingaboutevenanonfaulty B (in particular, that
it will not “peek” at thedataleft by A), andsothescratchpadis a channelfor information
flow from A to B in violationof theisolationsecuritypolicy. In thepartitionedsystem,we
accept(or specify)thata nonfaulty B doesnot do this,andour concernis to besurethatA
(even if faulty) doesnot write outsideits own memoryor thescratchpad.Noticethat this
arrangementwould not be safein the restorationmodelof partitionswapping,becauseA
couldpreemptB, changeits scratchpad,andthenallow B to resume.

Theseexamplesdemonstratethat the concernsof partitioningandsecurity, although
related,do not coincide. Thus,althoughformal treatmentsof partitioningmay possibly
be developedusingideasfrom computersecurity, they cannotbebaseddirectly on exist-
ing securitymodels.Researchto develop formal modelsof partitioning,andto refinethe
distinctionsbetweenpartitioningandsecurity, wouldbeilluminatingfor bothfields.

Chapter 5

Conclusion

We have reviewedsomeof themotivationfor integratedmodularavionicsandtherequire-
mentfor partitioningin sucharchitectures.We thenconsideredmechanismsfor achieving
partitioning;the interactionsbetweenthesemechanismsandthosefor systemstructuring,
scheduling,andfault tolerance;andissuesin providing assurancefor partitioning.Finally,
we reviewedwork in computersecuritythathassimilarmotivationto partitioning.

Althoughpartitioningis averystrongrequirementandimposesmany restrictions,there
is asurprisinglywiderangeof architecturalchoicesthatcanachieve adequatepartitioning.
Thespaceof thesedesignchoicesis seenmostclearlyin scheduling,wherebothstaticand
dynamicschedulesseemableto combineflexibility with highly assuredpartitioning.

The strongestneedfor future work is to develop the narrative descriptiongiven here
intoamathematicalframework thatwill permitrigorousanalysisof architecturalchoicesfor
partitionedsystemsandprovideastrongbasisfor theassuranceof individualdesigns.There
is alreadysomesignificantwork in this direction[24,26,106,113], but greatopportunities
remain,particularlywith respectto distributedsystemsandtemporalpartitioning. We are
examiningthesetopicsin currentwork andwill describeour resultsin a successorto this
report.

51

52

References

1. ARINCSpecification651: DesignGuidancefor IntegratedModularAvionics. Aero-
nauticalRadio,Inc,Annapolis,MD, November1991.Preparedby theAirlines Elec-
tronicEngineeringCommittee.

2. ARINCSpecification659: BackplaneDataBus. AeronauticalRadio,Inc, Annapolis,
MD, December1993.Preparedby theAirlines ElectronicEngineeringCommittee.

3. ARINCSpecification629: Multi-TransmitterData Bus; Part 1, Technical Descrip-
tion (with fivesupplements);Part 2,ApplicationGuide(with onesupplement). Aero-
nauticalRadio, Inc, Annapolis,MD, December1995/6. Preparedby the Airlines
ElectronicEngineeringCommittee.

4. ARINCSpecification653: AvionicsApplicationSoftware Standard Interface. Aero-
nauticalRadio,Inc, Annapolis,MD, January1997. Preparedby theAirlines Elec-
tronicEngineeringCommittee.

5. B. Alpern andF. B. Schneider. Defining liveness.InformationProcessingLetters,
21(4):181–185,October1985.

6. GregoryR. AndrewsandRichardP. Reitman.An axiomaticapproachto information
flow in programs. ACM Transactionson ProgrammingLanguages and Systems,
2(1):56–76,January1980.

7. C. R.Attanasio,P. W. Markstein,andR.J.Phillips. Penetratinganoperatingsystem:
A studyof VM/370 integrity. IBM SystemsJournal, 15(1):102–116,1976.

8. AlgirdasAvižienisandYutaoHe. Microprocessorentomology:A taxonomyof de-
signfaultsin COTSmicroprocessors.In WeinstockandRushby[112], pages3–23.

9. HenryM. Ballard,David M. Bicksler, ThomasTaylor, andH. O. Lubbes.Ensuring
processsecurityin theALS/N environment. In COMPASS’86 (Proceedingsof the
First AnnualConferenceon ComputerAssurance), pages60–68,IEEE Washington
Section,Washington,DC, July1986.

53

54 References

10. D. E.Bell andL. J.LaPadula.Securecomputersystem:UnifiedexpositionandMul-
tics interpretation.TechnicalReportESD-TR-75-306,Mitre Corporation,Bedford,
MA, March1976.

11. BrianBershad,StefanSavage,Przemyslaw Pardyak,EminGunSirer, David Becker,
Marc Fiuczynski,CraigChambers,andSusanEggers.Extensibility, safetyandper-
formancein theSPINoperatingsystem.In FifteenthACM SymposiumonOperating
SystemPrinciples, pages267–284,CopperMountain,CO, December1995. (ACM
OperatingSystemsReview, Vol. 29,No. 5).

12. K. J. Biba. Integrity considerationsfor securecomputersystems.TechnicalReport
MTR 3153,Mitre Corporation,Bedford,MA, June1975.

13. W. E.BoebertandR.Y. Kain. A practicalalternativetohierarchicalintegrity policies.
In Proceedings8thDoD/NBSComputerSecurityInitiativeConference, pages18–27,
Gaithersburg, MD, September1985.

14. Mikhail Chernyshov. Post-mortemonfailure. Nature, 339:9,May 4, 1989.

15. David D. Clark andDavid R. Wilson. A comparisonof commercialandmilitary
computersecuritypolicies. In Proceedingsof theSymposiumon Securityand Pri-
vacy, pages184–194,IEEEComputerSociety, Oakland,CA, April 1987.

16. RaymondK. Clark,DouglasM. Wells,Ira B. Greenberg, PeterK. Boucher, TeresaF.
Lunt, PeterG. Neumann,andE. DouglasJensen.Effectsof multilevel securityon
real-timeapplications.In Proceedingsof theNinthAnnualComputerSecurityAppli-
cationsConference, pages120–129,IEEE ComputerSociety, Orlando,FL, Decem-
ber1993.

17. HenryS.F. CooperJr. Annalsof space(theplanetarycommunity)—part1: Phobos.
New Yorker, pages50–84,June11,1990.

18. Henry S. F. CooperJr. TheEveningStar: VenusObserved. FarrarStrausGiroux,
New York, NY, 1993.

19. RobertD. CulpandGeorgeBickley, editors.Proceedingsof theAnnualRocky Moun-
tain Guidanceand Control Conference, Advancesin the Astronautical Sciences,
Keystone,CO,February1993.AmericanAstronauticalSociety.

20. Sadegh Davari andLui Sha. Sourcesof unboundedpriority inversionsin real-time
systemsand a comparative study of possiblesolutions. ACM Operating Systems
Review, 26(2):110–120,April 1992.

21. D. E. DenningandP. J. Denning. Certificationof programsfor secureinformation
flow. Communicationsof theACM, 20(7):504–513,July1977.

References 55

22. David L. Detlefs. An overview of the ExtendedStaticCheckingsystem. In First
WorkshoponFormal Methodsin Software Practice(FMSP’96), pages1–9,Associ-
ationfor ComputingMachinery, SanDiego,CA, January1996.

23. Profibus Standard: DIN 19245. DeutscheIndustrieNorm, Berlin, Germany. Two
volumes.

24. Ben L. Di Vito. A formal modelof partitioning for integratedmodularavionics.
NASA ContractorReportCR-1998-208703,NASA Langley ResearchCenter, Au-
gust1998.

25. EileenM. Dukes.Magellanattitudecontrolmissionoperations.In CulpandBickley
[19], pages375–388.

26. BrunoDutertreandVictoriaStavridou. A modelof non-interferencefor integrating
mixed-criticalitysoftwarecomponents.In WeinstockandRushby[112], pages301–
316.

27. The interfacesbetweenflightcrews andmodernflight decksystems.Reportof the
FAA humanfactorsteam, FederalAviation Administration, 1995. Available at
http://www.faa.gov/avr/afs/interfac.pdf.

28. SystemDesignandAnalysis. FederalAviation Administration,June21, 1988. Ad-
visoryCircular25.1309-1A.

29. RTCAInc., DocumentRTCA/DO-178B. FederalAviation Administration,January
11,1993.AdvisoryCircular20-115B.

30. R. J.Feiertag,K. N. Levitt, andL. Robinson.Proving multilevel securityof asystem
design. In SixthACM Symposiumon Operating SystemPrinciples, pages57–65,
November1977.

31. BryanFord,GodmarBack,Greg Benson,JayLepreau,Albert Lin, andOlin Shivers.
TheFlux OSKit: A substratefor kernelandlanguageresearch.In SOSP-16[101],
pages38–51.

32. Virgil D. Gligor. A noteon denial-of-servicein operatingsystems.IEEE Transac-
tionsonSoftware Engineering, SE-10(3):320–324,May 1984.

33. J.A. GoguenandJ.Meseguer. Securitypoliciesandsecuritymodels.In Proceedings
of the Symposiumon Securityand Privacy, pages11–20,IEEE ComputerSociety,
Oakland,CA, April 1982.

34. J. A. GoguenandJ. Meseguer. Inferencecontrol andunwinding. In Proceedings
of the Symposiumon Securityand Privacy, pages75–86,IEEE ComputerSociety,
Oakland,CA, April 1984.

56 References

35. B. D. Gold,R. R. Linde,andP. F. Cudney. KVM/370 in retrospect.In Proceedings
of the Symposiumon Securityand Privacy, pages13–23,IEEE ComputerSociety,
Oakland,CA, April 1984.

36. JamesW. Gray, III. Onintroducingnoiseinto thebus-contentionchannel.In SSP’93
[45], pages90–98.

37. J. ThomasHaigh and William D. Young. Extendingthe noninterferenceversion
of MLS for SAT. IEEE Transactionson Software Engineering, SE-13(2):141–150,
February1987.

38. HermannHärtig,MichaelHohmuth,JochenLiedtke,andSebastianScḧonberg. The
performanceof � -kernel-basedsystems.In SOSP-16[101], pages66–77.

39. C. A. R. Hoare. CommunicatingSequentialProcesses. PrenticeHall International
Seriesin ComputerScience.PrenticeHall, HemelHempstead,UK, 1985.

40. Harry Hopkins. Fit andforgetfly-by-wire. Flight International, pages89–92,De-
cember3, 1988.

41. KennethHoymeandKevin Driscoll. SAFEbusTM. IEEE AerospaceandElectronic
SystemsMagazine, 8(3):34–39,March1993.

42. Wei-Ming Hu. Reducingtiming channelswith fuzzy time. In SSP’91[44], pages
8–20.

43. M. Huguet. The protectionof the processorstatusword of the PDP-11/60. ACM
ComputerArchitecture News, 10(4):27–30,June1982.

44. Proceedingsof the Symposiumon Securityand Privacy, Oakland,CA, May 1991.
IEEEComputerSociety.

45. Proceedingsof the Symposiumon Securityand Privacy, Oakland,CA, May 1993.
IEEEComputerSociety.

46. Fault Tolerant ComputingSymposium25: Highlightsfrom25 Years, Pasadena,CA,
June1995.IEEEComputerSociety.

47. ISO Standard 11898: Road Vehicles—Interchange of Digital Information—
Controller AreaNetwork(CAN)for High-SpeedCommunication. InternationalStan-
dardsOrganization,Switzerland,November1993.

48. JeremyJacob. A noteon theuseof separabilityfor thedetectionof covert channels.
Cipher(Newsletterof theIEEETechnicalCommitteeonSecurityandPrivacy), pages
25–33,Summer1989.

References 57

49. M. FransKaashoek,Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño,
RussellHunt,David Mazières,ThomasPinckney, RobertGrimm,JohnJannotti,and
KennethMackenzie.Applicationperformanceandflexibility onExokernelsystems.
In SOSP-16[101], pages52–65.

50. Paul A. Karger andJohnC. Wray. Storagechannelsin disk arm optimization. In
SSP’91[44], pages52–61.

51. Rick KasudaandDonnaSexton Packard.Spacecraftfault tolerance:TheMagellan
experience.In CulpandBickley [19], pages249–267.

52. Philip J. Koopman,Jr. Perilsof the PC cache. EmbeddedSystemsProgramming,
6(5):26–34,May 1993.

53. HermanKopetzand R. Nossal. Temporalfirewalls in large distributed real-time
systems.In 6th IEEE Workshopon Future Trendsin DistributedComputing, pages
310–315,IEEEComputerSociety, Tunis,Tunisia,October1997.

54. HermannKopetz. Shouldresponsive systemsbeevent-triggeredor time-triggered?
IEICE TransactionsonInformationandSystems, E76-D(11):1325–1332,November
1993. Instituteof Electronics,Information,andCommunicationsEngineers,Japan.

55. HermannKopetz. Real-TimeSystems:DesignPrincplesfor DistributedEmbedded
Applications. TheKluwer InternationalSeriesin EngineeringandComputerScience.
Kluwer, Dordrecht,TheNetherlands,1997.

56. HermannKopetz. A comparisonof CAN andTTP. Technicalreport,Technische
Universiẗat Wien,Vienna,Austria,March1998.

57. HermannKopetz.Thetime-triggered(TT) modelof computation.Technicalreport,
TechnischeUniversiẗat Wien,Vienna,Austria,March1998.

58. HermannKopetzandGünterGrünsteidl.TTP—aprotocolfor fault-tolerantreal-time
systems.IEEEComputer, 27(1):14–23,January1994.

59. A. A. Lambregts. Automaticflight controls:Conceptsandmethods.Draft paperby
FAA NationalResourceSpecialistfor AdvancedControls,January1998.

60. B. W. Lampson.A noteon theconfinementproblem.Communicationsof theACM,
16(10):613–615,October1973.

61. C. E. Landwehr. A survey of formalmodelsfor computersecurity. ACM Computing
Surveys, 13(3):247–278,September1981.

62. JohnP. Lehoczky, Lui Sha,andYeDing. Theratemonotonicschedulingalgorithm—
exactcharacterizationandaveragecasebehavior. In RealTimeSystemsSymposium,
pages166–171,IEEEComputerSociety, SantaMonica,CA, December1989.

58 References

63. K. RustanM. Leino andRajeev Joshi. A semanticapproachto secureinformation
flow. TechnicalReport032,Digital SystemsResearchCenter, Palo Alto, CA, De-
cember1997.

64. JussipekkaLeiwo andYuliangZheng. A methodto implementa denialof service
protectionbase. In Vijay Varadharajan,JosefPieprzyk,andYi Mu, editors,Infor-
mationSecurityandPrivacy: SecondAustralasianConference(ACISP’97), Volume
1270of Springer-VerlagLectureNotesin ComputerScience, pages90–101,Sydney,
Australia,July1997.

65. S.B. Lipner. A commenton theconfinementproblem.In Fifth ACM Symposiumon
OperatingSystemPrinciples. pages192–196,ACM, 1975.

66. C. L. Liu andJamesW. Layland.Schedulingalgorithmsfor multiprogrammingin a
hard-real-timeenvironment.Journalof theACM, 20(1):46–61,January1973.

67. C. DouglassLocke. Softwarearchitecturefor hardreal-timeapplications:Cyclic
executivesvs.priority executives.Real-TimeSystems, 4(1):37–53,March1992.

68. Keith Loepere. Resolvingcovert channelswithin a B2 classsecuresystem. ACM
OperatingSystemsReview, 19(3):9–28,July1985.

69. Yoshifumi ManabeandShigemiAoyagi. A feasibility decisionalgorithmfor rate
monotonicanddeadlinemonotonicscheduling.Real-TimeSystems, 14(2):171–181,
March1998.

70. R. A. Mayer andL. H. Seawright. A virtual machinetime sharingsystem. IBM
SystemsJournal, 9(3):199–218,1970.

71. Daryl McCullough. Specificationsfor multi-level securityanda hook-upproperty.
In Proceedingsof the Symposiumon Securityand Privacy, pages161–166,IEEE
ComputerSociety, Oakland,CA, April 1987.

72. JohnMcLean. A commenton the“basicsecuritytheorem”of Bell andLa Padula.
InformationProcessingLetters, 20:67–70,1985.

73. JohnMcLean.A generaltheoryof compositionfor tracesetsclosedunderselective
interleaving functions. In Proceedingsof the Symposiumon Research in Security
andPrivacy, pages79–93,IEEEComputerSociety, Oakland,CA, May 1994.

74. JonathanK. Millen. A resourceallocationmodelfor denialof service.In Proceed-
ingsof theSymposiumon Research in SecurityandPrivacy, pages137–147,IEEE
ComputerSociety, Oakland,CA, May 1992.

References 59

75. Mark Moriconi,XiaoleiQian,R.A. Riemenschneider, andLi Gong.Securesoftware
architectures.In Proceedingsof theSymposiumonSecurityandPrivacy, pages84–
93, IEEEComputerSociety, Oakland,CA, May 1997.

76. Ira S. Moskowitz, Steven J. Greenwald, andMyong H. Kang. An analysisof the
timedZ-channel.In Proceedingsof theSymposiumon SecurityandPrivacy, pages
2–31,IEEEComputerSociety, Oakland,CA, May 1996.

77. Ira S. Moskowitz and Alan R. Miller. Simple timing channels. In Proceedings
of the Symposiumon Securityand Privacy, pages56–64,IEEE ComputerSociety,
Oakland,CA, May 1994.

78. A Nadesakumar, R. M. Crowder, andC. J.Harris. Advancedsystemconceptsor fu-
turecivil aircraft—anoverview of avionic architectures.Proceedingsof theInstitu-
tion of MechanicalEngineers, Part G: Journalof AerospaceEngineering, 209:265–
272,1995.

79. Integrity in AutomatedInformationSystems. NationalComputerSecurityCenter,
September1991.TechnicalReport79-91.

80. GeorgeC. Necula. Proof-carryingcode. In 24thACM Symposiumon Principlesof
ProgrammingLanguages, pages106–119,Paris,France,January1997.

81. GeorgeC. NeculaandPeterLee. Safekernelextensionswithout run-timechecking.
In 2nd Symposiumon Operating SystemsDesignand Implementation(OSDI ’96),
pages229–243,Seattle,WA, October1996.

82. BrianOki, ManfredPfluegl, Alex Siegel,andDaleSkeen.TheInformationBus—an
architecturefor extensibledistributedsystems.In FourteenthACM Symposiumon
Operating SystemPrinciples, pages58–68,Asheville, NC, December1993. (ACM
OperatingSystemsReview, Vol. 27,No. 5).

83. GeraldJ. PopekandDavid R. Farber. A modelfor verificationof datasecurityin
operatingsystems.Communicationsof theACM, 21(9):737–749,September1978.

84. DO-178B:Software Considerationsin Airborne Systemsand EquipmentCertifica-
tion. RequirementsandTechnicalConceptsfor Aviation,Washington,DC, Decem-
ber1992.Thisdocumentis known asEUROCAEED-12Bin Europe.

85. P. Richards.Timing propertiesof multiprocessorsystems.TechnicalReportTDB60-
27,Tech.OperationsInc.,Burlington,MA, August1960.

86. A. W. Roscoe.CSPanddeterminismin securitymodelling. In Proceedingsof the
SymposiumonSecurityandPrivacy, pages114–127,IEEEComputerSociety, Oak-
land,CA, May 1995.

60 References

87. A. W. Roscoe,J.C. P. Woodcock,andL. Wulf. Non-interferencethroughdetermin-
ism. Journalof ComputerSecurity, 4(1):27–53,1996.

88. JohnRushby. Thedesignandverificationof securesystems.In EighthACM Sympo-
siumonOperating SystemPrinciples, pages12–21,Asilomar, CA, December1981.
(ACM OperatingSystemsReview, Vol. 15,No. 5).

89. JohnRushby. Proofof Separability—Averificationtechniquefor a classof security
kernels. In Proc. 5th InternationalSymposiumon Programming, Volume 137 of
Springer-Verlag Lecture Notesin ComputerScience, pages352–367,Turin, Italy,
April 1982.

90. JohnRushby. Noninterference,transitivity, and channel-controlsecuritypolicies.
TechnicalReportSRI-CSL-92-2,ComputerScienceLaboratory, SRI International,
MenloPark,CA, December1992.

91. JohnRushby. Formalmethodsandthecertificationof critical systems.TechnicalRe-
port SRI-CSL-93-7,ComputerScienceLaboratory, SRI International,Menlo Park,
CA, December1993. Also issuedunderthe title Formal MethodsandDigital Sys-
temsValidation for AirborneSystemsasNASA ContractorReport4551,December
1993.

92. JohnRushby. Formalmethodsandtheir role in thecertificationof critical systems.
TechnicalReportSRI-CSL-95-1,ComputerScienceLaboratory, SRI International,
Menlo Park, CA, March 1995. Also availableasNASA ContractorReport4673,
August1995,andissuedaspart of the FAA Digital SystemsValidation Handbook
(theguidefor aircraftcertification).Reprintedin [97, pp.1–42].

93. JohnRushby. A foundationfor securitykernelverification. Technicalreport,Com-
puterScienceLaboratory, SRI International,Menlo Park,CA, October1995. Infor-
mal report.

94. JohnRushbyandDavid W. J. Stringer-Calvert. A lesselementarytutorial for the
PVSspecificationandverificationsystem.TechnicalReportSRI-CSL-95-10,Com-
puterScienceLaboratory, SRI International,Menlo Park, CA, June1995. Revised,
July 1996.Available,with specificationfiles, at http://www.csl.sri.com/
csl-95-10.html.

95. MarvinSchaefer, BarryGold,RichardLinde,andJohnScheid.Programconfinement
in KVM/370. In ACM NationalConference, pages404–410,Seattle,WA, October
1977.

96. Lui Sha,RagunathanRajkumar, andJohnP. Lehoczky. Priority inheritanceproto-
cols: An approachto real-timesynchronization.IEEE Transactionson Computers,
39(9):1175–1185, September1990.

References 61

97. RogerShaw, editor. SafetyandReliability of Software BasedSystems(TwelfthAn-
nualCSRWorkshop), Bruges,Belgium,September1995.

98. O. Sibert,P. Porras,andR. Lindell. TheIntel 80x86processorarchitecture:Pitfalls
for securesystems.In Proceedingsof theSymposiumonSecurityandPrivacy, pages
211–222,IEEEComputerSociety, Oakland,CA, May 1995.

99. Andrew Simpson,Jim Woodcock,andJim Davies. Safetythroughsecurity. In Pro-
ceedingsof theNinth InternationalWorkshoponSoftware SpecificationandDesign,
pages18–24,IEEEComputerSociety, Ise-Shima,Japan,April 1998.

100. Andrew Clive Simpson. Safetythrough Security. PhD thesis,Oxford University
ComputingLaboratory, 1996. Availableathttp://www.comlab.ox.ac.uk/
oucl/users/andrew.simpson/thesis.ps.gz.

101. SixteenthACM SymposiumonOperatingSystemPrinciples, Saint-Malo,France,Oc-
tober1997.(ACM OperatingSystemsReview, Vol. 31,No. 5).

102. OliverSpatscheckandLarry Peterson.Defendingagainstdenialof serviceattacksin
Scout. In Proceedingsof the3rd UsenixSymposiumon Operating SystemsDesign
andImplementation(OSDI), pages59–72,New Orleans,LA, February1999.

103. ChristopherTemple.Avoiding thebabbling-idiotfailurein a time-triggeredcommu-
nicationsystem.In Fault Tolerant ComputingSymposium28, pages218–227,IEEE
ComputerSociety, Munich,Germany, June1998.

104. JonathanT. Throstle.Modelinga fuzzy timesystem.In SSP’93[45], pages82–89.

105. PauloVeŕıssimo,Jośe Rufino,andLi Ming. How hardis hardreal-timecommuni-
cationon field-buses?In Fault Tolerant ComputingSymposium27, pages112–121,
IEEEComputerSociety, Seattle,WA, June1997.

106. Ben L. Di Vito. A model of cooperative noninterferencefor integratedmodular
avionics. In WeinstockandRushby[112], pages269–286.

107. DennisVolpano,CynthiaIrvine,andGeoffrey Smith.A soundtypesystemfor secure
flow analysis.Journalof ComputerSecurity, 4(2,3):167–187,1996.

108. JanVytopil, editor. Formal Techniquesin Real-Time and Fault-Tolerant Systems.
Kluwer InternationalSeriesin EngineeringandComputerScience.Kluwer, Boston,
Dordecht,London,1993.

109. RobertWahbe,StevenLucco,ThomasE. Anderson,andSusanL. Graham.Efficient
software-basedfault isolation. In FourteenthACM Symposiumon Operating Sys-
temPrinciples, pages203–216,Asheville, NC, December1993. (ACM Operating
SystemsReview, Vol. 27,No. 5).

62 References

110. D. G. Weber. Formal specificationof fault-toleranceand its relation to computer
security. In Proceedingsof the Fifth InternationalWorkshopon Software Specifi-
cationandDesign, pages273–277,Pittsburgh, PA, May 1989. PublishedasACM
SIGSOFTEngineeringNotes,Volume14,Number3.

111. DougG. Weber. Fault toleranceasself-similarity. In Vytopil [108], chapter2, pages
33–49.

112. CharlesB. WeinstockandJohnRushby, editors.DependableComputingfor Critical
Applications—7, Volume12of IEEEComputerSocietyDependableComputingand
Fault TolerantSystems, SanJose,CA, January1999.

113. Matthew M. Wilding, David S.Hardin,andDavid A. Greve. Invariantperformance:
A statementof taskisolationusefulfor embeddedapplicationintegration. In Wein-
stockandRushby[112], pages287–300.

114. JohnC. Wray. An analysisof timing channels.In SSP’91[44], pages2–7.

115. Che-FnYu andVirgil D. Gligor. A specificationandverificationmethodfor thepre-
ventionof denialof service.IEEETransactionsonSoftwareEngineering, 16(6):581–
592,June1990.

