
Substantially revised version; original appears in Proceedings of the Ninth ACM International Conference On Embedded
Software (EMSOFT), pp. 211–218, Taipei, Taiwan, October 2011.

New Challenges In Certification For Aircraft Software

John Rushby
∗

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park CA 94025 USA

rushby@csl.sri.com

ABSTRACT
We outline the current approach to certification of aircraft
software, and the rôle of the DO-178B guidelines. We con-
sider evidence for its effectiveness and discuss possible expla-
nations for this. We then describe how changes in aircraft
systems and in the air traffic system pose new challenges for
certification, chiefly by increasing the extent of interaction
and integration.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software Verification

General Terms
Verification

Keywords
Certification, DO-178B, Formal Methods

1. CURRENT PRACTICE
Safety certification assures society at large that deploy-

ment of a given system does not pose an unacceptable risk
of harm. There are several ways of organizing and conduct-
ing certification, but all are conceptually based on scrutiny
of an argument that certain claims about safety are justi-
fied by evidence about the system. Evidence may concern
the system or “product” itself (e.g., tests, formal verifica-
tion, etc.) or the process of its construction (e.g., qualifi-
cation of developers, adherence to coding standards, etc.).
The argument must consider all possible circumstances of
the system’s operation, including those where faults afflict

∗Supported by NSF grant CNS-0720908 and by NASA con-
tract NNA10DE79C; the revision was supported by NASA
contract NNA10DE79C. The content is solely the responsi-
bility of the author and does not necessarily represent the
official views of NSF or NASA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

its own components, or its environment behaves in undesir-
able ways, and must demonstrate that the system’s design
maintains safety in the presence of these hazards, and that
the design is implemented correctly. Development of the
argument and evidence for safety interacts with system de-
sign, so these proceed iteratively. For example, one hazard
to commercial aircraft is fire in the cargo hold; one way to
mitigate this hazard is provide an automatic subsystem for
detecting and suppressing fires, but then we need to consider
hazards to the reliable operation of this subsystem, and also
the new system-level hazards that this additional subsystem
might introduce.

Although this Claims-Argument-Evidence (CAE) struc-
ture provides an intellectual framework for understanding
all certification, different industries, nations, and regulatory
bodies organize the actual practice of certification differ-
ently. One, relatively new, approach requires the “appli-
cant” to develop a safety case [8,18] that makes explicit the
claims, evidence, and argument for the safety of the sys-
tem; the general content or form of these elements may be
specified by regulation or guidelines, but the applicant gen-
erally has freedom to select or invent the methods to be used
within those constraints.

The safety case approach to certification may be con-
trasted with the standards-based approach, where the ap-
plicant is recommended or required to follow certain guide-
lines and standards. These generally specify the assurance
processes that should be used, the intermediate artifacts to
be produced (requirements, specifications, test plans etc.),
the kinds of reviews, tests, and analyses that should be per-
formed, and the documentation required to tie all these to-
gether. Standards may be prescriptive, meaning that they
mandate or strongly recommend particular methods and
processes for development and assurance, or based on objec-
tives, meaning that they specify what has to be achieved but
not how to do it. In both cases, the products and documents
generated by following a standard may be considered to con-
stitute evidence when viewed from the perspective provided
by the CAE framework; the claims in these cases are gener-
ally established by regulation, but where is the argument?

Guidelines and standards emerge from a social process
within professional and regulatory bodies, and we can think
of that social process as constructing a generic safety case
for the class of systems considered; development and exami-
nation of the safety argument presumably informs the inter-
nal debate that decides what evidence the standard should
require, but it is generally not formulated explicitly, nor
recorded.

1

Viewed from the perspective of the CAE framework,
safety cases and standards-based certification can be seen
as fundamentally similar, but the two approaches do have
their own advantages and disadvantages. Standards-based
approaches generally incorporate much accumulated expe-
rience and community wisdom, and they establish a solid
“floor” so that systems developed and assured according to
their recommendations are very likely to be adequately safe.
On the other hand, standards tend to be slow-moving and
conservative, and can be a barrier to innovation in both sys-
tem design and in methods for assurance. Furthermore, a
generic standard may be ill-suited to the specifics of a given
system—so that its application may be excessively onerous
in some areas, yet provide insufficient scrutiny in others.
Because the safety argument is not explicit, the latter defi-
ciency can go unrecognized and the system may be certified
inappropriately—for the only requirement is that the evi-
dence should satisfy the standard.

An explicit safety case can be customized very precisely
for the specific characteristics of the system concerned, and
therefore has the potential to provide stronger assurance for
safety than a standards-based approach, and at lower cost
(by eliminating unnecessary effort). Furthermore, safety
cases can be more agile, allowing greater innovation than
standards-based methods. However, there is concern about
the trustworthiness of certification based on safety cases,
particularly when some of the elements are novel [44] (e.g.,
an independent review of the crash of a Nimrod military air-
craft in 2006 found that its safety case was worthless [17]).
The social process that generates standards, and the infras-
tructure and skill base that develop around them, may pro-
vide stronger collective support than is available for a soli-
tary safety case.

Certification of aircraft software is largely standards-
based; in fact, it is a quintessential example of the objectives-
based variant of this approach to certification and reveals
many of its benefits and difficulties. For reasons that will be
discussed later, aircraft computer systems and their software
are not certified separately, but only as part of a complete
aircraft or engine. When a new (or modified) aircraft type
is submitted for certification, the certification authority (in
the United States, this is the FAA), in consultation with the
applicant (i.e., the airframe manufacturer), establishes the
certification basis, which defines the applicable regulations
together with any special conditions that are to be imposed.
The applicant then proposes a means of compliance that
defines how development of the aircraft and its systems will
satisfy the certification basis.

Computer systems and software are employed on aircraft
to perform specific functions, such as primary flight con-
trol, autopilot, fuel management, navigation, and so on,
and the aircraft-level safety and hazard analysis must con-
sider the possible failure of these functions. Failure includes
mal function and unintended function, as well as loss of func-
tion; the first two are often more serious than the third.
Guidelines for this safety assessment process are provided by
Aerospace Recommended Practice (ARP) 4761 [40]. Based
on this assessment, the aircraft and system design will be
refined to eliminate or mitigate (i.e., reduce the frequency
of occurrence, or severity of the consequences) of the various
hazards: for example, it may be decided that parts of some
function should be fault tolerant, or that a backup system

should be provided. Guidelines for this development process
are provided by ARP 4754A [39].

The top-level safety claim against which certification is
performed would probably be expressed by the layman as
“no aircraft should suffer an accident due to a design flaw.”
However, there are many bad things that can happen to an
aircraft that fall short of an immediate accident (e.g., loss of
cabin pressure), and the layman would probably agree that
we should provide assurance that such things are very rare,
but that it might be unreasonable to attempt to eliminate
them altogether. This is precisely the approach taken in air-
craft certification: the Federal Aviation Regulations (FAR)
Part 25.13091 identifies five failure condition categories from
“catastrophic” through “hazardous/severe-major,” “major,”
and “minor” to “no effect.” Catastrophic failure conditions
are “those which would prevent continued safe flight and
landing,” while severe-major failure conditions can produce
“a large reduction in safety margins or functional capabili-
ties, higher workload or physical distress such that the crew
could not be relied on to perform its tasks accurately or
completely.” There must be an“inverse relationship between
the probability and the severity of each failure condition”;
in particular, catastrophic failure conditions must be “ex-
tremely improbable” while hazardous/severe-major must be
“improbable” (recently the preferred term has changed to
“extremely remote”). Furthermore, no single failure must be
able to produce a catastrophic failure condition. The Euro-
pean Aviation Safety Agency (EASA) Certification Speci-
fications CS 25 are largely harmonized with FAR 252 but
the most recent version defines a catastrophic failure con-
dition as one that “would result in multiple fatalities, usu-
ally with the loss of the airplane.” Neither FAR 25.1309
nor CS 25.1309 define “extremely improbable” and related
terms; these are explicated in FAA Advisory Circular (AC)
25.1309 and EASA Acceptable Means of Compliance (AMC)
25.1309. These state, for example, that “extremely improb-
able” means “so unlikely that they are not anticipated to
occur during the entire operational life of all airplanes of
one type,” while “extremely remote” means “not anticipated
to occur to each airplane during its total life, but which may
occur a few times when considering the total operational life
of all aeroplanes of the type.”

AC 25.1309 further states that “when using quantitative
analyses. . . numerical probabilities. . . on the order of 10−9

per flight-hour may be used. . . as aids to engineering judg-
ment. . . to. . . help determine compliance” with the require-
ment for extremely improbable failure conditions. An ex-
planation for this figure can be derived as follows [22, page
37]: suppose there are 100 aircraft of the type, each flying
3,000 hours per year over a lifetime of 33 years (thereby
accumulating about 107 flight-hours) and that there are 10
systems on board, each with 10 potentially catastrophic fail-
ure conditions; then the “budget” for each is about 10−9 per
hour if such a condition is not expected to occur in the

1FAR Part 25 are the regulations for “Large Aeroplanes”;
FAR 25.1309 identifies a section within those regulations.
The regulations are terse; interpretation and description of
“acceptable means of compliance”are generally issued as Ad-
visory Circulars of the FAA; AC 25.1309 is the advisory cir-
cular corresponding to FAA 25.1309.
2EASA issues the regulations CS 25 and acceptable means
of compliance AMC 25 as separate books within a single
document [13]. CS 25.1309 and AMC 25.1309 are the EASA
equivalents of FAR 25.1309 and AC 25.1309, respectively.

2

entire operational life of all airplanes of the type. An alter-
native explanation is given in Section 6a of AMC 25.1309
(see also [22, Chapter 3]): the historical record for the pre-
vious (pre-software-intensive) generation of aircraft showed
a serious accident rate of approximately 1 per million hours
of flight, with about 10% due to systems failure; the same
assumption as before about the number of potentially catas-
trophic failure conditions then indicates each should have a
failure probability less than 10−9 per hour if the overall level
of safety is to be maintained.

Even though recent aircraft types have production runs in
the thousands, much higher utilization, and longer service
lifetimes than assumed in these calculations, and also have a
better safety record, AMC 25.1309 states that a probability
of 10−9 per hour has “become commonly accepted as an aid
to engineering judgement” for the “extremely improbable”
requirement for catastrophic failure conditions. The cor-
responding probabilities for hazardous/severe-major (“ex-
tremely remote”) and severe (“remote”) failure conditions
are 10−7 and 10−5 per hour, respectively.

The safety analysis and development processes of ARPs
4761 and 4754A should result in an aircraft design that mini-
mizes the number and severity of its failure conditions; these
processes iterate down through systems and subsystems but
at some point we reach components whose internal design is
no longer analyzed and refined for safety; instead, we estab-
lish requirements for these components and demand that
their implementation is correct with respect to these re-
quirements. This is how airborne software is treated: the
current guidelines DO-178B [28] describe various objectives
for documenting and analyzing software that are all focused
on ensuring correctness of the executable code (see [1] for an
overview); there are similar guidelines for complex designs
implemented in hardware [29]. FAA Advisory Circular 20-
115B states that an applicant “may use the considerations
outlined in DO-178B as a means, but not the only means, to
secure FAA approval of the digital computer software” [14].

DO-178B identifies 5 different Design Assurance Levels
(DALs) ranging from Level A (the highest) down through
Levels B, C, and D to E. Level A is for software whose fail-
ure could lead to a catastrophic failure condition, Level B for
severe major and so on. DO-178B does not specify how soft-
ware development and assurance should be performed, but
it does specify that these should include certain activities,
such as reviews and testing, should produce certain docu-
ments, such as plans for various aspects of development and
assurance, descriptions of requirements and designs and so
on, and that there must be strong configuration manage-
ment that includes traceability from requirements to code
and tests. In all, DO-178B describes 66 objectives of this
kind in detail and requires that all of them must be applied
to Level A software, 65 of them to Level B, 57 to Level C,
and 28 to Level D. Furthermore, at each level, it requires
that some of the objectives are performed “with indepen-
dence” from the development team.

There is a conundrum here: the various failure conditions
are associated with tolerable rates of occurrence (10−9 per
hour, 10−7 per hour, and so on) but the assurance objectives
associated with the corresponding DALs are all about cor-
rectness, and we just do more of them for the higher levels;
so how does more evidence of correctness provide assurance
for lower rates of failure?

We examine this question in the next section, together
with the related questions of whether DO-178B works and,
if so, how and why.

1.1 Does It Work? And Why?
Modern aircraft and their software are extraordinarily

safe (at least, when flown by airlines and in airspace op-
erated to the standards of North America and Western Eu-
rope): no crash in passenger service has been ascribed to
software error—although there have been lesser accidents
and incidents, which are described below. Furthermore, the
most significant recent improvement in aircraft safety has
been due to the installation of “Enhanced Ground Proximity
Warning Systems” (EGPWS), which have largely eliminated
“Controlled Flight Into Terrain” (CFIT) accidents (previ-
ously responsible for half of all aviation fatalities), where dis-
oriented pilots fly a perfectly good aircraft into the ground
(or a mountain); EGPWS is only made possible by software.

Thus, the historical record suggests that the standards
and objectives-based approach to certification employed by
DO-178B is effective; why might this be? One reason is
surely that the aircraft industry and its regulatory frame-
work are scrupulous about learning from experience: all ac-
cidents and incidents are investigated and their reports are
models of impartial and conscientious search for underlying
causes, and these lessons inform future standards, guide-
lines, and certifications (recently, however, these benefits
are threatened by a move toward criminalization in some
jurisdictions [10]). Another is that all passenger aircraft are
fundamentally very similar, with changes and innovations
occurring in fairly discrete steps (as aircraft “generations”)
spaced 10 or 20 years apart: hence, the one-size-fits-all char-
acter of standards seems well-suited to aircraft (whereas as it
might not be for medical devices, where there is a wide range
of different kinds of device). Also, the relatively slow rate of
change and conservatism of the industry allows the rather
ponderous, consensus-driven process for updating standards
to keep pace: the original DO-178 was issued in 1982 and
updated to DO-178A in 1985; DO-178B was issued in 1992,
and DO-178C in 2012. And the guidelines are developed by
consortia that include all stakeholders and interested parties
(by law, the meetings are open to the public) so that a wide
range of knowledge and experience is available.

Separate from the content of standards and guidelines for
aircraft software is the matter of their application and over-
sight. Aircraft safety and certification is assisted by factors
that may not be present in all industries. First, there are
relatively few companies that develop aircraft systems, and
most of these have long experience and a history and culture
of safety that underpins their work, so that they may be ex-
pected to fully embrace the practice of a standard, rather
than merely follow the “letter of the law.” Secondly, the
system integrators (e.g., Boeing and Airbus) are closely en-
gaged with their system suppliers, and this minimizes the
danger that safety issues will “fall through the cracks” be-
tween one system and another. Finally, checking that a
rather onerous guideline such as DO-178B is fully applied
requires a vast amount of regulatory oversight; the Euro-
pean certification agencies charge applicants a fee for their
services, but the FAA does not and instead uses “Designated
Engineering Representatives” (DERs) to perform much of
the oversight. DERs are approved by the FAA but are em-
ployed by the companies concerned. Superficially, this may

3

seem like a case of the “fox guarding the henhouse,” but it
can be argued that DERs can have more intimate knowledge
of their specific system than external reviewers, and they al-
low more manpower to be deployed in oversight [11]. DERs
are involved throughout the software development process
and conduct structured Stage of Involvement (SOI) reviews
at strategic points to ensure ongoing compliance with DO-
178B.

So we may conclude that the standards-based approach
to certification employed with DO-178B does seem to be
effective, and that this is probably because its prescriptions
are based on experience and are sound, and because they are
executed diligently and monitored conscientiously—but also
perhaps because of factors outside the standards relating to
safety culture, experience, and conservatism.

Methods of software development and assurance evolve
much more rapidly than aircraft systems. Thus, while those
parts of DO-178B that are mostly focused on the aircraft
application (requirements, specifications etc.) retain their
currency, those parts concerned directly with software de-
velopment and assurance (programming, verification, and
testing) are challenged by new developments in software en-
gineering. For example, model-based development and au-
tocoding, object-oriented languages, and various kinds of
formal methods all offer new opportunities and challenges
in the development and assurance of aircraft software. Most
of these are addressed in DO-178C, but they point to a gen-
eral difficulty in the standards-based approach to certifica-
tion: how can new techniques be accommodated within fixed
guidelines?

DO-178B does allow an applicant to propose an “alterna-
tive method of compliance” for some objectives, provided it
can be shown how their new method satisfies the “intent”
of the objectives. The difficulty is that the intent of most
objectives is not formulated explicitly. For example, one
of the objectives at Level A is testing to a criterion called
Modified Condition/Decision Coverage (MC/DC). This is a
moderately demanding branch coverage criterion that must
be achieved on the code, using tests derived from the re-
quirements. A plausible interpretation of the intent of this
objective is that it is to ensure thorough testing of the exe-
cutable code. However, there are two other intents that can
be served by MC/DC testing. First, since the tests must be
generated from requirements but achieve high branch cov-
erage on the code, the requirements must be sufficiently de-
tailed that they have essentially the same branching struc-
ture as the code: thus, this intent is to ensure very detailed
requirements. Second, generating tests from the require-
ments but measuring coverage on the code will reveal un-
reachable (i.e., “dead”) code; thus, this intent is to ensure
absence of unreachable code (because experience has shown
it might not be truly unreachable—e.g., due to behavior
unanticipated by the requirements—and may then produce
unintended function). An alternative method of compliance
for the MC/DC objective that satisfies only the “thorough
testing”intent but misses the other two might vitiate some of
the effectiveness of DO-178B. Thus, a reasonable enhance-
ment to guidelines such as DO-178B would be to include
documentation of the intent of each objective. In fact, we
could go further than this, for the intent of each objective
merely articulates the local part of what should be a coher-
ent overall argument: thus, the really desirable enhancement
is for standards-based methods of assurance to supply a full

argument that the evidence required by the standard does
ensure satisfaction of explicitly stated safety goals.

Part of the argument that should be supplied for correct-
ness-based software guidelines such as DO-178B is a reso-
lution of the conundrum mentioned earlier: how more as-
surance of correctness, as required by the higher DALs of
DO-178B, renders software more suitable for applications
that require lower likelihood of failure (i.e., where failure
conditions are more serious). This is a significant topic that
has received scant attention.

An insightful and original treatment for the conundrum
was introduced over a decade ago by Bertolini and Strig-
ini [7] and by Littlewood [20]. The idea is that the top-level
claim made for safety-critical software is not that it is reli-
able, nor that it is correct, but that it is perfect. Perfection
means that the software will never suffer a safety failure no
matter how much operational exposure it receives; it differs
from correctness in that correctness is assessed relative to
requirements, while perfection is relative to whatever the
requirements “should have been” (i.e., to the right require-
ments), because that is how failure is assessed. We will
see later that most software errors are due to incorrect re-
quirements; thus, whereas correctness is relative to the high-
level software requirements developed according to DO-178B
(e.g., exactly how a fuel management system should pump
fuel around the various tanks), perfection is relative to the
properties considered in the system safety analysis developed
according to ARP 4754A for the function implemented by
the software (e.g., structural and balance issues concerning
the distribution of fuel, and the need to maintain a supply
of fuel to the engines).

Now, perfection is a strong claim and we may refuse to ac-
cept that software that has been assured to DO-178B Level
A is perfect—but we may be willing to concede that it is
possibly perfect. And we may further be persuaded that
its possibility of perfection is greater than software that has
been assured only to Level B. This suggests we could attach
a (subjective) probability to the possibility of perfection.

Probability of perfection is attractive because it relates
more naturally than probability of failure to the correctness-
based assurance processes used for software. But probability
of (im)perfection can also be used to estimate probability of
failure; the following sketch of the argument is from [36]. For
simplicity, we assume a demand-based system, and consider
probability of failure on demand; then, by the formula for
total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w perfect)× P (s/w perfect)

+ P (s/w fails | s/w imperfect)× P (s/w imperfect).

The first term in this sum is zero, because the software does
not fail if it is perfect. Hence, if Pnp denotes the probability
that the software is imperfect, and Pf |np the probability that
it fails, given that it is imperfect, we have

P (software fails) ≤ Pnp × Pf |np. (2)

(I am cutting a lot of corners here: the full treatment must
distinguish aleatoric from epistemic assessment, must justify
that beliefs about the two parameters can be separated, and
must deal with rates of failure rather than probability of
failure on demand; see [21].)

Different industries make different assessments about the
parameters to (2). Nuclear protection, for example, assumes

4

the software is imperfect, so it sets Pnp to 1 and under-
takes extensive random testing to substantiate (typically)
Pf |np < 10−3. If nuclear regulators were prepared to ac-
cept that modest amounts of software assurance could de-
liver Pnp < 10−1, then assurance for the same probability of
failure could be achieved with the much less costly testing
required to validate merely Pf |np < 10−2. Dually, aircraft
certification assumes the software will fail if it is imperfect,
and so sets Pf |np = 1. The whole burden for assurance then
rests on the value assessed for Pnp. If we suppose that the
operational exposure of modern aircraft software and the
absence of software-induced crashes substantiates a failure
rate below 10−9 for Level A software, then this implies that
DO-178B delivers assurance for a probability of imperfection
of the same order.

I am skeptical of this conclusion, for although there have
been no crashes attributed to software, there is one accident
(so classified because there were serious injuries) [3] and sev-
eral incidents where software was involved (e.g., [2, 41, 43];
Daniels [9] provides a longer list culled from [19]). The oper-
ational exposure of the software involved in these incidents
must be far short of 109 hours, so the overall failure rate
of recent software may be of the order of 10−7 per hour, or
worse. Then, although developers do not take credit for it in
DO-178B, aircraft software is subjected to massive amounts
of system and all-up testing. It is plausible that this is suf-
ficient implicitly to establish Pf |np < 10−3. Substituting
these values in (2), it is therefore possible that DO-178B
Level A actually delivers only about Pnp < 10−4.

Thus, although the safety record of airborne software is
good, it is worth examining whether some aspects of its de-
velopment and assurance processes can be improved.

1.2 What Goes Wrong? What Might Fix It?
The software flaws described in some of the incident re-

ports cited above are egregious (e.g., see [21], which provides
a brief description of the flaws fully reported in [43]) and
one wonders how they could have passed DO-178B. One
possibility is that DO-178B alone is not a strong guaran-
tee, and the generally good safety record of aircraft soft-
ware is partly due to other factors mentioned earlier, such
as the long experience and safety culture of the companies
concerned, the oversight of the system integrators, and so
on. If this is so, then recent industry trends raise concern:
there has been massive outsourcing of software development
and assurance to companies in the developing world, where
there is no tradition of a safety culture and whose DERs are
external consultants rather than company employees (and
may therefore lack tacit knowledge about the software and
system concerned [11]), and the system integrators do not
monitor their subcontractors as closely as before.

Another possibility is that DO-178B is effective in some
areas and less so in others; hence, is important to try to
understand when and why DO-178B works, and what is the
contribution of its various objectives and its organizational
context. Academic study of these questions is difficult be-
cause the companies concerned do not publish their internal
data: it is only when a failure provokes an incident that
information can be gleaned from the ensuing report.

One item that can be learned from those reports and that
is supported by anecdotal evidence is that essentially all
flight software failures (including [43]) are due to improper
software requirements, and none are due to programming er-

rors. Thus, it seems that a vulnerability may lie in the gap
between the system requirements developed through ARP
4754A and the high-level software requirements developed
through DO-178B, even though the DO-178B objectives de-
mand evidence that the software requirements comply with
and are traceable to the system requirements.

One approach to reducing this vulnerability could be to
drive safety analysis (rather than correctness) down into the
top levels of software development. Rockwell Collins report
value in applying model checking to software requirements
to check, for example, that they satisfy certain safety prop-
erties [23]. I believe there could be value also in using for-
mal methods as part of the safety analysis of the system re-
quirements themselves: as systems become more complex, so
their requirements take on more of the characteristics of soft-
ware, with huge numbers of cases to consider, and it makes
sense to use methods designed to cope with such complex-
ity. System-level requirements are necessarily very abstract
and ill-suited to analysis by conventional (finite state) model
checkers, which require a concrete representation. However,
bounded model checking for representations expressed over
the theories decided by an SMT solver (so-called “infinite
bounded model checking” [34]) can provide the necessary au-
tomated support [35]. Precedent for iteration between soft-
ware development and system safety analysis is provided by
“derived requirements”; these are requirements that emerge
during software design without being directly traceable to
the system requirements: the safety impacts of such derived
requirements must be considered at the system level.

Another approach to safeguarding against flawed software
requirements is to monitor the higher-level system safety re-
quirements at runtime. The monitor can signal an “alarm” if
these requirements are violated and other systems will ignore
the outputs of a system whose monitor is signaling an alarm:
the monitor transforms potential malfunction or unintended
function into loss of function and prevents transitions into
hazardous states. ARP 4754A explicitly discusses this type
of monitored architecture and their reliability is examined
in [21] where it is shown that the possible perfection of the
monitor, unlike its reliability, is conditionally independent
of the reliability of the operational system; this means that
a monitor assured to some probability of perfection delivers
a multiplicative improvement in system reliability. (How-
ever, we must also consider the possibility that the moni-
tor raises the alarm unnecessarily, see [21].) Since monitors
can be very simple, their assurance by DO-178B, possibly
buttressed by formal methods, can plausibly deliver useful
probabilities of perfection, and hence provide strong assur-
ance for the safety of the monitored system.

2. NEW CHALLENGES
I have described the current practice in certification of

aircraft software, which is based on DO-178B, and now turn
to some new challenges: “new,” that is, since DO-178B was
introduced in 1992.

One of these has already been mentioned: the large change
in methods for software development and assurance that has
occurred in the last 20 years. These include model-based
design (e.g., Stateflow/Simulink) object-oriented program-
ming, formal methods, and tool-supported methods of anal-
ysis. As described earlier, DO-178B does allow “alterna-
tive methods of compliance” and even describes use of for-
mal methods as such an alternative method. Indeed, formal

5

methods have been used on some aircraft software [23,27,42];
the difficulty has been to gain certification credit for their
use. Certification credit means that the alternative method
meets the “intent” of some objective and can replace the tra-
ditional means of doing so; in particular, those who use for-
mal methods would like to gain some relief from the testing
requirements in DO-178B. One problem in doing so is that
much of the language concerning verification in DO-178B
explicitly uses the word “test.” Hence, cost-effective use of
formal methods really needs rather larger adjustments to
DO-178B than can be accommodated within an “alternative
method of compliance.”

To deal with this and other emerging issues, DO-178C has
been developed to augment DO-178B. This document was
issued in January 2012 following more than 5 years of de-
velopment (it started in March 2005).3 It should be noted
that DO-178C is essentially a series of supplements to DO-
178B, amplifying and interpreting its existing guidelines,
and not a replacement for it. These supplements address for-
mal methods, object-oriented technology, model-based de-
sign and verification, and tool qualification. Daniels [9] pro-
vides insight on the development of DO-178C.

In DO-178B, tools are divided into those that could in-
troduce an error (i.e., development tools, such as a faulty
compiler) and those that may fail to detect an error (i.e.,
verification tools, such as an unsound static analyzer). Qual-
ification of a development tool is very onerous, since such
a tool can be used to eliminate other assurance processes
(for example, compilers are usually unqualified and that is
one of the reasons for requiring extensive testing of the ex-
ecutable code; a qualified compiler might allow this testing
to be replaced by source code analysis). Verification tools
are treated more lightly because they have traditionally not
been used to justify elimination of other verification or de-
velopment processes; DO-178C introduces an intermediate
classification for verification tools that are used to justify
such elimination and raises the bar on their qualification.

By similar reasoning, the formal methods supplement re-
quires that, for certification credit, formal models must be
a conservative representation of the software artifact con-
cerned, and any analysis methods must be sound: these en-
sure that formal analysis may raise false alarms but will not
fail to detect errors. The relationship between formal meth-
ods and testing is acknowledged to be difficult: for some
purposes one or the other, but not a combination, is re-
quired for credit (recall the earlier discussion on the several
“intents” served by MC/DC testing).

Model-based methods face many of the same concerns as
tools and formal methods and, in addition, they tend to blur
the distinctions between the various levels of requirements
and between requirements and software that are central to
many of the objectives of DO-178B.

Looking forward, to what might be the concerns of a
possible DO-178D, I propose two topics. First, it seems
that DO-178B (and presumably DO-178C also) is effective
in eliminating software implementation defects, but it does
so at great cost; hence, mechanization in the form of more
advanced static analysis, formal methods, and automated
testing are fertile topics for research, both in technology de-
velopment and in the extent to which they can satisfy the in-
tent of DO-178B objectives. Second, the available evidence

3The present paper was written before D0-178C and its sup-
plements were published.

points to flawed requirements as the main source of defects in
software development, and to the transition between system
requirements developed under ARP 4754A and software re-
quirements under DO-178B/C as a particular vulnerability;
hence improved and, in my opinion, mechanically supported
methods of requirements analysis are urgently needed. In-
tegrating these topics into a putative DO-178D in a way
that supports rational analysis will be greatly assisted if the
safety case implicit in DO-178B is made explicit (in partic-
ular, the argument how the objectives support the claims).

A different source of new challenges for aircraft soft-
ware certification can be summarized under the heading
“increased integration.” Previously, separate aircraft func-
tions were provided by fairly independent systems loosely
integrated as a “federated” system. This meant that the au-
topilot, for example, had its own computers, replicated for
redundancy, and so did the flight management system. The
two system would communicate though the exchange of mes-
sages, but their relative isolation provided natural partition-
ing that limited the propagation of faults: a faulty autopi-
lot might send bad data to the flight management system,
but could not destroy its ability to calculate or communi-
cate. Modern aircraft employ Integrated Modular Avionics
(IMA) where many critical functions share the same com-
puter system and communications network. There is natu-
rally concern that a fault in one function could propagate to
others sharing the same resources, and so partitioning must
be ensured by the mechanisms (i.e., the operating system
and network technology) that manage the shared resources,
and this partitioning must be maintained in the presence
of random faults (due to hardware failures) in the mecha-
nisms themselves. Design of fault-tolerant IMA platforms
of this kind is a very challenging exercise, as is assurance
for their correctness [32]. Even given a sound IMA plat-
form, employing it correctly to support many critical func-
tions (or, worse, a mixture of critical and uncritical—hence
unassured—functions) is another challenging exercise, as is
assurance for the software that manages it (e.g., the boot-
time software that specifies the configuration of an IMA plat-
form may be hundreds of thousands of lines of XML code).

Guidelines for the development and certification of IMA
are provided by DO-297 [30] but, beyond a requirement for
robust partitioning, these essentially amount to the need to
demonstrate that each function works correctly when run-
ning alone, and also in conjunction with the other software
on a fully loaded platform. Computer scientists might wish
for a more compositional (i.e., modular, component-based)
approach, but this is antithetical to current certification
practices. Advisory Circular 20-148 [15] does make provi-
sion for taking DO-178B qualification data for certain kinds
of “reusable” software (e.g., operating systems, libraries, or
protocol stacks) from one certification to another but there
is no provision for the certification of any software or sys-
tem in isolation. This is because experience teaches that
many hazardous situations arise through unanticipated in-
teractions, often precipitated by faults, among supposedly
separate systems. Hence, the FAA certifies only complete
aircraft or engines, where all potential system interactions
are available for scrutiny. However, the complexity of these
interactions may defy effective scrutiny; Baker [4] describes
FAA concerns in this area, citing an incident in which spu-
rious thrust reverser unlatch signals led to retraction of the
leading edge slats during takeoff [41].

6

Thus, although it will be challenging, I think it is worth
exploring and developing modular approaches to assurance
and certification using the idea of“composition frameworks”:
these are architectural mechanisms, such as round-based
synchrony, partitioning kernels, and time-triggered buses,
which ensure that components can interact only through
the framework. Such frameworks are already widely used in
aircraft, but their benefits have not been fully formalized or
exploited in certification. A properly constituted composi-
tion framework should guarantee three properties (even in
the presence of faults): composability (properties of compo-
nents or prior compositions are preserved when new com-
ponents are added), compositionality (system properties are
derived solely from component properties), and monotonic-
ity (system properties are not reduced when a component
is replaced by a superior one having more properties). Al-
though a composition framework can ensure that compo-
nent and system properties are preserved or interact only
in desired ways, it is still necessary to think of all the right
properties and to specify them correctly; here again, I be-
lieve that formal methods based on infinite bounded model
checking can provide useful capabilities for exploring and
formulating suitable properties.

Another kind of “integration” on board an aircraft is be-
tween its automated functions and the crew. The alloca-
tion of functions to systems and the presentation of these
to the crew owes more to the accidents of history than to
rational design; for example pitch control was automated
before roll, and even today the pitch autopilot often is sep-
arate from the roll autopilot, and both are separate from
the flight management system, and the autothrottle (which
itself is separate from the engine controller). This leads to a
complexity that presents severe human factors issues, often
manifested as “automation surprises” [38] or “mode confu-
sion” [37]. At present, these issues are not treated as part
of software certification, even though they often are due to
poor design choices, rather than human fallibilities. It is,
however, feasible to model some these issues formally and
to detect problems by model checking [6, 33].

The next level of integration lies beyond the individual
aircraft. Traditionally, management of the airspace is the
responsibility of air traffic control (ATC): a ground-based
function. Each aircraft and its crew communicates with
ATC and follows the instructions received. It is the responsi-
bility of ATC to ensure adequate separation between aircraft
and, to a first approximation, individual aircraft just fly the
path assigned to them and do not manage their own separa-
tion. Onboard conflict detection and resolution systems sup-
plement this by providing automated “resolutions” in emer-
gencies. Current systems provide only vertical resolutions
(climb or descend), but more advanced systems can change
headings or speeds as well. These functions are implemented
by algorithms that are distributed across the participating
aircraft (with autonomous fallbacks if an “intruder” aircraft
is unresponsive) [24].

By extending these onboard capabilities through a series
of steps forming part of a plan known as NextGen, aircraft
will become increasingly responsible for managing their own
separation at both the strategic and tactical levels, employ-
ing algorithms that are distributed between multiple aircraft
and the ground. Thus, the safety of one aircraft will become
partly reliant on software running on other aircraft and on
the ground. (This is not completely new: the crash of Ko-

rean Air flight 801 in Guam in 1997 was partly attributed
to misconfiguration of a ground database [16].)

Ground ATC software has traditionally been certified to
different criteria than flight software, and it seems that these
must converge under NextGen. Similarly, policies and guid-
ance for flight operations have traditionally been quite sep-
arate from aircraft and software certification, but it seems
these, too, may converge under NextGen. Human factors
arise again, because there may be dynamic reassignments
of authority and autonomy between the aircraft crew, con-
trollers on the ground, and automated systems distributed
between the air and ground; formal modeling and analysis
of these mixed-authority systems is therefore a useful un-
dertaking [5]. To further compound the mix, there are pro-
posals to allow unmanned military aircraft (UAVs) to use
civilian airspace; these are not certified to the standards of
passenger aircraft and have a poor safety record (see, for
example [25,26]).

The historical trend is that flight software doubles in size
every two years [12]. Increasing integration will compound
this trend as the notion of “flight software” expands from
that on board individual aircraft to include the other soft-
ware systems with which it interacts, whether on board other
aircraft, or on the ground. If we assume that fault density
(crudely, faults per some number of lines of code) is con-
stant for any given assurance method, then we should expect
the number of software-induced in-flight failure conditions
of every severity to increase exponentially over time. There
will still be a net increase in safety if integrated software
systems are better than the systems (or lack of a system)
that they displace. Nonetheless, it seems clear that aircraft
software certification—and the field of software assurance in
general—faces interesting challenges and is a fertile area for
constructive research.

3. CONCLUSIONS
The current approach to certification of aircraft software,

based on the DO-178B guidelines, seems to work rather
well. But I submit that it is not known exactly how well
it works, nor why. Attempts to propose alternative means
of compliance and to update the existing guidelines (i.e.,
the supplements of DO-178C) would be assisted if an ex-
plicit argument were constructed to show how the objec-
tives (i.e., evidence) required by DO-178B provide assurance
for the system safety claims.4 One difficulty is that sys-
tem safety claims are stated probabilistically, whereas DO-
178B is about correctness; I argued that this difficulty can
be bridged using the idea of “possible perfection.”

Increased outsourcing and other changes in the aircraft
industry reduce some factors that may, implicitly, have con-
tributed to the safety of aircraft software (e.g., organiza-
tional experience and safety culture). It therefore may be
desirable that software certification should become more fo-
cused on (tool-based) examination of the actual software
products (i.e., requirements, specifications, and code), and
less on the processes of their development.

Although no aircraft crash has been attributed to soft-
ware, there have been some incidents that should raise con-
cern. These are invariably traced to flawed requirements,

4RTCA document DO-248C [31], one of the supplements
to DO-178C, provides rationale for DO-178C and DO-278A
objectives, but was not available at the time this paper was
written.

7

so methods (such as infinite bounded model checking) that
are capable of analyzing high-level requirements, or architec-
tures that monitor safety properties at runtime, are worthy
of consideration.

New developments in aircraft systems and air traffic man-
agement are greatly increasing the interaction among previ-
ously separate software systems, and changing the balance
of autonomy and authority between the crew, ground con-
trollers, and ground and airborne software. Certification of
these distributed, mixed authority systems is a major chal-
lenge for the future.

Aircraft certification has previously considered only com-
plete systems (i.e., aircraft), but increasing integration both
inside and outside the individual aircraft surely requires a
more compositional approach. A compositional approach to
safety assurance is a major intellectual and practical chal-
lenge for the future.

4. ACKNOWLEDGMENTS
I am very grateful for help and information provided dur-

ing the writing of this paper by Jeff Joyce of Critical Systems
Labs and Ricky Butler of NASA Langley Research Center,
and for ideas and suggestions by my colleague N. Shankar.
I am also grateful for extensive and useful comments on the
published version of the paper that I received from Dewi
Daniels, Keith Hill, Peter Ladkin, and John White. I have
incorporated their corrections and many of their comments
in this revision to the published paper. Of course, all errors
and misinterpretations are my responsibility.

5. REFERENCES
[1] B. S. Andersen and G. Romanski. Verification of

safety-critical software. Communications of the ACM,
54(10):52–57, 2011.

[2] Australian Transport Safety Bureau. In-Flight Upset
Event, 240 km North-West of Perth, WA, Boeing
Company 777-200, 9M-MRG, 1 August 2005, Mar.
2007. Reference number Mar2007/DOTARS 50165,
available at http:

//www.atsb.gov.au/publications/investigation_

reports/2005/AAIR/aair200503722.aspx.

[3] Australian Transport Safety Bureau. In-Flight Upset
154 km West of Learmonth, WA, 7 October 2008,
VH-QPA, Airbus A330-303, Dec. 2011. Aviation
Occurrence Investigation AO-2008-070, Final.

[4] K. Baker. Filling the FAA guidance and policy gap for
systems integration and safety assurance. In 30th
AIAA/IEEE Digital Avionics Systems Conference,
Seattle, WA, Oct. 2011. The Institute of Electrical and
Electronics Engineers.

[5] E. J. Bass, M. L. Bolton, K. M. Feigh, D. Griffith,
E. Gunter, W. Mansky, and J. Rushby. Toward a
multi-method approach to formalizing
human-automation interaction and human-human
communications. In IEEE International Conference on
Systems, Man, and Cybernetics, pages 1817–1824,
Anchorage, AK, Oct. 2011.

[6] E. J. Bass, K. M. Feigh, E. Gunter, and J. Rushby.
Formal modeling and analysis for interactive hybrid
systems. In Fourth International Workshop on Formal
Methods for Interactive Systems: FMIS 2011,

volume 45 of Electronic Communications of the
EASST, Limerick, Ireland, June 2011.

[7] A. Bertolino and L. Strigini. Assessing the risk due to
software faults: Estimates of failure rate vs. evidence
of perfection. Software Testing, Verification and
Reliability, 8(3):156–166, 1998.

[8] P. Bishop and R. Bloomfield. A methodology for
safety case development. In Safety-Critical Systems
Symposium, Birmingham, UK, Feb. 1998. Available at
http://www.adelard.com/resources/papers/pdf/

sss98web.pdf.

[9] D. Daniels. Thoughts from the DO-178C committee.
In 6th IET International Conference on System
Safety, Birmingham, UK, Sept. 2011. The Institution
of Engineering and Technology.

[10] S. Dekker. The criminalization of human error in
aviation and healthcare: A review. Safety Science,
49:121–127, 2011.

[11] J. Downer. Trust and technology: The social
foundations of aviation regulation. British Journal of
Sociology, 61(1):83–106, 2010.

[12] D. L. Dvorak (ed.). NASA study on flight software
complexity. Final report, NASA Office of Chief
Engineer, 2009.

[13] The European Aviation Safety Agency (EASA).
Certification Specifications and Acceptable Means of
Compliance for Large Aeroplanes, CS-25 and
AMC-25, July 2011. Amendment 11; available at
http://www.easa.eu.int/agency-measures/

certification-specifications.php#CS-25.

[14] Federal Aviation Administration. RTCA, Inc.
Document RTCA/DO-178B, Jan. 11, 1993. Advisory
Circular 20-115B.

[15] Federal Aviation Administration. Reusable Software
Components, Dec. 7, 2004. Advisory Circular 20-148.

[16] W. S. Greenwell, E. A. Strunk, and J. C. Knight.
Failure analysis and the safety-case lifecycle. In IFIP
Working Conference on Human Error, Safety and
System Development (HESSD), Toulouse, France,
Aug. 2004.

[17] C. Haddon-Cave. The Nimrod Review: An
independent review into the broader issues
surrounding the loss of the RAF Nimrod MR2
Aircraft XV230 in Afghanistan in 2006. Report, The
Stationery Office, London, UK, Oct. 2009. Available
at http://www.official-documents.gov.uk/

document/hc0809/hc10/1025/1025.pdf.

[18] T. Kelly. Arguing Safety—A Systematic Approach to
Safety Case Management. PhD thesis, Department of
Computer Science, University of York, UK, 1998.

[19] P. B. Ladkin. Computer-Related Incidents with
Commercial Aircraft. http://www.rvs.
uni-bielefeld.de/publications/compendium/.

[20] B. Littlewood. The use of proof in diversity
arguments. IEEE Transactions on Software
Engineering, 26(10):1022–1023, Oct. 2000.

[21] B. Littlewood and J. Rushby. Reasoning about the
reliability of fault-tolerant systems in which one
component is “possibly perfect”. IEEE Transactions on
Software Engineering, 2011. Accepted for publication.

8

[22] E. Lloyd and W. Tye. Systematic Safety: Safety
Assessment of Aircraft Systems. Civil Aviation
Authority, London, England, 1982. Reprinted 1992.

[23] S. P. Miller, M. W. Whalen, and D. D. Cofer.
Software model checking takes off. Communications of
the ACM, 53(2):58–64, Feb. 2010.

[24] C. Muñoz, R. Butler, A. Narkawicz, J. Maddalon, and
G. Hagen. A criteria standard for conflict resolution:
A vision for guaranteeing the safety of self-separation
in NextGen. Technical Memorandum
NASA/TM-2010-216862, NASA, Langley Research
Center, Hampton VA 23681-2199, USA, October 2010.

[25] National Transportation Safety Board, Washington,
DC. Safety Recommendation A-07-70 through -86,
Oct. 2007. Available at http:

//www.ntsb.gov/Recs/letters/2007/A07_70_86.pdf.

[26] National Transportation Safety Board, Washington,
DC. Safety Recommendations A-07-65 through -69,
Oct. 2007. Available at http:

//www.ntsb.gov/recs/letters/2007/A07_65_69.pdf.

[27] I. M. O’Neil, D. L. Clutterbuck, P. F. Farrow, P. G.
Summers, and W. C. Dolman. The formal verification
of safety-critical assembly code. In W. D. Ehrenberger,
editor, Safety of Computer Control Systems
(SAFECOMP ’88), pages 115–120, Fulda, Germany,
1988. International Federation of Automatic Control,
IFAC Proceedings Series No. 16.

[28] Requirements and Technical Concepts for Aviation
(RTCA), Washington, DC. DO-178B: Software
Considerations in Airborne Systems and Equipment
Certification, Dec. 1992. This document is known as
EUROCAE ED-12B in Europe.

[29] Requirements and Technical Concepts for Aviation
(RTCA), Washington, DC. DO-254: Design Assurance
Guidelines for Airborne Electronic Hardware, Apr.
2000.

[30] Requirements and Technical Concepts for Aviation
(RTCA), Washington, DC. DO-297: Integrated
Modular Avionics (IMA) Development Guidance and
Certification Considerations, Nov. 2005. Also issued as
EUROCAE ED-124 (2007).

[31] Requirements and Technical Concepts for Aviation
(RTCA), Washington, DC. DO-248C: Supporting
Information for DO-178C and DO-278A, Dec. 2011.

[32] J. Rushby. Bus architectures for safety-critical
embedded systems. In T. Henzinger and C. Kirsch,
editors, EMSOFT 2001: Proceedings of the First
Workshop on Embedded Software, volume 2211 of
Lecture Notes in Computer Science, pages 306–323,
Lake Tahoe, CA, Oct. 2001. Springer-Verlag.

[33] J. Rushby. Using model checking to help discover
mode confusions and other automation surprises.
Reliability Engineering and System Safety,
75(2):167–177, Feb. 2002. Available at http://www.

csl.sri.com/users/rushby/abstracts/ress02.

[34] J. Rushby. Automated formal methods enter the
mainstream. Communications of the Computer Society
of India, 31(2):28–32, May 2007. Special Theme Issue
on Formal Methods edited by Richard Banach.
Archived in Journal of Universal Computer Science
Vol. 13, No. 5, pp. 650–660, available at
http://www.jucs.org/jucs_13_5.

[35] J. Rushby. A safety-case approach for certifying
adaptive systems. In AIAA Infotech@Aerospace
Conference, Seattle, WA, Apr. 2009. American
Institute of Aeronautics and Astronautics. AIAA
paper 2009-1992; available at http://www.csl.sri.

com/users/rushby/abstracts/aiaa09.

[36] J. Rushby. Software verification and system assurance.
In D. V. Hung and P. Krishnan, editors, Seventh
International Conference on Software Engineering and
Formal Methods (SEFM), pages 3–10, Hanoi,
Vietnam, Nov. 2009. IEEE Computer Society.

[37] N. B. Sarter and D. D. Woods. How in the world did
we ever get into that mode? Mode error and
awareness in supervisory control. Human Factors,
37(1):5–19, 1995.

[38] N. B. Sarter, D. D. Woods, and C. E. Billings.
Automation surprises. In G. Salvendy, editor,
Handbook of Human Factors and Ergonomics. John
Wiley and Sons, second edition, 1997.

[39] Society of Automotive Engineers. Aerospace
Recommended Practice (ARP) 4754: Certification
Considerations for Highly-Integrated or Complex
Aircraft Systems, Nov. 1996. Also issued as
EUROCAE ED-79; revised as ARP 4754A, December
2010.

[40] Society of Automotive Engineers. Aerospace
Recommended Practice (ARP) 4761: Guidelines and
Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment, Dec. 1996.

[41] South African Civil Aviation Authority, Incident
Investigation Division. Boeing B747-400 G-BYGA
Group ‘A’ Leading Edge Slats Retracted on Takeoff
from O. R. Tambo Airport, South Africa, 11 May
2009, June 2010. Serious Incident Investigation Report
CA18/3/2/0717.

[42] J. Souyris, V. Wiels, D. Delmas, and H. Delseny.
Formal verification of avionics software products. In
Sixteenth International Symposium of Formal
Methods, FM 2009, volume 5850 of Lecture Notes in
Computer Science, pages 532–546, Eindhoven, The
Netherlands, Nov. 2009. Springer-Verlag.

[43] UK Air Investigations Branch. Report on the incident
to Airbus A340-642, registration G-VATL en-route
from Hong Kong to London Heathrow on 8 February
2005, 2007. Available at http://www.aaib.gov.uk/

publications/formal_reports/4_2007_g_vatl.cfm.

[44] A. Wassyng, T. Maibaum, M. Lawford, and
H. Bherer. Software certification: Is there a case
against safety cases? In R. Calinescu and E. Jackson,
editors, 16th Monterey Workshop: Foundations of
Computer Software. Modeling, Development, and
Verification of Adaptive Systems, volume 6662 of
Lecture Notes in Computer Science, pages 206–227,
Redmond, WA, 2011. Springer-Verlag.

9

