
Presented at the 18th AIAA/IEEE Digital Avionics Systems Conference (DASC), St Louis, MO, October 1999.

An Automated Method
To Detect Potential Mode Confusions

�

John Rushby, SRI International, Menlo Park, California

Judith Crow, SRI International, Menlo Park, California

Everett Palmer, NASA Ames Research Center, Moffett Field, California

Introduction

Mode confusions are a type of “automation
surprise”—circumstances where an automated sys-
tem behaves differently than its operator expects. It
is generally accepted that operators develop “men-
tal models” for the behavior of automated systems
and use these to guide their interaction with the sys-
tems concerned, so that an automation surprise re-
sults when the actual system behavior diverges from
its operator’s mental model.

Complex systems are often structured into “modes”
(for example, an autopilot might have different
modes for altitude capture, altitude hold, and so on),
and their behavior can change significantly across
different modes. “Mode confusion” arises when the
system is in a different mode than that assumed by its
operator; this is a rich source of automation surprises,
since the operator may interact with the system ac-
cording to a mental model that is inappropriate for its
actual mode. Mode confusions have been implicated
in several recent crashes and other incidents, and are
a growing source of concern in modern automated
cockpits.

If we accept that mode confusions are due to a mis-
match between the actual behavior of a system and
the mental model of its operator, then one way to
look for potential mode confusions is to compare the
design of the actual system against a mental model.
There are two challenges here: how to get hold of a
mental model, and how to do the comparison.

�

This work was supported by the Air Force Office of Scien-
tific Research, Air Force Materiel Command, USAF, under con-
tract F49620-95-C0044 and by the National Science Foundation
under contract CCR-9509931.

Through observation, questionnaires, and other tech-
niques, psychologists have been able to elicit the
mental models of individual operators (typically pi-
lots). However, comparison between a design and
the mental model of a specific individual will pro-
vide only very specific information; we are interested
in whether a design is prone to mode confusions, and
for this purpose it is more useful to compare the de-
sign against a generic mental model rather than that
of an individual. Such a generic model can be ex-
tracted from training material (one of the purposes,
often implicit, of a training manual is to induce ad-
equate mental models) or specified as an explicit re-
quirement (e.g., “this button should behave like a tog-
gle”). Cognitive studies provide two important in-
sights on the nature of these models: first, that they
can be represented compactly by mathematical struc-
tures called “state machines”; second, that they tend
to be fairly simple (which can be explained by appli-
cation of two canonical simplifications [3]).

The fact that mental models can be represented as
state machines suggests a solution to the second chal-
lenge mentioned above—for designs can also be rep-
resented as state machines (this idea underlies mod-
ern design techniques, such as Statecharts), and there
are automated methods for comparing the behaviors
of one (finite) state machine against those of another.
These methods are members of a class of formal tech-
niques, known as “model checking,” that are quite
mature and are used routinely in hardware design
and protocol analysis to explore properties of systems
having many millions of states.

1



An Example
We outline the proposed method using a “kill the cap-
ture” example reported by Palmer [6, Case 2].

The example is one of five altitude deviation scenar-
ios observed during a NASA study in which twenty-
two airline crews flew realistic two hour missions in
DC-9 and MD-88 aircraft simulators. To follow the
scenario, it is sufficient to understand that the autopi-
lot can be instructed to cause the aircraft to climb or
to hold a certain altitude through the setting of its
“pitch mode.” In VSP (Vertical Speed) mode the air-
craft climbs at the rate set by the corresponding dial
(e.g., 2,000 feet per minute); in IAS (Indicated Air
Speed) mode, it climbs at whatever rate is consistent
with holding the air speed set by another dial (e.g.,
256 knots); in HLD (Altitude Hold) mode, it holds the
current altitude. In addition, certain “capture modes”
may be armed. If ALT (Altitude) capture is armed,
the aircraft will only climb as far as the altitude set by
the corresponding dial, at which point the pitch mode
will change to HLD; if the capture mode is not armed,
however, and the pitch mode is VSP or IAS, then
the aircraft will continue climbing indefinitely. The
behavior of this system is complicated by the exis-
tence of an ALT CAP (Altitude Capture) pitch mode,
which is intended to provide smooth leveling off at
the desired altitude. The ALT CAP pitch mode is en-
tered automatically when the aircraft gets close to the
desired altitude and the ALT capture mode is armed
(do not confuse the ALT CAP pitch mode with the
ALT capture mode). The ALT CAP pitch mode dis-
arms the ALT capture mode and causes the plane to
level off at the desired altitude, at which point it en-
ters HLD pitch mode.

The following scenario description is slightly re-
worded from the original to fit the terminology used
here.

The crew had just made a missed ap-
proach and had climbed to and leveled
at 2,100 feet. They received the clear-
ance to “. . . climb now and maintain 5,000
feet. . . ” The Captain set the MCP (Mas-
ter Control Panel) altitude window to 5,000
feet (causing ALT capture mode to become
armed), set the autopilot pitch mode to
VSP with a value of approximately 2,000

ft. per minute and the autothrottle to SPD

mode with a value of 256 knots. Climb-
ing through 3,500 feet the Captain called
for flaps up and at 4,000 feet he called
for slats retract. Passing through 4000
feet, the Captain pushed the IAS button
on the MCP. The pitch mode became
IAS and the autothrottles went to CLAMP

mode. The ALT capture mode was still
armed. Three seconds later the autopilot
automatically switched pitch mode to ALT
CAP. The FMA (Flight Mode Annuncia-
tor) ARM window went from ALT to blank
and the PITCH window showed ALT CAP.
A tenth of a second later, the Captain ad-
justed the vertical speed wheel to a value
of about 4,000 feet a minute. This caused
the pitch autopilot to switch modes from
ALT CAP to VSP. As the altitude passed
through 5,000 feet at a vertical velocity of
about 4,000 feet per minute, the Captain re-
marked, “Five thousand. Oops, it didn’t
arm.” He pushed the MCP HLD button
and switched off the autothrottle. The air-
craft then leveled off at about 5,500 feet
as the “altitude—altitude” voice warning
sounded repeatedly.

To see how model checking techniques could reveal
the existence of the surprise in this scenario, we first
need to construct a mental model that a pilot might
plausibly employ. A plausible generic model might
embody the idea that the pitch mode controls how
the aircraft climbs, and the capture mode controls
whether there is a limit to the climb. Another plausi-
ble component of a generic model is that once capture
mode is armed, it becomes disarmed only when the
aircraft reaches the desired altitude (unless the pilot
manually disarms it).

This mental model is described by the state machine
in Figure 1, where HLD, ALT, IAS, and VSP repre-
sent the events where the corresponding buttons are
pressed, and arrive represents the event of the air-
craft reaching the target altitude. There are three
states in this model, representing the (mutually exclu-
sive) situations where the aircraft is in altitude hold,
or has an altitude capture active, or neither of these.
Pressing the IAS or VSP buttons has no effect (on

2



capture altitude

HLD

IAS/VSP

IAS/VSP

ALT
ALT

HLD/arrive

capture

active

holdnot active

Figure 1: State Machine for Mental Model

the aspects of behavior considered here) when in ei-
ther of the latter two states; pressing ALT causes each
of these states to transition to the other; and pressing
the HLD button causes a transition into altitude hold;
arriving at the desired altitude also cases a transition
into altitude hold when a capture is active. (To keep
things simple, we do not model other behaviors, such
as pressing the HLD button when already in altitude
hold.)

The actual system is rather more complicated than
the mental model: it has an ALT CAP pitch mode
that is entered autonomously when a capture is active
and the aircraft gets near the desired altitude. This
behavior (also somewhat simplified) is described by
the state machine in Figure 2

Since the mental model makes no mention of the ALT
CAP pitch mode, it obviously differs from the ac-
tual system. This does not necessarily mean that the
system harbors a surprise, however, because a men-
tal model should suppress details considered unnec-
essary to understanding how to operate the system.
The pilot might well be aware of the ALT CAP pitch
mode and of its role in leveling the plane off—and
may even be aware that the ALT CAP pitch mode
and the ALT capture mode interact in some way—but
could believe this is merely the implementation of the
ideal capture mode assumed in the mental model. To

capture

capture

altitude

HLD

IAS/VSP

IAS/VSP

HLD/arrivenear

HLD/arriveIAS/VSP

ALT
ALT

not armed hold

is alt_cap

armed

pitch mode

Figure 2: State Machine for Actual System

discover whether a surprise really does reside here,
we need to “run” the state machines representing the
actual system and the mental model on all possible
sequences of inputs and compare their behavior.

In order to compare the behavior of the two state ma-
chines, we need to relate their states to each other.
The actual system is flying a capture (in different
ways) when in either of the two states in the lower
center of Figure 2, so we can “abstract” these into a
compound state that corresponds to the single “cap-
ture active” state of the mental model. This is shown
in Figure 3.

Erasing the detail in the compound state, we arrive at
the fully abstracted state machine for the actual sys-
tem that is shown in Figure 4.

The states and events of this abstracted state ma-
chine correspond in the obvious way to those of the
mental model, and any potential automation surprise
will be manifested as a difference in their transition
structures. Comparing Figures 1 and 4 we imme-
diately see such a difference: the transition on VSP
and IAS from the compound state of the abstracted
actual system to the “capture not active” state. (No-
tice there are two transitions labelled IAS/VSP from
the compound state; these represent nondeterministic
choice at this level—we have to look inside the com-
pound state to see which transition will actually oc-
cur.) This suggests that the sequence of events: VSP,

3



capture

capture

altitude

HLD

IAS/VSP

IAS/VSP

HLD/arrivenear

HLD/arrive

ALT
ALT

not armed hold

is alt_cap

armed

pitch mode

IAS/VSP

Figure 3: Partially Abstracted State Machine for Ac-
tual System

capture altitude

HLD

IAS/VSP

IAS/VSP

ALT
ALT

HLD/arrive

capture

IAS/VSP

not active

active

hold

Figure 4: Abstracted State Machine for Actual Sys-
tem

ALT, near, VSP will lead to a surprise (capture will
be active in the mental model but not in the actual
system), and this is exactly the sequence that gave
rise to the “kill the capture” scenario.

The diagrammatic approach used above is intended
only to convey the intuition behind this method of
analysis. To obtain a method suitable for practical ap-
plication, we need the reliability and power of auto-

mated tools. Model checkers such as Murphi, SMV,
and SPIN (which are all freely available) can provide
this automation. To apply a model checker to these
problems, we first specify the actual system and the
mental model as state machines in the language of the
tool concerned, then specify the expected abstraction
relationship between the two descriptions, and cause
the model checker to search for a violation of this re-
lationship. Model checkers work by performing (ex-
plicit or symbolic) search over the entire state space
of the state machines supplied to them; what makes
them useful is that they can explore vast numbers of
states (many millions) in a reasonable time. (Model
checkers differ from simulators in that they consider
all possible scenarios.) A companion paper [7] de-
scribes how the example considered here can be sub-
jected to automated analysis using the model checker
Murphi from David Dill’s group at Stanford. The
specification of the actual system and mental model
requires just a few dozen lines of specification, and
the automated analysis finds the “kill the capture”
scenario in a fraction of a second. More interestingly,
the analysis finds another surprise in a modified sys-
tem specification that is intended to correct the source
of the original surprise, and then another surprise in a
further modification. The analysis was also extended
to model the behavior of a faulty operator (who “mis-
remembers” the current mode) and the utility of dis-
plays in correcting this.

Discussion

There is much excellent work in the fields of sys-
tem design, aviation psychology, ergonomics and hu-
man factors that seeks to understand and reduce the
sources of operator error in automated systems. The
method described here is intended to complement
these existing studies by providing a practical, mech-
anized means to examine system designs for features
that may be error prone. Human factors and other
studies provide an idea of what to look for, and the
method described here provides a method to look for
it. The method uses existing tools for model checking
and state exploration that have, in other kinds of ap-
plications, scaled successfully to quite large systems.

Model checking is a member of the class of tech-
niques known as “formal methods” and there has

4



been prior work in applying formal methods to the
problems of automation surprises. For example,
Leveson and colleagues [5] compare system de-
signs (by hand) against a list of design features that
are prone to cause operator mode awareness errors.
One of the error-prone design features identified by
Leveson is use of “indirect” mode transitions—those
which occur without explicit operator input. This ap-
proach was applied to the example considered here
by Leveson and Palmer [4] and successfully identi-
fied the indirect pitch mode transition to ALT CAP
in the example considered here, and the confusing in-
teraction between the pitch and capture modes. How-
ever, that manual analysis did not report the surprise
in the modified system description that was detected
by our automated analysis using Murphi.

In other work that applies automated formal methods
to mode confusion, Butler and colleagues [1] exam-
ine an autopilot specification for satisfaction of con-
sistency and safety properties expressed as invariants.

We see the method presented here as complementary
to these other approaches: automation is an adjunct,
not a replacement, for careful human review of de-
sign specifications, and checking for consistent be-
havior is surely desirable in any analysis of an inter-
active system. What our method contributes is the
ability to include an explicit model of the operator in
the analysis. This allows detection of potential mode
confusions that are beyond the scope of these other
methods, but depends on the construction of suitable
mental models.

For the future, we plan to apply this method to larger
examples, and to evaluate its effectiveness in more
realistic applications. We are also interested in using
the technique to explore the consequences of operator
error (and the effectiveness of remedies such as lock-
ins and lockouts, or improved displays), and to assess
the cognitive load placed on an operator by a given
design (e.g., if the simplest mental model that can ad-
equately track the actual system requires a large num-
ber of states, or a data structure such as a stack, then
we may conclude that the design is too complex). We
are also interested in exploring potential interactions
between multiple mental models (e.g., for different
aspects of the behavior of a single system), the con-
sequences of inappropriate mental models (e.g., the
interaction between a model of normal operation and

a system operating in an unusual mode), and in using
this method to assess training materials and check-
lists.

References

[1] Ricky W. Butler, Steven P. Miller, James N. Potts, and
Victor A. Carreño. A formal methods approach to the
analysis of mode confusion. In 17th AIAA/IEEE Dig-
ital Avionics Systems Conference, Bellevue, WA, Oc-
tober 1998.

[2] Denis Javaux and Véronique De Keyser, editors. Pro-
ceedings of the 3rd Workshop on Human Error, Safety,
and System Development (HESSD’99), University of
Liege, Belgium, June 1999.

[3] Denis Javaux and Peter G. Polson. A method for pre-
dicting errors when interacting with finite state ma-
chines. In Javaux and Keyser [2].

[4] Nancy G. Leveson and Everett Palmer. Designing
automation to reduce operator errors. In Proceed-
ings of the IEEE Systems, Man, and Cybernetics
Conference, October 1997. Available at http:
//www.cs.washington.edu/research/
projects/safety/www/papers/smc.ps.

[5] Nancy G. Leveson, L. Denise Pinnel, Sean David
Sandys, Shuichi Koga, and Jon Damon Rees. An-
alyzing software specifications for mode confusion
potential. In C. W. Johnson, editor, Proceedings of a
Workshop on Human Error and System Development,
pages 132–146, Glasgow, Scotland, March 1997. Pa-
per available at http://www.cs.washington.
edu/research/projects/safety/www/
papers/glasco%w.ps.

[6] Everett Palmer. “Oops, it didn’t arm.” A case study
of two automation surprises. In Richard S. Jensen
and Lori A. Rakovan, editors, Proceedings of the
Eighth International Symposium on Aviation Psy-
chology, pages 227–232, The Aviation Psychology
Laboratory, Department of Aerospace Engineering,
Ohio State University, Columbus, OH, April 1995.
Paper available at http://olias.arc.nasa.
gov/˜ev/OSU95_Oops/PalmerOops.html.

[7] John Rushby. Using model checking to help discover
mode confusions and other automation surprises. In
Javaux and Keyser [2].

The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research or the U.S. Gov-
ernment.

5


