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Abstract

Avionics systems in modern and next-generation air-
borne vehicles combine and integrate various real-time ap-
plications to efficiently share the physical resources on
board. Many of these real-time applications also need to
fulfill fault-tolerance requirements—i.e., the applications
have to provide a sufficient level of service even in pres-
ence of failures—and this combination of real-time and
fault-tolerance requirements elevates avionics to a class of
cyber-physical systems of the highest complexity. Conse-
quently, avionics design is challenging for avionics archi-
tects and application engineers alike.

One way to manage complexity is a division of the
overall problem into a hierarchical set of layers con-
nected by well-defined interfaces. The avionics archi-
tect may then select the fundamental network architec-
ture, like AFDX, TTP or TTEthernet, and hide their
idiosyncrasies—in particular, those concerning the way
in which time is managed and presented—by providing
a more uniform conceptual interface to the application
engineer. In this paper we call this interface the “model
of computation” and discuss the well-known synchronous
model of computation and small extensions thereof for
real-time systems. The bridge between the network archi-
tecture and the model of computation concerns the way in
which distributed real-time applications are organized and
it is achieved through “design patterns.” We revise and for-
mally analyze two such design patterns, the Sparse Time-
base of the Time-Triggered Architecture (TTA) and the
Physically-Asynchronous Logically-Synchronous (PALS)
approach.

Perhaps surprisingly, we show that both design patterns
rely on the same assumptions about the network architec-
ture; hence, the choice of network architecture and design
pattern should depend on pragmatics and formal consid-
erations orthogonal to those required to support a particu-
lar model of computation. Our formal analysis builds di-
rectly on the verification in PVS of a PALS-like pattern
for TTA that was developed 15 years ago, thereby illus-
trating that a mechanized formal analysis is an intellectual
investment that supports cost-effective reuse.

1. Introduction

The design of distributed, fault-tolerant, real-time sys-
tems is a challenging topic—and an important one, too, as
modern airplanes, automobiles, and many other kinds of
domestic and industrial plants depend on such systems for
their reliable and safe operation. Over time, a fairly sys-
tematic body of scientific knowledge has been developed
on the topic, together with a body of engineering practice
that builds, to a lesser or greater extent, on that knowl-
edge. Central to the engineering practice is a layering of
services that often corresponds to separate classes of prod-
ucts and suppliers. Typically, there is a network with its
transmission media (e.g., wires or optical fibers), access
controllers, and network hubs and switches, augmented
by mechanisms to mask certain kinds of faults and some-
times to provide additional services such as clock syn-
chronization. We refer to this as the network architecture;
some network architectures are specified fairly abstractly,
for example, the Time-Triggered Architecture (TTA) [8],
whose current implementation is TTEthernet [19], while
others are specified more concretely, for example, AFDX
[1]. Application software that controls the physical plant
uses the services of the network architecture but is gener-
ally designed against a more abstract interface that we re-
fer to as a Model of Computation (MoC); an example of a
MoC is the (round based) synchronous system model [9].
Designing to a MoC shields application software from
the idiosyncrasies of a particular network architecture, but
there must obviously be some mechanism to bridge the
gap between these two interfaces. An MoC is more than a
programming interface—it is a conceptual framework for
organizing distributed real-time applications so that they
operate as a coherent whole—and this organization is re-
alized through “design patterns,” which are the focus of
this paper.

With the rising complexity of modern more-electric air-
craft, more and more research and design groups realize
that synchronized time is a key element of such design
patterns, as it provides a way to coordinate the actions of
spatially distributed nodes in a network. The TTA, for ex-
ample, uses synchronous time in a design pattern called
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the sparse timebase [5] in which nodes will generate criti-
cal events only during activity intervals that alternate with
intervals of silence. In a proper instantiation of the sparse
timebase, agreement protocols on time of occurrence of
events can be avoided or at least greatly simplified. The
PALS approach [18] is a more recent design pattern that
builds on synchronized time. It is primarily focused on
the coordinated exchange of messages in a network and
utilizes synchronized time to specify intervals when mes-
sages may be sent and when not.

The PALS approach is similar to the sparse timebase,
restricted so that transmission of messages is the only kind
of event considered. However, PALS parameterizes its as-
sumptions in a way that potentially makes this design pat-
tern more suitable to native AFDX network architectures.

In this paper we will formalize and verify the design
patterns that link TTA to refinements of the synchronous
system MoC, and we will likewise formalize and ver-
ify the Physically Asynchronous Logically Synchronous
(PALS) design pattern against the same MoCs. Along the
way, we will correct some small errors in previous formal-
izations of properties of these patterns.

Our formalizations and verifications are undertaken in
PVS [12] and build on a previous treatment that verified
a design pattern linking the TTA network architecture to
the synchronous system MoC [16] in a manner very simi-
lar to PALS. Thanks to the theory structuring capabilities
of PVS, and the stability of its implementation, the formal
development reported here does literally import and ex-
tend the formalization and proofs from 15 years ago (that
earlier work was performed in 1996 and first reported in
1997). This corroborates previous evidence [15] that a me-
chanically supported formal verification is an intellectual
investment that can yield cost-effective benefits beyond its
original purpose.

The structure of the paper is as follows. In Section 2, we
recapitulate the previous formalization of the synchronous
system MoC and extend it a little with explicit timing in-
formation; we also recall properties of clock synchroniza-
tion and minimal synchrony assumptions. In Section 3, we
describe how timestamps and a π/∆-precedent event set
allow a distributed system to establish the temporal or-
der of events, and the application of this idea in TTA as
a sparse timebase. We describe how this approach can be
used to represent the synchronous system MoC in TTA.
We then present a formal assessment of this approach and
formally verify (corrected versions of) the four “funda-
mental limits of time measurement” that underpin the TTA
sparse timebase. In Section 4, we observe that the two
phases of a round in the synchronous system MoC (mes-
saging, followed by computation) vitiate some of the ben-
efits of the sparse timebase, since it is necessary to wait for

messages to be delivered before proceeding to the compu-
tation phase. In this case, messages are spaced sufficiently
that timestamps are no longer necessary, provided there is
a delay at the start of each round to ensure that all nodes
are in the same round. This was the design pattern veri-
fied by Rushby [16]. We then introduce PALS, which is
the same approach, but using a different parameterization
of the network architecture. We also present a formal as-
sessment of the PALS design pattern and formally verify
(corrected versions of) its properties. We conclude in Sec-
tion 5 and discuss further work.

2. Models of Computation

In our terminology, a distributed system is composed
of nodes and communication channels. Nodes have inputs,
outputs, and state, and can change their outputs and state
as a function of their inputs and their current state. Nodes
are connected to each other via communication channels
(of unspecified topology) that are used to exchange infor-
mation in the form of messages.

A model of computation (MoC) describes how the
state transitions of individual nodes are coordinated and,
hence, how the global state of the system evolves. The syn-
chronous system MoC is one in which the system evolves
in a series of “rounds” [9]. Rounds have two phases: in
the first, each node in the system sends a message to some
or all of the other nodes (different messages may be sent
to different nodes; messages depend on the current state
of the sender); in the second phase, each node changes
its state in a manner that depends on its current state and
the collection of messages it received in the first phase.
There is no notion of real-time in this model: messages
are transferred “instantaneously” from senders to recipi-
ents between the two phases. The nodes operate in lock-
step (i.e., they are synchronous): all of them perform the
two phases of the current round, then move on to the first
phase of the next round, and so on.

The synchronous system MoC allows a distributed sys-
tem to be viewed as a coordinated whole and therefore
aids the design of distributed algorithms. This MoC is suf-
ficiently expressive to support the description of classi-
cal computer science algorithms such as consensus, agree-
ment, and membership [9] and it is an attractive frame-
work in which to develop applications for distributed sys-
tems. Rushby [16] illustrates how programs for the syn-
chronous system MoC can be mechanically verified by in-
terpreting them as functional programs, and Meseguer and
Ölveczky [10] likewise use such programs as the starting
point for their analysis.

2



2.1. Synchronous System MoC

Some elements from our PVS formalization of the syn-
chronous system MoC, taken directly from Rushby’s ear-
lier treatment [16] as corrected by Pike [14], are summa-
rized below. We do not describe the formalization in detail
here, since it is available in the cited references; we sim-
ply introduce the notation and concepts that we will need
later. The PVS “dump” file that contains the commented
PVS sources and proofs for this paper can be found on-
line1. The guidelines on how to extract the PVS sources as
well as to re-execute the proofs can be found in the PVS
user guide [13].
proc, mess, state: TYPE+
p, q: VAR proc
in_nbrs, out_nbrs: [proc -> setof[proc]]

PVS is a dependently-typed higher-order logic with pred-
icate subtyping [17]. Here, proc specifies the nodes (also
called the “processors”) in the system as a nonempty
type; mess and state similarly specify the messages
and the local state of a node. The higher-order functions
in nbrs and out nbrs define the input neighbors and
output neighbors of a given node.

In the synchronous system MoC all nodes change their
state and send and receive messages in lock-step. An exe-
cution of a distributed system in the synchronous MoC, as
introduced in [9, p. 20], is thus represented as follows:

(S0,M0, N0), (S1,M1, N1), (S2,M2, N2), . . . (1)

where Si represents the global system state at the start of
round i, Mi are the messages sent in round i, and Ni are
those received in round i (Mi and Ni may differ in the
presence of faults).

Although the synchronous system MoC is adequate for
the description of many distributed algorithms, it is not ex-
pressive enough to support descriptions of cyber-physical
applications, such as the control laws for a physical plant,
because it provides no access to real time. The following
two MoCs are simple extensions to the synchronous sys-
tem MoC that provide capabilities to observe and measure
real time.

In addition to their intrinsic interest and utility, these
extensions also serve to introduce the formalizations of
clocks that we will need in our later verifications.

2.2. Time-Aware MoC

The time-aware MoC is a minimal extension to the syn-
chronous system MoC that adds a real-time clock to the

1 http://www.csl.sri.com/users/steiner/
time synchronized systems.dmp

state of each node. The clock provides a counter that ticks
at a rate proportional to real time. Thus, algorithms “run-
ning on” the time-aware MoC can measure the passage of
real-time.

A clock can be formalized independently of its phys-
ical realization as a function that relates real time to the
value of a counter.

realtime: TYPE = nonneg_real
clocktime: TYPE = nat
t: VAR realtime
C(p, t): clocktime

Here, realtime represents a global notion of time avail-
able to an omniscient observer; it is a continuous quan-
tity, formalized as a nonnegative real number. On the other
hand, clocktime represents the simulation of time within
each node: it is the value of a counter. The clock of node
p is a function C(p, t) that returns the value of p’s clock
counter at realtime t.

The quality of a real-time clock is a measure of how ac-
curately C(p, t) tracks real time. The quality parameter
we use is called the drift rate, denoted by ρ, which takes
values between 0 and 1 (it will be very close to 0 for a
good clock).

rho: {x: real | 0 < x AND x < 1}
drift_rate: AXIOM t1 >= t2 IMPLIES
floor((1-rho)*(t1-t2)) <= C(p,t1)-C(p,t2) AND
C(p,t1)-C(p,t2) <= ceiling((1+rho)*(t1-t2))

The axiom drift rate ties realtime to
clocktime: given any two points in realtime, t1 ≥ t2,
the difference in the clock counter values of an arbi-
trary node p at times t1 and t2 is between (1 − ρ) and
(1 + ρ) times the realtime duration t1 − t2, rounded ap-
propriately. Notice this requires that clocktime and
realtime both use the same units to measure time (e.g.,
microseconds).

It is now easy to prove a lemma on the monotonicity of
a clock: an increase in realtime implies a monotonous
increase in clocktime. Notice that, depending on the
length of the realtime interval, the clock may or may
not advance.

monotone_clock:
LEMMA t1 < t2 => C(p, t1) <= C(p, t2)

In the time-aware MoC, different nodes can accurately
measure the passage of real time: for any given real-time
duration, the clock counters in different nodes will ad-
vance by approximately the same amounts (it is approx-
imate because they may have different drift rates). How-
ever, their actual clock counter values may be quite differ-
ent (one may advance from 34 to 87, another goes from
109 to 162). Hence, we define an enhanced MoC in which
these values are synchronized.
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2.3. Time-Synchronized MoC

Here, the real-time clocks introduced in the time-aware
MoC are synchronized to each other, so that at any point in
realtime the clocktime in all nodes is about the same.
The maximum difference is called the “precision” Π of the
distributed system and we express the upper bound on Π
by Σ with Π < Σ. The synchronized clocks are formal-
ized by an additional axiom on C(p, t).

Sigma: clocktime
clock_sync: AXIOM abs(C(p,t) - C(q,t)) < Sigma

It is important to understand that the synchronous sys-
tem MoC places very strong requirements on its under-
lying network architecture. A landmark result [4] estab-
lished that distributed consensus is impossible in an “asyn-
chronous” system in the presence of even a single fault;
later work examined the “minimal synchronism” needed
for consensus [3]. Since the synchronous system MoC can
perform consensus, its underlying network architecture
must provide at least this minimal synchronism, which is
the existence of a guaranteed upper bound on message de-
lays between nonfaulty nodes.

This is formalized as follows. We use sent(p,q,m,t)
to indicate that node p sent message m to node q at
real time t and we use recv(q,p,m,t) to indicate that
node q received message m from node p at real time t.
These two events are related as follows (out nbrs(p) is
the set of outgoing channels of node p, the parenthesis
(out nbrs(p)) lifts this to a predicate subtype).

min_latency: {x: realtime | 0 < x}
max_latency: {x: realtime | min_latency <= x}
latency: TYPE = {x: realtime | min_latency <=x

AND x <= max_latency}
max_delay:
AXIOM FORALL p, (q: (out_nbrs(p))), m, t:
(EXISTS (d: latency): sent(p, q, m, t)

=> recv(q, p, m, t + d))
AND (EXISTS (d: latency): recv(q, p, m, t)

=> sent(p, q, m, t - d))

Off the shelf network technologies such as CAN Bus
or Ethernet cannot provide the guarantee represented by
max delay. The reason is that faulty nodes can interfere
with nonfaulty ones: a faulty node that does not follow the
protocol by, for example, transmitting constantly or trans-
mitting on top of the messages from some nonfaulty node,
can lead to unbounded delays. The only way to control this
possibility is to add redundancy and have a second compo-
nent mediate each node’s access to the network medium.
This “network guardian” can limit the rate at which each
node can transmit, or restrict the specific times at which
it is allowed to transmit. The former scheme is used in
AFDX while the latter, which requires a global schedule,
is used in TTA. Use of TTA requires more upfront effort

than AFDX (to establish the global schedule) but its max-
imum message delay is generally smaller.

We now examine how suitable design patterns enable
specific network architectures to support the MoCs.

3. Time-Triggered Architecture

3.1. Informal Overview

The TTA uses a global schedule to control access to the
network. Consequently, each node of the network archi-
tecture has a synchronized clock and it is straightforward
to reflect this in the MoC; hence these aspects of the time-
aware and time-synchronized MoCs are easily achieved.
The underlying synchronous system MoC is more chal-
lenging. This is because the clocks are not exactly syn-
chronized, so if we arrange to start a new round every hun-
dred clock ticks, say, some nodes will start the round be-
fore others and there will be some confusion which round
the global system is in. Figure 1 illustrates this problem:
nodeA and nodeB are synchronized with precision Π. As
it happens in this scenario, both nodes perceive an event e1
(e.g., a message broadcast by a third node) that occurs at
about the start of a new round. However, as node A has
a slightly faster clock than node B, node A assigns e1 to
round i+ 1 while node B assigns e1 to round i.

Round i Round i+1

Clocktime Node A

Round i Round i+1

Clocktime Node B

Event e1

Figure 1: Imperfection of clock synchronization causes
imperfect event-to-round assignment

There are two approaches to dealing with this problem:
one uses timestamps and the notion of a sparse timebase,
while the other adds delays to ensure that all nodes are in
the same round.

The first approach builds on TTA design patterns for
“global time” and a “sparse timebase,” depicted in Fig-
ure 2. These design patterns are major elements in con-
structing the Time-Triggered MoC [7]; here, we use them
to construct the synchronous system MoC.

An analogy (due to Kopetz) may help motivate the idea
of a sparse timebase. Imagine we have a train track along
which a train passes every hour, on the hour. By look-
ing at a watch, we can correctly identify any train (e.g.,
“that’s the 2 o’clock train”), and this remains true even
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if trains do not keep perfectly to the timetable (e.g., they
may be up to 5 minutes early or late) and even if our watch
does not keep perfect time (e.g., it may be up to 5 minutes
fast or slow). But we will not be able to correctly identify
trains in the face of these imprecisions if they are sched-
uled more frequently: say, every 15 minutes. This method
only works if trains are “sparse” relative to the timing er-
rors present in the system.

In a distributed system, where network delays may be
quite large compared to other time uncertainties in the sys-
tem, we can help other nodes interpret reports of our obser-
vations (e.g., our train sightings) by sending them with our
timestamp, rather than having receiving nodes record their
local time when our report is received. For global consis-
tency, we require that all nodes assign the same temporal
order to all reported events, and one way to make this fea-
sible is to require that events are sparse.

REAL TIME

CLOCK TIME

GLOBAL TIME

1 2 3 4 5 6

SPARSE TIME
(1g/4g)

7

Figure 2: Overview of the global time and sparse timebase
definition

These ideas are realized in the TTA by first defin-
ing “global time” as is a coarser time layer on top of
clocktime (see Figure 2). This time layer groups a spec-
ified number of clocktime ticks into a single tick of
global time. A global time is defined to be reasonable [6]
when the duration of one tick in the global time is longer
than the precision of the system (and we generally assume
that the precision is longer than a tick in clocktime).
This constraint on tick duration only as a function of the
precision in the system contrasts with PALS (see next sec-
tion), where it also depends on other system’s proper-
ties (such as transmission latencies, and computation or
queueing overheads).

In the following, we assume a reasonable global time
of granularity (i.e., tick duration) g. Without loss of gen-
erality, we set the g = Σ (since Σ is an arbitrary value
with Π < Σ). Events, which can occur at any instant on
a dense timeline (i.e., in realtime), may be recognized
by nodes and a node will assign each event (that it recog-
nizes) a timestamp according its local view of the global

time (i.e., the node’s current global time value). A node
may then send the information that it recognized an event
together with its assigned timestamp to other nodes. In
such a setup, the following informally stated “Fundamen-
tal Limits of Time Measurement (FLTM)” [6, p. 55] ap-
ply:

FLTM (i): If a single event is observed by two
different nodes, there is always the possibility
that the timestamps differ by one tick. Hence,
a one-tick difference in the timestamps of two
events is not sufficient to reestablish the tempo-
ral order of the events from their timestamps.

FLTM (ii): If the observed duration of an in-
terval is dobs , then the true duration dtrue is
bounded by (dobs−2g) < dtrue < (dobs +2g)

FLTM (iii): The temporal order of events can
be recovered from their timestamps, if the dif-
ference between their timestamps is equal to or
greater than 2 ticks.

Now, the philosophy in TTA is that events are triggered
by a schedule, so the question becomes, given that we can
influence the generation times of events, when shall they
be generated such that temporal ordering is always possi-
ble. In analogy to Verissimo’s δ-precedence scheme [21, p.
43 ff], Kopetz defines π/∆-precedence2: a set of events ei
is said to be π/∆-precedent, if, and only if, any two events
e1, e2 of the event set are generated either within π time
units or are at least ∆ time units apart. Figure 2 shows an
example of an π/∆-precedent event set. From the π/∆-
precedence scheme, the fourth FLTM [6, p. 55] follows:

FLTM (iv): The temporal order of events can
always be recovered from their timestamps, if
the event set is 0/3g-precedent.

Kopetz [5] builds the concept of a sparse timebase on
the π/∆-precedence scheme, but chooses the parameters
1g/4g. The reason for this adjustment is that π and ∆ are
realtime parameters, but all events in a time-triggered
system are generated by the nodes themselves, according
to a schedule that operates on global time, which is de-
rived from local clocktime. Because their local clocks
are not perfectly synchronized, nodes cannot guarantee to
generate events that are truly simultaneous (i.e., π = 0);
the best that can be done is to generate events at the same
global time, but these may then be as much as Σ apart in
realtime. Hence, the parameter π is set to 1g (which is
no less then Σ) and ∆ is correspondingly adjusted to 4g.

2 Note, that this π is different to the Π representing the precision.
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Sparse Timebase: The temporal order of
events can always be recovered from their
timestamps, if the event set is at least 1g/4g-
precedent.

A 1g/4g-precedent sparse timebase is sufficient to es-
tablish the synchronous system MoC: nodes transmit their
messages within the same global clock tick and spend
at least 4g global clock ticks in the computation phase.
The reception of messages is performed continuously by
each node’s operating system and each message received
is placed in the input buffer of the appropriate round
by examination of its timestamp (even if it arrives be-
fore the receiving node has started that round or, due to
network delays, after it has finished its own messaging
phase). Although messages can be correctly allocated to
rounds with a 1g/4g timing of the messaging/computation
phases, messaging delays may mean that this can only be
done retrospectively (e.g., if the message delay is greater
than 5g); since the synchronous system MoC requires that
all incoming messages are available before the computa-
tion phase begins, the start of this phase must be postponed
for at least the maximum message delay. Hence the dura-
tion of a round must be at least 5g units, but will generally
be longer than this to allow for message delays and the
time required to actually perform the computation phase.

Correctness of the sparse timebase construction, and of
the design pattern that uses it to support the synchronous
system MoC rests on the four FLTM claims. We formalize
and verify these in the next subsection.

3.2. Formal Assessment

Our formal treatment defines GLOBALtime as a tim-
ing layer on top of clocktime. This timing layer groups
a certain number of clocktime ticks into a single tick of
GLOBALtime. The TTA defines this grouping operation as
a function only of the precision in the system, rather than
also depending on the system’s latencies (transmission,
computation, queueing). Specifically, the granularity

of the GLOBALtime has to be at least Sigma, i.e., longer
than the worst-case offset of any two clocks (this is the
“reasonableness condition”).

GLOBALtime: TYPE = nat
granularity: clocktime = Sigma
G(p, c): GLOBALtime = floor(c/granularity)

Given the formal definition of the GLOBALtime layer, we
can formulate FLTM (i) as theorem on the difference of
the GLOBALtime timestamps as taken by any two differ-
ent clocks p and q of an event that happened at time t. Ac-
cording to FLTM (i) there may be a difference of up to
one GLOBALtime tick. Figure 1 depicts FLTM (i) in case

that the round length is equal to one GLOBALtime tick.
We have verified FLTM (i) in PVS by the following theo-
rem.

FLTM_i: THEOREM (FORALL (t: realtime):
G(q, C(q, t)) - G(p, C(p, t)) = 0 OR
G(q, C(q, t)) - G(p, C(p, t)) = 1 OR
G(q, C(q, t)) - G(p, C(p, t)) = -1)

FLTM (ii) discusses the quality of time measurement
for an interval [ta, tb]. Our formal treatment shows a
slight imprecision in FLTM (ii): the time interval is not
only bounded by +/− two times the granularity of the
GLOBALtime, but also a function of the drift rate ρ of
the real-time clocks. Figure 3 illustrates this dependency;
it plots clocktime against realtime and depicts two
nodesA andB with fast clocks. Here, a perfect clock is il-
lustrated by a line with forty-five degree slope and in con-
trast, the fast clocks are depicted by lines with slopes of
more than forty-five degrees. The figure suggests that the
length of dobs is a function of the slopes for nodes A and
B and we can formally verify this hypothesis with PVS.

Round i Round i+1

Clocktime Node A

Round i Round i+1

Clocktime Node B

Event e1

No
de

 A

Nod
e 

B

Perf
ec

t C
loc

k

dtrue

dobs

Realtime

C
lo

ck
tim

e

Figure 3: Example of the influence of drift rate rho on the
measurement of realtime intervals

In our formal framework this dependency is reflected
in the time-synchronized MoC, where the upper bound
that defines clock synchronization is defined as a con-
straint in clocktime and not realtime. The relation be-
tween these two times is defined in the time-aware MoC
by the parameter ρ. Time measurement has, therefore, to
account for a factor (1+rho) and (1-rho) in the bounds
on [ta, tb].

Note that we have retained a limitation of the original
FLTM (ii), which is that clocks are not synchronized to an
external time reference such as GPS. Hence, all the clocks
in the system may collectively drift from realtime. It
is straightforward to adjust both the formalization and any
implementation so that synchronization is performed to an
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external time reference, and thereby bounds the common
drift. This is done in PALS: see Section 4.1.

FLTM_ii: THEOREM (FORALL (t_a, t_b: realtime):
t_b >= t_a =>

((G(q,C(q,t_b))-G(p,C(p,t_a)))*granularity
- 2*granularity
<= ceiling((t_b-t_a)*(1+rho)))

AND (floor((t_b-t_a)*(1-rho)) <=
(G(q,C(q,t_b))-G(p,C(p,t_a)))*granularity
+ 2*granularity))

FLTM (iii) says that a difference of two in the timestamps
of two events according the GLOBALtime is sufficient to
order the events. This directly follows from FLTM (i) and
we have verified FLTM (iii) by following theorem.

FLTM_iii: THEOREM (FORALL (t_a,t_b: realtime):
(G(q,C(q,t_b))-G(p,C(p,t_a))>=2) => t_a<t_b)

Two events that happened at t a and t b are perceived by
two nodes p and q, which assign these events timestamps
according the global time G. When the difference in these
timestamps is at least two, then the event at t a happened
before t b.

For FLTM (iv) and the sparse timebase, we define the
event set by a nonempty type and specify two particular
events e1 and e2.

events: TYPE+
e1, e2: VAR events

0/3g-precedence requires that any two events occur ei-
ther at the same point in realtime or at least 3g (three
times the granularity of the global time) apart. In analogy
to FLTM (ii), our formal investigation shows that this def-
inition is imprecise: the 3g requirement assumes perfect
clocks. Hence, 3g in realtime may take up to 3g

(1−ρ) in
clocktime.

We formulate FLTM (iv) using z() as an uninterpreted
function that assigns to each event its time of occurrence
in realtime.

z(e1): realtime
FLTM_iv: THEOREM
z(e1) < z(e2) AND
floor((z(e2)-z(e1))*(1-rho)) >= 3*granularity
=> G(p, C(p, z(e2))) - G(q, C(q, z(e1))) >= 2

Two events that are 0/3g-precedent and occur at different
points in realtime will always cause their timestamps to
differ by at least two ticks. (By FLTM (i), those that occur
at the same point in realtime will have timestamps that
differ by at most one tick.)

As explained in the informal overview, the sparse time-
base adjusts this treatment to use 1g/4g-precedence. Here,
two events may either occur within 1g or at least 4g
apart. Again, we have to normalize both intervals from
realtime to clocktime: the 1g upper bound becomes

1g
(1+ρ) while the 4g lower bound becomes 4g

(1−ρ) . Again,
we use the uninterpreted function z() to represent when
events happened according to realtime.

sparsetime_a: THEOREM
z(e2) >= z(e1) AND
ceiling((z(e2)-z(e1))*(1+rho)) <= granularity
=> G(p, C(p, z(e2))) - G(q, C(q, z(e1))) <= 2

sparsetime_b: THEOREM
z(e2) >= z(e1) AND
floor((z(e2)-z(e1))*(1-rho)) >= 4*granularity
=> G(p, C(p, z(e2))) - G(q, C(q, z(e1))) >= 3

The corrections on FLTM (iv) for the sparse timebase
require the events to happen closer together or slightly far-
ther apart than a multiple of g. Hence, if we want to ex-
press π/∆-precedence in multiples of g we would have
to increase this from 1g/4g to 1g/5g-precedence, which
is quite inconvenient. A correction that leaves FLTM (iv)
and the sparse timebase in their original form would there-
fore be beneficial, and, indeed, we can compensate for the
imprecisions by moving the corrections into a re-definition
of the reasonableness condition.

granularity_c(number_granules): clocktime
reasonableness_condition: AXIOM
rho < 1/number_granules AND
granularity_c(number_granules) =

ceiling((Sigma+1)/(1-number_granules*rho))
Gc(number_granules, p, c): GLOBALtime =

floor(c/granularity_c(number_granules))

While originally the granularity has been defined as a
function of Σ only, the new version defines granularity as
a function of Σ, ρ, and the number granules (given as
max(π,∆) of the required π/∆-precedence). Given the
granularity g = d Σ+1

1−number granules×ρe, we can formulate
a generalized form of FLTM (iv):

FLTM_iv_general: THEOREM
z(e1) < z(e2) AND rho < (1/number_granules)
AND number_granules >= 2
AND z(e2)-z(e1) >=
number_granules*granularity_c(number_granules)
=> Gc(number_granules,p,C(p, z(e2))) -

Gc(number_granules,q,C(q, z(e1)))
>= (number_granules-1)

The above theorem can be instantiated for FLTM (iv) and
for sparsetime b, by setting number granules to 3
and 4 respectively. For sparsetime a, we get the follow-
ing alternative constraint when using the re-defined gran-
ularity.

sparsetime_a_alt: LEMMA
z(e1) < z(e2) AND rho < (1/4)
AND z(e2)-z(e1) <= granularity_c(4) =>
Gc(4,p,C(p,z(e2))) - Gc(4,q,C(q,z(e1))) <= 2

7



4. Physically Asynchronous Logically Syn-
chronous

4.1. Informal Overview

We have seen that a 1g/4g-precedent sparse timebase
allows construction of a general timestamping service
whose accuracy depends only on system precision (clock
skew) and not on other parameters such as message delays.
However, the two-phase nature of the synchronous system
MoC requires nodes to wait for the maximum message de-
lay before proceeding from the messaging to the compu-
tational phase of each round. Given this wait, we can dis-
pense with timestamps, provided we also wait for a short
period at the start of each round before beginning the mes-
saging phase (this is to ensure that every node has started
the round). Rushby [16] describes and formally verifies
this pattern. He shows that the delay D at the start of each
round must be at least Σ (Rushby assumes the minimum
latency is zero) and that the computation phase can start
no earlier than D + Σ + (1 + ρ)δ, where δ is the maxi-
mum latency.

PALS [18] is a similar pattern developed 10 years later;
it differs from Rushby’s TTA scheme chiefly in its choice
of network parameters: for example, Rushby has only a
maximum network latency, whereas PALS has both min-
imum and maximum latencies. (A minimum latency of
zero is appropriate for TTP bus networks, which was the
network architecture assumed by Rushby, whereas non-
trivial minimum latencies are appropriate for AFDX net-
works, as considered for PALS.)

T

H
PALStime i

T

H
PALStime i+1

T

H
PALStime i

T

H
PALStime i+1

Node A

Node B

Figure 4: PALS overview

An overview of PALS is given in Figure 4. PALS de-
fines a time layer similar to the GLOBALtime of TTA that
we formalize as PALStime and refer to as PALS time or
the PALS clock. Figure 4 depicts two nodes A and B for
a duration of two ticks in PALStime. Node A is slightly
faster than node B and, thus, the PALS clock of node A
will tick a little bit earlier than node B’s PALS clock.
However, the PALS clocks of A and B are synchronized,
such that it is guaranteed that both clocks will tick within

a known interval. Furthermore, Figure 4 also depicts ar-
rows between the nodes A and B, which are intended to
illustrate message exchange between the nodes and the di-
rection of the arrows represents the direction of transmis-
sion. Some of the arrows are crossed out, meaning that the
respective transmissions are not allowed at the depicted
points in time and PALS specifies these intervals of un-
allowed transmissions using the parameters H and the T .
The H parameter specifies a timeout of silence immedi-
ately after the tick of the PALS clock. It ensures that a
node with a fast PALS clock will send messages only at
times when it is guaranteed that receiving nodes, which
may have slower PALS clocks, have the same PALStime.
Likewise, the T parameter ensures that the duration of a
PALS clock tick is sufficiently long that messages sent by
nodes with slow PALS clocks are received by nodes with
fast PALS clocks within the same PALStime. In the fol-
lowing we review the PALS design pattern as presented
in the literature and then formally verify that PALS pro-
vides the synchronous MoC.

PALS requires minimal synchrony assumptions, which
are formulated as conditions “G2” (bounded transmission
delay), “G3” (bounded processing time), and the defini-
tion of PALS Clocks (bounded clock drift and synchro-
nized clocks) [18]:

G2: Real Time Network. The network has a
network queueing (scheduling) delay q bound
by 0 < qmin ≤ q ≤ qmax and a network trans-
mission delay µ bounded by 0 < µmin ≤ µ ≤
µmax .

G3: Real Time Machine. . . . The task com-
pletion time α, including real time schedul-
ing, computation, and I/O is bounded by 0 <
αmin ≤ α ≤ αmax . . .

PALS Clocks. All the local clocks used by
PALS for global computation are synchronized
with the global clock with skews of at most ε.

Note that the global clock of PALS is a different con-
cept than the global time of the sparse timebase: the former
is a concrete external time reference (e.g., GPS), while the
latter is an abstraction constructed separately in each node.
The clock synchronization of the sparse timebase is inter-
nal synchronization: the local clocks of all nodes remain
close together, but they may collectively drift from any ex-
ternal reference. The clock synchronization of PALS is ex-
ternal synchronization: the local clocks of all nodes are
kept close to the external reference. Clearly, external syn-
chronization implies internal and, in fact, is often used to
implement it.

We denote the ε of “PALS Clocks” by εPALS . In the
terminology of Kopetz εPALS is the “accuracy” of the
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system, which also defines the precision Π of a system:
Π = 2× εPALS . Precision, as before, is the maximum off-
set of any two non-faulty local clocks in the system.

It is the aim of PALS that all nodes (called “real-time
machines” in PALS) process their input synchronously. In
PALS terminology this is expressed as: all messages sent
at time j, according a sender’s PALS clock Cs, will be
received also at time j, according each receiver’s PALS
clock Cr. At PALS time j+1 each real-time machine will
then process the inputs received during PALS time j. This
synchronous input processing is established by restricting
the intervals when a real-time machine is allowed to send
messages.

Although not explicitly stated in the PALS model, we
claim it is justified to assume that the global time used as
reference time ticks with a granularity of T and the tick
is synchronized with the PALS clocks with an accuracy
of εPALS . Hence, whenever the global time ticks, a PALS
clock may tick up to εPALS later or has ticked less than
εPALS earlier.

The PALS design pattern restricts the points in time
when messages are allowed to be sent by condition “G6”:

G6: PALS Causality Rule. A machine at
(PALS) clock period j cannot send earlier than
↑ (Ci = j) +H , where H = 2εPALS − µmin .

↑ (Ci = j) indicates the event when PALS clock Ci
ticks to time j. The PALS Causality Rule ensures fast
PALS clocks will not cause messages to be received at
j−1 by machines with slow PALS clocks. In order to also
ensure that messages sent by machines with slow clocks
at j will not be received by machines with fast clocks at
j + 1, the granularity of the global time, T , has to be suf-
ficiently long:

G7: PALS Clock Period. PALS clock period
T > 2εPALS +max(αmax +qmax , H)+µmax

The system assumptions defined in G2, G3, and the
definition of PALS clocks, together with the PALS design
pattern defined in G6 and G7 should ensure that all real-
time machines process the system-internal messages at the
same PALS clock tick. Formally, PALS is intended to sat-
isfy the following theorem:

Fact 3. A message sent during sender’s jth

clock period will be received by all machines
when they are still in their jth clock period.

We have formalized the proof of Fact 3, based on the
PALS assumptions, in PVS. As we will discuss in the fol-
lowing subsection, our formal proofs verify the general
concept, but also identified some imprecisions in PALS.

4.2. Formal Assessment

We build the formal assessment of PALS on the time-
synchronized model (Section 2.1). We start with the def-
inition of an additional time layer PALStime on top of
clocktime.

PALStime: TYPE = nat
PALS_period: clocktime
P(p, c): PALStime = floor(c/PALS_period)

PALStime is represented by the natural numbers. The
PALS clock ticks with a period PALSperiod measured in
clocktime. The function P(p,c) returns for each pro-
cessor p and each clocktime c the current PALStime.
As depicted, the PALStime is simply the integer division
of the c by the configured PALSperiod. We continue the
discussion with the formalization of G6 and G7.

sent_PALS: AXIOM
(FORALL p, (q: (out_nbrs(p))), m, t:
sent(p, q, m, t) =>
rem(PALS_period)(C(p, t)) >
Sigma - floor(min_latency * (1 - rho)) AND
rem(PALS_period)(C(p, t)) <
max(Sigma - floor(min_latency * (1 - rho)),

max_task_time + max_queue_delay))

G6 prevents messages from being sent at the beginning of
a PALS round. We can formally express this using the re-
mainder function, which is formalized in the PVS library
as the higher-order function rem: messages may only be
sent when the remainder of the integer division of a node
p’s current clocktime by the PALSperiod is sufficiently
high. Note, that Σ bounds the maximum difference of any
two nodes in the system, hence Σ > 2× εPALS .

In formalizing PALS, we identified two issues in
the original presentation of PALS [18]. First, PALS
does not explicitly distinguish between realtime and
clocktime. This leaves the PALS definition slightly in-
accurate, leading to potential scenarios as for example the
one portrayed in Figure 5.

The depicted scenario shows, again, two nodes A and
B where A has a faster PALS clock than B. On the bot-
tom of Figure 5 the timing parameters as presented in [18]
are illustrated: the PALS clocks of A and B tick with a
distance of 2× ε in realtime; then, when perfect clocks
are assumed, waiting for the H parameter ensures that the
transmissions of node A will arrive at node B during the
same PALS clock tick. However, on top of Figure 5 we
consider non-perfect clocks. In case that the local timer
that measures the H timeout is slightly faster (indicated
by −ρ) than the perfect clock, the timeout will expire too
early and messages may be sent too early and received by
node B while its PALS clock is still at PALStime i − 1.
The PALS formulation overlooks the fact that we must ac-
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Figure 5: Improper treatment of realtime as clocktime po-
tentially leads to PALS protocol violation

count for clock drift whenever we use local clocks to mea-
sure a real time interval.

Specifically, we see that µmin (min latency) and ε
are durations in realtime and have to be normalized to
clocktime. As discussed earlier 2×ε can be expressed by
Σ in our framework and µmin can be transformed by con-
sidering the drift rate with the factor (1-rho) (see Sec-
tion 2.2 for discussion of the drift rate ρ).

Although one may argue that per definition the PALS
clocks require that all “local clocks for global compu-
tations” are synchronized to the perfect clock with no
more than ε deviation, still Figures 2-4 in [18] indicate
that the PALS clocks of two nodes may tick up to 2 × ε
time units apart. Without casting µmin from realtime to
clocktime, the PALS clock of the sending node would
not be allowed to drift during the measurement of the
H duration. Our formalization describes, how µmin can
be transformed such that scenarios like the one discussed
above are mitigated.

G7 restricts the minimum length of PALSperiod. Here
the normalization factor (1+rho) has an even higher im-
pact, as the maximum latency has to be normalized.

PALS_period_min: AXIOM
PALS_period >
Sigma + max(Sigma-floor(min_latency*(1-rho)),

max_task_time + max_queue_delay)
+ ceiling(max_latency*(1+rho))

The second finding has been corrected in later publi-
cations of the PALS design pattern [10] and [11], but as
these publications reference the original one without call-
ing out the shortcoming explicitly, we believe that the fol-
lowing discussion is still appropriate. There is a restriction
on the precision Σ in the system:H = 2εPALS−µmin has
to be greater than or equal to 0, as a negative H breaks the

PALS pattern (sender would have to send at PALStime
j − 1 to cause a reception at PALStime j). We formal-
ize this restriction as an additional axiom.

latency_aux6: AXIOM
Sigma > floor(min_latency * (1 - rho))

This restriction means that in order to execute PALS, a
system must not synchronize its clocks better than its
minimum transmission latency. This is quite a signifi-
cant handicap as the minimum latency easily reaches tens
or hundreds of microseconds (considering a 100 Mbit/s
store-and-forward Ethernet network). Luckily, this restric-
tion can easily be removed by having H = max(0, 2 ×
εPALS − µmin).

The formalization developed for PALS allows us to
prove Fact 3 of PALS: transmission and reception of a
message will always happen at the same PALStime j. The
verification of Fact 3 is eased by the general reasoning on
the equality of integer divisions of two dividends with re-
spect to the same divisor as formulated in the following
lemma.

floor_equ: LEMMA
(FORALL (a, b: integer), (x, y: real),

(base: posnat):
a >= b - x AND a <= b + y
AND rem(base)(b) - x > 0
AND rem(base)(b) + y < base

=> floor(a/base) = floor(b/base))

floor equ defines preconditions to be met so that the
floor of the integer divisions of two dividends with respect
to a common divisor are equal. We then show that PALS
meets these preconditions which is the core of the formal
proof of Fact 3.

recv_PALS: THEOREM
(FORALL p, (q: (out_nbrs(p))), m, t:
(EXISTS (d: latency): sent(p, q, m, t)
=> recv(q, p, m, t+d) AND

P(p, C(p, t)) = P(q, C(q, t+d))))

Fact 3 is the key theorem to prove the equivalence of PALS
to the synchronous system MoC. The proof can be found
in our online PVS sources and follows Rushby’s approach
for time-triggered systems [16].

5. Conclusion

We have formalized and verified two design patterns
that allow suitable network architectures (i.e., those sat-
isfying minimal synchrony assumptions) to support more
abstract models of computation, based on the synchronous
system MoC, that shield applications programs from the
underlying complexities.

Both TTA and PALS define time layers on top of syn-
chronized real-time clocks: GLOBALtime and PALStime,
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respectively. However, they differ with respect to purpose
and generality. TTA GLOBALtime is a generic service to
timestamp and to trigger events within a sparse timebase.
The length of a tick in GLOBALtime is driven only by
the precision of the system and the quality of its real-
time clocks, not by message delays or other parameters.
However, the two-phase character of the synchronous sys-
tem MoC forces a wait (for messages to arrive) between
its messaging and computational phases and this vitiates
some of the benefits of the sparse timebase. Thus, although
the sparse timebase can support the synchronous system
MoC, it is perhaps best seen as a distinct MoC in its own
right.

On the other hand, a clock tick in PALStime has a one-
to-one relation to the notion of a round in the synchronous
MoC. The PALS design pattern specifies the tick duration
such that it is sufficiently long for transmission, reception,
and processing a round of messages, accounting for all
clock skews and message delays. Figure 6 depicts this re-
lation between PALStime (on the top) and GLOBALtime

(on the bottom). Here, one tick in PALStime correspond
to twenty ticks in GLOBALtime.

Time

0 10 20 30 40 50 60

H

T

0 1 2 3

Figure 6: Comparison of PALStime and GLOBALtime and
the PALS relation to π/∆-precedence

Our formalization and verification revealed issues in
previous presentations of the TTA sparse timebase and
PALS. In both cases, certain expressions relating clock-
time and realtime fail to account for clock drift in the pe-
riod under consideration, and must be corrected by a fac-
tor (1 ± ρ). Although this issue is bound to become man-
ifest during formal proof, it is worth noting that the type
system of PVS detects the problem much earlier. Direct
correction of the issue in the sparse timebase formulation
produces unattractive results, which we finesse by adjust-
ing the “reasonableness” condition on GLOBALtime. We
believe that a larger overhaul of the sparse timebase de-
sign pattern could deliver further benefits. First, the sparse
timebase could adopt Rushby’s technique (also used in
PALS) by delaying the generation and timestamping of
events until all nodes are sure to be on the same global
tick, thereby avoiding the need to escalate the parameter π

from 0 to 1g. Second, rather than formulating the bounds
of π/∆-precedence in terms of realtime, then having to
deal with the fact that events are actually generated ac-
cording to a schedule in GLOBALtime, plus the compli-
cation that clocks can drift during the relevant intervals, a
formulation directly in terms of clocktime could yield
a simpler theory and tighter bounds. We suspect that sim-
ilar reparameterization of PALS would likewise simplify
the statement of its corrected constraints.

PALS has a second issue (corrected in [10] and [11])
that concerns the wait between starting a round and begin-
ning message transmission: this cannot be negative and its
correction distinguishes the case where the minimum mes-
sage delay is less than clock skew.

The formal verifications performed here build directly
on that described in [16] (i.e., they literally import and ex-
tend the PVS theories, as corrected by Pike [14], of that
previous verification), which developed a scheme equiv-
alent to PALS, but using a different parameterization for
the network properties. Modulo these differences, the cor-
rected PALS results agree with Rushby’s. A mechanically
supported formal specification and verification is thus an
intellectual investment that continues to provide benefit
long after serving its initial purpose (we have seen the
same benefit previously [15]).

The TTA sparse timebase, Rushby’s scheme, and PALS
all make identical assumptions (modulo choice of parame-
ters) about minimal synchrony (i.e., bounded message de-
lays), and clock synchronization. Hence, the choice of net-
work architecture and design pattern should depend on
pragmatics and formal considerations orthogonal to those
required to support the models of computation considered
here.

For the future, we plan to examine other design patterns
that deliver similar services and MoCs to those considered
here, but build on different network architectures: for ex-
ample the Loosely Time Triggered Architecture [20] and
the Globally Asynchronous Locally Synchronous (GALS)
architecture [2].
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