
Presented at the 27th IEEE/AIAA Digital Avionics Systems Conference (DASC), St. Paul MN, October 2008.
Recipient of “Best in Session,” “Best in Track” and “Best in Conference” awards.

The MILS Component Integration Approach to Secure Information Sharing

Carolyn Boettcher, Raytheon, El Segundo CA
Rance DeLong, LynuxWorks, San Jose CA

John Rushby, SRI International, Menlo Park CA
Wilmar Sifre, AFRL/RITB, Rome NY

Abstract

The US military has a vision of information superiority
that requires secure and timely sharing of information be-
tween geographically separated platforms and users. Of-
ten, however, the producers and consumers of informa-
tion, as well as the information itself, reside in different
security domains, necessitating some form of Cross Do-
main Solution. A COTS marketplace of modular, high-
assurance components with composable security proper-
ties would not only make this vision of cross-domain in-
formation sharing achievable, but could also help to make
it much more affordable than is currently feasible. As part
of the Air Force’s Multiple Independent Levels of Secu-
rity/Safety initiative, AFRL’s multi-year High Assurance
Middleware for Embedded Systems (HAMES) program is
conducting research in integrating trusted components in
such a way that the security properties of the system can
be predicted.

MILS is characterized by a two-level approach to se-
cure system design. At the policy level, a decomposition
to a virtual architecture is performed while identifying the
trusted components, the local policies and the communi-
cations channels. This is done in a way that minimizes
complexity of trusted components and their policies. At
the resource sharing level, implementation of components
is considered, which includes the allocation of compo-
nents to shared physical resources. MILS provides an im-
plementation technology that enables virtual components
of various types, and their intercommunication channels,
to share physical resources without compromising the in-
tegrity of the policy level.

Security is seldom identified with a single, simple pol-
icy; the two-level approach of MILS was introduced as a
rational way to organize the multiple cooperating compo-
nents and sub-policies that realize a complete secure sys-
tem. A MILS system needs to provide assurance that this
design and implementation strategy and, in particular, the
separate sub-policies of its components and the resource-
sharing properties of its physical subsystems, compose to
guarantee the security policy required of the overall sys-

tem. This paper will describe the progress made so far in
our research and some of the remaining challenges.

Introduction

MILS is a high-assurance architecture for secure infor-
mation sharing that builds on and extends a long tradition
of work on architectural approaches to security and safety.
Its mechanisms are closely related to the “robust partition-
ing” employed for safety in Integrated Modular Avionics
(IMA), and to the “separation kernels” employed in some
secure systems. Indeed, early generations of MILS were
identified as those that supported “Multiple Independent
Levels of Security” (hence the acronym) on a separation
kernel. More recently, the focus has evolved from indi-
vidual secure systems to systems of systems, and current
treatments of MILS extend its architecture to allow a lay-
ered approach to design and certification in which the as-
surance case for a system of MILS components can be as-
sembled from those provided for its components.

This paper describes a modern treatment of MILS ar-
chitectures that supports a component-based approach to
design and assurance, and that encourages development of
a COTS marketplace for evaluated MILS components. We
begin, in the next section, by describing some of the his-
torical evolution that led to the present version of MILS;
we present our treatment of MILS in the section after that,
and our conclusions in the final section.

Evolution of Secure System Architectures

Here we describe some of the changes in operational
requirements, system architectures, and technological ca-
pabilities that led to the current MILS approach. Meth-
ods of specification and verification for security assur-
ance evolved at the same time as security architectures and
these had a strong influence on each other.

Computer security is concerned with system architec-
tures that can allow untrusted application programs to ac-
cess sensitive information yet not allow that information

1



to “leak” in ways that could make it available to unautho-
rized persons. The Anderson Panel Report of 1972 [4] was
of seminal importance in framing this issue, and almost
all treatments of computer security build on the founda-
tion established by that report. The Anderson Panel stated
that “the basic concept upon which multilevel secure com-
puting systems can be based is that of controlled sharing.
Explicit control must be established over each user’s (pro-
grams) access to any system resource which is shared with
any other user or (system) program” [4, volume 1, page 8].
The entity that exercises control is called a reference moni-
tor and its implementation is referred to as a reference val-
idation mechanism that “validates each reference to data
or programs by any user (program) against a list of au-
thorized types of reference for that user. . . Accompanying
the concept of a reference monitor are other essential de-
sign requirements. They are

1. “The reference validation mechanism must be tam-
per proof.

2. “The reference validation mechanism must always
be invoked.

3. “The reference validation mechanism must be small
enough to be subject to analysis and tests, the com-
pleteness of which can be assured.”

Volume 2 of the report elaborated the recommended de-
velopment plan and introduced the idea of a security ker-
nel [4, volume 2, page 24]. The objective for a security
kernel design is “to integrate in one part of an operating
system all security related functions. This is for the pur-
pose of being able to protect all parts of the security mech-
anism, and to apply certification techniques to its design.”

A crucial issue in the certification of a security kernel
or other reference validation mechanism is a precise state-
ment of the requirements against which it is to be “subject
to analysis and tests, the completeness of which can be as-
sured.” In security, these requirements are referred to as a
formal security model or policy, and the first and most in-
fluential of these was due to Bell and La Padula [6], who
formulated the simple security property (“no read up”) and
the *-property (“no write down”).

It was originally thought that if these rules were en-
forced by the security kernel on all accesses by subjects
to objects, where objects were identified with obvious
data repositories such as files and memory segments, then
(multilevel) security would be assured. It was soon discov-
ered that this is not so: it is possible to leak information at
high rates through covert storage channels that use the se-
curity kernel’s own data structures as the paths for infor-
mation flow. Numerous flows of this kind are present in the
rules (based on those of Multics) that Bell and La Padula
used to illustrate their model. An example (described in

[17]) concerns the Change-Subject-Current-Security-Level
rule: a subject with legitimate access to a high level ob-
ject runs an untrusted program that extracts sensitive in-
formation and encodes this in the selection of low level
objects to which it acquires (legitimate) read access; the
program then releases access to the high level object, re-
duces its level to those of the low level objects, observes
to which ones it has read access—and thereby recovers
the high level information, which it may now write to a
low level object.

Elimination of these storage channels requires analysis
of information flow through the mechanisms of the refer-
ence validation mechanism itself. This led to the develop-
ment of security models that account for information flow,
such as that of Feiertag, Levitt, and Robinson [10] (and
the more abstract model of Goguen and Meseguer [11]),
and tools that could analyze formal specifications to ver-
ify the absence of such flows [9].

As real systems based on the precepts of the Anderson
panel came to be developed, it was found that many func-
tions needed to be exempted from the reference validation
mechanism. In KSOS, for example, these included “sup-
port software to aid the day-to-day operation of the system
(e.g., secure spoolers for line printer output, dump/restore
programs, portions of the interface to a packet switched
communications network etc.)” [7, page 365]. The Ander-
son Panel report stated that “if the reference validation is
(or must be) suspended for some group of programs, then
those programs must be considered part of the security ap-
paratus, and be subject to the first and last requirement” (of
the three listed earlier—i.e., they must be tamperproof and
subject to strong assurance). The problem is that if these
trusted processes (as they are known) are not subject to the
security policy enforced by the security kernel, then what
is the interpretation of security to which they are to be as-
sured and how does it relate to the policy of the kernel?

Early treatments of computer security focused on mul-
tilevel security, anticipating that the main application
would be to multiuser timesharing systems. How-
ever, most of the applications for the early security
kernels were in cryptographic processing, message han-
dling, and “guards” (i.e., filters and downgraders), which
were employed in what would now be called “Cross Do-
main Solutions.” Unfortunately, the security policy
embedded in the security kernel was of little help in en-
suring the true security of these applications. For exam-
ple, the key issue in a cryptographic controller such as
shown in Figure 1 is that information may flow from the
red side to the black side via the crypto or the header by-
pass but it must not do so directly; however, all multilevel
security policies are necessarily transitive and cannot ex-
press this requirement. The problem is even more acute

2



in the case of guards, where the basic flow is from high
to low (i.e., in direct contradiction of the kernel’s multi-
level security policy), and a key part of the security assur-
ance argument concerns the filtering function performed
in the guard (e.g., removing specified fields from struc-
tured data, reducing precision or otherwise “fuzzing”
other data, or checking for the absence of specified key-
words).

red

bypass

black

crypto

operating system operating system

hardware

minimal runtime

Figure 1. Information Flows in a Cryp-
tographic Controller (shading indicates
trusted, security-critical functionality)

Rushby [21] observed that security kernels have a
dual responsibility: they must provide the basic pro-
tection mechanisms of an operating system (address
space isolation, controlled access to privileged mode
and so on) and they must enforce the system’s secu-
rity policy. He argued that this dual responsibility in-
evitably leads to complex implementations for which
it is hard to provide assurance, and that it is unpro-
ductive in any case—since much of the argument
for security will focus on functions such as authen-
tication, cryptographic management, filtering, and so
on, that are performed by processes outside the ker-
nel whose local security requirements are different—but
no less critical—than that of the kernel. Rushby pro-
posed that a better security architecture would comprise
a specialized operating system core, called a separa-
tion kernel, that focuses solely on the provision of iso-
lated address spaces with controlled communications
between them, while policy is enforced by trusted ap-
plications running in some of those address spaces. The
conceptual cryptographic controller of Figure 1, for ex-
ample, would be implemented by the architecture shown
in Figure 2, where the separation kernel provides se-
curely separated partitions and the intended (and no
unintended) channels between them, while the by-

pass and the device driver for the cryptographic hardware
perform security-critical functions specific to their pur-
pose.

blackred

crypto h/w

device driver

for crypto

separation kernel

runtime or
operating system

runtime or
operating system

bypass

minimal runtime

Figure 2. Cryptographic Controller Imple-
mentation Using Separation Kernel

Rushby had been influenced by the “Secure User Exec-
utive” (SUE) of a British system for end-to-end encryption
[5], and these ideas in turn influenced the design of cryp-
tographic platforms in the USA, including the “Advanced
INFOSEC Machine” (AIM) and its “Mathematically An-
alyzed Separation Kernel” (MASK) [16]. Soon, however,
separation kernels came to be considered for more com-
plex systems.

By the late 1990s, high performance real time operat-
ing system kernels providing “robust partitioning” were
becoming available for “Integrated Modular Avionics”
(IMA) [1] and these had much in common with the idea of
a separation kernel. With progress in hardware and kernel
design, it became possible to perform tens or hundreds of
thousands of partition switches per second, and this made
it feasible to contemplate supporting more complex appli-
cations on a separation kernel. Many traditional operat-
ing system functions could be externalized, with untrusted
separate copies running in each partition, while shared,
trusted functions (such as file storage, or message routing)
could run in their own dedicated partitions without exces-
sive performance penalties. At the same time, it was be-
coming clear that many applications did not require true
multilevel security, but rather the ability to process sev-
eral levels of information simultaneously, but with little in-
teraction between them. The security requirement for this
class of applications became known as “Multiple Indepen-
dent Levels of Security” (MILS) and was seen to be a good
match for the newer class of system architectures based on
separation kernels [25].

A conceptual design for a workstation based on this
approach is shown in Figure 3. Single-level applications

3



PCS

(MLS)

File
Sys.

Driver

(MLS)

E-Mail

(MLS)

Full OS /
Run-Time
Libraries

RT CORBA/
DDS/WEB

S

(SL)

Full OS /
Run-Time
Libraries

RT CORBA/
DDS/WEB

TS

(SL)

Minimal
Middleware
Minimum
Run-Time

Library

S, TS

(MLS)

Console
Manager

(MLS)

Physical Display,
Keyboard & Mouse

Trusted Path

Processor

Separation Kernel

Web
Browser

IPv6

(MLS)

Automatic
Reload/Restart

from Secure
File System

Figure 3. Conceptual Design for a MILS Workstation

hosted on Windows or Linux each run in their own par-
titions at different security levels, while a simple multi-
level application is hosted on a trusted “minimal runtime”
in a third partition. Several specialized trusted “middle-
ware” functions such as email, and a web browser each
run in their own dedicated partitions. In this formulation,
MILS is viewed as a three-layered architecture: the pro-
cessor hardware and separation kernel comprise the low-
est layer, the trusted middleware is the next layer, and un-
trusted applications are the top layer. MILS-like architec-
tures similar to this (but generally simpler, aimed at em-
bedded applications [2], and with fewer multilevel mid-
dleware mechanisms) are proposed or under development
for several large defense systems, such as the Air Force’s
F-35 Joint Strike Fighter, the Navy’s DDG 1000 Zumwalt-
class destroyer, and the Army’s Future Combat Systems.

Part of the attraction of the MILS approach is that
it supports a COTS-like business model: many suppliers
can compete to deliver separation kernels, and the various
trusted middleware components. To cultivate this market,
the Air Force Research Laboratory and others are sponsor-
ing development of Protection Profiles for selected com-
ponents. Protection Profiles are elements in the Common
Criteria approach to security assurance and evaluation [8]:
they specialize the Criteria to a particular class of system

or component, and are later refined to a specific “security
target” and “target of evaluation.” Protection Profiles are
specific to a selected Evaluation Assurance Level (EAL),
which can range from 1 (low) to 7 (the highest). A protec-
tion profile for separation kernels in environments requir-
ing “high robustness” (which approximately corresponds
to EAL 7) has recently been approved [14], and others are
under development for (middleware) subsystems such as
console, file system, network, and partitioning communi-
cations.

A crucial question is: how do we know all these protec-
tion profiles work together to ensure that a system based
on MILS components is secure overall? This is obviously
a matter of importance in a single MILS system such as
that shown in Figure 3; it is even more pressing when we
consider a distributed confederation of MILS components
such as that shown in Figure 4, where multiple systems
from multiple services interact to support complex joint
training missions [13].

Our vision is for a modular or compositional approach
to assurance, evaluation, and certification for MILS: that
is, an approach in which the security evaluation of a sys-
tem composed of previously evaluated components can
largely be based on those previous evaluations, without re-
quiring the entire system to be reconsidered from scratch.

4



Figure 4. MILS Architecture to Support Joint Training Capability

5



This is a bold idea: it is not the way IMA systems are cer-
tified, for example [20]. We describe our approach in the
next section.

Compositional Security Evaluation for MILS

The reason that compositional assurance and certifica-
tion are challenging for any critical system property is that
the assurance argument may not decompose along archi-
tectural lines. This raises the question: what is an archi-
tecture? Our response is that for systems that must ensure
critical properties, a good architecture is one that simpli-
fies the assurance argument. Hence, we propose that in se-
cure system design, the first step should be to construct an
architecture in which the security assurance argument will
decompose along structural lines.

To achieve this, we must first recognize that there are
two main issues in computer security.

Policy: this is the concept of security that the system is
required to achieve and enforce. The security policy
for a system is determined by regulation and doc-
trine, the context of its use, and the function it per-
forms.

Shared resources: satisfying the security policy is of-
ten complicated by the need to share resources—
since sharing introduces the possibility of interfer-
ence between logically distinct components. Inter-
ference can include propagation of faults and leak-
age of information.

We maintain that the system architecture should be de-
signed so that the argument that it fulfils its security policy
is as simple and as strong as possible. We further maintain
that shared resources are a conceptually different problem
than policy and should be handled separately. The attrac-
tion of MILS is that it provides the tools to accomplish
both of these goals. Reduced to essentials, separation ker-
nels and other MILS components allow resources of var-
ious kinds (processors, files, network connections etc.) to
be shared securely and inexpensively; we use this capa-
bility to synthesize distinct logical components so that the
overall security argument is as simple as possible.

In more detail, the MILS approach to security advo-
cates vigorous, logical decomposition as the first step
in secure system design. The idea is to isolate security-
critical functionality into components that are as small and
simple as possible, and whose local security policies are
likewise as simple as possible. The decomposition is log-
ical, or virtual, in that it is unconcerned with the phys-
ical realization of components. Implementation of com-
ponents is considered in a separate, second step, where it
may be decided that some of the components identified

dataheader encrypted dataheader
header bypass

side
red

side
black

encryption

Figure 5. End-To-End Encryption Controller

in the first step should be implemented as physically dis-
tinct subsystems, while others may share physical subsys-
tems. The rigorous separation enforced by MILS compo-
nents guarantees that sharing of resources is undetectable
to logically distinct components. We describe these two
steps in the following subsections.

MILS Policy Architecture

The top level architecture of a secure system should be
designed to simplify the argument that it achieves its se-
curity policy. Hence, we call this a Policy Architecture.

Consider a very simple secure system: a controller for
end-to-end encryption. Such a system takes in cleartext
message packets from one (“red”) network, encrypts their
contents, and sends the encrypted packets out on another
(“black”) network. Packets comprise a header, which con-
tains destination and other routing information, and data.
Only the data part is encrypted because the switches in the
black network have to read and process the headers so they
can correctly route the packets to their destinations.

The internal structure of an encryption controller is
sketched in Figure 5. There must be some software that
handles the reception of packets from the red network;
most likely, this will include a full handler for the commu-
nications protocol used on that network. This “red side”
software will split the header information from the data
and will send the header directly to the corresponding
“black side” software while the data is sent via an en-
cryption function. The black side software reassembles
the header and encrypted data into a packet and sends it
out on the black network. The security policy for this sys-
tem is that unencrypted data must never go out over the
black network. In practice the security policy would also
include requirements that cryptographic keys never appear
in the clear and other issues concerned with key manage-
ment (see, for example [15]); we will ignore these to keep
the exposition as simple and focused as possible.

If the encryption controller is implemented as tradi-
tional software running in a single processor as suggested
by Figure 5, then satisfaction of the security policy de-
pends on all of that software, and so it is shown shaded to
indicate that it is trusted and must be provided with credi-
ble assurance. Furthermore, all the other software running
in the processor, including the operating system and its

6



utilities, must be trusted and assured, as indicated in Fig-
ure 6.

dataheader encrypted dataheader

side
red

side
black

encryption

header bypass

operating system

network
stacks utilities

compiler runtime

Figure 6. End-To-End Encryption Controller
with Systems Software

Assurance that the system satisfies the security pol-
icy will require examination of all this software to be
sure that there are no accidental or malicious mechanisms
that could allow unencrypted data to reach the black side,
where it could then be transmitted on the network. Ma-
licious mechanisms could pass data through unexpected
channels and could use clever encodings, so assurance
would most likely have to specify exactly what each el-
ement of software is intended to perform, and to provide
evidence that it does it correctly. Thus, assurance for a rel-
atively simple property of a relatively simple system ends
up requiring evidence for full correctness of an operating
system, protocol stacks, and application software.

Now suppose that instead of a single monolithic im-
plementation, we envisage the system as comprising four
separate components connected by specific communica-
tions paths as shown previously in Figure 1.

Immediately, the assurance task becomes greatly sim-
plified. There is no direct communication path between the
red and black components. The absence of this direct path
is a crucial element in the architecture represented by Fig-
ure 1. The only paths from red to black are through the
crypto and the bypass components and we can derive sub-
sidiary local security policies for these components: the
crypto must encrypt everything that leaves on its outgo-
ing channel, and the bypass must ensure that only infor-
mation that “looks like” valid protocol headers is passed
from red to black (and only at low bandwidth). The proto-
col handlers and other software in the red and black com-
ponents can be completely untrusted.

The functionality of the bypass can be extremely sim-
ple (it may not even need to pass actual headers, just the
destination and other essential information, since the true

header will be constructed by the black protocol handler)
and its assurance should be straightforward. The crypto
component may be quite sophisticated, but it is likely to
be a standard component whose assurance draws on long
experience and well-attested capabilities.

Figure 1 is a policy architecture for the encryption con-
troller. Construction of such an architecture is the first step
in a MILS design; the goal should be to allocate functions
to the components of a conceptually distributed architec-
ture in such a way that the functionality of trusted compo-
nents is as simple as possible, and the local security poli-
cies with respect to which they are trusted are also as sim-
ple as possible. Assurance for a policy architecture is ac-
complished by providing assurance that its trusted compo-
nents satisfy their local policies, and that these local poli-
cies compose, in the context of the policy architecture, to
achieve the overall security policy. For the policy architec-
ture of Figure 1, the system assurance argument requires
the following two elements.

Local policy assurance: the crypto and bypass imple-
mentations each satisfy their local security policies.

Integrating policy assurance: the local polices of the
crypto and bypass in the context of the policy ar-
chitecture (including its untrusted components) com-
pose to satisfy the overall security policy.

To accomplish the second step, we need a more precise
understanding of what is a policy architecture. Informally,
it is a boxes-and-arrows diagram in which there are no
channels for information flow other than those explicitly
indicated by arrows. Arrows are unidirectional (bidirec-
tional communication requires two arrows). Some boxes
perform trusted functions for which a local security pol-
icy is specified. A more formal definition of policy archi-
tecture is presented elsewhere [24], but we sketch its basis
here.

1. The components (boxes) in a MILS policy architec-
ture are (possibly nondeterministic) state machines
whose states are mappings from subsets of a global
address space A to values from a global set V .

2. The local address space of component P is a sub-
set AP of A that is disjoint from the local address
spaces of all other components.

3. A channel (arrow) c with source component P and
destination component Q 6= P in a MILS policy ar-
chitecture is identified with a port that is a subsetAc

of the local address space of P that is disjoint from
all other ports.

4. The transition relation Tp of component P has read
access to its local address space plus all those ports

7



with destination P ; it has write access to just its local
address space.

Observe that channels are modeled by shared
state; the restrictions on read and write access en-
sure these are unidirectional. Implicitly, channels are
free of imperfections such as message loss. If imper-
fect channels are required, it is usual to interpose a
new component that models the types of imperfec-
tions required, although these can also be modeled
as transitions affecting the port of the source compo-
nent.

5. The transition relation of the complete policy archi-
tecture is the asynchronous composition (i.e., the dis-
junction) of the transition relations of its compo-
nents.

Computer science theory provides many techniques for
formalizing the architectural model sketched above and
tool-supported methods for reasoning about the compos-
ite properties of compositions of transition relations. It is
one of the strengths of our approach that it does not im-
pose strong constraints on how this is done. Trusted com-
ponents of the architecture may be formally specified and
assured by any means that is compatible with the under-
lying model that a component is a state machine, and the
composition of trusted components may use any means
that is consistent with asynchronous interleaving and the
shared variable model of communication.

The formal model for policy architectures sketched
above can be shown to be consistent with other simi-
lar models, such as intransitive noninterference [22] and
GWVr2 [12]. This model provides the assumptions for the
policy architecture level of MILS and the requirements for
the resource-sharing level, which is described next.

MILS Resource Sharing

A MILS policy architecture is an abstract construction:
its guiding principle is that the trusted components should
have simple functionalities and simple security policies.
To achieve this, we assume that splitting a larger compo-
nent into several smaller subcomponents imposes no cost
in acquisition or performance, and we likewise assume
that communications between components impose no cost
and generally are unidirectional, secure, and reliable.

The task of the MILS implementation level is to dis-
charge not only the assumptions on which the security
of the policy architecture depends, but also those about
cost and performance. The latter concerns are addressed
through resource sharing, and the former by doing this in
a way that guarantees separation.

Separation means satisfaction of the model sketched in
the previous subsection and its item 4 in particular. That

item requires that the behavior of a component depends
only on its local state and the ports of incoming communi-
cations channels, and that it modifies nothing but its own
local state. Ports are the only interfaces to components in
this model, and channels and their ports provide the only
means for communication and interaction among compo-
nents. If there were no channels, each component would
function entirely independently (that was the original in-
terpretation for the security policy of separation, while the
richer security policy that includes communications was
called channel control [21, 22]). As noted earlier, separa-
tion is similar to partitioning in avionics [23], and this pro-
vides the useful noun partition for the instantiation of a
component within a shared resource.

To allocate the components and communications chan-
nels of a MILS policy architecture to shared resources, we
first need to identify those that can be physically collo-
cated and those that have similar functionality. We may
then consider implementing those functionally similar col-
located components as partitions in a shared resource that
provides the functionality concerned. For example, sev-
eral components that provide filesystem services could
share the resources of a “partitioning filesystem,” while
components that present information to a human opera-
tor could share the screen area of a single “partitioning
console subsystem,” and a collection of channels could
be routed through a shared wire or network using VPN-
like capabilities provided by a “partitioning communica-
tion subsystem.” Totally disparate components can share a
processor partitioned by a separation kernel: each compo-
nent is then implemented as a bespoke program running in
its own partition.

There are several ways to ensure separation and a sin-
gle system may employ more than one technique (an early
example that used several is the Distributed Secure Sys-
tem [18]).

The most basic technique is spatial separation, which
corresponds to the direct implementation of a policy ar-
chitecture without resource sharing: each component is
implemented in a physically separate resource and chan-
nels are implemented as dedicated point-to-point commu-
nications lines. Physical separation is seldom feasible for
a complete architecture (and unidirectional physical com-
munications often require special treatment, such as “data
diodes”), but it can be an attractive option for certain com-
ponents.

Temporal separation allows different components to
share the same physical resource, but not at the same time.
The resource is dedicated to one component for a period,
then scrubbed clean and allocated to another component
and so on. This approach is also known as “periods pro-
cessing” and was used for mainframes in the 1960s and

8



later; in a MILS context, it is a useful option for worksta-
tions and CPU servers.

Cryptographic separation employs encryption and dig-
ital signatures or checksums to enforce read and write pro-
tection. It is difficult to perform operations on data pro-
tected in this way, so cryptographic separation is most use-
ful when data needs merely to be stored or moved from
one place to another—hence, it is particularly suitable for
partitioning filesystems and communications.

Programs sharing a processor resource sometimes can
be shown to satisfy the requirements for separation using
static program analysis or other kinds of formal verifica-
tion. Such analysis may be able to guarantee that no infor-
mation flows from one program to another except through
channels specified in the policy architecture. Analysis of
this kind is feasible only when all programs that share the
processor are available for examination beforehand and it
is therefore unsuited to dynamic systems, or those that use
proprietary software. However, this approach can be effec-
tive in limited environments such as smartcards.

When some of the programs sharing a processor re-
source are unknown or untrusted we can turn to a sepa-
ration kernel. The kernel element in this name is intended
to suggest that its functionality is similar to that of an op-
erating system kernel, while the separation element iden-
tifies the security policy that it enforces—that is, provision
of isolated partitions corresponding to each of the compo-
nents in the MILS architecture concerned, and the com-
munications channels that connect them.

Untrusted software that resides in the partitions of a
separation kernel may contain malicious code that attacks
other partitions or the separation kernel itself, or that con-
spires covertly to communicate data contrary to the pol-
icy architecture. The kernel of a commodity operating sys-
tem usually cannot represent the security policy of separa-
tion and cannot provide adequate protection, still less as-
surance of protection, against this kind of attack. A sepa-
ration kernel is therefore stripped of extraneous function
and dedicated to providing just the protection and assur-
ance needed to enforce (part of) a MILS policy architec-
ture. Its limited function allows a separation kernel to be
very small (a few thousand lines of code), to deliver high
performance (hundreds of thousands of partition switches
per second), and to come with strong assurance (e.g., EAL
7) that it achieves its purpose. A separation kernel is sim-
ilar to the “partitioning kernels” used in integrated mod-
ular avionics (IMA), but is more aggressively minimized
in order to achieve higher assurance (an avionics kernel
will typically be upwards of ten thousand lines of code,
while DO-178B Level A [19] approximately corresponds
to EAL 5 [3]).

A separation kernel uses the protection mechanisms of
its processor—i.e., its supervisor modes and memory man-
agement unit (MMU)—to create partitions whose client
software is constrained to specified areas of memory. (It
is interesting to observe that a kernel uses spatial separa-
tion for memory, and temporal separation for the CPU reg-
isters.) The environment perceived by the clients of a sep-
aration kernel may be a simulated copy of a full proces-
sor (a virtual machine), a simplified copy (a paravirtual
machine), or an interface of the kind presented by conven-
tional or real-time operating systems (e.g., ARINC 653 for
avionics [1]). Full virtual machines allow untrusted parti-
tions to run off-the-shelf software, including commodity
operating systems such as Windows.

Until recently, true virtualization was expensive (in
terms of performance and the amount of kernel code re-
quired) on some processor families; paravirtualization re-
duces the cost but requires modifications to client oper-
ating systems, which is generally feasible only for those
whose source code is available. Innovations in processor
design have made full virtualization affordable, but other
infelicities (driven by the needs of the commodity market-
place) continue to pose difficulties. In particular, caches
provide fairly high bandwidth channels for covert infor-
mation flow (an untrusted partition at “high” security level
empties the cache to signal a 1 and leaves it alone to sig-
nal a 0; a subsequent untrusted “low” partition can mea-
sure memory performance and estimate the bit value) and
these are exacerbated in multicore designs where some of
the caches are shared. Processor temperature (which can
be driven up by intensive computation) and power states
can also provide covert channels.

Memory-mapped I/O allows device registers to be al-
located to specific partitions; the kernel can field exter-
nal interrupts from devices and immediately route them
to the relevant partition for handling.1 A separation ker-
nel is minimized using techniques such as this: all non-
separation functions are expelled from the kernel and
delegated to specific partitions. Some of these functions
(e.g., device drivers, shared network stacks, sophisticated
scheduling) may need to be trusted, but a separation ker-
nel applies the MILS philosophy that it is better to create
several simple functions, each responsible for a single as-
pect of security, than a monolith responsible for many.

In addition to enforcing the separation of partitions, the
separation kernel also provides their inter-partition com-
munication (IPC) channels as specified by the policy ar-
chitecture. The IPC interface and mechanism may range
from simple mailboxes to page mapping (swapping a re-

1 Devices that can initiate DMA transfers are problematic because
their memory accesses bypass the protections of the MMU; forth-
coming processor designs remedy this deficiency.

9



gion of memory from the address space of the source to
that of the destination).

A separation kernel also is responsible for schedul-
ing partitions for execution. Scheduling must be done in
a way that minimizes covert channel bandwidth (an un-
trusted “high” security partition can indicate a 0 or 1 bit
through its choice of when it relinquishes the CPU) while
maximizing whatever measure of performance is impor-
tant to the overall application (these measures are very dif-
ferent in embedded real-time vs. interactive applications,
for example). Minimization of covert channels generally
requires static scheduling, while performance often favors
dynamic scheduling (e.g., rate monotonic or earliest dead-
line first); a combination is possible where groups of par-
titions with similar security attributes are given a static
group schedule whose allocation to individual partitions
may be determined dynamically.

The virtual or paravirtual machine interface presented
by a separation kernel is attractive for untrusted partitions
because it allows them to run commodity operating sys-
tems and software, but it is rather an austere foundation for
the software of trusted partitions. Hence, these partitions
will often employ a minimal runtime (MRT) library that
provides functions for managing local memory (malloc
etc.), scheduling, and accessing IPC. The MRT must gen-
erally be trusted and assured for full functional correct-
ness.

Returning to the policy architecture of the encryption
controller shown in Figure 1, we see that several imple-
mentation strategies are possible. We could use four sepa-
rate processors connected by wires (spatial separation), or
four separate partitions in a single processor shared using
a separation kernel, or some combination of these. A plau-
sible choice is for the crypto to be a self-contained hard-
ware device, while red, black, and bypass share a single
processor. The red and black components are untrusted,
so we need to use a separation kernel (as opposed to pro-
gram analysis) to ensure that they cannot conspire to com-
municate plaintext data directly from one to the other. The
crypto device will need a device driver and other support
software and this will be trusted software located in a par-
tition of its own. We thus arrive at the implementation
structure portrayed in Figure 2.

The untrusted red and black software reside in parti-
tions that may contain arbitrary support software, such as
a full runtime library or operating system; the trusted by-
pass software resides in a partition that provides a trusted
minimal runtime; the trusted device drivers and support
software for the crypto reside in a fourth partition, where
the kernel will vector interrupts from the crypto device and
also provide access to its device registers (indicated in Fig-
ure 2 by arrows between the crypto device and its device

driver partition). Device drivers and network stacks for the
incoming and outgoing networks are located in the red and
black partitions, respectively.

The separation kernel provides the channels between
red, bypass, black, and the device partition for the crypto
(indicated in the Figure 2 by internal arrows). The separa-
tion kernel must ensure that these channels are truly uni-
directional, provide exactly the geometry of connectivity
indicated in the policy architecture of Figure 1, and inter-
pret the ports correctly.

The assurance argument that an implementation based
on Figure 2 is a secure realization of the policy architec-
ture of Figure 1 is composed of the following two ele-
ments.

Individual resource separation assurance: the sep-
aration kernel implementation and, in general,
those of any other resource sharing components
that might be present, satisfy their separation poli-
cies.

Integrating resource-sharing assurance: the con-
figuration of the separation kernel and, in gen-
eral, those of any other resource sharing components
that might be present, jointly enforce the policy ar-
chitecture.

Assurance and evaluation for separation kernels
has long been a research area and is moderately well-
understood (though still a very challenging undertaking
at the highest evaluation levels). Assurance and evalu-
ation for other individual resource sharing components
is less well researched; although they generally oper-
ate as middleware and can rely on the protections of
the separation kernel, other resource sharing compo-
nents may be larger than the kernel. Provided their protec-
tion profiles are coherent (e.g., have compatible threats,
assumptions, policies), the integrating assurance argu-
ment seems fairly straightforward [24].

Conclusion

We have described an approach to secure systems de-
sign and implementation that supports compositional as-
surance and evaluation. Our approach is based on the
MILS architecture, but whereas previous treatments of
MILS have focused on the three layers comprising its real-
ization within a single device (separation kernel, middle-
ware, and applications), we focus on its two-level archi-
tecture for distributed systems and systems of systems.

The first or upper level is concerned with decomposing
functional and security objectives for the system to yield
a MILS policy architecture in which all security-critical
functions are performed by trusted components that are as

10



small and as simple as possible. The trusted components
enforce local security policies that work together, in the
context provided by the policy architecture, to achieve the
security policy of the overall system.

A MILS policy architecture is a “boxes and arrows”
description in which simplicity of trusted mechanism is
generally achieved by allocating data and functions of
different sensitivities or of different domains to separate
components. A policy architecture uses separate compo-
nents and communications channels freely, without con-
cern for their physical realization. Allocation of the ideal-
ized separate components and communications channels
of a policy architecture to physical resources is under-
taken as the second or lower level of a MILS system de-
velopment. Components and communications that are sep-
arate at the upper level may share physical resources at
the lower level. Shared resources introduce the possibil-
ity of interference between conceptually distinct compo-
nents; interference can include propagation of faults and
leakage of information. MILS eliminates this hazard by
requiring that shared subsystems implement rigorous sep-
aration (similar to partitioning in avionics), which guar-
antees that the sharing of resources cannot be detected by
conceptually distinct components. MILS provides trusted
resource-sharing components, such as separation kernels,
partitioned file systems, and partitioning communications
systems that deliver the required guarantee of separation.

Assurance for a MILS system involves four steps:

1. Assurance that individual trusted policy components
enforce their local policies,

2. Assurance that the individual trusted policy compo-
nents, in the context of the policy architecture, com-
pose to enforce the overall system policy,

3. Assurance for individual resource-sharing compo-
nents,

4. Assurance that the individual resource-sharing com-
ponents compose to enforce the policy architecture.

MILS Protection Profiles (PPs) encourage development
of a commercial marketplace for individual resource shar-
ing components; the major RTOS vendors are develop-
ing separation kernels to the SKPP [14], and it is an-
ticipated that similar developments will follow for net-
work and communications subsystems, file systems, and
so on, when their PPs are published. These latter compo-
nents are peers of the separation kernel in the architec-
tural view (since they all partition some shared resource)
but run as middleware on the separation kernel in the im-
plementation view. All MILS PPs under current develop-
ment are for resource sharing components; we believe that
PPs for standardized policy components such as generic

“guards” could encourage a lively commercial market-
place for Cross Domain Solutions.

Our vision for component-based assurance and evalu-
ation is that commercial MILS components will be deliv-
ered with security evaluations corresponding to items 1
and 3 in the list above. Systems integrators can largely
base their system assurance case in this pre-existing ev-
idence and need develop only items 2 and 4 to support
system evaluation. Realization of this vision requires that
PPs for individual components are harmonized so that they
compose coherently.

We believe this approach to compositional assurance
and evaluation could extend beyond MILS and security to
IMA and safety, and to other critical systems and proper-
ties. Realization of this ambitious vision probably requires
reexamination of current standards-based approaches to
certification, and a move towards approaches based on as-
surance cases.

References

[1] Aeronautical Radio, Inc., Annapolis, MD, 1997, ARINC
Specification 653: Avionics Application Software Standard
Interface. Prepared by the Airlines Electronic Engineer-
ing Committee.

[2] Alves-Foss, J., W. S. Harrison, P. Oman, and C. Taylor,
2006, The MILS architecture for high-assurance embed-
ded systems. International Journal of Embedded Systems,
2(3/4):239–247.

[3] Alves-Foss, J., B. Rinker, and C. Taylor, 2002, Towards
common criteria certification for DO-178B compliant air-
borne software systems. Technical report, Center for Se-
cure and Dependable Systems, University of Idaho.

[4] Anderson, J. P., 1972, Computer security technol-
ogy planning study. Technical Report ESD-TR-
73-51, US Air Force. (Two volumes, available at
http://seclab.cs.ucdavis.edu/projects/
history/seminal.html).

[5] Barnes, D. H., 1983, The provision of security for user data
on packet switched networks. In Proceedings of the Sym-
posium on Security and Privacy, pp. 121–126, Oakland,
CA. IEEE Computer Society.

[6] Bell, D. E. and L. J. La Padula, 1976, Secure computer sys-
tem: Unified exposition and Multics interpretation. Tech-
nical Report ESD-TR-75-306, Mitre Corporation, Bedford,
MA.

[7] Berson, T. A. and G. L. Barksdale Jr., 1979, KSOS—
development methodology for a secure operating system.
In National Computer Conference, volume 48, pp. 365–
371. AFIPS Conference Proceedings.

[8] 2006/7, Common Criteria for Information Technol-
ogy Security Evaluation. Version 3.1, available at
http://www.commoncriteriaportal.org/
thecc.html.

11



[9] Feiertag, R. J., 1980, A technique for proving specifications
are multilevel secure. Technical Report CSL-109, Com-
puter Science Laboratory, SRI International, Menlo Park,
CA.

[10] Feiertag, R. J., K. N. Levitt, and L. Robinson, 1977, Prov-
ing multilevel security of a system design. In Sixth ACM
Symposium on Operating System Principles, pp. 57–65.

[11] Goguen, J. A. and J. Meseguer, 1982, Security policies and
security models. In Proceedings of the Symposium on Se-
curity and Privacy, pp. 11–20, Oakland, CA. IEEE Com-
puter Society.

[12] Greve, D., M. Wilding, R. Richards, and W. Vanfleet. For-
malizing security policies for dynamic and distributed sys-
tems. Unpublished, 2004.

[13] Hanz, D. and J. Rushby, 2008, Joint national training capa-
bility: MILS integration roadmap. Project report, SRI In-
ternational, Menlo Park, CA.

[14] Information Assurance Directorate, National Security
Agency, Fort George G. Meade, MD 20755-6000, 2007,
U.S. Government Protection Profile for Separation Kernels
in Environments Requiring High Robustness. Version 1.03.

[15] 2001, Security Supplement to the Software Commu-
nications Architecture Specification. Report MSRC-
5000 SEC V1.1, available at http://sca.jpeojtrs.
mil/home.asp.

[16] Martin, W., P. White, F. S. Taylor, and A. Goldberg, 2000,
Formal construction of the mathematically analyzed sepa-
ration kernel. In Fifteenth IEEE Conference on Automated
Software Engineering (ASE ’00), pp. 133–142, Grenoble,
France. IEEE Computer Society.

[17] Millen, J. K. and C. M. Cerniglia, 1983, Computer secu-
rity models. Working Paper WP25068, Mitre Corporation,
Bedford, MA.

[18] Randell, B. and J. Rushby, 2007, Distributed secure sys-
tems: Then and now. In Proceedings of the Twenty-Third
Annual Computer Security Applications Conference, pp.
177–198, Miami Beach, FL. IEEE Computer Society. In-
vited “Classic Paper” presentation.

[19] Requirements and Technical Concepts for Aviation, Wash-
ington, DC, 1992, DO-178B: Software Considerations in
Airborne Systems and Equipment Certification. This doc-
ument is known as EUROCAE ED-12B in Europe.

[20] Requirements and Technical Concepts for Aviation, Wash-
ington, DC, 2005, DO-297: Integrated Modular Avionics
(IMA) Development Guidance and Certification Consider-
ations. Also issued as EUROCAE ED-124 (2007).

[21] Rushby, J., 1981, The design and verification of secure sys-
tems. In Eighth ACM Symposium on Operating System
Principles, pp. 12–21, Asilomar, CA. (ACM Operating
Systems Review, Vol. 15, No. 5).

[22] Rushby, J., 1992, Noninterference, transitivity, and
channel-control security policies. Technical Report SRI-
CSL-92-2, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA.

[23] Rushby, J., 1999, Partitioning for avionics architec-
tures: Requirements, mechanisms, and assurance. NASA

Contractor Report CR-1999-209347, NASA Langley Re-
search Center. Available at http://www.csl.sri.
com/˜rushby/abstracts/partitioning, and
http://techreports.larc.nasa.gov/ltrs/
PDF/1999/cr/NASA-99-cr209347.pdf; also is-
sued by the FAA.

[24] Rushby, J., 2008, A formal model for MILS integration.
Project report, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA.

[25] Vanfleet, W. M., J. A. Luke, R. W. Beck-
with, C. Taylor, B. Calloni, and G. Uchenick,
2005, MILS: Architecture for high-assurance em-
bedded computing. Crosstalk. Available at
http://www.stsc.hill.af.mil/crosstalk/
2005/08/0508Vanfleet_etal.html.

27th Digital Avionics Systems Conference
October 26–30, 2008

12


