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Abstract

This report was prepared to supplement a forthcoming chapter on formal meth-
ods in the FAA Digital Systems Validation Handbook1. Its purpose is to outline
the technical basis for formal methods in computer science, to explain the use of
formal methods in the specification and verification of software and hardware re-
quirements, designs, and implementations, to identify the benefits, weaknesses, and
difficulties in applying these methods to digital systems used in critical applications,
and to suggest factors for consideration when formal methods are offered in support
of certification.

The report assumes a serious interest in the engineering of critical systems, and
a willingness to read occasional mathematical formulas and specialized terminology,
but assumes no special background in formal logic or mathematical specification
techniques. (An appendix provides a rapid introduction to formal logic for those to
whom this topic is new.) The discussion should be accessible to most people with
an engineering background. It may also be of use to those who develop or advocate
formal methods and are interested in their use to support certification of critical
systems.

The particular focus of this report is computer systems used on-board aircraft.
Some background on these systems is provided so that those concerned with critical
computer systems in other contexts may be able to reinterpret the airplane-specific
material to suit their own field.

1Digital Systems Validation Handbook–Volume II. Federal Aviation Administration Technical
Center, Atlantic City, NJ, February 1989. DOT/FAA/CT-88/10. The chapter on Formal Methods
will probably form part of Volume III.



Contents

How to Read this Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A Note on Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction 7

2 Issues in Formal Methods 14

2.1 Levels of Rigor in Formal Methods . . . . . . . . . . . . . . . . . . . 15

2.2 Extent of Application in Formal Methods . . . . . . . . . . . . . . . 21

2.2.1 Formal Methods in the Lifecycle . . . . . . . . . . . . . . . . 22

2.2.1.1 Formal Methods in the Late Lifecycle . . . . . . . . 35

2.2.1.2 Formal Methods in the Early Lifecycle . . . . . . . 38

2.2.1.3 Discussion of Formal Methods in the Lifecycle . . . 43

2.2.2 Formal Methods and System Components . . . . . . . . . . . 44

2.2.3 Formal Methods and System Properties . . . . . . . . . . . . 48

2.3 Validation of Formal Specifications . . . . . . . . . . . . . . . . . . . 53

2.3.1 Internal Consistency . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1.1 Strong Typechecking . . . . . . . . . . . . . . . . . 54

2.3.1.2 Definitional Principle . . . . . . . . . . . . . . . . . 58

2.3.1.3 Exhibition of Models . . . . . . . . . . . . . . . . . 63

2.3.1.4 Modules and Parameters . . . . . . . . . . . . . . . 65

2.3.2 External Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4 Benefits of Formal Methods . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.1 Benefits of Formal Specification . . . . . . . . . . . . . . . . . 72

2.4.2 Benefits of Formal Verification . . . . . . . . . . . . . . . . . 75

i



ii Contents

2.4.3 Assurance Benefits of Formal Methods . . . . . . . . . . . . . 77

2.5 Fallibilities of Formal Methods . . . . . . . . . . . . . . . . . . . . . 78

2.5.1 Fallibilities of Formal Specifications . . . . . . . . . . . . . . 78

2.5.2 Fallibilities of Formal Verifications . . . . . . . . . . . . . . . 82

2.6 Mechanized Support for Formal Methods . . . . . . . . . . . . . . . 87

2.7 Industrial Applications of Formal Methods . . . . . . . . . . . . . . . 96

2.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 Formal Methods and Digital Systems Validation 107

3.1 Background to Assurance . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2 RTCA Document DO-178B . . . . . . . . . . . . . . . . . . . . . . . 117

3.3 Experimental and Historical Data on Assurance, Faults and Failures 125

3.4 Formal Methods in Support of Certification . . . . . . . . . . . . . . 139

3.4.1 Use of Formal Methods for Reasons other than Improved
Quality Control and Assurance . . . . . . . . . . . . . . . . . 140

3.4.2 Use of Formal Methods to Improve Quality Control and As-
surance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.5 Selection of Formal Methods, Levels and Tools . . . . . . . . . . . . 158

3.5.1 Issues in Tool Selection . . . . . . . . . . . . . . . . . . . . . 160

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography 181

A A Rapid Introduction to Mathematical Logic 219

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.2 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.3 Propositional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.3.1 Propositional Sequent Calculus . . . . . . . . . . . . . . . . . 234

A.4 Predicate Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.4.1 Skolemization and Resolution . . . . . . . . . . . . . . . . . . 244

A.4.2 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 250

A.5 First-Order Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.5.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.5.1.1 Sequent Calculus Rules for Equality . . . . . . . . . 253



Contents iii

A.5.1.2 Rewriting and Decision Procedures for Equality . . 253

A.5.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

A.5.3 Simple Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . 258

A.5.4 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

A.6 Definitions and Conservative Extension . . . . . . . . . . . . . . . . 267

A.7 Ordinal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

A.8 Cardinal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

A.9 Many-Sorted Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A.10 Typed Systems and Higher-Order Logic . . . . . . . . . . . . . . . . 279

A.11 Additional Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

A.11.1 Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

A.11.2 Logics for Partial Functions . . . . . . . . . . . . . . . . . . . 290

A.11.3 Constructive Systems . . . . . . . . . . . . . . . . . . . . . . 295

A.11.4 Programming Logics . . . . . . . . . . . . . . . . . . . . . . . 297

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301



iv



1

How to Read this Report

This report was written primarily for FAA certifiers and assumes no previous expo-
sure to formal methods. However, it is not a tutorial on formal methods: it contains
a great deal of discussion on strengths, weaknesses, and technical issues in formal
methods that should be considered in certification, but does not explain how to do
formal methods. There are a few simple examples scattered through the report,
but these are intended only to give some feel for the topics discussed, and are not
representative of specific techniques or notations that might be offered in support
of certification. Those who wish to offer formal methods in support of certification
must obviously become expert in the methods they select, and certifiers will likewise
need to gain expertise in the specific methods adopted. Some reading suggestions
for those embarking on such studies are provided in Section 2.8.

It is difficult to discuss some of the issues in formal methods without occasionally
using technical terms and concepts that require a certain knowledge of the field, and
of mathematical logic in particular. I have tried to keep the discussion suitable for
the nonspecialist, but have not excluded technical terms and concepts where these
are necessary for precision. An appendix provides some technical background in a
relatively brief and accessible form, explaining the main ideas of mathematical logic,
and introducing most of the technical terms that a nonspecialist might encounter.

The organization of this report is as follows. Chapter 1 provides an introduction
and adumbrates some of the main themes. These are covered in detail in Chapter 2,
which adopts a fairly general perspective. Specialization of the perspective towards
digital systems validation for aircraft, and discussion of issues bearing on certifi-
cation credit and compliance with the guidelines in DO-178B [RTCA92], make up
Chapter 3.

A reader new to formal methods should probably concentrate on Chapters 1 and
3, and should only skim Chapter 2 the first time through, perhaps taking a little more
time over its later sections, where the benefits, fallibilities, and some applications
of formal methods are described. In order to evaluate the credibility of any claims
involving formal methods that may be offered in support of certification, rather
greater familiarity with the topics examined in the earlier sections of Chapter 2 will
be required. In particular, the certifier and applicant will need to reach agreement
on the technical basis for validating formal specifications.

Although this report is written primarily for certifiers, I hope it will also be
useful to those involved in developing airborne systems, and I have included some
information (for example, on the selection of methods and tools) that is specifically
addressed to that audience. In order to make the discussion accessible to those
concerned with applications other than on-board aircraft, and also in the hope
that developers and advocates of formal methods may wish to contribute to their
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application in such systems, I include descriptions of some of the characteristics of
airborne systems.2

A Note on Terminology

Although the topic of this report is formal methods, the context for its discussion
is the certification of embedded software for systems deployed in civil aircraft. This
necessarily involves some discussion of safety-critical systems and of fault tolerance.
Both these fields employ very careful terminology in order to distinguish concepts
that are important to their analyses. Unfortunately, each field is rather careless
about the terminology of the other. I will strive to use terms in the way they are
used in the specialized field concerned. In this section I briefly define and explain
these usages.

IFIP Working Group 10.4 (Dependability and Fault Tolerance) has established
a standard framework for discussing reliable and fault-tolerant systems. A book
presents the basic concepts and preferred terminology in five languages [Lap91].
In this framework, a dependable system is one for which reliance may justifiably be
placed on certain aspects of the quality of service it delivers. The quality of a service
includes both its correctness (i.e., conformity with requirements, specifications, and
expectations) and the continuity of its delivery.

A departure from the service required of a system constitutes a failure—so that
a dependable system can also be described as one that does not fail. Failures are
attributed to underlying causes called faults. Faults can include mistakes in spec-
ifications or design (i.e., bugs), component failures, improper operation, and envi-
ronmental anomalies (e.g., electromagnetic perturbations). Not all faults produce
immediate failures: failure is a property of the external behavior of a system—which
is itself a manifestation of internal states and state transitions. Suppose a system

2For more background, consult Anderson and Dorfman [AD91], who provide a good collection of
papers on software engineering for aerospace, and Spitzer [Spi87], who gives a general introduction
to digital avionics. Current developments can be followed through the Digital Systems Avionics
Conference (DASC) and National Aerospace Electronics Conference (NAECON), as well other spe-
cialized conferences and journals of the AIAA, IEEE, and SAE. For an excellent account of the
basic approach to safety assessment of aircraft, see the book by Lloyd and Tye [LT82] (though
unfortunately this predates the introduction of fly-by-wire). For a discussion of the certification
challenges posed by new technology, including fly-by-wire, see the paper by Holt [Hol87]; for an
assessment of how current certification practices address these challenges, see the report by the
United States General Accounting Office [GAO93]. For a critical examination of ethical and reg-
ulatory issues in safety-critical systems, see the compendium edited by Fielder and Birsch [FB92].
The document DO-178B [RTCA92] (known as EUROCAE ED-12B in Europe), which is referred
to frequently in the following pages, provides industry-accepted guidelines for meeting certification
requirements for software used in airborne systems and equipment. It is incorporated by reference
into European and United States regulatory and advisory documents.
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progresses through a sequence of internal states s1, s2, . . . , sn and that its external
behavior conforms to its service specification throughout the transitions from s1 to
sn−1 but that on entering state sn the external behavior departs from that required.
Is it reasonable to attribute the failure to state sn? Clearly not, since there could
have been something wrong with an earlier state sj, say, that, while it did not
produce an immediate failure, led to the sequence of transitions culminating in the
failure at sn. In this case, the state sj is said to contain a latent error that persists
through the states that follow and becomes effective in state sn when it affects the
service delivered and failure occurs. In general, an error is that part of the system
state that has been damaged by the fault and (if uncorrected) can lead to failure.
Fault tolerance is based on detecting latent errors before they become effective,
and then replacing the erroneous component of the state by an error-free version.
(Latent errors are discussed in a separate chapter of the FAA Handbook [FAA-L].)

The crucial distinctions here are those between fault, error, and failure. Unfor-
tunately, as noted, other fields do not always preserve these important distinctions;
in particular, they often use fault and error interchangeably. DO-178B [RTCA92] is
guilty of this, generally using the term error to describe programming mistakes or
bugs that are properly called faults. In this report, I use the proper term, except
where quoting from DO-178B.

Safety-critical systems in general, and aircraft systems in particular, make use
of the terminology and techniques of hazard analysis. The following paragraphs
introduce this terminology for the benefit of those who are reading this report for
general interest and who are not familiar with aircraft certification. Weapons sys-
tems provided some of the early impetus to safety engineering and hazard analysis,
so military standards such as 882B [DoD84] (United States) and 00-56 [MOD91b]
(United Kingdom) are good alternative sources on these topics. A standard text is
that by Roland and Moriarty [RM90].

While fault tolerance is concerned with reducing the incidence of failures, safety
concerns the occurrence of accidents (or mishaps)—which are unplanned events that
result in death, injury, illness, damage to or loss of property, or environmental harm.
Whereas system failures are defined in terms of system services, safety is defined in
terms of external consequences.

The general approach to development and certification of safety-critical systems
is grounded in hazard analysis; a hazard is a condition that can lead to an accident.
Damage is a measure of the loss in an accident. The severity of a hazard is an
assessment of the worst possible damage that could result, while the danger is the
probability of the hazard leading to an accident. Risk is the combination of hazard
severity and danger. The goal in safety engineering is to control hazards. During
requirements and design reviews, potential hazards are identified and analyzed for
risk. Unacceptable risks are eliminated or reduced by respecification of requirements,
redesign, incorporation of safety features, or incorporation of warning devices.
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For example, if the concern is destruction by fire, the primary hazards are avail-
ability of combustible material, an ignition source, and a supply of oxygen. If at all
possible, the preferred treatments are to eliminate or reduce these hazards by, for
example, substitution of non-flammable materials, elimination of spark-generating
electrical machinery, and reduction in oxygen content (cf. substitution of air for
pure oxygen during ground operations for Project Apollo after the Apollo 1 fire). If
hazard elimination is impossible or judged only partially effective, then addition of a
fire suppression system and of warning devices may be considered. The effectiveness
and reliability of these systems then becomes a safety issue, and new hazards may
need to be considered (e.g., inadvertent activation of the fire suppression system).

Software criticality is determined by hazard analysis; DO-178B considers five
levels from A (most critical) to E. Level A is “software whose anomalous
behavior. . .would cause or contribute to a failure of system function resulting in a
catastrophic failure condition for the aircraft” [RTCA92, Subsection 2.2.2]. Catas-
trophic failure conditions are “those which would prevent continued safe flight and
landing” [FAA88, paragraph 6.h(3)] and include both loss of function, malfunc-
tion, and unintended function. Failure condition severities and probabilities must
have an inverse relationship; in particular, catastrophic failure conditions must be
“extremely improbable” [FAA88, paragraph 7.d]. That is, they must be “so un-
likely that they are not anticipated to occur during the entire operational life of
all airplanes of one type” [FAA88, paragraph 9.e(3)]. “When using quantitative
analyses. . . numerical probabilities. . . on the order of 10−9 per flight-hour3 may be
used. . . as aids to engineering judgment. . . to. . . help determine compliance” with the
requirement for extremely improbable failure conditions [FAA88, paragraph 10.b].
An explanation for this figure can be derived [LT82, page 37] by considering a fleet
of 100 aircraft, each flying 3,000 hours per year over a lifetime of 33 years (thereby
accumulating about 107 flight-hours). If hazard analysis reveals ten potentially
catastrophic failure conditions in each of ten systems, then the “budget” for each is
about 10−9 if such a condition is not expected to occur in the lifetime of the fleet.
An alternative justification is obtained by projecting the historical trend of reliabil-
ity achieved in modern jets. From 1960 to 1980, the fatal accident rate for large jets
improved from 2 to 0.5 per 106 hours, and was projected to be below 0.3 per 106

hours by 1990 [LT82, page 28].4 This suggests that less than 1 fatal accident per

3“Based on a flight of mean duration for the airplane type. However, for a function which is used
only during a specific flight operation; e.g., takeoff, landing etc., the acceptable probability should
be based on, and expressed in terms of, the flight operation’s actual duration” [FAA88, paragraph
10.b].

4Between 1982 and 1991, there were 163 “hull loss” accidents. Causes of these accidents have
been officially identified in 120 cases; of these, 15 were attributed to failure of the aircraft’s design
or systems [BCAG95]. Since the 1980s there has been a large increase in on-board safety-critical
software in systems such as engine control and monitoring, displays, autopilot, and flight man-
agement. Among aircraft of this generation manufactured in the United States, the Boeing 757,
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107 hours is a feasible goal, and the same calculation as above then leads to 10−9

as the requirement for individual catastrophic failure conditions.

Note that the probability 10−9 is applied to (sub)system failure, not to any soft-
ware the system may contain. Numerical estimates of reliability are not assigned
to software in safety-critical systems [RTCA92, Subsection 2.2.3], primarily because
software failure is not random but systematic (i.e, due to faults of specification, de-
sign, or construction), and because the rates required are too small to be measured;
discussion of these points consumes much of the early part of Chapter 3.
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Chapter 1

Introduction

“When software fails, it invariably fails catastrophically. This awful qual-
ity is a reflection of the lack of continuity between successive system
states in executing software. If the preceding state is correct, there is no
inherent carry over of even partial correctness into the next succeeding
state.” [Roy91, page 11]

“Primarily, mathematics is a method of inquiry known as postulational
thinking. The method consists in carefully formulating definitions of the
concepts to be discussed and in explicitly stating the assumptions that
shall be the basis for reasoning. From these definitions and assumptions
conclusions are deduced by the application of the most rigorous logic man
is capable of using.” [Kli90, page 20]

“Formal methods” are the use of mathematical techniques in the design and
analysis of computer hardware and software; in particular, formal methods allow
properties of a computer system to be predicted from a mathematical model of the
system by a process akin to calculation. Engineers in established disciplines are fully
familiar with the benefits that mathematical modeling and analysis can provide: for
example, computational fluid dynamics (CFD) allows safe and relatively inexpensive
exploration of alternative airfoil designs, and accurate prediction of the behavior of
the selected design. Wind-tunnel and flight tests are performed primarily to validate
the accuracy of the CFD model, and to measure final performance parameters. With
computer software, however, prototyping and testing remain the principal methods
for exploring designs and validating implementations. These are expensive and
possibly dangerous, and can provide only partial coverage of the range of behaviors
that a piece of software may exhibit.

The problem, of course, is that computer hardware and software are discrete
systems: their behavior is determined by a succession of discrete state changes. The

7
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succession of states need not produce behavior that varies smoothly or continuously;
instead it can exhibit discontinuities and abrupt transitions. The ability to select
among many alternative courses of action is a source of the power and flexibility
provided by computer systems, but it is also the reason why their behavior is hard
to predict and to validate. Tests provide information on only the state sequences
actually examined; without continuity there is little reason to suppose the behavior
of untested sequences will be “close” to tested ones, and therefore little justification
for extrapolating from tested cases to untested ones.

Formal methods confront the discrete behavior of computer systems by using
discrete mathematics to model it. Discrete mathematics builds directly on mathe-
matical logic, and proofs of theorems take the place of the numerical calculations
that are familiar in most other engineering mathematics. That is, instead of using a
mathematical model to calculate a value for some numerical quantity such as lift or
drag, in formal methods for computer science we prove theorems about the modeled
behavior—such as “for any integer input x in the range 0 ≤ x < 216, this program
produces an integer output y satisfying y2 ≤ x < (y + 1)2.” In formal methods, the
problem of discontinuity and the unsoundness of extrapolating from a finite num-
ber of tests are overcome using methods of proof based on mathematical induction,
so that an infinite (or finite but very large) number of possible behaviors is fully
covered in a finite proof.1

Formal methods offer much more to computer science than just “proofs of cor-
rectness” for programs and digital circuits, however. Many of the problems in soft-
ware and hardware design are due to imprecision, ambiguity, incompleteness, mis-
understanding, and just plain mistakes in the statement of top-level requirements,
in the description of intermediate designs, or in the specifications of components
and interfaces. Some of these problems can be attributed to the difficulty of de-
scribing large and complex artifacts in natural language. Many notations and tech-
niques have been proposed to overcome this difficulty and it is important here to
distinguish formal methods from what we might call formalized methods. The lat-
ter include many CASE methodologies, diagrammatic techniques, pseudocode, and
other systematic ways for describing the requirements, specification, or operation
of computer systems. The distinction is that formal methods are provided with an
explicit method for deriving, by a systematic process that resembles calculation,
the properties and consequences of a specification: it must be possible, at least
in principle, to calculate whether one specification correctly implements another,
or whether certain requirements are satisfied by a given specification. Formalized
methods, on the other hand, continue to rely on intuitive understanding of the nota-
tions and concepts employed: they may replace a possibly woolly natural language

1Formal methods based on “state-exploration” can sometimes examine all the behaviors in a
very large, but still finite, space of possibilities using cleverly-implemented brute force techniques.
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description with, say, an apparently precise diagram—but the precision is illusory
if there is no underlying semantics giving a strict meaning to the diagram. For-
malized methods also often force a premature commitment to design decisions; for
example, pseudocode, dataflow diagrams, and many other CASE techniques allow
a statement of what is required to be given only in terms of a mechanism to achieve
it. This is not to deny the utility and merit of formalized methodologies; the theo-
retical advantages of truly formal methods may be unimportant in some contexts,
and unrealizable (because of the skill and costs that may be required) in others.

Formal methods provide for the construction of specifications whose interpre-
tation is less reliant on human intuition by using techniques based, mainly, on the
axiomatic method of mathematics. The basic idea of the axiomatic method is to
specify properties required or assumed2 as axioms in some formal language. These
axioms, plus the rules of inference associated with the chosen language, supply ev-
erything that can be used in reasoning about the specified artifact. To show that
the specification has some property not explicitly mentioned in the axioms, we must
prove that that property is a logical consequence of the axioms; similarly, to show
that a design meets its requirements, we must prove that each requirement is deriv-
able from the axioms that specify the design. Formal specifications are tested and
explored by posing and proving putative theorems that I call challenges: “if this
specification says what it should, then the following ought to follow.”

The word “formal” in formal methods derives from formal logic and means “to
do with form.” The idea in formal logic is to avoid reliance on human intuition
and judgment in evaluating arguments by requiring that all assumptions and all
reasoning steps be made explicit, and further requiring that each reasoning step
be an instance of a very small number of allowed rules of inference. Assumptions,
theorems, and proofs are written in a restricted language with very precise rules
about what constitutes an acceptable statement or a valid proof. In their pure,
mathematical form, these languages and their associated rules of manipulation are
called logics. In formal methods for computer science, the languages are enriched
with some of the ideas from programming languages and are called specification
languages, but their underlying interpretation is usually based on a standard logic.

In a formal specification, everything that can be assumed about the specified
entity must follow, by the rules of inference for the language concerned, from the

2Whether the specification is of requirements or assumptions depends on whether one is specify-
ing an artifact to be constructed, or some external entity (such as a device, or the environment) with
which it is to interact. Usually both are required simultaneously, as in formalizations of statements
such as “this design is required to satisfy the following requirements, assuming its environment
behaves in the manner described. . . ” The formal version of this statement is usually expressed as

assumptions ⊃ (design ⊃ requirements)

where ⊃ is the symbol for implication.
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axioms that make up its specification. Hilbert, who established the modern ax-
iomatic method with his treatment of geometry at the turn of the century, asserted
that one had to be able to say “tables, chairs, and beer mugs” in place of “points,
lines, and planes” [Rei86, page 60]. By this, he meant to stress that intuitions as-
sociated with familiar names should be ignored; the terms used must be treated
as marks on paper with no properties assumed but those written down as axioms
or deducible, via formal proof, as theorems. The benefit claimed for this approach
in computer science is that it forces us to make things explicit: instead of relying
on intuition about the meaning of English terms (which can be unreliable and can
differ from person to person), everything is expressed in a precise form that has
an unambiguous interpretation. In addition, all assumptions are written down and
placed in the open, where they can be subjected to independent scrutiny, and all
arguments are reduced to calculations that can be checked independently (or even
mechanically).

In a formal proof, everything we need to know about the particular problem area
is encoded in the statement of the theorem and the axiomatization of its premises,
and the truth of the theorem can be established by simply “pushing the symbols
around” according to the rules of inference; the form of the proof determines its
validity—it does not depend on unrecorded knowledge of the problem area, nor
on intuition about what the theorem says: checking a formal proof is a purely
mechanical exercise that can, in principle, be done by a computer program, and
with complete accuracy.

This is not to say that knowledge and intuition are superfluous in formal
methods—on the contrary, they are essential to the invention of useful axiomati-
zations and theorems, to their interpretation and application in the real world, and
to the discovery of proofs. Use of purely formal reasoning to check proofs, however,
can be beneficial because it forces a complete enumeration of assumptions and in-
ferences, and can catch faulty reasoning that would otherwise be overlooked. Even
without mechanical checking, the “symbol-pushing” character of formal proofs can
help prevent faults due to flawed intuition, jumping to conclusions, or simple care-
lessness. Above all, it is a repeatable exercise: others can check our work in greater
detail and with greater reliability than is feasible for informal reviews.

Some of these ideas are familiar from use of mathematics in traditional engineer-
ing disciplines. Intuition about the behavior of fluids is necessary in order to derive
the Navier-Stokes equations, and understanding of the application is needed in or-
der to interpret and apply their solution in a particular instance. But in order to
manipulate the equations and develop numerical solutions, it is the rules for treating
partial differential equations that are important, not the particular interpretation
of the equations as the flow of air over a wing.

Partial differential equations and most of conventional mathematics are not fully
formal systems, so the rules for their manipulation are not spelled out as explicit
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axioms and rules of inference, although, in principle, they could be. In just the
same way, formal methods can be applied to computer systems in varying degrees
of formality. At their most formal, specifications are written in a specification lan-
guage with a very direct interpretation in logic, and the proofs of theorems are
performed, or checked, by computer. Less rigorously formal are methods that use
a true specification language with a strict mathematical interpretation, but with
limited mechanical support: perhaps a parser and typechecker,3 and either no, or
only rudimentary, theorem-proving capability. With less commitment to full mecha-
nization, these approaches can provide richer specification languages, but proofs and
arguments are expected to be conducted mostly with pencil and paper in the style
of a normal “mathematical presentation.” The least formal of formal methods are
those that employ the concepts and notations of discrete mathematics to develop
specifications and proofs in the style of traditional mathematics and engineering.
The only tools used are pencil, paper, and a wastebasket, but this limitation also
confers a freedom to invent notations at will.

“More formal” is not necessarily better, and a machine-checked proof is not
necessarily superior to an intuitively compelling sketch. Use of the term “proof”
in formal methods must generally be treated with great care, since in common
parlance it carries the connotation of complete certainty. But in formal methods
and logic, “proof” is a technical term, that describes a certain type of symbolic
manipulation. It can be helpful to mentally substitute the term “logical calculation,”
with deliberate analogy to “numerical calculation,” whenever “proof” is used in the
context of formal methods. Just like numerical calculations of solutions to partial
differential equations, the logical calculations that constitute a formal proof can
fail us in several ways: we can make a mistake in the calculation, we can use a
specification (or system of equations) that does not accurately model the real world,
and our requirements (or interpretation of the answer) may be mistaken. Depending
on the problem and the methods used, different levels of formality can assist or
hinder our attempts to minimize these potential failings; sometimes formalism may
be altogether inappropriate. Responsible use of formal methods and of formal proofs
requires an understanding of these limitations, so that the methods are used in a
balanced way to improve and augment existing processes for the development of
safety-critical systems.4

The various degrees of formal methods may be related to the “nonformal” meth-
ods used in traditional software and hardware engineering. Software and hardware

3A typechecker performs static semantic analysis (rather like the front-end of the compiler for a
modern programming language) with special emphasis on the compatibility of the “types” of the
constants, variables, and functions involved. For example, a typechecker will detect errors such as
adding an integer to a string. Type systems for specification languages can be much richer than
those for programming languages, allowing greater precision of expression and stricter checking.

4MacKenzie’s very readable account of the British Viper controversy is salutary [Mac91]; see
also Section 2.5.2.
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engineering generally follow a very formal development process, in which require-
ments are documented and elaborated (possibly through several levels), and designs
are similarly elaborated through several levels of specification down to the final code
or circuit. Requirements and specifications are usually documented in natural lan-
guage, possibly augmented by diagrams, equations, flowcharts, data dictionaries,
and pseudocode. For safety-critical and many other kinds of systems, the develop-
ment process includes components known as “verification and validation” (V&V).

Verification is the process of determining whether each level of specification, and
the final code itself, fully and exclusively implements the requirements of its superior
specification. Formal methods do not replace this process, but rather augment it
by providing formal notations and concepts to be used in writing requirements and
specifications, and varying degrees of formal proof that can be used in verification.

Validation, the other component of V&V, is the process by which delivered
code is directly shown to satisfy the original user requirements by testing it in
execution.5 Modern development processes recognize the value of doing extensive
validation earlier in the lifecycle—so that faults can be caught and corrected sooner.
Rapid prototyping, simulation, and animation are all techniques that help validate
satisfaction of the customer’s expectations before the full system is built. Formal
methods can also augment this process, by allowing the properties and consequences
of nonexecutable specifications to be explored via theorem proving at the earliest
stages of the lifecycle. Hybrid methods are also possible: some formal specifications
can be directly executed, or converted into rapid prototypes; alternatively, theorem
proving can sometimes be replaced (or, rather, achieved by) completely automatic
methods based on “state-exploration” techniques. Whereas a rapid prototype can
be used to probe selected test cases, state exploration covers all possible behaviors
(though often of only a simplified model of the system concerned).

There are advantages, difficulties, and costs associated with the use of formal
methods. The balance of advantage varies with the nature and criticality of the
application, with the stages of the lifecycle in which formal methods are used, with
the degree of formality employed, with the quality of the method and of any mech-
anized tools that support it, and with the experience and skill of the practitioners.
The general advantages claimed for all formal methods are that they enable faults
to be detected earlier than would otherwise be the case. This is because they al-
low greater precision and explicitness to be achieved earlier in the lifecycle than

5DO-178B defines validation as “the process of determining that the requirements are the correct
requirements and that they are complete,”and verification as “the evaluation of the results of a
process to ensure correctness and consistency with respect to the inputs and standard(s) provided
to that process” [RTCA92, Annex B]. FAA staff informally characterize validation as “showing that
you got the requirements right” and verification as “showing that you built the system according to
the requirements.” This is similar to the well-known informal characterization that verification is
concerned with showing that the product is built right, while validation is concerned with showing
that the right product has been built.
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otherwise, and because they can support more systematic analyses than informal
methods. Stronger forms of this claim are that formal methods cause faults to be
detected with greater certainty than would otherwise be the case, and that in cer-
tain circumstances, subject to certain caveats, they can guarantee the absence of
certain faults. These stronger claims are generally associated with formal methods
that undertake “rigorous” or mechanically-checked proofs.

The advantages claimed for formal specifications are that they reduce the ambi-
guity and imprecision of natural-language specifications, that explicit use of math-
ematical concepts (such as sets, mappings, and predicates) contributes to clarity
of thought and expression, and that use of quantification, higher-order constructs,
and other concepts from logic allow clear statement of what is to be done, without
imposing a premature commitment (as, for example, pseudocode does) to how it is
to be done. The advantages claimed for formal proof are that it is a potent method
for revealing faults, that it covers all cases, and that the reasoning can be checked
by others (or by machine in fully formal cases). Arguments in favor of the more
completely formal methods are that mechanical checking eliminates faults that can
survive less rigorous scrutiny, that the intensity of the scrutiny leads to improved
understanding and to better informal presentations, and that complete formality
forces an explicit enumeration of all assumptions. Arguments against formal meth-
ods (these are particularly leveled at the more intensely rigorous interpretations)
are that it is expensive, that activity tends to be focused on the formalism and not
on the real problem at hand, that no guarantees are possible unless it is performed
from “top to bottom” (which is generally infeasible), and that formal verification is
ultimately useless, since the behavior of the finished product will depend on real-
world physical processes (e.g., the behavior of a computer or of an actuator) whose
behavior may not be modeled with complete accuracy, and is judged against real-
world expectations that may not be captured accurately or completely in formal
requirements statements.

In the following chapters I examine these and related issues in more detail and
provide certifiers with information that I hope will assist them in evaluating the
potential contributions of formal methods to digital systems used on aircraft, and
to make decisions on certification credit for use of formal methods.



Chapter 2

Issues in Formal Methods

“Deduction, as a method of obtaining conclusions, has many advantages
over trial and error or reasoning by induction and analogy. The out-
standing advantage is . . . that the conclusions are unquestionable if the
premises are. Truth, if it can be obtained at all, must come from cer-
tainties and not from doubtful or approximate inferences. Second, in
contrast to experimentation, deduction can be carried on without the use
or loss of expensive equipment. Before the bridge is built and before the
long-range gun is fired, deductive reasoning can be applied to decide the
outcome.

“With all its advantages, deduction does not supersede experience, in-
duction, or reasoning by analogy. It is true that 100 per cent certainty
can be attached to the conclusions of deduction when the premises can
be vouched for 100 per cent. But such unquestionable premises are not
necessarily available.” [Kli90, page 45]

As mentioned in the introduction, formal methods can be applied in varying
degrees of rigor. There are also other axes along which formal methods can vary in
the thoroughness of their application: they can be applied to selected, rather than
to all, stages of the lifecycle, and to some or all of the components and properties of
the system. I begin this chapter with a classification of formal methods according
to the rigor of their application, and then consider issues in the extent and thor-
oughness of their application through the lifecycle, across components, and with
respect to different system properties. Later, I examine techniques for validating
formal specifications, and then consider benefits that may accrue from use of formal
methods, the fallibilities of those methods, and tools to support them. I close the
chapter with brief descriptions of some applications of formal methods in industrial
settings.

14
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2.1 Levels of Rigor in Formal Methods

In the introduction, I suggested that varying levels of rigor can be discerned in the
application of formal methods. Here, I systematize that classification, and outline
issues in the choice of level for a particular application. The word “rigor” is not
a completely accurate term for the characterization that I have in mind, but no
other term seems better. What I am concerned with is the extent to which a
method is “truly formal”: that is, formulates specifications in an axiomatic style,
explicitly enumerates all assumptions and reduces proofs to explicit applications
of elementary rules of inference. Increasing formality allows examination of the
products of formal methods (i.e., specifications and proofs) to be less dependent on
reviews (i.e., processes that depend on consensus judgment) and more amenable to
analyses (i.e., systematic forms of examination whose results are repeatable). The
distinction between reviews and analyses is from DO-178B [RTCA92, Section 6.3].

Because it requires almost superhuman discipline to be truly formal with pencil
and paper, increasing formality is usually associated with increasing dependence on
mechanical support (conversely, since computers can do nothing but “push sym-
bols around,” it is difficult to mechanize the reasoning processes of less than truly
formal methods). Note that it is possible to be “rigorous,” in the sense of being
painstakingly careful and serious, without being truly formal.

I classify formal methods into the following four levels of increasing rigor.

Level 0: No use of formal methods. This corresponds to current standard practice
in which verification is a manual process of review and inspection applied to
documents written in natural language, pseudocode, or a programming lan-
guage, possibly augmented with diagrams (and equations in the case of control
laws). Validation is based on testing, which can be driven by requirements and
specifications (i.e., functional or black-box testing) or by the structure of the
program.

Although the standard practice makes little use of formal methods, it may
employ very thorough and highly formalized development processes. For ex-
ample, “structured walk-throughs” and “formal inspections” are highly struc-
tured methods for the manual review of program designs and code. As first de-
scribed by Fagan [Fag76] (see [ABL89] and [Fag86] for more recent treatments,
and [Bus90, Wel93] for case studies), four participants are required—the Mod-
erator, the Designer, the Coder/Implementor/Specifier, and the Tester. If a
single person performs more than one role in the development of the system,
substitutes from related projects are impressed into the review team. The re-
view team scrutinizes the specification, design or program in considerable de-
tail: typically, one person (usually the Coder) acts as a “reader” and describes
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the specification or the workings of the design or program to the others, “walk-
ing through” it in a systematic manner so that every piece of logic is covered at
least once, and every or branch (in the case of programs) is taken at least once.
Intensive questioning is encouraged, and it is the Moderator’s responsibility
to ensure that it remains constructive and purposeful (managers are excluded
and the process is not used to evaluate the performance of the participants).
As the design and its implementation become understood, the attention shifts
to a conscious search for faults. A checklist of likely mistakes may be used to
guide the fault-finding process. Considerable effectiveness is reported for for-
mal inspections: removal of 50% of design and implementation errors “across
a wide span of applications,” and 70% to 80% error removal when inspections
are practiced with greater rigor and frequency [Dye92, pp. 9–10]. Recently, it
has been suggested that the process can be made more reliable if N inspection
teams (coordinated by a single Moderator) are used [SMT92].

One of the main advantages of the structured walk-through over other forms
of verification and validation is that it does not require an executable program;
it can therefore be applied early in the design cycle to help uncover faults and
oversights before they become entrenched.

Just as verification can be supported by a very formalized process, so can
testing in support of validation. There are numerous metrics for assessing the
coverage of a series of tests (e.g., visiting all statements, or taking all branches,
and more sophisticated measures based on data flow criteria [RW85, Wey88]),
and tools are available to monitor coverage against chosen metrics and to
administer regression tests. Note, however, that these automated processes
mainly concern structural test criteria, whereas DO-178B rightly also stresses
the importance of requirements-based testing [RTCA92, Section 6.4].1

Notwithstanding their labor and test-intensive character, it is important to
recognize that established processes for the development of critical software
and hardware have proved fairly effective in practice. Clearly, these processes
should not be changed gratuitously, and a good case needs to be made for the
value added by innovations such as formal methods.

Level 1: Use of concepts and notation from discrete mathematics. The idea here
is to replace some of the natural language used in requirements statements
and specifications with notations and concepts derived from logic and discrete
mathematics. Examples include the notions and terminology of set theory, and
the various special kinds of relations and functions (such as transitive relations,

1Other criteria for test adequacy are based on reliability growth models; testing is stopped when
the model predicts that the software has become “reliable enough” [CDM86, MA89b]. These are of
questionable utility for critical systems, because of the extreme reliabilities required: see Section 3.1.
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or one-to-one functions). Generally speaking, applications at this level are not
too concerned with the precise details of the formal system employed (e.g.,
no-one is going to worry about whether the set theory employed is Zermelo-
Fraenkel or that of Gödel, von Neumann, and Bernays), and proofs, if any,
are performed in the informal style typical of a mathematics textbook. This
informal style matches the way mathematics is used in most other engineer-
ing disciplines and, indeed, the way most of mathematics itself is performed.
Used in this way, discrete mathematics contributes to software and hardware
engineering in three ways:

• It provides an economical but versatile collection of mental building
blocks that can help in the development and presentation of clear, precise,
and systematic statements of requirements, assumptions, specifications,
and designs.

• It provides a compact notation that allows these statements of require-
ments, assumptions, specifications, and designs to be written down and
communicated with less ambiguity than natural language, and in the
reasonable expectation that author and reader will share the same un-
derstanding of the notation.

• It may provide some “laws” (i.e., theorems or derived rules of inference)
that can systematize or guide the elaboration of the specification or design
from one level to another.

Level 1 formal methods usually augment an existing development method
and are not normally part of a wholesale revision to the process. An excep-
tion may be the Cleanroom methodology pioneered by Mills [MDL87] and
Dyer [Dye92].2 Less revolutionary is the A7 (also known as the “Software
Cost Reduction” or SCR) methodology pioneered by Parnas and others at
the Naval Research Laboratory [Hen80] (see [vS90, vSPM93] for more recent
treatments).

Level 2: Use of formalized specification languages with some mechanized support
tools. Simply enjoining staff to “use discrete mathematics” is probably not an
effective management technique for projects involving more than a few mem-
bers; standards and conventions are generally desirable, and these may be

2The Cleanroom uses formalized specifications, a limited and structured set of primitives for
design, correctness arguments as the basis for formal inspections, no unit or other testing by devel-
opers, and statistical process control and reliability measurement. “If the total Cleanroom process
is adopted for software development, it represents a radical departure from current software de-
velopment practice. . .The process introduces new controls for software development, imposes new
roles and responsibilities on the various engineering disciplines, eliminates some seemingly core
methods from the development process, and raises the level of training and proficiency required in
the engineering disciplines” [Dye92, pp. 4–5].
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systematized as an informal “specification language.” It may then become at-
tractive to fix a concrete notation for the language and to provide mechanized
support tools. Formal methods on the lower rungs of Level 2 may provide
tools, such as syntax checkers and prettyprinters, that examine only the sur-
face features of specifications; better supported methods may provide deeper
tools, such as typecheckers, that examine rather more of their content. All
Level 2 applications of formal methods should retain or enhance the benefits
of Level 1 applications, and may provide additional benefits:

• Specification languages generally provide more than just a standardized
notation for discrete mathematics: they usually also address software
engineering concerns and allow specifications to be structured into units
(e.g., modules, abstract datatypes, or objects) with explicitly specified
interfaces. Some specification languages form part of a fully developed
software engineering methodology (e.g., VDM [Jon90]).

• Mechanized checking tools allow accurate detection of certain types of
faults; other tools may make it simple to generate up-to-date documen-
tation and summary reports, and to trace dependencies through large
specifications.

• It may be possible to quickly generate a simulation, “animation,” or
prototype implementation from a specification, either automatically, or
with some human guidance [AJ90, HI88]. These can be very useful ways
to explore certain properties of a specification. Some languages used
for specification are directly executable (e.g., OBJ [FGJM85]), but this
rather compromises their status as vehicles for specification and renders
them closer to high-level programming languages [HJ89].

Standardization and mechanization bring limitations as well [Nau82]: it is
usually no longer possible to invent new or modified notations—instead all
specifications must be built from the constructs provided by the specification
language concerned. Some specification languages may be optimized for a par-
ticular class of applications, or for a particular form of analysis, and may prove
cumbersome or inapplicable in contexts other than those intended. Generally
speaking, the richer and more widely applicable a specification language, the
harder it is to build support tools for it. Thus, the richest and most convenient
specification languages tend to have relatively limited mechanical support.

Mechanized theorem proving is the dividing line between Level 2 and Level
3 applications of formal methods in my classification. Proofs in Level 2 ap-
plications are usually performed informally, as in Level 1. Level 2 methods
often, however, provide explicit formal rules of deduction, so that these proofs
could, in principle, be done formally, albeit by hand. The term rigorous (as
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opposed to formal) is often used to describe the style of proof employed in
Level 2 applications.

Level 3: Use of fully formal specification languages with comprehensive support
environments, including mechanized theorem proving or proof checking. The
most truly formal of methods are those that employ a specification language
with a very direct interpretation in logic, and with correspondingly formal
proof methods. Once proof methods are completely formalized (i.e., reduced to
symbol manipulation), it becomes possible to mechanize them. Mechanization
can take the form of a proof checker (i.e., a computer program that checks the
steps of a proof proposed by the human user), or of a theorem prover (i.e., a
computer program that attempts to discover proofs without human guidance)
or, most commonly, of something in between.

The advantages of this fully formal approach are that requirements, speci-
fications, and designs can be subjected to searching examination, and that
mechanization eliminates faulty reasoning with almost complete certainty; its
disadvantages are that fully formal specifications and machine-checked proofs
can be expensive to develop, and that many of the specification languages
with full mechanical support have been rather impoverished notations based
on restricted logics. This means that specifications may have to be contorted
to fit the restrictions of the language, and can therefore be difficult to write
and to read.

The costs of developing fully formal verifications are often exacerbated by
the need to develop formalizations of the supporting theories or mathematical
“background knowledge” (e.g., the properties of the arithmetic mean, or of
permutations) that are taken for granted in less formal approaches. As formal
verification becomes more widely practiced, I would expect verified libraries
of such theories to become available, thereby reducing the cost of subsequent
developments.

Higher levels of rigor in the application of formal methods are not always superior
to lower levels: depending on the benefits desired from use of formal methods, the
criticality of the application, and the resources available, any of the four levels
(including Level 0) can be the appropriate choice. For example, if formal methods
are used simply as documentation, then Level 1 may be the best choice; but if they
are used to justify the design of a novel and critical component, then Level 3 may
be preferred; Level 2 will fall somewhere between these extremes, and Level 0 may
be the sensible choice for routine applications that have been handled adequately in
the past by standard practices. I discuss factors that should influence the choice of
rigor in more detail in Chapter 3, when I have prepared more of the groundwork.
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Notice that it is feasible to use a formal method at a lower level of rigor than
that for which it is primarily intended. For example, a system capable of supporting
Level 3 could be employed in a Level 2 development by using just its specification
language, and not its theorem-proving capabilities. There can be advantages and
disadvantages to such a choice. On the one hand, methods intended for the more
rigorous levels may embody solutions to problems whose existence might not even be
recognized at lower levels (e.g., a mechanically-checked definitional principle which
guarantees that definitions do not introduce inconsistencies). On the other hand,
and as I noted earlier, increasing formality and mechanization impose demands on a
specification language that often (but need not) reduce its expressiveness and hence
its convenience as a notation.

Many individual formal methods are migrating upwards through the levels I
have enumerated. For example, a notation that starts in Level 1 (e.g., Z, which in
its early days was referred to as a “style” rather than a language [Abr80a, Sør81])
might be embellished and standardized and provided with elementary tools, thereby
moving it into the lower reaches of Level 2 [Spi93]. Later, the tool support might
be increased, moving it upward in Level 2, and theorem-proving support could
then be added to move it into Level 3.3 Conversely, developments of some of the
formal methods at Level 3 are aimed at reducing the overheads associated with full
rigor and mechanization, thereby broadening their appeal and range of application
downwards into Level 2. (I describe some of the evolution of mechanical support
for formal methods, and speculate on some of the likely courses of development,
in Section 2.6.) In the future, therefore, individual formal methods may be less
restricted than at present in the levels of rigor for which they are best suited.

Developments such as these blur some of the distinctions in my classification
of formal methods. Nonetheless, I consider the classification valuable because the
unadorned term “formal methods” covers a wide range of techniques that have
very different characteristics, costs, benefits, and drawbacks. While it will be nec-
essary to evaluate the individual attributes of any formal method that may be
offered in support of certification (see Section 3.5), my classification serves to high-
light the gross distinctions. Notice in particular that in Europe, and especially in
the United Kingdom, many uses of the term “formal methods” refer to methods
(e.g., RAISE [RAISE92], VDM [Jon90], Z [Spi93]) that I would classify as Level
2, whereas North American usage normally refers to the most rigorous and pow-
erfully mechanized end of Level 3 (e.g., the Boyer-Moore prover “Nqthm” [BM88],

3However, the theorem-proving capabilities of “proof assistants” such as Balzac (a related system
is known as Zola) [Har91], the B-Tool [LS91], and mural [JJLM91], are so limited at present that I
hesitate to describe them as Level 3.
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Eves [CKM+91], PVS [ORS92], or SDVS [CFL+91]).4 Failure to recognize these
different usages can be a source of great misunderstanding.

2.2 Extent of Application in Formal Methods

Just as it is possible to vary how rigorously formal methods are applied, so we can
vary the extent of their application. There are at least three dimensions to the
notion of extent:

• Formal methods can be applied to all, or merely to some of the stages of the
development lifecycle. If the latter, we can choose whether to favor the earlier,
or the later stages of the lifecycle.

• Formal methods can be applied to all, or only to selected, components of the
system. More generally, we can vary the level to which formal methods are
applied according to the component.

• Formal methods can be applied to system properties other than full func-
tionality. Traditionally, formal methods have been associated with “proof of
correctness,” that is, with ensuring that a system component meets its func-
tional specification. For the purposes of verification, not all its functional
properties may be equally important; we may then apply formal methods only
to the most important functional properties. In flight-critical systems, it may
sometimes be more important to be sure that a component does not exhibit
certain kinds of catastrophic failures, rather than that it has certain positive
properties.

In the following subsections, I examine each of these notions of extent in more detail.

4This distinction between North American and European approaches is a very coarse one; for
example, the British system called HOL [GM93] is generally used for Level 3 applications, whereas
the American Larch notation [GH93b] is generally used in Level 2 applications. The British tool
SPADE [COCD86] (MALPAS [MC90] is somewhat similar) is sometimes used with mechanized
proof checking and therefore has some of the characteristics of a Level 3 formal method, but does
not fit my classification very well. Primarily, SPADE supports the analysis of executable programs
(written in a variety of languages), including static code analysis (e.g., checking for variables that are
not used, and for those that are used but not set, as suggested in DO-178B [RTCA92, Subsection
6.3.4.f]), and sophisticated flow analysis [BC85]. SPADE also allows programs to be annotated
with assertions expressed as pre- and post-conditions that can either be checked at run-time, or
used to generate verification conditions that are submitted to the SPADE proof checker [Car89].
Although it uses formal methods in its analysis of programs, SPADE does not have a fully expressive
general-purpose specification language and is therefore somewhat different from other techniques
that I would classify on Levels 2 and 3. This is not a criticism of SPADE, which has been used
quite successfully in some aircraft projects (e.g., [OCF+88], where it was used to verify consistency
between Z8002 assembler code implementing the primitive elements of the LUCOL language—used
in the full authority digital fuel control system of the Rolls Royce RB211-524G engine—and the
“fact sheets” that constitute their specification), but a limitation in my classification scheme.
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2.2.1 Formal Methods in the Lifecycle

Some of the earliest formal methods were associated with “proofs of correctness”
of small programs represented as flowcharts [Flo67].5 The basic idea is to attach a
logical assertion to each segment of straight-line code in the program and to prove
that these assertions will be true for every execution path through the program.
This can be done by considering just the pairwise combinations from one segment
of straight-line code to another. These pairwise combinations give rise to lemmas
(small theorems) called “verification conditions” (VCs); an induction principle en-
sures that the program is correct if all the individual VCs are true (hence this
method is sometimes known as that of “inductive assertions”).

An example of this approach can be based on the flowchart shown in Figure 2.1,
which describes a program to calculate the positive integer square root z of its
input x by the method of linear search (i.e., counting up from 0 until the square
root is found). This program is obviously trivial and very inefficient, but serves to
illustrate the technique. The specification for this program is that, given an integer
x satisfying x ≥ 0, it should produce an integer z satisfying z2 ≤ x ∧ (z + 1)2 > x.6

The program is described by the statements enclosed in boxes, and by the “flow
of control” that is implicit in the lines connecting them. The logical assertions
used in specifying and reasoning about the program are the three formulas not
enclosed in boxes. Notice that similar identifiers and expressions appear in both
the assertions and the program statements, but that they use different fonts and are
written slightly differently. The letters x and z appearing in the program statements
represent program variables, whereas the x and z appearing in the assertions are
logical variables. Logical variables represent integer values, so that an equation such
as z = z + 1 makes no sense: there is no integer that equals itself plus 1. Program
variables, on the other hand, represent “storage locations,” so that the expression z

:= z + 1 does make sense: it means take the value stored in location z, increment
it by 1 and store the result back in location z. The relationship between z and z

is that the former captures the value stored in the latter at the instant the flow of
control passes the assertion in which z appears. The assertions therefore document
the instantaneous relationships among the values stored in the program variables.

Three straight-line segments of code connect the assertions: from the entry
assertion (at the top) to the assertion in the loop (this latter kind of assertion is

5The idea that one could reason about the correctness of programs is almost as old as program-
ming; for example, Babbage wrote about “Verification of the Formulae Placed on the [Operation]
Cards” of his analytical engine in the 19th century [Ran75b, pp. 45–47] and Turing proved the
correctness of a program in 1949 [MJ84, Tur92].

6The infix symbol ∧ means “and”; I also use ∨ for “or,” ⊃ (or sometimes ⇒) for “implies,” ≡
(or sometimes ⇔) for “if and only if,” and the prefix symbols ¬ for “not,” ∀ for “for all,” and ∃ for
“there exists.”
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Figure 2.1: An Annotated Flowchart

called a “loop invariant”), from the loop invariant around the loop and back again,
and from the loop invariant to the exit assertion (at the bottom). Each of these gives
rise to a verification condition: the first requires that if we assume x ≥ 0 and then
set z to zero (the effect of executing the statement z := 0), we will satisfy z2 ≤ x;
the second requires that if we assume z2 ≤ x (the loop invariant) and (z + 1)2 ≤ x

(from taking the “yes” branch of the test (z+1)*(z+1) <= x), and increment z by
one (the effect of the statement z := z+1), then the new value of z will also satisfy
the loop invariant z2 ≤ x; the final segment requires that if we assume z2 ≤ x (the
loop invariant) and (z + 1)2 6≤ x (from taking the “no” branch of the test), then we
will satisfy the exit assertion z2 ≤ x ∧ (z + 1)2 > x.
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In the notation of logic, these VCs are:

1. x ≥ 0 ∧ z = 0 ⊃ z2 ≤ x,

2. z2 ≤ x ∧ (z + 1)2 ≤ x ⊃ (z + 1)2 ≤ x, and

3. z2 ≤ x ∧ (z + 1)2 6≤ x ⊃ z2 ≤ x ∧ (z + 1)2 > x.

It is clear that the VCs for this example are true, and so we can conclude that
the program represented by the flowchart satisfies the specification for integer square
root—if it terminates. Termination can be established by arguing that the value of z
increases by one each time round the loop, and so the branch condition (z+1)*(z+1)

<= x must eventually become false and cause the loop to terminate.

As I have presented it here, this verification is an example of a Level 1 ap-
plication of formal methods in my classification scheme. Early mechanizations
of this approach to program verification took programs written in an Algol-like
language and annotated with logical assertions, generated the corresponding VCs
with a program called a “Verification Condition Generator” (VCG), and used the
theorem-proving technology of the time to prove the VCs under human guid-
ance [Goo70, ILL75, Kin69]. A difficulty with this approach is that users’ intuition
usually rests in the program, but the VCs that they are asked to prove are logical
formulas that appear divorced from that context. Consequently, most presenta-
tions of program verification in textbooks, and most applications of program proofs
done by hand, use an alternative approach introduced by Hoare [Hoa69]; instead
of transforming programs into VCs in an ordinary logic and doing the reasoning
there, Hoare’s approach extends the logic to include program elements and makes
it possible to reason about programs directly.

In Hoare’s approach, properties of program fragments are described by triples
(sometimes called “Hoare sentences”) of the form {P}S{Q} where P and Q are
assertions about the program state (called the precondition and postcondition, re-
spectively), and S is a program fragment; the interpretation is that if the program
fragment starts off in a state satisfying P then, if it terminates, it will do so in a
state satisfying Q. Program fragments are composed using rules of inference such
as the following, which is a simplified form of the rule for a while loop:

{P ∧B} S {P}
{P} while B do S {P ∧ ¬B} . (2.1)

Rules of inference written in this way are interpreted as saying that if the formula
above the line is true, then we may conclude that the formula below the line is true
also. This particular rule says that if the property P is preserved by the program
fragment S (assuming B is true on entry), then if P is true on entry to the schematic
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while loop “while B do S,” both P and the negation of B will be true on exit (if
the loop terminates). For our integer square root example, P is z2 ≤ x, B is
(z + 1)2 ≤ x,7 and S is z := z+1, so that as the formula above the line we have
(from the rule for assignment, which I will take as given)

{z2 ≤ x ∧ (z + 1)2 ≤ x} z : = z + 1 {z2 ≤ x}

(notice that the z in the postcondition is the value of the program variable z after it
has been incremented) and can therefore conclude the corresponding formula below
the line:

{z2 ≤ x} while (z+1)*(z+1) <= x do z := z+1 {z2 ≤ x ∧ (z + 1)2 > x}.

When combined with the rule

{true} z := 0 {z = 0}

for the initialization statement, and the rule for sequential composition (I will pass
over the details), this allows us to conclude that the program

z := 0;

while (z+1)*(z+1) <= x do z := z+1

indeed satisfies our specification for integer square root. If I had explicitly given all
the rules for the programming language logic concerned, and filled in all the steps
that were elided, then this would be an example of a Level 2 application of formal
methods in my classification scheme. Notice that as well as supporting program
verification, Hoare’s “proof rules” can also be used to define the semantics of the
program language concerned [HW73] (e.g., (2.1) can be taken as a definition of the
semantics for a while loop).

Although Hoare’s approach and its descendents (notably Dijkstra’s weakest pre-
conditions [Dij76]) are attractive and are the ways program derivation and veri-
fication are treated in textbooks, most mechanized program verification systems
continue to use VCGs, rather than mechanize Hoare’s method directly.

A rather different, and older, tradition in programming language semantics and
program verification derives from the work of McCarthy [McC60]. This approach
is based on functional programming (and originally was closely identified with the
Lisp programming language) in which the notion of an implicit program “state” is
not required. In this approach, programs are functions and can be understood in

7As in the flowchart, this B occurs as an expression of ordinary logic in the pre- and postcondi-
tions, where I write it as (z + 1)2 ≤ x, and as a corresponding expression in the program, where I
write it as (z+1)*(z+1) <= x.
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a fairly conventional mathematical framework (although it took researchers many
years to take care of all the theoretical details).

The application considered in all these early styles of formal methods was chiefly
program verification; the programs concerned could be quite intricate [MP67] and
sometimes implemented very clever algorithms, but they typically made little use
of datatypes other than booleans, integers, and arrays of these, and were essentially
stand-alone programs rather than systems. Then in 1972, Hoare [Hoa72] presented a
method for verifying correctness of data representations, and ideas for specifying the
modules and abstract datatypes of larger systems were suggested by Parnas [Par72].
The Hierarchical Development Methodology (HDM) was an early attempt to provide
tool support for these ideas [RLS79, SLR78]. Meanwhile, most notably in Europe,
very rich formal specification notations [Bjø81, Sør81] were being developed and
applied to the requirements and top-level specifications of larger objects such as
operating systems [Abr80b] and programming languages [BBH+74].

The integer square root example does not lend itself to demonstration of these
later techniques, so I will introduce a new (but still very elementary) example. The
paradigmatic abstract datatype is a pushdown stack—an object provided with three
operations: push, top, and pop. The push operation allows an element to be stored
on the “top” of the stack, top returns the element stored on top of the stack, and
pop returns the stack with the top element removed; sequences of pop operations
remove elements in a last-in/first-out order. A formal specification in a functional
style for the stack operations might declare the signatures (i.e., the number and
types of the arguments, and the type of the value returned) of the three operations
as follows:

• push: [elem, stack → stack ],

• pop: [stack → stack ], and

• top: [stack → elem],

where elem denotes the type of elements that may be stored in the stack. The
behavior of the operations would be specified by means of the following two axioms:

• pop(push(e, s)) = s, and

• top(push(e, s)) = e,

where s and e are variables standing for an arbitrary stack , and an arbitrary ele-
ment , respectively.8 The points worth noting here are the functional style (i.e., the

8There are a number of deficiencies with this specification: for example, it is silent on the
existence of an empty stack (and therefore on the results of applying pop or top to such a stack),
and on the possibility of exceeding the number of elements that can be pushed onto a stack. I will
return to these issues later (in Subsection 2.3.1.1).
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stack is an explicit argument to the operations) and the use of axioms to specify the
interrelationships among the three stack operations without suggesting an imple-
mentation. This style of specification is called property-oriented, because it specifies
(some aspects of) a component in terms of the properties it is required to possess.

A more concrete specification style might specify a stack in terms of a linked list
of elements, or of an array and a pointer. For example, it might specify that a stack
is represented by a record:

stack : type = record
array : [ nat → elem],
pointer : nat

end record

and that the functions push, pop, and top manipulate these components as follows
(the contents of the stack occupy positions 1. . . pointer in array).

push(e, s) = s with [ pointer : = s.pointer + 1,
array : = s.array with [ s.pointer + 1 := e]]9

pop(s) = s with [ pointer : = pred(s.pointer )]10

top(s) = s.array (s.pointer )

Specifications of the kind illustrated in this example are called model-oriented (be-
cause they specify a component by giving a mathematical model that has the desired
behavior). The disadvantages of model-oriented specifications are that they suggest
a particular implementation (and thereby discourage use of, and complicate the ar-
gument for the correctness of, an implementation different from the one suggested),

9The with construct is a notation for function or record modification (also called overriding):
for a function f of one argument, the construction f with [x: = y] is another function having the
same signature as f that satisfies the constraint

f with [x: = y](z) = if z = x then y else f(z) endif.

The case where f is a record is similar, except that here x and z will be field names. This notation
is used to describe the behavior of function and record “updates,” without requiring the notion of
a “state” whose elements can be modified “in place.”

10pred is the predecessor (i.e., subtract 1) function on the natural numbers: pred(0) = 0. The
expression s.pointer − 1 would be type-incorrect here since it could yield a negative result, whereas
a natural number is required. This specification implicitly admits the empty stack (one that has
pointer = 0); popping such a stack leaves it unchanged; applying top to such a stack returns the
arbitrary value array(0).
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and they support deductive reasoning less readily than the more abstract property-
oriented style. For example, it is easy to prove the theorem

pop(pop(push(e, push(e, s)))) = s

from the two property-oriented axioms given earlier, but would be more tedious to
do it from the model-oriented description. Conversely, a disadvantage of property-
oriented specifications is that they are remote from implementation concerns.

Verification can reconcile these two approaches: using formal verification tech-
niques we can establish that the model-oriented specification is consistent with the
property-oriented version (i.e., the axioms of the property-oriented specification are
satisfied by the model-oriented specification). Thus, a property-oriented axioma-
tization can be used as a top-level specification, and a provably consistent model-
oriented description can be used as an implementation-level specification. In larger
examples, there may be several layers of specifications going from property-oriented
requirements statements through increasingly detailed (and more model-oriented)
levels to the final implementation; a chain of formal verifications can then establish
that the implementation satisfies the requirements.

Both the property- and the model-oriented specifications for stack shown above
are functional . The functional style of specification means that we carry the stack
along explicitly as an argument s to the functions representing the operations. In
an implementation of this abstract datatype, the stack would generally be “stored”
as the state of the abstract datatype and would be implicit to the routines that
implement the operations. Hoare sentences can provide the link between a functional
style of specification and program-level descriptions of routines having an implicit
state. For example, we could specify the implementation of a stack as an abstract
datatype with state S (of type stack), and routines pushop, and popop satisfying
the Hoare sentences:

{S = s} pushop(e) {S = push(e, s)}11

and

{S = s} popop(e) {S = pop(s) ∧ e = top(s)}.
11Another way to write this is

{true} pushop(e) {S = push(e,S ′)}

where the prime indicates the value of the state S in the precondition. VDM uses this style,
stating the postcondition as a “predicate of two states.” One advantage of doing things this way
is that it allows a specification to say what doesn’t change. For example, the ordinary Hoare-style
specification of an integer square root program P :

{x ≥ 0} P {z2 ≤ x ∧ x < (z + 1)2}
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Notice that to match the way things are usually implemented, I have chosen to
combine the effects of the functions top and pop into the single popop routine: this
returns the value on top of the stack, and pops the stack as a side-effect. In order
to prove a theorem such as

{S = s}pushop(e); popop(e) {S = s},

we first use the Hoare sentences above and the rule for sequential composition to
reduce the problem to that of showing

pop(push(e, s)) = s

and then use the appropriate axiom from the functional specification to conclude
that this is valid.

The argument in favor of separating specifications into a set of abstract oper-
ations described functionally (i.e., taking a variable encoding the state as an ex-
plicit argument), and a set of routines (operating on an implicit state) described
in terms of these operations, was first argued forcefully by Guttag and Horning
in 1980 [GH80].12 Not all specification styles follow these precepts; for example,
Z [Spi93] and VDM [Jon90] introduce program state and operations specified by
pre- and postconditions from the very beginning. A disadvantage of this approach
is that it can encourage an overly concrete specification, resulting in a state with
many components and complex interrelationships. A secondary disadvantage of this
approach is that it can complicate mechanized theorem proving.

The examples I have shown so far illustrate some of the techniques for apply-
ing formal methods to sequential programs. Concurrent or distributed programs
raise many new issues, as do real-time properties, and the variety of essentially
different techniques for addressing these issues is much greater than for sequen-
tial systems. Model-oriented specifications for concurrent and distributed systems
are generally based on process algebras (e.g., the Lotos specification method for
telecommunications protocols [DV89, ISO88] is based on Hoare’s Communicating
Sequential Processes (CSP) [Hoa85] and Milner’s Calculus of Communicating Sys-
tems (CCS) [Mil80]), while property-oriented specifications often use some form of
temporal logic [Pnu81, Lam91, MP92].

can be satisfied by the program that ignores the input value of x and always sets x to 4 and z to
2. The VDM-style specification

{x ≥ 0} P {z2 ≤ x′ ∧ x′ < (z + 1)2 ∧ x′ = x}

rules this out. How to specify what does not change is called the “frame problem.”
12This excellent paper is full of insights that remain pertinent more than a decade later. Among

other things, it recommends that specification of exception conditions belongs to the routines—
abstract operations should deal with the ideal case. Many of these ideas are embodied in the Larch
family of specification languages [GH93b].
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Even an outline of some of the range of formal methods for concurrent and
distributed systems would require far more space than is feasible here, so I will give
just a single example to illustrate the subtlety of the reasoning that can be required
for even tiny concurrent programs.

The example is known as Fischer’s real-time mutual exclusion algorithm [Lam87]
and is something of a test piece for formal methods intended to support reasoning
about concurrent, real-time programs. The idea is that several processes, each iden-
tified by a unique number, share a state variable x, which is initially 0. Whenever
any process wishes to enter its critical section, it waits until it sees that x = 0.
Within at most max-delay time units, it then sets x to its own number and pro-
ceeds to the “check” action. In the check action, it waits for at least min-pause units
and then looks to see if the value of x is still its own number (some other process
could have previously seen x = 0 and be in a race with this one); if it is, the process
immediately enters its critical section (otherwise it goes back to waiting for x to
return to 0). On leaving its critical section, the process resets x to 0. The claim is
that this algorithm achieves mutual exclusion (i.e., no two processes are ever in their
critical sections simultaneously), provided max-delay < min-pause. Notice that the
specification for this algorithm (i.e., mutual exclusion) does not involve real time.
Real-time reasoning is needed only to show correctness of the algorithm.

Despite its small size, and the simple nature of its individual operations, it is not
at all obvious to most people that this algorithm works, and no amount of testing
is likely to increase their confidence. I will give an informal presentation of one
argument for its correctness in which I consider a simplified version of the algorithm
that neglects the looping behavior: that is, processes simply stall at the check action
if they find x different to their own number. The three steps in the algorithm can
then be described as follows, where i is the number of the process concerned.

init: if x = 0, goto try;

try: x: = i, goto check;

check: if x = i, enter critical section.

I write try(i) to indicate that the i’th process is executing the try action, and
so on for the other actions; cs(i) means that process i is in its critical section. The
correctness requirement is then

cs(i) ∧ cs(k) ⊃ i = k.

To express real-time properties, I will use a “since” operator (denoted by vertical
bars) that is due to Shankar [Sha93]: at any point in the program’s execution, |p|
records the time that has elapsed since the last state in the past at which p was
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true. If p was never true in the past |p| =∞. Since |p| is concerned only about the
past, its value is unaffected by whether p is true now . Using the since operator, the
two timing constraints on the program can be expressed as follows.

1. ∀i: try(i) ⊃ |init(i)| ≤ max-delay .
When process i is executing its try action, the time since it was in its init
action is at most max-delay .

2. ∀i: cs(i) ⊃ |check(i)| + min-pause ≤ |try(i)|.
When process i is in its critical section, the time since it was in its try action
exceeds the time when it was last in its check action by at least min-pause.

The argument for correctness follows from four lemmas.

1. Whenever cs(k), the time since try(k) is at most the time since x = 0. This
follows because the try action sets x to k at the same time it enters the check
action.

2. Whenever try(i), the time since x = 0 is at most the time since init(i). This
is because x = 0 is a precondition for the action at init .

3. Whenever cs(k), then ¬try(i). Otherwise the time since x = 0 is at most
max-delay (by Lemma 2 and Timing Constraint 1) and at least min-pause (by
Lemma 1 and Timing Constraint 2), contradicting max-delay < min-pause .

4. Whenever cs(k), then x = k. Only the action try(i) could falsify x = k, but
Lemma 3 rules this out.

Shankar has formalized the since operator using the PVS verification sys-
tem [ORS92] and has mechanically checked the correctness argument given above for
Fischer’s mutual exclusion algorithm and for some other simple problems [Sha93].

This example should not be taken as representative of the formal techniques
that have been proposed and applied to the problems of reasoning about concurrent
and distributed execution and about real-time properties, but it is representative of
their main focus: that is, to find ways to limit the extent to which the behaviors
of other processes need to be considered when contemplating the behavior of “this”
process.

Formal methods have developed considerably since the pioneering studies of Mc-
Carthy, Floyd, and Hoare, and very many people have contributed many important
techniques (Jones [Jon92] gives a partial history). One trend in these developments
has been to consider more complex models of computation (incorporating concur-
rent and distributed execution) and more difficult properties of those models (such
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as real-time properties). Another trend, and the one that is perhaps most respon-
sible for increased interest in formal methods, has been a shift in focus from the
later to the earlier stages of the development lifecycle: from program verification to
requirements capture and system specification.

The system lifecycle model is one of the key concepts in modern software and
hardware engineering. Its premise is that development and implementation are car-
ried out in several distinguishable, sequential phases, each performing well-defined
tasks. There have been many refinements to the basic model: Royce’s Waterfall
model [Roy70], for example, recognized the necessity for feedback between phases
and recommended that it should be confined to adjacent phases; Boehm’s Spiral
model [Boe88] (see also Brooks [Bro87]) advocates a more iterative approach, in-
cluding rapid prototyping.

In all cases, one of the outputs of each phase is a document that serves as the
basis for evaluating the outcome of the phase and that forms a specification for sub-
sequent phases. The traceability of requirements through the lifecycle is particularly
important in critical systems: we must be sure that every requirement is satisfied
by the implementation, and that the implementation does not provide functions
other than those required. Verification is an element in detailed requirements trac-
ing: as already noted, it is the process of determining whether the output of each
phase “fully and exclusively” implements the specification of its preceding phase.
Formal methods substitute formal specifications for the informal design documents
of some of the phases of the development lifecycle and, possibly, formal verification
for the manual examination of documentation and specifications that constitutes
conventional verification.

The motivation for a disciplined lifecycle model is to try to catch faults of design
or requirements as reliably and as early as possible. The more phases of the lifecycle
that separate the commission and detection of a fault, the more expensive it is to
correct, and potentially the more dangerous the consequences if it is not detected.
For example, it is usually cheap and simple to correct a coding bug caught during
unit test, and it is usually equally simple and cheap to insert a missed requirement
that is caught during system requirements review. But it can be ruinously expensive
to correct such a missed requirement if it is not detected until the system has been
coded and is undergoing integration test. Data presented by Fairley [Fai85, pp. 48–
50] show that it is 5 times more costly to correct a requirement fault at the design
stage than during initial requirements, 10 times more costly to correct it during
coding, 20 to 50 times more costly to correct it at acceptance testing, and 100 to
200 times more costly to correct the problem once the system is in operation. For
critical systems, the motivation for disciplined lifecycle processes is assurance: use
of systematic methods at every stage for preventing the introduction of faults, and
for finding and eliminating faults, is the principle means for instilling confidence
that the final system will be free of critical defects.
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Verification is joined by validation to make up the methodology of “verification
and validation” (V&V) that is used to provide quality control and assurance within
a disciplined software lifecycle. Validation is the process by which the product of a
development phase is shown to satisfy the original user requirements. Traditionally,
this has been done by testing the final product but, as described in the first chapter,
modern development practices recognize the value of also doing validation earlier in
the lifecycle, in order to check satisfaction of the user’s requirements before the full
system is built.

Realistic demonstrations of these early-lifecycle activities are necessarily rather
large, so I will illustrate the ideas with near-trivial examples.

Suppose a requirements specification contained the following sentences (adapted
from [Inc88, pp. 77–78]):

1. If the switch is on or the monitoring computer is in a ready state, then both a
recognition signal and a functioning message are sent to the control computer.

2. If a functioning message is sent to the control computer or the system is in a
normal state, then pilot commands will be accepted.

We might want to validate these requirements by checking that they entail some
expected additional properties, such as:

1. If the switch is on, then pilot commands will be accepted.

This example is so simple we can formalize it within propositional logic (the simplest
of all logics) as follows.

Given
on ∨ ready ⊃ recognition ∧ functioning , and

functioning ∨ normal ⊃ accepted ,

prove
on ⊃ accepted .

This particular theorem is easily proved by propositional reasoning. Realistic exam-
ples of requirements and design specifications generally require richer specification
notations and more powerful theorem-proving methods than this.

In the example just given, the formal “method” is simply the use of formal
notation to replace English phrases. Particular classes of problems admit more
specific methods that can provide systematic ways to approach and organize their
requirements specifications. One such method uses state machines to model the
behavior of a required system: the description consists of a specification of the
components of the state data to be recorded by the system, a logical expression
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called an “invariant” that specifies how the components of the state are related,
an initialization operation, and the various operations that access and modify the
state of the system (specified by means of pre- and post-conditions). The proof
obligations incurred by such a specification require that each operation (including
initialization) be shown to leave the system in a state that satisfies the invariant.

State machine modeling is suitable for systems and system components that have
the character of a database or an abstract datatype. There are also many methods
particular to other kinds of applications—for example, process-control systems (the
A7 methodology [vSPM93]) and sequential hardware [Gor86].

We now need to ask where formal methods should be introduced into the soft-
ware and hardware development lifecycle. A purist might answer “everywhere,” and
it is certainly technically feasible to apply formal methods all the way from require-
ments capture through to code or circuit verification. However, formal methods are
relatively expensive to apply at present and must compete on cost and effectiveness
with other methods for quality control and assurance, so some selectivity in their
application is inevitable in most projects. The crudest form of selection amounts to
a dichotomy: we can prefer to apply formal methods late in the lifecycle, or early.
Both positions have strong advocates.

Late-lifecycle advocates observe that it is the running program code (or gate
layout in the case of hardware) that determines the behavior of the system; unless
the code (or gate layout) has been verified, formal methods haven’t done anything
that is real. It is easy to see the flaw in this argument: what good does it do to
verify the code against its detailed specification if that specification could be wrong?
Shouldn’t the earlier stages of the lifecycle be subjected to at least the same degree
of scrutiny as the final code? Early-lifecycle advocates take this argument to its
conclusion and claim that the early lifecycle is the source of the most dangerous and
expensive faults, and that the later stages of the lifecycle are adequately served by
conventional methods.

In the next subsection I examine the case for formal methods in the late lifecycle;
the early lifecycle is considered in the section after that; the discussion is then
summarized in the final subsection of this section. These discussions on formal
methods in the lifecycle are mostly theoretical (concerning the kinds of faults that
might occur and might be eliminated). Data on system failures in aerospace and
similar applications is considered much later, in Section 3.3.
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2.2.1.1 Formal Methods in the Late Lifecycle

In examining where in the lifecycle formal methods may best be applied, we need
to consider the effectiveness and the cost of formal methods relative to other meth-
ods. In both these dimensions (cost and effectiveness), there is a strong case against
applying formal methods late in the lifecycle, especially in the form of program
verification, and especially at the higher levels of rigor.13 Formal verification is the
process of demonstrating, by formal means, the consistency of two specifications; in
the case of program verification, one of the specifications is executable program text.
It is reasonable to suppose that the cost of a formal verification increases with the
size of the two specifications that are be shown consistent, and it is an observable
fact that specifications get bigger as they get more detailed and closer to executable
code. Program verification is therefore generally more expensive to perform than
formal verification between specifications generated earlier in the lifecycle simply
because the program text and its detailed specifications are large objects. In addi-
tion, program verification is expensive because it must deal with the notion of an
implicit program “state,” whereas specifications and verifications at earlier stages of
the lifecycle can model the system in purely functional terms, and thereby remain in
the realm of ordinary logic, where theorem proving is generally more straightforward
and efficient.14

For these reasons, the costs of mechanically-checked (i.e., Level 3) formal pro-
gram verification are such that it has seldom been attempted for programs of more
than a few hundred lines (the maximum achieved is probably around a few thou-
sand lines in certain computer security applications). Program verification at Level
2 may be even less practical: the attention to detail required in formal program
verification is such that its rigorous application without mechanical assistance is
all but impossible for examples beyond those that appear in textbooks. Program
verification at Level 1, however, corresponds to techniques such as the “verification-
based inspections” used in the Cleanroom methodology. Published data suggest
that these methods are very cost-effective (“early error-detection rates in the 90%
range” [Dye92, page 10]). Certain computer security applications check “specifica-
tion to code correspondence” at a similar level [Sol82, YM87]. Even at Level 0 (no
use of formal methods), the scrutiny applied to program text in life-critical applica-
tions is very thorough, if informal (e.g., structured walk-throughs). And, of course,
testing is performed very directly and thoroughly at the program code level.

13At least for the purposes of quality control (i.e., eliminating bugs); the case for program ver-
ification in quality assurance (i.e., showing that bugs have been eliminated) is examined a little
later.

14The Hoare-style verification of the stack routines performed earlier in this section illustrate
the transition between a purely functional external specification and operations that manipulate a
program state.
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Now the purposes of V&V at the later (coding) stages of the lifecycle are: firstly,
to detect and eliminate faults introduced at those stages and, secondly, to provide
assurance that no such faults remain. As I have noted, the evidence from current
experience in safety-critical systems seems to be that conventional methods of re-
view, together with testing, are very effective in achieving the first of these purposes.
When applied sedulously, as in aerospace applications, these conventional methods
of V&V have been shown to be capable of achieving very low incidences of failure
due to faults introduced late in the lifecycle. Similar observations seem to apply
to hardware design, where extensive simulation and symbolic testing techniques are
very effective at eliminating faults from the later stages of the lifecycle.15

But for safety-critical systems, it is not enough to eliminate almost all faults
introduced in the later stages of the lifecycle; we need assurance that they have
been eliminated (or, rather, that there will be extremely few critical failures). For-
mal methods may not be particularly cost-effective at eliminating bugs in the late
lifecycle, but what about providing assurance that no bugs remain?

The assurance provided by conventional V&V combines review with testing. By
abstracting appropriately, reviews can consider all cases—whereas test coverage is
necessarily partial. On the other hand, testing provides objective and repeatable ev-
idence, whereas review is based on human judgment and consensus. Formal methods
retain the advantages of reviews, but render the process more objective and repeat-
able. It is a matter of judgment whether this extra assurance is deemed worthwhile
for particular applications. It seems plausible that program verification to Level 3
could be advantageous when the arguments for correctness are unavoidably difficult
and intricate, or particularly crucial, or when test coverage is unusually limited.16

Conversely, formal methods may offer little for applications programs with relatively
few discontinuities, such as those that evaluate control laws.

Examples where correctness arguments are difficult and intricate include those
concerned with concurrency and asynchrony (e.g., interrupt handling, and coordina-
tion of multiple processors), those concerned with real-time constraints, those con-
cerned with redundancy management and fault tolerance, and those concerned with
manipulation of low-level hardware features (e.g., the use of memory-management
and protection hardware to provide partitioning and fault containment across tasks
sharing the same processor). Examples where the correctness argument is singularly
crucial are those where a single fault could lead to system failure, as in the basic

15According to Keutzer [Keu91], more than half of all VLSI designs are found to be defective on
first fabrication, but none of these defects are attributable to the later stages of the design lifecycle.

16It could also be worthwhile when the process can be largely automated. This can sometimes
be achieved when properties other than functional correctness are considered. For example, it is
possible to check programs for certain information flow properties (this is done in computer security
applications [DD77a]), or for the absence of certain run-time exceptions [Ger78], using specialized
methods of formal analysis and theorem proving.
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synchronization, communication, and voting mechanisms between the primary flight
computers. Examples where test coverage is limited are those that require fault in-
jection (e.g., fault tolerance and redundancy management) or depend on timing
(e.g., communications, and synchronization).

In all these circumstances, formal methods have the potential to offer worthwhile
increases in assurance. The factor that complicates realization of this potential is the
intricacy of the modeling required. If we tackle these difficult or intricate arguments
at the late stages of the lifecycle, we are considering not just the broad arguments
for the correctness of a chosen scheme for redundancy management or synchroniza-
tion, but the correctness of a particular implementation of the scheme. This will
necessitate formal modeling of a host of low-level mechanisms, such as the communi-
cation and synchronization primitives of the programming language concerned, the
interface between its run time support system and the process-management features
of the operating system, and the characteristics of certain hardware devices. For
formal methods to contribute to assurance, we must have great confidence in the
fidelity of the formal modeling employed, and this is not easy to achieve with highly
detailed, language-, machine-, and device-specific models. For these reasons, late-
lifecycle applications of formal methods to intricate problems may be considered
more of a technical tour-de-force than a practical way of increasing assurance.

So far, this discussion has focussed on formal methods applied to verification,
but there are many who advocate use of formal methods purely for specification,
and without the rigors of formal verification. The claim is that formal specifica-
tions provide a better starting point for coding than do informal specifications, and
that in some cases specifications can be refined into programs that are guaranteed
“correct by construction.” The problem with this argument is that if proofs are not
performed then the overall process is essentially the traditional one, but with formal
specifications substituted for informal ones, and systematic refinement possibly sub-
stituted for ad-hoc development; assurance will continue to derive from traditional
reviews and analyses. Thus, if quality control and assurance are to be improved
through use of formal specifications, then it must be because these notations ren-
der the traditional review processes more reliable. It is plausible that this may be
so, but I do not think it likely that any improvement will be all that significant,
since the basic assurance processes stay the same. (In industries that do not employ
the disciplined lifecycle processes used for flight software, it is possible that formal
specifications and systematic refinement could have a larger impact—but this might
be as much due to their impact on the development process as to their intrinsic
merit.) If a case for using formal specifications during the late lifecycle in industries
with effective quality control and assurance processes can be made at all, then in
my opinion it is better made on the grounds of reduced costs than improved as-
surance. Reduced costs through use of formal specifications have been claimed in
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some commercial software developments (e.g., the IBM CICS example described in
section 2.7), but denied in others (e.g., other parts of IBM [End93]).

2.2.1.2 Formal Methods in the Early Lifecycle

I have noted that, for current designs, conventional V&V is very effective for quality
control in the later stages of the lifecycle, and adequate for quality assurance in
most cases. It is the earlier stages of the lifecycle that are generally considered the
most problematical. For example, Bloomfield and Froome [BF86] mention experi-
ments “in which conventional good practice is shown to be effective at removing (at
a price) implementation errors, but to leave residual errors arising from misinter-
pretation of the natural language specification.” Other evidence indicates that fault
densities are highest in the early stages of the lifecycle, and that the processes for
detecting and removing these faults are very imperfect. Using formal inspections,
Kelly, Sherif, and Hops [KSH92] found (in 203 formal inspections of six projects at
the Jet Propulsion Laboratory) that requirements documents averaged one major
defect every three pages (a page is 38 lines of text), compared with one every 20
pages for code. Two-thirds of the defects in requirements were omissions. Even
in organizations where extremely thorough requirements analysis is performed, it
seems less reliable than the analyses that can be performed on the products of the
later lifecycle. For example, a quick count of faults detected and eliminated during
development of the space shuttle on-board software indicates that about 6 times
as many faults “leak” through requirements analysis, than leak through the pro-
cesses of code development and review. Similar data (described in more detail in
section 3.3) are provided by Lutz [Lut93a], who reports that of 197 “safety-critical”
faults detected during integration testing of the Voyager and Galileo spacecraft, only
3 were programming bugs; of the remainder, half were attributed to flawed require-
ments, a quarter to incorrect implementation of requirements (i.e., design faults),
and the rest to misunderstood interfaces.

Faults that have their origin early in the lifecycle, during the specification of re-
quirements, or high-level design, are very costly to correct later in the lifecycle (and
may be corrected by kludges that promote unreliability), can be difficult to detect
in validation, and are often the source of serious failures. Leveson [Lev91], for exam-
ple, states that almost all accidents involving computerized process-control systems
are due to inadequate design foresight and requirements specification, including in-
complete or wrong assumptions about the behavior or operation of the controlled
system, and unanticipated states of the controlled system and its environment.

It is fortunate, then, that formal methods seem to find their most effective ap-
plication early in the lifecycle, where conventional methods are apparently weakest.
I discuss the general benefits claimed for formal methods later (in Section 2.4), but
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the special benefits of formal methods early in the lifecycle can be summarized as
follows.

First, the early stages of the lifecycle are those when software development is
most intimately connected to overall system development, and the need for effec-
tive communication between software engineers and those from other engineering
disciplines is greatest. Engineers from different disciplines often construct different
mental models for the same entity, and this can result in faulty or misunderstood
requirements.17 Attempts by systems and other engineers to communicate their
needs to software engineers in a precise fashion often result in overly prescriptive
statements of requirements (e.g., pseudocode), or in ad-hoc notations based on those
of their own field (e.g., analog control diagrams) that are quite unsuited to the new
demands made upon them. Formal methods have the potential to bridge this gap
and to provide an effective and precise means of communication between software
and other engineers.

Second, formal methods provide a repertoire of mental building blocks that assist
and encourage the development of specifications that are precise yet abstract. For
example, the notion of set allows requirements writers to describe a collection of
objects without worrying about how it is represented, and quantification allows
them to describe properties of the members without having to specify a search
procedure or a loop.

Third, formal specifications assist early discovery of incomplete or ambiguous
specifications. With natural language specifications, it is easy to overlook special
cases, initializations and so on. These missing or vague elements are discovered only
when a programmer realizes they are needed to complete the specification of a piece
of code. Formal specifications have some similarity with programs in that they en-
courage a systematic elaboration of cases, and may thereby reveal incompletenesses
and ambiguities at an earlier stage.

Fourth, formal specifications can be subjected to various forms of mechanical
analysis that are rather effective in detecting certain kinds of faults. Simple syntax
analysis identifies many clerical errors, and typechecking is a very potent debugging
aid. Critics will argue that these tools merely detect faults due to the petty con-
straints of formal specification languages. This overlooks how rich the type-systems
can be for modern specification languages: typechecking in these systems is a very
strong check on internal consistency (see Subsection 2.3.1.1).

Fifth, formal specifications can support a form of validation early in the
lifecycle—when few other validation methods are available. This form of valida-
tion is conducted by posing “challenges” in the form of putative theorems that

17In one case, the requirement that a function should “abort” in a particular circumstance was
interpreted by the implementor as meaning that it should perform the “abort” operation (a jump
to the enclosing block) in the programming language being used. The requirements writer meant
“abort the mission.”
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should be valid consequences of a properly formulated specification (e.g., “if this
specification says what it should, then the following ought to follow”). The putative
theorems are examined by the techniques of formal verification. Other illuminating,
though less conclusive, challenges can take the form of putative non-theorems: “if
the following is provable, then I must have overconstrained the specification.” A
variant is demonstration of the consistency of a specification through exhibition of a
model,18 and a related method for demonstrating “reasonableness”: for example, “if
I’ve defined the concept of a ‘good clock’ correctly, then a clock that keeps perfect
time should satisfy the axioms.”19 Still another variation is the analysis of specifica-
tions for certain restricted, though nonetheless important, notions of completeness
such as those of Jaffe, Leveson, and Melhart [JL89, JLHM91] (see Section 2.3.2).

Sixth, formal specifications can increase the effectiveness of review-based verifi-
cation in the early lifecycle. One of the reasons that verification based on reviews
or inspections is effective in the late lifecycle may be that a program is necessarily a
formal text. Thus, at least one end of the verification is anchored in precise terms,
even if the verification process itself is informal. Verification in the early lifecycle
using informal specifications is a much less effective tool. By formalizing the spec-
ifications, we may increase the precision of even informal verification—and we also
make formal (Level 2 or 3) verification feasible.

Seventh, validation of the formal modeling employed is likely to be much sim-
pler in early- than in late-lifecycle applications. For example, the correctness of an
algorithm for clock synchronization rests on a few broad assumptions, such as “a
processor can read another’s clock with at most a small error ǫ,” whereas the correct-
ness of an implementation of the algorithm will rest on assumptions about specific
mechanisms for reading clocks. It is clearly easier to validate the fidelity of models
that make a few broad assumptions than those that make many highly detailed
ones. So, if our main concern is whether or not the basic algorithm works, then
an early-lifecycle investigation using abstract modeling and robust assumptions will
generally be simpler and more useful than scrutiny of a particular implementation
in the late-lifecycle.

Finally, the expense of formal methods applied early in the lifecycle is likely to
be considerably less than those applied late. In particular, the size of the formal text
is likely to be much smaller earlier in the lifecycle, and it is usually possible to write
early-lifecycle specifications in a functional style that is much more convenient for
formal verification than specifications involving an implicit state. Furthermore, the

18The notion of models is explained in Subsection 2.3.1.3, and in more technical terms in Appendix
Sections A.2, A.3, and A.4.

19Young [You92] found a mistake by just this means in a formal specification that Friedrich von
Henke and I constructed for the Interactive Convergence Clock Synchronization Algorithm [RvH91].
The fault is corrected in the revised version of our report and in the published version [RvH93].
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early elimination of faults will save later redesign, and this may more than recoup
the costs of formal methods.

In addition to the specific benefits described above and the general benefits
described later, which may all be considered improvements in the design process,
use of formal methods may also lead to an improved design. This can happen in
two, almost contradictory, ways.

First, the cost and difficulty of formal verification is very sensitive to the com-
plexity of the design being verified. Formal verification is therefore very effective at
revealing unsuspected complications in a design, and anticipation of formal verifica-
tion usually encourages renewed interest in simple designs. Other things being equal,
simple designs are generally to be preferred to complicated ones, and formal methods
provide useful guidance in this regard. Often, too, the improved understanding that
comes from undertaking formal verification can actually suggest simpler designs.

The second way in which formal methods can assist design is through opening
up new areas in the design space by allowing novel approaches to be fully explored
and validated at an early stage. Many of the most difficult problems in modern
systems design concern coordination of distributed activities executing in parallel.
These difficulties are compounded in most safety-critical system by the need also
to satisfy real-time constraints and to continue operation despite the occurrence of
faults. Consequently, design and validation of the core coordination and recovery
protocols is one of the most important—and difficult—steps in the early lifecycle.
It is also one of the riskiest: to take an example from a different field, it is reliably
reported that certain computer design companies are not working on shared-store
multiprocessor architectures because they lack confidence in their ability to develop
and implement the crucial cache-coherence algorithms correctly; others were still
finding bugs in their cache controllers after several design iterations. Another, and
more relevant, example concerns whether the redundant channels of a flight-control
system should be synchronized or not. Asynchronous designs seem to contain an
intuitively robust source of fault tolerance in that the separate channels work on
slightly different data (due to sampling skew). Nonetheless, several systems of this
kind have revealed anomalies in flight-test and have proved hard to validate (I
describe the AFTI-F16 flight tests in some detail in Section 3.3). On the other hand,
the alternative, synchronized designs require extremely sophisticated treatment of
their mechanisms for clock synchronization and sensor-value distribution. These
mechanisms need to be “Byzantine fault tolerant” [LSP82], and any faults in the
design or implementation of these mechanisms will almost certainly lead to system
failure. However, if the difficulties of assuring the underlying mechanisms can be
solved, the behavior of synchronized systems is very predictable, with none of the
quirks of the asynchronous approach, and with reduced need for costly and fault-
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prone failure modes and effects analysis (FMEA) [HL91] and fault injections.20 The
balance of advantage seems to favor the synchronized approach, but the delicacy,
and criticality, of the implementations of the necessary Byzantine fault-tolerant
algorithms is such that this desirable area of the design space may be unsafe to enter
without very strong assurance for the correctness of the underlying mechanisms.

Rapid prototypes and even “all-up” system simulations cannot provide the test
coverage required to validate complex, parallel, timing- and fault-dependent behav-
ior of these kinds (and, in any case, often distract attention from the real problem
into lower-level implementation questions). Formal methods, on the other hand, al-
low the significant issues to abstracted out so that all behaviors of the chosen design
can be considered. Formal methods based on state exploration can often examine
all the possible behaviors of simplified instances of these kinds of design problems
automatically. The complete coverage of simplified designs that can be achieved in
this way is generally more effective at finding faults than partial coverage of the full
design using conventional testing or simulation. In other words, formal methods
such as state exploration can be an effective (often the most effective) debugging
technique for these kinds of design problems. Conventional formal verification can
then be used to verify the final, debugged design.21

Another example where formal methods may expand the design space concerns
the selection of static or dynamic (priority-driven) scheduling for real-time sys-
tems. Some assert that only static, pre-allocated task schedules can provide the
guaranteed satisfaction of hard-real-time constraints required for life-critical appli-
cations [XP91]. On the other hand, dynamic schedules degrade more gracefully
than static ones under transient overload, and also simplify some software engineer-
ing problems [Loc92]. Dynamic scheduling can be seen as a high-risk area in the
design space for life-critical systems, with a possibly high-payoff if adequate guar-
antees could be provided that all hard deadlines will be met.22 Many papers have
analyzed general circumstances under which dynamically scheduled systems will
meet their deadlines (e.g., rate-monotonic scheduling can do this if the workload is
less than 69% [SR90]), but the characteristics of individual flight-control systems
do not always satisfy the necessary conditions (and fault tolerance can complicate

20However, additional redundancy is needed to withstand Byzantine faults: at least four channels
are required to withstand a single Byzantine fault, and additional message passing is also required.

21It will be prudent to consider the higher levels of rigor here: at least one published algorithm,
furnished with a Level 1 “proof of correctness,” has been found to contain an outright bug [LR93b].
The bug was found and corrected using Level 3 formal verification.

22Tomayko [Tom87, page 112] describes a debate over the scheduling philosophy of the flight-
control system for the Space Shuttle: “Rockwell . . . argued for 2 years about the nature of the
operating system, calling for a strict time-sliced system . . . IBM, at NASA’s urging, countered
with a priority-interrupt-driven system similar to the one on Apollo. Rockwell, experienced with
time-sliced systems, fought this from 1973 to 1975, convinced it would never work.”
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matters [HS91]). Individualized mathematical analysis, including formal methods,
therefore seem essential if this part of the design space is to be explored safely.

2.2.1.3 Discussion of Formal Methods in the Lifecycle

There are two aspects to using formal methods: the “formal” aspect, and the
“method” aspect. The former indicates a commitment to using concepts and tech-
niques derived from mathematical logic, the latter identifies the particular way in
which those concepts and techniques are to be used. In the present state of develop-
ment, many tools and techniques for formal methods are fairly strong on the formal
aspect, but weak on the methodological aspect. This means that while a particu-
lar specification language or verification system may, in skilled hands, be capable
of effective application across a range of methods, less experienced users may be
bewildered by the range of possibilities, and disconcerted to discover that finding
the best method for a given problem often requires significant intellectual effort and
invention. In the absence of methodological guidance, users may drift towards those
uses of formal methods that seem most straightforward or best documented, rather
than those that might deliver greatest benefit.

By and large, it is the late-lifecycle applications of formal methods that are the
easiest to understand and apply: formalized descriptions in the guise of pseudocode,
dataflow diagrams, or register-transfer level descriptions are already familiar at this
stage, and the transition to fully formal descriptions and analysis is reasonably
straightforward. In addition, there is a body of literature to provide encouragement
and advice. But precisely because this part of the lifecycle is well understood,
informal methods and engineering practice have achieved a considerable degree of
practical effectiveness: sequential programming, and gate-level design are not major
sources of difficulty or faults today (at least, not in those industries that practice
stringent software quality control and assurance). Consequently, the later stages of
the lifecycle generally seem to offer the least return for the investment in formal
methods.

The earlier stages of the lifecycle seem to offer rather greater potential benefits
for using formal methods, but also pose greater methodological challenges. There
are two main applications for formal methods in the early lifecycle: descriptive
purposes, such as documenting requirements and specifying interfaces, and analytic
purposes, such as validating major design decisions and crucial algorithms. The first
of these can be served by all levels of rigor; the second is best served by Level 3. In
all cases, a simple sequential model of computation is seldom appropriate, and it will
be necessary either to select a formal method supplied with an appropriate model of
distributed or parallel computation (e.g., one based on temporal logic, or on process
algebra), or to find some way to represent such a model within a neutral formalism
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such as higher-order logic.23 For analytic purposes, skillful use of abstraction will
generally be required in order to focus on the substance of the problem without the
distraction of extraneous detail. The selection or invention of an appropriate model
of computation, its representation in the chosen formal system, and the abstraction
of the relevant from the irrelevant, are all very challenging tasks that require talent
and training.

Precisely because the early stages of the lifecycle are known to be unstructured
and fault-prone, many informal or quasi-formal software engineering methods have
been proposed to alleviate these difficulties. The more recent ones generally focus on
object-oriented techniques (e.g., OMT [RBP+91]). Many current projects are using
or evaluating these new methods; those that are also interested in formal methods
face the rather formidable challenge of integrating these two classes of methods,
which have developed rather separately. It will probably be some years before
the formal element of formal methods is smoothly harnessed to the methodological
element of modern software engineering methods.

I offer the tentative conclusion that the benefits of formal methods, given the
current state of technology, increase with the intellectual difficulty of their applica-
tion: routine exercises are likely to provide little benefit over established practice;
greater challenges may provide larger returns. This conclusion may appear discour-
aging, but consider that the tougher intellectual challenges may be much smaller
in scale than the routine exercises, thereby greatly improving their benefit to cost
ratio. In general, aggressive and skillful use of abstraction and selection are the most
effective techniques for reducing the cost and increasing the effectiveness of formal
methods.

2.2.2 Formal Methods and System Components

We can expect it to be more difficult and costly to develop and to provide assurance
for very critical software than for that which is less critical; and we can also expect
a large piece of software to be more of a challenge than a smaller one. Therefore, de-
sign techniques that help reduce the criticality level of software components, or that
reduce the size of the most critical components, can make important contributions
to the development of critical systems. Criticality levels for software are determined
by considering the potential severity of the effects of its failure. The FAA ranks

23By employing abstraction effectively, important properties of distributed systems can often be
analyzed without requiring an explicit model of distributed or parallel computation. For exam-
ple, Byzantine agreement protocols are conceived as distributed algorithms, but the correctness
properties of these protocols can be adequately studied by representing them as mathematical
functions [LR93a].
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these effects on a five-level scale from “catastrophic” through “hazardous/severe-
major,” “major” and “minor” to “no effect” [FAA88]24. DO-178B then identifies
software criticality levels A through E according to the severity of their poten-
tial failure conditions (i.e., Level A is software whose malfunction could contribute
to a catastrophic failure condition) [RTCA92, Subsection 2.2.2]. Other standards
and guidance for safety-critical systems take a similar approach (e.g., the United
Kingdom Defence Standard 00-56, which also factors likelihood into the classifica-
tion [MOD91b, Section 6]). The software criticality level determines the amount of
effort and evidence required to show compliance with certification requirements.

It is sometimes possible to reduce the criticality level of some software compo-
nents by raising that of others. This can be very worthwhile if the software whose
level is lowered is much larger or more complex than that which is raised, or if its
criticality is lowered by several levels. DO-178B discusses three such approaches
under the heading “system architectural considerations” [RTCA92, Section 2.3]:
partitioning, multiple-version dissimilar software, and safety monitoring.

Partitioning refers to techniques that provide fault containment. A software
component that performs a function of low intrinsic criticality may be assigned a
very high criticality level if it shares resources with (e.g., runs on the same processor
as) a truly critical component, since a bug in the first component could interfere
with the operation of the second (see [Add91] for a case study). If a really solid fault
partitioning mechanism could be provided, so that malfunction of the first compo-
nent could not affect the second, then the criticality of the first component could
revert to its intrinsic level. The most drastic partitioning mechanisms are physical:
we simply do not allow critical and noncritical functions to share resources.25 This
approach has its own problems (the need to maintain multiple computer systems and
to arrange for their coordination) and becomes less effective as more communication
between subsystems is introduced.

An alternative approach is to provide logical partitioning based on the use of
memory-management units to enforce isolation of address spaces. An operating sys-
tem nucleus is then needed to manage these hardware mechanisms. The criticality
level of the operating system nucleus that manages the partitioning mechanisms
will be at least that of the highest criticality application task that it supports. An
operating system nucleus of this kind has much in common with the “security ker-
nel” concept [DoD85] (or, rather, its more primitive foundation, the “separation

24Actually, [FAA88, paragraph 6.h] has “catastrophic,” “major” (which is subdivided into cate-
gories (i) and (ii)), and “minor”; the addition of “no effect” and the naming of the subdivisions of
the “major” category are from DO-178B [RTCA92, Subsection 2.2.1].

25This is the approach that has been taken, in a very strict form, on NASA interplanetary
spacecraft, where functions critical to the survival of the spacecraft are handled by an attitude
and articulation control system that is quite separate from the systems that control the scientific
experiments. The consequences of the absence of such strict fault containment are well-illustrated
by the failures of the Russian Phobos spacecraft [Che89, Coo90].
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kernel” [Rus81, Rus84]) used in computer security. Formal specification and verifi-
cation techniques have been developed [Rus82] and applied [Bev89] for the “secure
separation” property, which seems similar to the fault-partitioning property required
for safety-critical applications. Even without specialized hardware such as memory
management units, it is possible to provide strong assurance of partitioning based on
software techniques. Helps [Hel86] describes such techniques applied to an aircraft
electronic flight instrumentation system.

When separate functions and computers are integrated into a larger system, it
becomes necessary to extend fault partitioning from the processes of a single machine
to the distributed ensemble. Combinations of hardware and software can provide
the necessary partitioning on and across communication channels (see, for example,
the SAFEbusTMdesign for aircraft busses [HDHR91, HD93]).

I do not consider dissimilarity (multiple-version dissimilar software) here, since
it is orthogonal to formal methods, although I do touch on some of the assurance
issues in Section 3.1. The general topic of fault-tolerant software is covered in a
separate chapter of the FAA Handbook [FAA-F].

The idea of safety monitoring is to backup a primary system with a monitor
component that can detect and respond to undesired and potentially hazardous
conditions. If its response to a hazard is to shut the primary system down, then
monitoring is mainly a protection against unintended function, and its activation
results in loss of function. DO-178B [RTCA92, Subsection 2.3.3] suggests that

“Through the use of monitoring techniques, the software level of the
monitored function may be reduced to the level associated with the loss
of its related system function.”

An early draft of DO-178B explained the rationale in a little more detail:

“If a specific unintended function of the software can produce a more
severe consequence to the aircraft than the loss of intended functions,
it may be possible to reduce the software level through the use of
monitoring. . .This can be accomplished by directly monitoring the un-
intended function that would produce the hazard, and providing an ac-
ceptable response that removes or reduces the hazard.”

Of course, it is essential that the monitor and its protective mechanisms are inde-
pendent of the primary system, so that both are not rendered inoperative by the
same failure condition. DO-178B [RTCA92, Subsection 2.3.3] states that

“Safety monitoring software is assigned the software level associated with
the most severe failure condition category for the monitored function.”
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Some safety-critical applications (e.g., nuclear power generation) use monitor-
ing and shutdown as their protection mechanism against catastrophic failures. In
these cases the main safety-critical requirement on the primary control system is
to reduce demands on the shutdown system to a fairly low level. This allows the
acceptable failure rate per demand on the protection system to be quite modest
(e.g., around 10−4 or 10−5). The United Kingdom Defence Standard 00-56 gives a
table [MOD91b, Table 6] that assigns criticality levels to monitoring systems based
on the combination of accident severity and probability of failure of the primary
component. It also assigns safety integrity levels (similar to DO-178B software lev-
els) to combinations of components of lesser levels [MOD91b, Table 7] and takes care
to block recursion (so that a critical function may be implemented by certain com-
binations that include components of less than maximum integrity level, but those
components cannot themselves be implemented by combinations of components hav-
ing even lower integrity level). It also establishes “claim limits” [MOD91b, Table 8]
on the minimum failure rate that can be claimed for given integrity levels.

There are other monitor-like functions that can be performed by software: exam-
ples include analogs of the protections provided by hardware interlocks, lockins, and
lockouts [Lev86]. Some of these can be enforced fairly generically by a kernel-like
operating system nucleus [Rus89]; others will be more application-specific [LSST83].

In addition to the three system architectural considerations discussed in DO-
178B (partitioning, dissimilarity, and safety monitoring), a fourth seems worthy of
examination: namely, centralized redundancy management. Redundancy manage-
ment and fault tolerance are among the major challenges in the design of airborne
systems. Instead of a single computer executing the software, there will generally be
several, which must coordinate and vote (or average) actuator commands and other
outputs in order to tolerate hardware faults. Sensors and actuators will usually be
replicated also, and the management of all this redundancy and replication adds
considerable complexity to both the operating system (generally called an “execu-
tive” in control systems) and the application tasks. Complexity is a source of design
faults, and there is a distinct possibility that such a large quantity of additional code
may lessen, rather than enhance, overall reliability. There is evidence (recounted in
Section 3.3) that redundancy management is sufficiently complex and difficult that
it can become the primary source of unreliability in a flight-control system.

There is a degree of design freedom in how much of the redundancy manage-
ment should be performed by the executive, and how much by the application tasks.
The arguments in favor of centralizing as much of the redundancy management as
possible (presumably in the executive) are that (1) it can then be given special
attention and be done correctly, once and for all, and (2) by relieving applica-
tions tasks of this responsibility, those tasks become much more straightforward
and therefore easier to get right and to validate. Arguments against centralized re-
dundancy management are that some recovery procedures are application-specific,
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and that the centralized function is a potential single-point failure. It seems clear
that a centralized redundancy management function will likely inherit the critical-
ity level of the most critical task that it supports; centralized redundancy man-
agement is unlikely to reduce the criticality level of any application tasks, but
may significantly reduce their complexity. Most modern architectures for fault-
tolerant systems do provide a number of centralized redundancy management ser-
vices [DH90, HL91, KWFT88, K+89, WLG+78], and it is recognized that providing
assurance for these services is a significant challenge. Discussing a design that sub-
sequently became the primary flight computer (PFC) of the Boeing 777, Dennis
and Hills [DH90] noted that 50% of the software was concerned with redundancy
management and observed:

“Since conventional test procedures cannot cover all aspects of the re-
dundancy management design, new validation and verification proce-
dures must be devised to facilitate design proving and hence certifica-
tion. These are expected to encompass formal mathematical proof of the
‘core’ redundancy management function. . . ”

In all these “system architectural considerations,” we see that by careful design
it is often possible to divide a system into software components that have different
criticality levels. Ideally, there should be relatively few at the highest levels, and
those should be as small and straightforward as feasible. This not only makes it
more plausible that those most critical components will perform as required, it also
makes for more thorough and credible assurance that they will do so. In particular,
it may be appropriate and feasible to apply formal methods of the higher levels to the
most critical components. Investment here may have a high payoff. For example, an
operating system nucleus providing fault partitioning is a very sophisticated (though
not necessarily very large) component, whose failure (either to provide service, or
to enforce partitioning) would be catastrophic. It is scarcely credible that adequate
assurance for such a nucleus could be achieved without some use of formal methods.
Yet the availability of such a nucleus could drastically reduce the criticality levels
of other software (by eliminating fault propagation) and could also encourage more
modular system design.

2.2.3 Formal Methods and System Properties

Formal methods are often associated with “proofs of correctness”: the assumption
being that it is the standard, or intended, function of the component concerned
that is of most interest. But in safety-critical systems, the standard function of
a component may not be the property of critical concern—that is to say, loss of
that function may not be an event of high criticality. Rather, it may be certain
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malfunctions, or possible unintended functions, of the component that have safety-
critical implications.

As noted above, architectural mechanisms, such as partitioning and safety mon-
itoring can protect against some malfunctions and unintended functions, but an
alternative is to ensure that the component will not exhibit specific malfunctions or
unintended functions. Formal methods can play a role here: instead of proving that
a component exhibits certain desired properties, we prove instead that it does not
exhibit certain undesired properties.

One example of a technique based on this idea is “Software Fault Tree Anal-
ysis” (SFTA). SFTA was introduced by Leveson and others [CLS88, LH83] as an
adaptation to software of the traditional fault tree analysis technique developed for
electromechanical systems in the 1960’s. The goal of SFTA is to show that a specific
software design will not produce system safety failures or, failing that, to determine
the environmental conditions that could lead it to cause such a failure. The ba-
sic procedure is to suppose that the software has caused a condition which hazard
analysis has determined to have unacceptable risk, and then to work backward to
determine the set of possible causes for the condition to occur, and so on, recur-
sively. Eventually, this will lead either to discovery of circumstances that can cause
the hypothesized condition to occur, or to a demonstration that there are no such
circumstances.

A fault tree is developed incrementally, starting from a root, which is the unde-
sired condition to be analyzed. Necessary preconditions are described at the next
level of the tree with either an and or an or relationship. Each subnode is ex-
panded in a similar fashion until all leaves describe events of calculable probability
or are incapable of further analysis for some reason. Hardware and software fault
trees can be linked together at their interfaces to allow the larger system to be ana-
lyzed. This is important since a particular software error may cause a mishap only if
there is a simultaneous hardware and/or human failure, or other unexpected stress
placed on the software. SFTA can be used at various levels and stages of software
development, including the program code level. When working at the code level,
the starting place for analysis is the code responsible for output. The analysis then
proceeds backward deducing both how the program got to this part of the code and
the necessary values of the program variables.

An experimental application of SFTA to the flight and telemetry control system
of a spacecraft is described by Leveson and Harvey [LH83]. They report that the
analysis of a program consisting of over 1,250 lines of Intel 8080 assembly code
took two days and discovered a failure scenario (sensors detecting two sun pulses
within 64 ms. of each other) that could have resulted in the destruction of the
spacecraft. Conventional testing performed by an independent group had failed to
discover this problem. In this example, the fault tree analysis was done by hand
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in an informal manner. Leveson and her co-workers have also developed fault tree
templates for common Ada constructs and some tools to help in their construction
and application [CLS88]. They describe a tutorial example in which their approach
is used to identify a subtle timing problem in an Ada program for a traffic light
controller.

Leveson attributes the success of SFTA in finding errors undiscovered by other
techniques to the fact that it forces the analyst to examine the program from a
different perspective than that used in development; she likens it to vacuuming a
rug in two directions: conventional approaches “brush the pile” in one direction,
SFTA in the other, so that between them they do a better job than either used
alone.

Another problem domain where the focus has chiefly been on “negative” prop-
erties (i.e., on what should not happen) is computer security. Here the concern has
been to show that mechanisms built into the lowest levels of the operating system
guarantee that no communication of information contrary to the security policy
is possible, no matter what “untrusted” application programs may do. The tech-
niques employed are chiefly those of “information flow analysis” [DD77b, FLR77]
and verification of access control mechanisms [BL76, WKP80].

Great caution must be exercised when formal treatments of negative system
properties are combined with those for hierarchical verification. The difficulty is
that hierarchical verification typically establishes only that each layer in the hier-
archy is sufficient to implement the layer above it; it does not establish necessity
(technically, an implication is established, not equivalence). That is to say, hier-
archical verification ensures that each layer does at least that which is required to
support the layer above, but there is nothing to stop it doing more than is desired.
Since negative properties are largely concerned with what is not to be done, conven-
tional hierarchical verification does not guarantee that negative properties proved of
a specification will be preserved in its implementation; instead, it seems that these
properties must be verified directly at the implementation level. Fortunately, it
seems that SFTA, information flow analysis, and similar techniques are sufficiently
straightforward that they can be applied effectively at that level.

Even when the critical property of a component is a “positive” one, it need not
be equivalent to its full functionality. By focusing on just the critical properties,
it may be feasible to apply formal methods of the higher levels at reasonable cost.
For example, a component may be designed to provide an optimal solution to some
problem, whereas safety is assured by any solution within certain bounds. It may be
much simpler to verify that the component produces an adequate solution than that
it produces an optimal one. This approach can be combined with certain software
fault tolerance techniques to yield formally verified components in which only very
simple subcomponents are verified [AW78].
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Suppose a component that computes integer square roots is desired. A program
based on the Newton-Raphson method may be the most efficient, but may be con-
sidered hard to verify, whereas the linear-search method is inefficient, but easy to
verify. We can try to get the best of both worlds by constructing a compound unit
based on the “recovery block” approach to software fault tolerance [AL90]. The
idea behind recovery blocks is that a “primary” and several “alternate” functions
are provided, together with an executable “acceptance test” for evaluating their re-
sults. The primary is executed first and the acceptance test is applied to its result.
If the result passes the test, the block terminates with that result; if not, the system
state is rolled back to that prior to execution of the primary, and an alternate is
tried. As soon as an alternate yields a satisfactory result, the recovery block termi-
nates with that result; if no satisfactory result is found, an exception is signalled.
An experiment by Anderson [ABHM85] demonstrated some effectiveness for recov-
ery blocks (70% of software failures were eliminated, and MTBF was increased by
135%), but found that acceptance tests are hard to write. The way in which formal
methods can be factored into this approach is that we prove that the acceptance
test is sufficiently strong to ensure satisfaction of the properties of interest, and
we prove that one (presumably the simplest) of the alternates will satisfy the ac-
ceptance test. For our square root example, we would use Newton-Raphson in the
primary, linear search in the alternate, and an acceptance test that simply checks
that the square of the answer is close to the number supplied as input. There are
obvious drawbacks to this proposal: it requires the state-restoration machinery of
backwards error recovery, and it makes prediction of execution time difficult.26

Even without the mechanisms of recovery blocks, it may be useful to factor run-
time checks into a formal verification: instead of proving that a certain property
holds at a certain point, we can simply test it at run time. The argument for
formal verification can then be based on the tested properties.27 The Anna system
incorporates ideas similar to these [Luc90]. Of course, it is also necessary to deal
appropriately with cases where the run time checks fail. Formal treatments of
exception handling focus on these kinds of problems [Cri84, Cri89].

26However, some techniques based on recovery blocks are designed to guarantee satisfaction of
real-time constraints [CHB79, WHCC80, LC86]. Basically, a task is allowed to run until some fixed
time before its deadline; then, if it has not produced a result, it is aborted and control is given
to some (presumably) less-desirable task that is guaranteed to produce an acceptable result in the
time remaining.

27Without the intellectual framework provided by formal verification, run-time checks may be of
limited effectiveness. In one study [CLSK87], 24 students were hired to add self-checks to programs
containing a total of 60 known faults (there were 8 different programs, each was given to three
students). Only 9 out the 24 self-checking programs detected any faults at all; those that did find
faults found only 6 of the 60 known faults, but they also discovered 6 previously unknown faults (in
programs which had already been subjected to one million test-cases). Sadly, 22 new faults were
introduced into the programs in the process of adding the self-checks.
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The criterion for applying formal methods to a system or component property
need not be criticality alone: the effectiveness of other methods for debugging and
assurance should also be considered. For example, a component may be required to
perform some critical function, and to be fault tolerant. It may be that traditional
methods of assurance are effective for establishing that the function is performed
correctly, but that assurance for its fault tolerance is more difficult to provide. In
such a case, it might be appropriate to abstract away from the function performed
and to apply formal methods only to the property of fault tolerance. This may
provide an additional benefit: several components or functions may use similar fault-
tolerance mechanisms, so that a single, suitably generic, use of formal methods may
increase assurance for all of them.

Aggressive use of abstraction, and focus on particular properties rather than
general functionality is a hallmark of formal methods based on state exploration.
As I have noted earlier, but explain here in more detail, these precepts can often be
pushed very far in the early lifecycle and in cases where the concern is debugging
rather than assurance.

The idea is that complete analysis of selected properties of a highly simplified
version of a design can be more effective at detecting errors than partial coverage
of more general properties, or of a more realistic design. For example, a commu-
nications protocol may be designed to move arbitrary data reliably over a faulty
channel using sequence numbers that cycle through the range 0 . . . 255. For many
purposes, it may be adequate to examine the protocol with just one or two differ-
ent data values, and with sequence numbers restricted to 0 and 1. And initially,
we might not consider reliable transmission, but only examine whether deadlock is
possible. Similarly, cache coherence protocols can be debugged quite effectively by
considering just two processors and a single memory location [DDHY92], and the
bugs in Byzantine agreement protocols that my colleagues and I have studied can
all be discovered in highly simplified versions of the problem (one round, 6 or fewer
processors, and four or fewer distinct data values).

The advantage of reducing problems to these very simplified forms is that they
may then become amenable to state-exploration methods. These are specialized
tools for formal methods that systematically enumerate all the states of a finite-
state algorithm and test whether certain predicates hold at those states. Recent
techniques allow large numbers (i.e., millions) of states to be handled in an efficient
manner.28 Several systems based on state exploration are available; some of these
exploit the close connection between finite state graphs and propositional tempo-
ral logic (when they are usually called “model checkers” [CES86]), some provide a
higher-level language (e.g., Murφ [MD93] uses a transition-rule language for concur-
rent systems that is loosely based on Chandy and Misra’s Unity model [CM88]), and

28These techniques include hashing [Hol91], and symbolic methods using Binary Decision Dia-
grams [Bry86, BCM+92].
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others are based on ω-automata and language containment [Kur90]. Gupta [Gup92]
provides a good survey (though specialized to hardware applications).

Although state-exploration tools can handle large numbers of states, the presence
of a single 32-bit register in a design can introduce far more states than it is feasi-
ble to enumerate (and a mathematical integer in a more abstract specification will
introduce an infinite state space). Hence the need to explicitly simplify or “down-
scale” many of the problems that are submitted to analysis by state exploration.
But note that analysis of the downscaled version will be complete: if there is any
circumstance under which the downscaled design fails to satisfy the selected prop-
erties, state exploration will detect it, and will often be able to provide diagnostic
information that helps identify the source of the fault. Although its applications are
somewhat limited in scope and scale, state exploration has the great advantage over
formal analysis based on conventional theorem proving that it can be completely
automated, and its use requires far less skill and training. The problems for which
state-exploration methods are best suited are those involving asynchronous parallel
activity, which are also those most difficult to debug using testing. æ

2.3 Validation of Formal Specifications

“It is a great advantage for a system of philosophy to be substantially
true.” [George Santayana]

Making a specification formal does not necessarily make it true. In this section I
consider ways of gaining confidence that a formal specification says what is intended
and what is true. These provide the technical foundation for many of the benefits
ascribed to formal methods in the following section, and are also the methods for
counteracting most of the fallibilities of formal methods that are identified in the
section after that.

From personal experience and observation, it seems that writing formal spec-
ifications is at least as difficult as writing good informal specifications, or good
programs. The most common failing is suggesting an implementation, rather than
specifying simply what is required. To a large extent, however, judgments such as
these are of only aesthetic or economic significance: they are concerned with how
useful a specification may be, not with whether or not it is right . This question of
whether a specification is right—whether it says what is intended (or what should
have been intended!)—is answered through the process of validation. I identify two
components in this process: first, seeking assurance that the specification is inter-
nally consistent and that it means something ; second, seeking assurance that it
means what is intended .
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2.3.1 Internal Consistency

A specification implicitly says much more than is explicitly written down; if we
believe a specification, we must also believe all the consequences that follow from it
by rational deduction. A formal specification is a collection of axioms and definitions
in some formal system; its consequences are all those formulas that can be derived
(i.e., proved) by formal deduction from those axioms and definitions. That set
of formulas is the theory defined by the specification. If its theory contains some
formula and its negation (i.e., both A and ¬A for some A) then a specification
is inconsistent . By the usual rules of logic, it is easy to see that an inconsistent
specification contains not only A and ¬A for some formula A, but for all formulas.29

Thus an inconsistent specification does not constrain its theory at all, and therefore
fails to say anything useful.

There are two main ways to ensure that a specification is consistent: one is
to show that it has a model . This notion is explained technically in Appendix
Sections A.2, A.3, and A.4, but for the time being we can think of it as meaning
that the specification can be implemented. The other way to ensure consistency is
by restricting the specification to forms that guarantee what is called conservative
extension. I will examine these two approaches shortly. First, though, I consider
methods for ensuring that a specification is free of various obvious mistakes that
may harbor a genuine inconsistency, or may be less damaging, but are in any case
best excluded.

2.3.1.1 Strong Typechecking

The basic way to catch mistakes in a specification is through redundancy: if we
see a function used with three arguments in one place, but only two in another,
then one of them is probably a mistake.30 If we require the user to declare the
function and its number of arguments ahead of its use, then we increase the degree
of redundancy available, and hence the likelihood of detecting this kind of mistake.
A stronger form of the same idea is to allocate a type or sort to each entity that
distinguishes the kinds of values it can take.31 Computer scientists are familiar
with this idea from programming languages, where variables may be declared as
real, integer, boolean and so on. They are also familiar with the idea that

29In ordinary logics, the proposition (A ∧ ¬A) ⊃ B is valid for any A and B. If we have an
inconsistency for some A (i.e., both A and ¬A are in the theory), then the rule of inference called
modus ponens allows us to conclude that B is valid, for any B.

30However, some systems admit polymorphic functions that can take different numbers and types
of arguments.

31See Appendix Section A.9 for an introduction to the technical issues.
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it is generally not a good idea to multiply a real by a boolean,32 and that such
faults are generally detected at compile time. Specification languages can have
much richer type-systems than programming languages (since the types do not have
to be represented or implemented directly) and those that have any mechanized
support at all are generally provided with a typechecker , which is a program, not
unlike the front-end of a compiler, which checks that all uses of entities match their
declarations, and that entities are combined only in appropriate ways.

The strength (i.e., fault-detecting capability) of typechecking depends partly
on the logical foundation that underlies the specification language, and partly on
the diligence of the implementors of the typechecker. It is difficult, for example to
provide really strict typechecking for languages, such as Z and VDM, that are based
on set theory. This is because everything in these systems is ultimately a set, and
the type-system has to be grafted onto an essentially untyped foundation. Thus
functions are sets of pairs in Z, and can take part in set operations such as union,
intersection and so on—there is nothing fundamentally contrary to the principles of
set theory in taking the union of, say, a function and the set of natural numbers. It
is highly unlikely that such a construction would be something the user intended,
but only slightly less outré constructions (for example the union of two functions)
can be used to rather good effect in skilled hands. Thus, it can be difficult to
provide a really thorough typechecker for languages based on set theory without
sacrificing some of the flexibility that is considered among the chief advantages of
such a foundation.

Type theory, or higher-order logic, which is the chief rival to set theory as a foun-
dation for specification languages, is, as its name suggests, inherently a typed system.
Thus, strict typechecking is natural for languages based on this foundation.33 The
price paid is a slight loss of flexibility compared with set theory, but the loss has
not been found significant in practice and is more than offset by the benefit of early
error detection and the clarity of expression fostered by a typed system.

Given the utility of typechecking in detecting faults and inconsistencies, it is
natural that some specification languages should seek to exploit this utility still
further by enriching the type-system. The basic idea is to allow much of the spec-
ification to be embedded in the types; strict typechecking can then perform a very
searching scrutiny of the specification. For example, a very common technique in
the language Z is to constrain a function to be injective (one-to-one) or surjective
(onto). If a construction is later specified for the values of such a function, it is up
to the user to check that the construction satisfies the requirements of injectivity or

32A further embellishment refines the notion of type with that of dimension; thus, real numbers
representing time can be distinguished from those representing distance, and operations on inap-
propriate dimensions (e.g., the attempt to add a number representing distance to one representing
time) can be flagged as an error [CG88, Hil88].

33In fact, it is required in order to avoid antinomies such as Russell’s paradox.
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surjectivity. But in a specification language with a richer type-system that includes
predicate subtypes,34 the injections and surjections can be specified as subtypes of
the functions on the same signature, and typechecking a constructive definition for
such a function will require a demonstration that it satisfies the predicate that spec-
ifies injectivity or surjectivity as appropriate. In the language of PVS [ORS92], for
example, the specification fragment

injection : type = {f : [t1 → t2] | ∀(i, j: t1): f(i) = f(j) ⊃ i = j}

specifies injection as the subtype of functions from t1 to t2 (t1 and t2 are type vari-
ables) that satisfy the one-to-one (injective) property. If we were later to specify the
function square as an injection from the integers to the naturals by the declaration

square : injection[int → nat ] = λ(x: int):x× x:nat 35

then the PVS typechecker would require us to show that the body of square satisfies
the injection subtype predicate.36 That is, it requires the proof obligation i × i =
j×j ⊃ i = j to be proved in order to establish that the square function is well-typed.
Since this theorem is untrue (e.g., 2 × 2 = (−2) × (−2) but 2 6= −2), we are led
to discover a fault in this specification. Notice that this approach requires theorem
proving during typechecking, and therefore requires a highly integrated system to
support it. This degree of sophistication is really limited to the upper reaches of
Level 3 formal methods, but serves to illustrate some of the advantages of that level
of application.

The pushdown stack encountered earlier provides another example of the power
of a rich type-system. Recall that the specification given previously (page 26) made
no mention of the empty stack. It is easy to introduce empty as a special stack, but
then how do we ensure that this value is different from any that can be formed by
pushing values onto a stack, and what do we do about pop(empty)? Using predicate
subtypes, we can provide the following signatures for the stack operations (this
example is also in the language of PVS).

34Predicates can be thought of as (and in some systems are) functions that return boolean values;
those arguments for which the predicate is true define a subtype of the type of its arguments.
Another kind of construction found in rich type-systems is the dependent type, in which the type
of one part of a compound construction depends on the value of another—for example, the range
type of the operator m remn (the remainder when m is divided by n) is the subtype of the integers
in the range 0 . . . n− 1 (i.e., the type depends on the value of n).

35The λ construction is a way of defining functions; think of the variables in parentheses coming
after the λ as the formal parameters to the function, and the expression after the colon as its
definition.

36We would also be required to discharge the (true) proof obligation generated by the subtype
predicate for nat : ∀(x: int):x× x ≥ 0.
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stack : type
empty : stack
nonempty stack : type = { s: stack | s 6= empty}

push: [ elem, stack → nonempty stack ]
pop: [ nonempty stack → stack ]
top: [ nonempty stack → elem]

With these signatures, the expression pop(empty) is rejected during typechecking
(because pop requires a nonempty stack as its argument), and the theorem

push(e, s) 6= empty

is an immediate consequence of the type definitions. For the same reason, the
construction

pop(push(y, s)) = s

is immediately seen to be type-correct. And the expression

pop(pop(push(x, push(y, s)))) = s, (2.2)

which may not appear type-correct if only syntactic reasoning is used (the outermost
pop requires a nonempty stack , but is given the result of another pop—which is only
known to be a stack), can be shown to be well-typed by proving the theorem

pop(push(x, push(y, s))) 6= empty ,

which follows from the axioms about pop and push given earlier. Use of theorem
proving in typechecking is perfectly reasonable for specification languages (where a
powerful theorem prover may be assumed to be available in Level 3 applications)
and it allows a very expressive notation to be provided relatively simply. In pro-
gramming languages, on the other hand, typechecking is usually expected to be
fast and deterministic. Unfortunately, many specification languages continue to
use programming-language style typechecking and cannot deal with formulas such
as (2.2) at all well. Simple typecheckers either regard the formula (2.2) as type-
incorrect, or they require the pop function to be of type [stack → stack ]—in which
case, they are forced to regard the expression pop(empty) as well-typed and lose an
opportunity for early detection of faults.

Yet another example of the utility of predicate subtypes arises when modeling
a system by means of a state machine. Recall (from Subsection 2.2.1) that the
basis of this method is first to identify the components of the system state; an
invariant then specifies how the components of the system state are related, and
operations are required to preserve this relation. It is, of course, possible to construct
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a special-purpose tool that will generate the associated proof obligations, but this
tool will have only a single function. With predicate subtypes, on the other hand,
the generation of the necessary proof obligations comes for free during typechecking:
we use the invariant to induce a subtype on the type of states, and specify that each
operation returns a value of that subtype.

An alternative to a strong type-system embedded in the specification language
and enforced by its mechanized support system is for the user to supply type-
predicates within an untyped system. For example, we could define a predicate
is injection and supply it whenever we wished to indicate that a function was in-
tended to be one-to-one. For example, we might specify the is injection predicate
by

is injection(f) = ∀i, j: f(i) = f(j) ⊃ i = j

and then specify the square function axiomatically by

is injection(square) ∧ square(i) = i× i. (2.3)

The disadvantage of this approach is that it requires the type predicates to be stated
repeatedly in the specification, and it requires the user to remember to do so: in
effect, it puts the whole burden of typing and typechecking on the user. And it
provides no automated help in the discovery of the inconsistency in the axiom (2.3).
Some authors prefer this arrangement for its flexibility (e.g., Lamport [Lam91]),
but for the most part these objections to strongly typed systems are overcome when
typechecking is supported by theorem proving, instead of being the largely syntactic
mechanism used for programming languages.

To summarize: strong typechecking is an extremely effective tool for detecting
mistakes in specifications. It cannot guarantee to eliminate inconsistencies or other
kinds of faults, but it is a very cost-effective way to detect a goodly proportion of
them. Rich type-systems supported by theorem proving increase the effectiveness
of typechecking, and the economy of the specification, by allowing much of the
specification to be embedded in the types. In addition to supporting economy of
expression and effective fault detection, strong typing also helps in the development
of specifications: the types often suggest the kinds of expression that are required
(rather like dimensional analysis in physics or valences in chemistry).

2.3.1.2 Definitional Principle

Earlier (in Subsection 2.3.1), I stated that a formal specification is basically a collec-
tion of axioms and definitions, but I did not explain the difference between an axiom
and a definition. The difference is that whereas an axiom can assert an arbitrary
property over arbitrary entities (new and old), a definition is a restricted kind of
axiom that defines some new concept in terms of those already known. For example,
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in the theory of stacks, we have the notion of popping a stack, and of pushing a value
onto a stack; the relationship between these is specified by the axiom

pop(push(s, e)) = s

which states that if you push the value e onto a stack s, and then pop the result,
you end up with the stack you started with. This specification is an axiom: it is not
introducing or defining the concepts pop or push, it is specifying a certain property
of their interaction.

On the other hand, if we say

|x| = if x < 0 then − x else x endif

and all the concepts on the right-hand side of the = are already known, then we
have defined the absolute value function, |x|. Because they do not assert new prop-
erties of existing concepts, but rather define a new concept in terms of those already
known, properly formulated definitions cannot introduce inconsistencies. “Properly
formulated” means constructed according to a definitional principle of the specifica-
tion language concerned; a definitional principle must ensure that definitions provide
only what in logic is called a conservative extension to a theory.37 Many specifi-
cation languages have an associated definitional principle. Precisely what concepts
can be defined in this way depends on the richness of the underlying logic, on the
strength of the definitional principle, and on the power of its associated mechaniza-
tion. For example, in many systems it can be rather difficult or impossible to specify
by a definition the function min that returns the minimum value of a set. Instead,
an axiom of the form

min(x) ∈ x ∧ (∀y: y ∈ x ⊃ min(x) ≤ y)

is usually required. In systems rich enough to provide Hilbert’s ε operator [Lei69],38

however, the function can be specified definitionally by

min(x) = εz: z ∈ x ∧ (∀y: y ∈ x ⊃ z ≤ y)

The strength of a definitional principle also determines whether recursive definitions
can be admitted. The difficulty with recursion is that it may not “terminate” for
certain arguments (i.e., the function may be partial). For example,

nono(x) = if x = 1 then 1 else x+ nono(x− 1) endif

37A theory A is an extension of a theory B if its language includes that of B and every theorem
of B is also a theorem of A; A is a conservative extension of B if, in addition, every theorem of A
that is in the language of B is also a theorem of B.

38εz:P (z) means “a z such that P holds for that z.” If P is unsatisfiable, then an arbitrary z is
chosen. The type of z must be nonempty.
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is not well-defined for arguments of zero or less (nor for noninteger arguments).
One way to extend a definitional principle to recursive definitions requires that some
“measure” function of the arguments should decrease across recursive calls, and that
the measure function should be bounded from below.39 The example above becomes
well-defined if, for example, x is required to be a strictly positive integer—in which
case the identity function on the strictly positive integers serves as the measure; it
decreases on recursive calls to nono (i.e., x− 1 < x), and cannot decrease without
bound because it is specified to be strictly positive.40

This definitional principle ensures that recursively defined functions are total
(i.e., defined for all values of their arguments). Some authors claim that this is too
restrictive and that it is necessary to admit partial functions into the logic underlying
a specification language [CJ90]. The standard “challenge” is the function subp on
the integers defined by

subp(i, j) = if i = j then 0 else subp(i, j + 1) + 1 endif.

This function is undefined if i < j (when i ≥ j, subp(i, j) = i − j) and it is argued
that if a specification language is to admit this type of definition, then it must
provide a treatment for partial functions. Partial functions can greatly complicate
a logic (see Section 2.6) and are inimical to efficient theorem proving. Fortunately,
examples such as these do not require partial functions: they can be admitted as
total functions on a very precisely specified domain. Dependent types, in which the
type of one component of a structure depends on the value of another, are the key
to this. For example, in the language of PVS, subp can be specified as follows.

subp((i : int), (j : int | i ≥ j)): recursive int =
if i = j then 0 else subp(i, j + 1) + 1 endif

measure λ (i : int), (j: int | i ≥ j): i− j41

39Another way to admit recursive definitions is to provide a fixed “template” that such definitions
must follow. A meta-proof establishes that all correct instantiations of the template will be well-
defined. This approach can be easier to implement than one involving measure functions (it does not
require theorem proving during the analysis), but is more restrictive. The definitional mechanisms
for abstract datatypes that are described later are essentially a sophisticated template approach for
a fairly general class of definitions.

40The reader might wonder how the argument would go if the recursive call were nono(x − 2):
the same argument seems to work, yet it is clear the definition does not terminate if the outermost
argument is an even number. The explanation is that nono is specified to take a positive integer
as its argument but x− 2 does not typecheck as a positive integer (the typecheck proof obligation
x > 0 ∧ x 6= 1 ⊃ x − 2 > 0 is false). Hence, the definition will be rejected. This example shows
how delicately interdependent some aspects of typechecking can become in languages with rich type
systems.

41The measure clause specifies a function to be used in the termination proof.
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Here, the domain of subp is the dependent tuple-type

[i: int , {j: int | i ≥ j}]

(i.e., ordered pairs of integers in which the first component is greater than or equal
to the second) and the function is total on this domain.

Enforcing a definitional principle generally requires mechanical tool support (it
can, in theory, be done by hand, but is tedious and error prone). Furthermore, a
definitional principle for recursive functions generally requires theorem-proving ca-
pability in its enforcement mechanism. But once theorem-proving support is avail-
able, it then becomes possible to enrich the definitional principle still further. For
example, introducing a constant of a subtype defined by a predicate can introduce
an inconsistency if the predicate is unsatisfiable (i.e., if the subtype is empty). Such
subtype definitions can be made conservative by a definitional principle that requires
their defining predicates to be satisfiable—which in turn requires theorem proving
to enforce. It follows that the most extensive definitional principles are associated
with specification languages having extensive tool support; conversely, systems that
have traditionally lacked tool support (for example Z) generally have no definitional
principle associated with them ( [Art91] describes an attempt to retrofit a principle
of conservative extension to Z using a mechanization based on HOL).

The advantage of a definitional principle is that those concepts introduced by
means of definitions cannot introduce inconsistencies.42 But definitions are not
always to be preferred to axiomatic specifications: definitions have a constructive
character that can result in “overspecification”—suggesting too much about how
a concept is to be realized, rather than simply stating what is required of it. For
example, the axiomatic specification of a pushdown stack given earlier states only
the essential properties required of a stack, and we are free to implement it later in
any way that satisfies its axioms—with a list, for example, or with an array and a
pointer. A definitional specification of a stack, on the other hand, would generally
construct it on top of some more primitive concepts, such as an array or list, thereby
suggesting an implementation.

By introducing a specialized definitional principle for abstract datatypes, it is
sometimes possible to have the best of both worlds and to specify datatypes such
as stack definitionally, yet without implementation bias. A datatype definition
principle permits a very compact specification of the relations between the “con-
structors,” “accessors,” and “recognizers” of an abstract datatype; internally, the
compact specification is expanded into a set of axioms whose consistency is assured
by a meta-proof on the datatype definition principle. Not all abstract datatypes can

42Definitions are also conducive to efficient theorem proving (using a technique known as “rewrit-
ing”), and to the development of executable specifications.
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be specified in this way, but many can. For example, in PVS, the stack specification
given earlier (with the empty stack distinguished) can be specified as follows.

stack [ t : type ]: datatype
begin
empty : empty stack?
push(top: t, pop: stack) : nonempty stack?

end stack

Here empty and push are the constructors, empty stack? and nonempty stack?
the recognizers (and the corresponding subtypes) for their respective constructors,
and top and pop are the accessors for nonempty stacks. The whole specification
is parameterized by the type t of elements to be pushed on the stack. These few
lines of specification expand into a couple or so pages of type definitions, function
signatures, the axioms shown previously, and several more axioms that provide an
induction scheme and other useful constructs.

A datatype definition principle ensures consistency of an axiomatization by gen-
erating a highly stylized set of axioms of a form that has been shown, once and for
all, to be consistent. Another approach allows the user to write axioms of a certain
restricted form and then checks the axioms for properties that are sufficient to en-
sure consistency. Equational specifications provide an example of this approach. If
all the axioms have the form of equations with the properties of “finite termination”
and “confluence” [Hue80], then the axiomatization is consistent. Confluence can be
tested using the Knuth-Bendix algorithm [KB70] (though this algorithm may not
terminate if the equations are not confluent), and there are a variety of special-
case methods for testing the finite termination property. Affirm [Mus80], and more
recently Reve [Les86] and RRL [KZ88], support these techniques. An attractive
side-effect of this approach is that it can provide a decision procedure for the theory
concerned; its disadvantage is that it has rather limited application in practice.

I mentioned above that some specification languages have no definitional prin-
ciple; conversely, certain systems for specification and verification have only a def-
initional principle and make no, or reluctant, provision for general axioms. (HOL
is like this; its users are reminded [GM93, page 220] of Russell’s aphorism liken-
ing the advantages of axiomatic postulation over definition to those of theft over
honest toil.) In my opinion, neither of these extreme positions is ideal; a specifi-
cation language should provide rich and powerful definitional principles (including,
for example, a datatype definition mechanism), but should not exclude arbitrary
axiomatizations. It should, however, provide some assistance in demonstrating the
consistency of such axiomatizations, and that is the topic of the next subsection.
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2.3.1.3 Exhibition of Models

A set of axioms must be consistent if the axioms are satisfied by some real ob-
ject. When the real object is a mathematical structure, it is called a model for
the axioms.43 One way to show that a specification is consistent, therefore, is to
show that its axioms have a model. This can be done fairly straightforwardly in
semiformal (i.e., Level 1) applications, but it requires some sophistication to pro-
vide mechanical support. The difficulty for mechanization is that we cannot exhibit
“real objects,” only descriptions (i.e., specifications) of such objects. Rather than
relate a specification to a model, we therefore have to relate two specifications. The
appropriate way to do this uses the notion of theory interpretations [Sho67, Section
4.7]; the basic idea is to establish a translation from the types and constants of the
“source” specification (the one to be shown consistent) to those of a “target” spec-
ification (that we already believe to be consistent) and to prove that the axioms of
the source specification, when translated into the terms of the target specification,
become provable theorems of that target specification. If this can be done, then
we have demonstrated relative consistency: the source specification is consistent if
the target specification is. Generally, the target specification is one that is specified
definitionally, or one for which we have some other good reason to believe in its
consistency.

The machinery of theory interpretations can also be used to demonstrate the
correctness of hierarchical developments—that is, to show that a more concrete
specification is a satisfactory implementation of a more abstract one. For example,
the way we demonstrate that an array and a pointer can be used to implement
a stack is by showing that a specification of such an implementation satisfies the
abstract stack axioms.44 The only difference between the use of theory interpretation
to demonstrate correctness of an implementation and to demonstrate consistency
of a specification is that for the latter, the “implementation” does not have to be
useful, or realistic, or efficient; it just has to exist.

When a specification is describing something that is to be implemented, the
demonstration of its consistency can be combined with that of the correctness of
its implementation. Sometimes, however, a specification is describing assumptions
about the world, or specifying an artifact that is to be built by others. In these cases,
we will not be developing an implementation, so demonstration of consistency does
not come “for free,” but requires a deliberate decision to exhibit a model. For
example, fault-tolerant clock synchronization is based on some assumptions about
the behavior of “good clocks”—that they keep reasonably good time, and that one

43These notions are treated in a more technical fashion in Appendix Section A.2.
44An alternative way to demonstrate the correctness of an implementation uses the “abstrac-

tion” functions introduced by Hoare [Hoa72]; these are called “retrieve” functions in the VDM
methodology and are discussed at length by Jones [Jon90].
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processor can obtain a reasonably accurate estimate of the reading of the clock of
another processor, and so on. These assumptions are captured in a number of ax-
ioms and we can demonstrate their consistency by constructing an interpretation
in which clocks keep perfect time, and can be read with perfect accuracy. It does
not matter that this interpretation is unrealistic: its only purpose is to demonstrate
that the axioms are consistent. As I mentioned earlier, Friedrich von Henke and I
did not do this for an early version of our verification of the Interactive Convergence
Clock Synchronization Algorithm, and Young showed that our axiomatization ex-
cluded this interpretation [You92]. Our mistake (using < in one axiom where ≤
is preferable) did not render the axiomatization inconsistent (though it could have
done, since we had not explicitly checked them), but it excluded an intended model.
Another specification that I developed [Rus86] was found to be genuinely inconsis-
tent [KM86]. My experience is surely not unique, and should serve to demonstrate
the value and importance of providing models to attest the consistency of axiomatic
specifications. Even when demonstration of consistency can be achieved as part of
a hierarchical development, it can sometimes be worthwhile to exhibit a very simple
model (i.e., a totally unrealistic implementation) in order to gain early assurance of
consistency before undertaking the full implementation.

The fact that we may be able to exhibit unrealistic interpretations for the pur-
pose of demonstrating consistency suggests that a specification can have many in-
terpretations (or implementations or models). Generally, this is desirable, for if a
specification has only a single implementation, then it is surely a very restrictive
specification—really more of an implementation. Since specifications do not, in gen-
eral, characterize a single, unique implementation, most specification languages are
said to use loose semantics: that is, any implementation that satisfies the specifi-
cation is considered acceptable.45 If an implementation has undesirable properties,
then we should have given a more restrictive specification that will rule out imple-
mentations with those properties. There are, however, a few areas where restrictions
are placed on the models assumed and implementations allowed. For example, in
some treatments of specifications based on equational logic (i.e., specifications whose
axioms are all equations), initial or (more rarely) final models are often assumed.
And some treatments of computer security require that implementations be “faithful
representations” (an undefined term) of their specifications.

Mechanized support for theory interpretations can be quite challenging and is
generally found only at the upper reaches of Level 3 applications of formal methods.
Among the details that must be dealt with are the need to translate the definitions
and theorems of the source theory into the terms of the target theory, as well as
the axioms, and the need to ensure that interpretations of equality maintain the

45This is consistent with ordinary logic, where a theorem is considered valid if and only if it is
true of all models that satisfy the axioms.
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properties assumed of an equality relation (alternatively, quotient types must be
supported).

2.3.1.4 Modules and Parameters

It is generally convenient if specifications can be developed in fairly small, self-
contained units which I will call modules. Just as with programs, specification
modules allow related concepts to be grouped together into a larger conceptual unit
and thereby support separation of concerns and reuse. A specification language
must provide methods for combining modules in various ways to yield larger specifi-
cations. For this to be most effective, modules need to be parameterized, rather like
the functions and procedures of a programming language, so that they can spec-
ify concepts with a certain genericity. For example, a module that specifies sorting
should be parameterized by the type of thing that is to be sorted and by the ordering
relation with respect to which the things are to be sorted.

In modern programming languages, it is necessary in a procedure declaration to
specify the types of the parameters that are required: we should not be allowed to
supply a string of characters to an arctangent procedure. In specification languages,
it is necessary to do the same and more: it is often necessary to place constraints
on the properties of module parameters. In a sorting module, for example, one of
the parameters will be the type of thing to be sorted, represented by t, say, and
the other will be an ordering relation. But it is not enough, as some specification
languages do, to simply state the signature of the required relation (i.e., t × t), it
is also necessary to stipulate that it must be a total ordering relation (that is, it
must have the properties of trichotomy, reflexivity, transitivity, and antisymmetry).
Generally speaking, these properties may be assumed inside the module, but must
be proved in any instantiation of the module. In the absence of these safeguards,
it is possible to combine individually consistent modules into an inconsistent whole.
As with some of the techniques of strong typechecking, these safeguards require
theorem proving during specification analysis and are therefore often enforced only
in Level 3 applications. Even if they cannot be mechanically enforced, it is important
that assumptions on module parameters should be specified (and checked by hand)
in applications of formal specifications at all levels. Regrettably, some specification
languages that stress modularity and parameterization (e.g., Z) have overlooked this
important aspect of soundness.
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2.3.2 External Fidelity

I have considered methods of examining specifications for internal consistency—
these are ways of making sure that a specification says something sensible; I now
examine ways of scrutinizing specifications to make sure they say what is intended .

In the case of specifications of designs to implement other, more abstract speci-
fications, we simply have to show that the design satisfies its superior specification.
This is really a problem of verification and, as explained in the previous section, it
is a problem that can be formalized and that is amenable to proof. The more chal-
lenging problems concern top-level, or requirements specifications, and statements
of assumptions—for here there are no higher-level specifications against which to
conduct a verification. The issue in these cases is truly one of validation. By their
very nature, the problems of validating top-level specifications or statements of as-
sumptions do not lend themselves to definitive proof; all that can be done is to
examine the specifications from various perspectives, and to probe and test their
consequences until we are satisfied that they adequately capture our requirements,
or the real-world phenomenon they are intended to describe.

The first level of scrutiny that may be applied to a formal specification is informal
human review: those with an understanding of the problem to be specified examine
and discuss its formalization. Not all of those with understanding of the problem
domain will be skilled in the reading of formal specifications. Consequently, it
is usual for a specialist in the formalism concerned to be available to interpret and
explain the specification to the domain experts. This, of course, interposes a layer of
interpretation between the specification and those best suited to evaluate it, and so
an often-expressed desideratum for formal specification languages is that they should
be directly comprehensible to nonspecialists, so that this layer of interpretation is not
required. For example, diagrammatic or tabular notations are familiar to engineers
in many fields, and it is sometimes suggested that formal specifications should be
expressed in these forms.

The problem with this approach is that while diagrams and tables may be con-
venient ways to explain certain types of specification, they do not lend themselves to
particularly effective mechanized reasoning: they may lower the barriers to engineer-
ing review, but at the price of raising barriers to mechanically-supported analysis.
Furthermore, different problem domains lend themselves to different types of di-
agrams or tables (e.g., compare the state-transition diagram for a controller, the
timing diagram for a protocol, and the block diagram for a hardware design), and
some do not lend themselves to diagrammatic presentation at all (e.g., an algo-
rithm for clock synchronization). It follows that a formal specification method built
around a particular diagrammatic or tabular notation may have rather restricted
application, and limited mechanized support for general forms of analysis. On the
other hand, it may be very convenient and amenable to effective review in those
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fields to which its notation is well-matched. A compromise arrangement that seems
promising is to develop specifications in languages optimized for expressiveness and
the effectiveness of their support for mechanized reasoning, but to provide tools that
translate specifications satisfying certain restrictions into a variety of diagrammatic
and tabular presentations. Such an arrangement may be compared to one in which
differential equations (say) are used to specify mechanical systems, and in which
graphs and tables can be computed to assist users’ comprehension of the specified
system.

Although I recommend that specification languages should primarily be designed
for expressiveness and the effectiveness of the mechanical support that can be pro-
vided, rather than for the convenience they afford to nonspecialist reviewers, this
does not mean that I advocate recondite methodologies or runic notations. For most
purposes, specification languages based on classical logics (e.g., higher-order logic or
first-order logic with set theory) permit fairly clear and direct expression and, while
it takes skill and practice to write good specifications in these (or any) notations, it
need not be hard to read and understand them. More ambitious foundations (e.g.,
constructive type theories) are generally difficult for nonspecialists to comprehend,
while foundations based on weaker logics (e.g., unquantified notations such as equa-
tional logic, Horn clauses (e.g., Prolog), and the Computational Logic of Boyer and
Moore [BM79, BM88]) often necessitate encodings that resemble programs rather
than specifications. For example, to state that all components of a certain structure
should possess a certain property, a computational logic may require specification of
a recursive function that examines each component in turn, whereas a richer logic
would allow a simple quantification (i.e., (∀x: . . .)). Not only is the recursion an indi-
rect encoding of the intended property, it is likely that proofs involving the property
will require induction rather than straightforward quantificational reasoning.

If the choice of the underlying logical formalism has a profound influence on the
deep structure of specifications, so the notational conventions employed can have
an effect on their surface appearance that may be no less profound in determining
their readability and acceptability. The use of compact and familiar notations such
as infix operators (i.e., a+b rather than (add a b)), standard notation for function
applications (i.e., f(x, y) rather than (f x y), f x y, or f(x)(y)), and computer-
science constructions such as if . . . then . . . else . . . , and case expressions, can all
ease the task of comprehending formal specifications.

It is not necessary that specifications actually be processed by their support
system in this form, as long as there are ways to communicate them to human
reviewers in civilized notation. There is much to be said for providing specifica-
tion languages with sophisticated prettyprinters that can typeset specifications into
compact notation which matches that employed in the field concerned. PVS, for
example, generates output under the control of simple user-written tables so that
specification text such as
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abs(c(p, i, T) - c(q, i, T))

(which arises in analysis of clock synchronization) can be typeset as

|c(i)p (T )− c(i)q (T )|,

which is instantly recognizable to those working in this field. Some systems actually
manipulate this latter form as the specification text, rather than merely generate it
as output. The disadvantages of this approach are that inputting non-ascii symbols
into the system can become complex—involving structure editors or mouse manip-
ulations that rapidly become tedious—and revisions to the notation may require
changing every reference to the symbols concerned.

In addition to prettyprinting and typesetting, other simple tools can materially
assist in the comprehension and scrutiny of specifications. Cross-reference tables,
for example, make it easier to navigate large specifications, and dynamic browsing
tools that, for example, permit immediate location of the declaration of an identifier
or of all axioms including a certain term, can provide even greater assistance.

Although, as described, much can be done to assist the comprehension of formal
specifications, there is a limit to what can be achieved by inspection. More searching
scrutiny requires testing or, as I shall say, challenging the specification. The idea
of a challenge is to pose a question that an adequate specification should be able to
answer. For example, suppose we had specified the operation of sorting a sequence;
we might then ask whether sorting an already sorted sequence leaves the sequence
unchanged (i.e., whether sorting is idempotent)—that is, we might ask whether

sort(sort(x)) = sort(x)

is a theorem of the specification (assuming sort is a function that takes a se-
quence as argument and returns the sorted sequence as its value). Gerhart and
Yelowitz [GY76] report that early specifications of sorting were deficient in that
they required the output of the operation to be ordered, but neglected to stipulate
that it should also be a permutation of the input. An attempt to prove the theorem
above would reveal such inadequacies. Even with an adequate specification, how-
ever, we might find that our putative theorem is unprovable; further examination
would help us understand why and might lead us to the notion of a stable sort (one
that does not reorder elements of the sequence that are equivalent with respect to
the ordering criterion, but distinguishable in other ways). We could then decide
whether stability was important to our application and, if so, could adjoin it as an
additional requirement of the sorting specification.

Challenges such as this allow a specification to be explored in an active manner
not unlike the testing of a program: in a way we are using theorem proving to “ex-
ecute” the specification. With certain specification styles this notion can be taken
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further: the specifications truly can be executed. This is the case with Horn clause
(Prolog) specifications, and those written in the form of quantifier-free equations
or recursive functions.46 Other executable specification languages resemble func-
tional programming notations, and are sometimes called “prototyping” rather than
specification languages [AJ90].

The problem with executable specifications is that they are often closer to pro-
grams than specifications; some of the benefits of formal specification have to be
sacrificed in order to achieve executability [HJ89]. For example, directly executable
specifications cannot describe the sorting operation simply in terms of its properties
(i.e., that the output is an ordered permutation of the input), but must instead spec-
ify a particular sorting algorithm. One compromise approach that has some promise
allows those parts of a specification that lend themselves to it to be executable di-
rectly, while other parts are “animated” by conventional program text supplied by
the user or built in to the system [HI88]. Various degrees of rigor are possible here:
for example, the animating program text could be proven correct with respect to the
specification, or could simply be taken on trust as a “rapid prototype” 47 or, rather
than conventional program text it could be an executable specification derived (and
perhaps verified) from the original nonexecutable specification.

While execution of test cases can be a useful aid to validation, the more general
challenges mentioned earlier may be more revealing and may yield greater insight
since, like other formal verification methods, they examine general properties, not
merely behavior on particular inputs. However, validation is assisted by examin-
ing the specification from as many viewpoints as possible, and both execution and
challenges contribute to that end.

Still another viewpoint can be obtained by challenging a specification not with a
putative theorem, but with a putative interpretation (which may be an executable
implementation in some cases). Although property-oriented specifications are often
to be preferred at the requirements level, our intuition may have an algorithmic slant
(which is probably why inexperienced writers of formal specification often produce
very constructive specifications: rather than simply assert the properties required,
they prefer to suggest how to achieve those properties). We can exploit this intuition
by checking whether certain implementations satisfy our specification or not. For
example, we could reinforce our belief that we have specified sorting correctly by

46The execution mechanisms are specialized theorem-proving techniques: SLD resolution in the
case of Prolog, and term rewriting in the other cases.

47Although a property-oriented specification may not be directly executable, it may yield an
executable test that can be applied as a run-time check on the correctness of the animating code.
For example, a property-oriented specification of sorting is not directly executable, but it could
yield an executable test for the property that a sorted sequence is ordered (permutation is more
difficult). The use of specifications to provide run-time checks on an implementation is a feature of
the Anna system [LvHKBO87, Luc90].
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verifying that a simple sorting algorithm is a correct implementation of the specifi-
cation. For another example, recall that earlier I mentioned how an axiomatization
of “good clocks” for a synchronization protocol could be shown consistent by ex-
hibiting an interpretation in which clocks kept perfect time and could be read with
zero error. This interpretation not only demonstrates consistency, it is surely an
example (albeit extreme) of what good clocks should be, and so it is reassuring that
it is indeed a model of the axioms. Sometimes we will want to do a negative test.
For example, we might want to check that clocks which have stopped, or that have
large read errors do not satisfy the axiomatization of “good clocks.”

I have considered ways to examine specifications for universal properties (those
that should be possessed by all specifications) such as consistency, and ways to gain
confidence that a particular specification says what is intended. In between are a
number of broad attributes that may be important for some classes of specifications
but not others. For example, Jones [Jon90, Chapter 9] describes how to examine
“model-oriented” (i.e., constructively defined) specifications for implementation bias
(basically, a specification is biased if it distinguishes states that cannot be told apart
using the operations provided). Another important notion that has different inter-
pretations for different classes of specifications is that of completeness.48 Informally,
a specification can be considered complete if identifies every contingency and defines
the behavior required under every possible execution scenario. When considering
small components of a system, however, this broad notion of completeness needs to
become more specialized.

When specifying an abstract datatype, for example, we may wonder whether
the axioms provided for the set of operations are sufficient to adequately specify
all behaviors. Guttag and Horning [GH78] define a property called sufficient com-
pleteness that captures this notion for a certain class of specifications, and they also
give some heuristically effective procedures for checking this property. Kapur and
Srivas [KS80] consider a slightly different problem: how to tell whether the oper-
ations provided for an abstract datatype are sufficiently comprehensive to support
all likely uses of that datatype.

Jaffe and Leveson [JL89] (a somewhat different version appears as [JLHM91])
describe a rather different interpretation of completeness that arises in real-time
process-control systems. They consider systems whose requirements can be viewed
as a set of assertions of the form

trigger ⇔ output

where trigger denotes the set of conditions under which the output (or set of outputs)
should be produced. They stress the importance of the bidirectional implication

48In logic, this term has a very precise meaning: a formal system is complete if every true fact is
provable (it is sound if every provable fact is true). But this is not the sense in which the term is
used of specifications.
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(⇔): in safety-critical applications it is not only necessary to be sure that an output
is produced when required (i.e., trigger ⇒ output), but also that it is produced only
when required (i.e., trigger ⇐ output). This means that all the conditions that
should cause a particular output are disjoined (or’ed together) to create the trigger
for that output. Triggers can refer to input data values, to the absence of a data
value (within a specified time bound), and to the value of state variables.

The basic notion of completeness of such a specification is that the disjunction
of all the triggers should be a tautology (i.e., the triggers must completely cover the
space of possible behaviors). For example, if we have the trigger

height < 50

then we must also have some other trigger containing the expression

height ≥ 50

(or some set of triggers whose disjunction is equivalent to this). More subtly, note
that both these triggers imply that a height input datum is available; therefore there
should also be a trigger that is activated when this input is not available.

Generally it is not enough to consider only the presence or absence of input
data; most process-control systems are cyclic and it is the presence or absence on
each particular iteration, or in some specified time window, that is important. All
expressions appearing in triggers should therefore contain time bounds (except those
that refer to the start-up event), and the tautology condition applies to these time
bounds as well.

Jaffe and Leveson extend these basic completeness criteria with consideration
of capacity (and the need to specify what should be done in the case of overload),
start-up and shut-down, and responsiveness. The latter is an interesting notion.
Certain outputs should lead to noticeable changes in inputs some time later (e.g., a
“roll right” output should roll the airplane, and sensor data should shortly confirm
that this is happening). Completeness requires that each such output should have
two associated triggers: one that recognizes the expected response, and one that
recognizes its absence or an unexpected response.

Although most of Jaffe and Leveson’s completeness criteria concern triggers,
they also propose some for outputs. For example, the output that turns a piece
of equipment on may normally expect that it was formerly off . By including this
condition in the trigger for that output, the tautological completeness criterion will
force consideration of the case that the device is already on. More global criteria can
be based on reachability analyses. For example, if all paths from a given state that
cause a certain device to be switched on have triggers that require the presence of
data from a particular source, then loss of that source will prevent the device from
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being switched on once the given state is encountered. This might be intended (e.g.,
a fail-safe condition on the arming of a weapon) or it might not (e.g., the inability
to use the brakes on landing because a failed load sensor suggests the plane is still
airborne) and a warning or override might be appropriate.

Jaffe and Leveson’s criteria for completeness are obviously not exhaustive (it
seems unlikely that any general criteria could be), but they offer a good starting
point that may be modified or extended to suit the circumstances of particular sys-
tem developments. Equally obviously, the examination of a specification according
to their criteria can be performed informally (e.g., Lutz [Lut93b] reports that a
checklist derived from Jaffe, Leveson and Melhart’s proposals would have identified
over 75% of the “safety-critical” faults discovered during integration and system
testing of the Voyager and Galileo spacecraft). However, formal specifications allow
their criteria to be posed as formal challenges that can be analyzed using formal
verification techniques.

2.4 Benefits of Formal Methods

I have indicated several potential benefits of formal methods in earlier sections; here
I collect together the various advantages claimed for formal methods and present
them in a fairly systematic manner. The presentation divides into three subsections,
the first two describing the benefits of formal specifications and formal verifications,
respectively, and the third focusing on the potential contributions of formal methods
to the assurance of safety-critical systems. In the section after this, I discuss the
other side of the coin: the fallibilities of formal methods.

2.4.1 Benefits of Formal Specification

“By being educated in a technique, we are also educated to have a way
of looking at the matter which is just as firmly rooted as that tech-
nique.” [Wit83, paragraph IV–35]

A major benefit that is claimed for formal methods in general is that the con-
cepts from logic and discrete mathematics that are embodied in formal specification
methods provide effective mental tools for organizing our thinking about computer
systems and for communicating our thoughts to others. The notions of sets, rela-
tions, functions and their various properties and operations, together with the ideas
of universal and existential quantification, provide a set of mental building blocks
that allow specifications to be built up in a fairly clear and straightforward way, with-
out the looseness and unconstrained freedom of natural language, or the specious
precision of most diagrammatic notations, or the algorithmic detail of pseudocode.
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The chief technical advantages claimed for formal over informal specifications are
precision and lack of ambiguity. Imprecision and ambiguity are two closely related
flaws that can afflict specifications; I will say that a specification is imprecise if it
does not provide enough information to determine what is intended in a particular
circumstance, and ambiguous if the intentions are open to different interpretations.
For example, an imprecise specification might say that the undercarriage should be
lowered for landing, but not indicate at what height it should be lowered; whereas
an ambiguous specification might say that the control surfaces on each wing should
be driven by different channels—does this mean the ailerons on the left should be
driven by one channel and those on the right by another, or that the ailerons should
be driven by one channel and the spoilers by another, or some yet more complicated
arrangement? Imprecision is clearly related to incompleteness, but I will reserve
the term incompleteness to describe the situation where nothing is said about what
is intended in a particular circumstance (so that it is not even clear if there is an
intention to specify behavior for this circumstance).

Imprecision and ambiguity in informal specifications can arise because natural
language constructions often depend on context,49 because many words have several
different meanings, and because people can be careless or ignorant of grammar. The
main way that formal methods help reduce imprecision and ambiguity is by removing
the associations carried by natural language: the terms in a formal specification have
no meaning other than those explicitly specified. Thus, if we start a specification
by stating

mode = landing ⊃ undercarriage position = down

then the questions naturally arise: what other modes are there, and how and when
do we enter and leave landing mode? By isolating the term landing and placing it in
a formal context, we have stripped it of some of its intuitive associations and made
it clear that it will be necessary to be explicit about those attributes of “landing”
that are germane to the problem being specified.

Thus the simple fact that formal specifications require us to “define our terms”
encourages a more systematic, and therefore a generally more complete and precise,
enumeration of requirements than informal specifications. Other symbolic specifica-
tion techniques, such as pseudocode, data dictionaries, and those based on dataflow
representations, can have similar benefits, but generally they also impose more con-
crete and operational detail than may be necessary or desirable in requirements
specifications, and they do not lend themselves to formal deduction.

The possibility of formal deduction means that formal specifications can also
assist in the development of more precise and complete specifications through the

49Compare the injunction “seat belts must be worn” seen at a freeway entrance with “dogs must
be carried” seen by an escalator.
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process of “challenging” them. When we first challenge a specification with a con-
jecture such as “does sorting a sorted sequence leave it unchanged?” the answer is
often “maybe”: we discover that the specification is not sufficiently precise or com-
plete to answer the question. Thus, posing a challenge can prompt us to consider
missing or imprecise aspects of the specification (in this case, the topic of stability
in sorting), and to decide consciously on the intended treatment—which may be to
leave a certain property deliberately unspecified at this stage.

Formal specifications can assist in the identification and elimination of ambigu-
ities in much the same way they do for imprecision. Ambiguities can be real or
apparent. A real ambiguity arises when two contradictory statements can be de-
duced from a specification. In this case, the specification must be inconsistent, and
techniques for avoiding inconsistent specifications were described in the previous
section. Apparent ambiguities arise either when the specification allows two state-
ments that seem in conflict, or when single statements are interpreted in different
ways by different people. Assuming a specification is consistent, apparently contra-
dictory statements must indeed be only apparently so. An appropriate response is
to challenge the specification further in order to better understand why it entails
both statements, or to better understand the reasons why the statements strike us
as contradictory. Statements that are interpreted differently by different people can
be probed by inviting those involved to sharpen their points of difference. It should
be possible to identify a testable distinction: “if this means what I think it does,
then this ought to follow, whereas if you’re right, that ought to be the case.” If
one conclusion or the other is a valid consequence of the specification, then the
difference of opinion should have been resolved. If both or neither follow from the
specification, then we must probe further.

In all these cases, the probing and resolving of imprecision and ambiguity through
challenges and deduction are possible precisely because a formal specification is a
formal system: the consequences of the specification are just those formulas that can
be calculated (i.e., proved) by formal deduction from its axioms and definitions. We
can therefore settle with certainty whether or not a given formula is entailed by the
specification. Thus, an advantage of formal specifications is that questions about
their meaning and the consequences that they entail can be posed and answered with
scientific precision. In nonformal developments, such precision is usually possible
only much later in the lifecycle, when programming is under way.

And that is another significant advantage of formal over informal methods of
specification: they provide specifications that can be rigorously checked, analyzed,
and tested in various ways much earlier in the lifecycle than informal methods. This
means that more exacting validation is performed earlier in the lifecycle than would
otherwise be possible, thereby reducing costs through early detection and correction
of faults, and very likely contributing to a better final product.
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But although the ability to record and analyze decisions early is one of the main
benefits of formal methods so, paradoxically, is the ability to postpone such deci-
sions. As I have mentioned before, other symbolic methods of specification such as
pseudocode and dataflow and state-machine representations share some of the ad-
vantages of formal specification, but often require premature commitment to design
details. Formal methods, especially those in the property-oriented axiomatic style,
allow one to specify only what is necessary at a particular level: some properties
and behaviors can be left deliberately unconstrained if their elaboration is better
postponed to a later stage of development. This “separation of concerns” allows
development and analysis to focus on one thing at a time. Furthermore, specifica-
tion of those properties that are handled at a particular level can be done without
necessarily suggesting an implementation or fixing a lot of concrete detail.

2.4.2 Benefits of Formal Verification

“Proof, one might say, does not merely show that it is like this, but how
it is like this. It shows how 13 + 14 yield 27.” [Wit83, paragraph III–22]

Formal verification is often equated with “proof of correctness,” but this simul-
taneously over- and underestimates the benefits that formal verification can provide.
It overestimates the benefits because “correctness” suggests an absolute guarantee
that is impossible for any enterprise that uses modeling to predict the behavior of
real-world artifacts. A formal verification provides very strong guarantees on the
mutual consistency of the specifications at either end of the chain of verification,
but we can have no absolute guarantees that the upper specification captures all the
requirements perfectly, nor that the lower specification (which may be a program or
gate layout) exactly describes the behavior of the actual system: both of these are
issues that require validation, not verification.

The “proof of correctness” conception underestimates the benefits of formal ver-
ification by failing to recognize the other products of verification. First, a formal
verification does not merely give us strong assurance that certain theorems con-
cerning the mutual consistency of specifications are valid, it enumerates all the
assumptions, axioms, and definitions used to establish that fact. It therefore iden-
tifies those properties whose satisfaction, or utility, in the physical world must be
established by empirical validation. At the top, these will include the requirements
specification against which the verification was performed and, at the bottom, the
assumptions about the real world (e.g., the behavior of clocks, or the semantics of
Ada programs) on which the verification rests.

Second, not only does formal verification identify assumptions and requirements
precisely, but as I have noted before, the machinery of formal verification can be
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used in the validation of those properties: theorem proving provides a means for
testing the specifications of requirements and assumptions by evaluating challenges
posed against them.

Third, formal verification is an extremely potent way of detecting design faults.
Long before its verification succeeds and a design is pronounced “correct” (subject
to the caveats described above), it is likely that several failing attempts at verifi-
cation will have identified oversights, missing cases, and plain mistakes. Of course,
some of these faults might have been caught by informal verification or, much later,
by testing, but my experience is that formal verification reveals subtle mistakes
whose detection by other means seems uncertain at best. State exploration (recall
Section 2.2.3) can be considered as a formal method optimized for such debugging
purposes.

Fourth, formal verification allows the consequences of changed assumptions or
modified designs to be explored reliably. For example, the journal proof of the
Interactive Convergence clock synchronization algorithm assumes that the initial

clock corrections C
(0)
p are all zero. This turns out to be inconvenient when imple-

mentations of the algorithm are considered. With a mechanically-checked formal
verification, we can explore the significance of this assumption by simply deleting
it from the formal specification and rerunning all the proofs. In this particular
case, it turns out that the proofs of a few internal lemmas need to be adjusted,
but that the rest of the verification is unaffected. Even if the initial argument for
the correctness of this algorithm could be performed reliably by informal means
(and we discovered that all but one of the proofs in the journal presentation of this
algorithm were flawed [RvH93]), it would be exceedingly difficult to maintain the
same standards of accuracy and rigor on subsequent reverifications against slightly
altered assumptions. Yet reliable and inexpensive reverification is essential to the
iterative processes within any realistic lifecycle model. As a design develops, one
discovers simplifications, improvements, and generalizations that should be assisted,
not discouraged, by investment in an existing verification. Even if we choose not to
improve or change our design voluntarily, a change in external requirements or in
the specification of an assumed service will require modification and reverification.

Fifth, formal verification subjects a design to intense intellectual scrutiny. This
can be a benefit in its own right, often leading to improved understanding of the
problem and to better solutions. For example, we may find after performing a formal
verification that we actually used fewer assumptions than were made in the specifi-
cation. This discovery can allow us to prune the collection of properties that need
to be validated experimentally, or to simplify the specification of components whose
properties are used in the verification. Alternatively, the improved understanding
that comes with a formal verification may allow us to replace some assumptions
with others that may be easier to check or to satisfy.
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Finally, the understanding that comes from a well-conducted process of formal
specification, validation, and verification may give us the confidence to consider new
areas in the design space. Equipped only with tools for informal reasoning we may,
through caution or ignorance, consider just a small area of that space. We may
use certain designs (e.g., asynchronous channels in a flight-control system) because
there is a plausibly simple argument for their correctness, and ignore others (e.g.,
the synchronized approach) because the reasoning that supports them is intricate.
Formally supported analysis might reveal that the simplicity of the argument in
favor of the preferred design is specious, and might provide the tools for mastering
the intricacy of the alternative design.

2.4.3 Assurance Benefits of Formal Methods

Anticipating the case developed in Section 3.1, I assert that assurance for safety-
critical computer systems is chiefly derived through scrutiny of the processes em-
ployed in its construction: we cannot measure the quality of the product so we look
at how carefully it was built. At every stage in its construction, we expect careful
analyses and reviews to be conducted to ensure the quality of the development per-
formed in that stage. According to DO-178B [RTCA92, Section 6.3]: “analyses pro-
vide repeatable evidence of correctness and reviews provide a qualitative assessment
of correctness” (a draft version of DO-178B stated “reviews provide a group consen-
sus”). For assurance, the chief benefit provided by formal methods is that they allow
reviews to be replaced or supplemented by analyses. Depending on the level of rigor
employed—that is, on the extent to which repeatable, calculational processes are
used—formal methods should be able to detect faults earlier than otherwise, and
with greater certainty than otherwise. In certain circumstances, subject to caveats
concerning the fidelity of the modeling employed, formal methods can guarantee the
absence of specified faults. However, not all processes can be reduced to analysis,
even with fully formal methods, and reviews will still be required. Formal meth-
ods can contribute to high-quality reviews by settling questions concerning syntax,
type-correctness, and internal consistency by analytic means, thereby allowing the
reviews to focus on matters of greater substance.

Formal methods establish properties of mathematical models of the systems
considered; many of formal methods’ detractors focus, correctly, on the difficulty of
establishing the accuracy of the models employed. These issues are considered in
the next section.
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2.5 Fallibilities of Formal Methods

Formal methods do not guarantee a superior product; as with all tools, formal
methods must be used with skill and discrimination if they are to deliver benefit.

In this section, I examine some of the ways in which formal methods may provide
less benefit than anticipated and I consider ways to ameliorate these difficulties. In
most cases, the fallibilities that I identify also attend informal development meth-
ods, but the ameliorations are generally possible only with formal methods (e.g.,
informal as well as formal specifications can be inconsistent, but only formal specifi-
cations admit formal demonstrations of consistency). Also in this section I consider
arguments that have been mounted against the use of formal methods in general.

As with my discussion of benefits, I consider the fallibilities of formal specifica-
tions and of formal verifications separately.

2.5.1 Fallibilities of Formal Specifications

Fallibilities of formal specifications can include specific deficiencies such as inconsis-
tency or incompleteness that may afflict a particular specification, as well as general
vulnerabilities that are sometimes used to call the whole enterprise into question. I
begin by considering the more general arguments against formal specification.

The broadest challenge against the formal approach to specification is that
mounted by Naur [Nau82]. Naur does not argue against formalism per se, but
against the rather rigid conceptions of formalization that were being proposed in
the 1980s. Although his case is less effective against modern approaches, some of
those who oppose formal methods still employ similar arguments.

Naur asserts that late-lifecycle program-level specifications of the kind that were
advocated in the 1980s offer little benefit:

“According to these ideas the programmer must first express the solu-
tion in a so-called formal specification language, second express the same
solution in a programming language, and third prove that the two solu-
tions are equivalent, in some sense. . . this approach offers no help to the
programmer but only adds to his or her burdens. . . .with this approach
the programmer has to produce not one but two formal descriptions of
the solution, and in addition has to prove that they are equivalent.”

This quotation (and the next) reveals one of the major weaknesses of Naur’s ar-
gument: his focus seems to be “programs” (small entities constructed by a single
person) rather than “systems” (large entities developed by teams against multiple
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and exacting requirements). Formal specifications may contribute little to devel-
opments where the program itself can be considered an adequate expression of the
solution, but safety-critical systems are seldom of this kind. However, if we interpret
Naur’s remarks as applying to just the coding stage of the development lifecycle,
then his point has some validity: at some point in the development, programming
must take over from specification.

Naur notes that in mathematics and engineering, formal and informal modes of
reasoning and notation are used in combination, each where it is most effective, and
he argues for a similar approach in program specification:

“Specifications are sometimes a necessary evil, to be used for documen-
tation of such aspects of programs that are not satisfactorily documented
by the programs themselves. . .The ideal specification of an aspect of a
program is a description of what that aspect does such that on the one
hand it is intuitively obvious to the user that it corresponds to his or her
requirements, and on the other hand it is equally obvious to the program-
mer that it is realized in the program itself. In either case the intuitive
understanding may need to be supported by an argument having several
steps, a proof. . . ”

Naur observes that the notation and formalism best suited to specifying “aspects of
programs” may vary from aspect to aspect and from program to program and he
therefore argues against the use of fixed specification languages, instead advocating
“formalisms of any suitable form, such as tables for enumerating cases, decision
tables, tables or graphs corresponding to finite-state algorithms, program skeletons,
formulae of any kind etc.”

Naur’s position here can be interpreted as a repudiation only of Level 2 and Level
3 formal methods, and as something of an endorsement for Level 1. However, this
interpretation must be performed relative to the technology available at the time
of his writing, and relative to his conception of the problem addressed. As already
noted, it seems clear that Naur’s conception of the problem is one of “program
development” rather than “systems engineering”: that is, he is concerned with the
late-lifecycle stages of design. The formal specification notations available in the
early 1980s also focused on these stages and for the most part were limited and
restricted notations that merited Naur’s criticism. The importance of the early
stages of the lifecycle has become far more widely recognized in the dozen years
since Naur’s paper was written, and formal specification notations have become
far richer and less like program annotations. While Naur is probably correct to
question the value of a formal specification that is little different from the program
it is intended to specify, his argument is less effective against formal requirements
and early-lifecycle design specifications that are several stages removed from the
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levels of description where programming begins. Naur’s other point, that formal
and informal modes of expression should be used together, and that formalisms
should be chosen freely, rather than limited to those that can be expressed within
a fixed specification language, retains its value today, but needs some qualification.
The mixing of formal and informal modes of expression is encouraged by most
modern presentations of formal specifications. Rather than a single large block
of formal text, modern presentations of formal specification generally intersperse
formal text with informal explanations. This style is assisted by the modularization
constructs of modern specification languages, which encourage the development of
specifications in relatively small units that can be combined to yield larger units.

Naur’s recommendation that formalisms should be chosen freely, rather than
restricted to those supported by a particular specification language needs to be
tempered if the benefits of mechanical analysis and formally checked deduction
are desired. Fortunately, the spirit of Naur’s recommendation can often be pre-
served within a single specification notation: modern specification languages based
on higher-order logic or set theory are sufficiently expressive that they can encode
other formalisms such as finite state machines or temporal logics relatively conve-
niently. If combined with simple tools for printing such encodings in an attractive
form, a single specification language can often accommodate several styles of spec-
ification, and furthermore permit their use in combination, yet provide uniform
mechanical support.

Several other arguments against formal specifications are similar to Naur’s: it
can be argued that formal specifications are hard to write and to read, especially
for nonspecialists, and that too much of the effort in writing formal specifications is
spent wrestling with the formalism and overcoming limitations of notation, rather
than focusing on the substance of the problem. Like Naur’s criticisms, these have
some validity, but are less true of modern formal specification techniques than of
those used in the 1980s. Specification languages based on first-order logic with
set theory, or on higher-order logic, are generally sufficiently expressive that most
concepts can be stated in a fairly direct and unforced way. More limited languages
that lack quantification, or that restrict the use of axioms, or the class of expressions
that can be used in axioms, do generally require rather convoluted specifications,
but may offer compensations such as executability or highly automated theorem
proving that can be advantageous in some applications. Of course, one cannot
expect even the most perspicuous of formal specifications to be accessible to readers
without some training, but the evidence seems to be that those with engineering
or scientific backgrounds can be taught to read formal specifications in a matter
of days—provided they see some tangible benefit (e.g., some form of mechanical
analysis) in doing so.

Learning to write formal specifications is another matter, but the difficulty is
often one of learning to write good, suitably abstract specifications, rather than
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of learning the details of a particular formal specification technique. It seems nei-
ther necessary nor desirable that “users,” “customers,” or “engineers” should write
formal specifications on their own—any more than they should write their own pro-
grams, design their own circuits, or do their own welding. This is not to say that
“formal specifier” must be a job title—there is no reason why formal specification
should not be an additional skill for someone with other primary responsibilities—
but it must be recognized that formal specification no less than, say, technical writ-
ing, is a specialized skill that needs talent, training, and experience.

A top-level formal specification of requirements must be developed through a di-
alog between a specifier and those who understand what is to be specified. Through
discussion and questions the specifier elicits and records the salient properties of
the thing that is wanted. The acts of recording and of formalizing these proper-
ties may suggest questions that need clarification and further discussion. Those
who understand what is wanted may either read the evolving formal specification
or may ask the specifier to interpret it for them, and in either case can challenge
the specification as described in Subsection 2.3.2 to validate it against their infor-
mal conception of what is required. Similar dialog between specifiers, designers,
and those with an understanding of what is required, must take place at the later
stages of the lifecycle, as intermediate specifications are developed on the way to an
eventual implementation.

I now turn from general to specific deficiencies that can afflict formal specifica-
tions. A formal specification can be faulty in several different ways. It may say too
little (thereby failing to characterize the matter of interest), or too much (thereby
overly constraining later stages of the development), or it can be wrong. And it can
be wrong in at least two major ways: it may not say what we wanted (in the limit,
it may be inconsistent and say nothing at all), or it may say what we wanted—but
what we wanted was wrong.

Most of these are issues of validation, and were covered in Section 2.3. The
primary methods for validating a formal specification are inspection and challenges–
that is, posing questions that should be answered by the specification. It cannot
be stated too forcefully that validation of formal specifications is critical to their
utility. Simply writing specifications in a formal notation does not guarantee their
quality.

The fault of overspecification—saying too much and thereby reducing subsequent
design freedom—is less amenable to detection by these means than other kinds of
fault. Jones [Jon90, Chapter 9] gives some technical criteria for implementation bias
in model-oriented specifications, but this is generally a fault that requires judgment
and experience to evaluate—and for these reasons is one of the most common faults
observed in formal specifications, especially in those written by people whose prior
experience is mainly of programming.
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2.5.2 Fallibilities of Formal Verifications

The general arguments against formal verification can be summarized as: (1) mathe-
matical modeling cannot account for the behavior of real-world artifacts with perfect
accuracy, and therefore the whole endeavor is futile, and (2) the formal conception
of proof does not correspond to the evidence that convinces human reviewers. More
specific concerns include the possibility that formal proofs, including those checked
by machine, may be incorrect. As in the previous section, I begin with the general
arguments.

Fetzer [Fet88] observes that the behavior of computer systems in execution de-
pends on that of physical devices (the computer circuitry and, in the case of control
systems, sensors and actuators) and logical artifacts (the compiler and operating
system) whose actual operation may not match that formalized in the verification.
This is, of course, true—as it is true of all applications of mathematical modeling
in engineering, whether fluid dynamics, mechanics, or theories of combustion. Fet-
zer does not mention that similar concerns attend the fidelity of the requirements
specification at the other end of the verification.

Whether formally verified or not, a system is a designed artifact, constructed
consciously to achieve certain goals subject to certain assumptions and constraints.
The system may fail if the assumptions on which it is based, or the requirements it is
built to satisfy, prove erroneous. The only difference made by formal, as opposed to
informal verification, is that formal verification makes all the assumptions and the
requirements explicit, and provides a very strong guarantee that the design satisfies
the requirements, subject to the assumptions. It is the job of validation to provide
assurance that the requirements and assumptions accord with external reality and
expectations. Fetzer seems unaware of the concept of validation and seems to believe
that proponents of formal verification assert that it provides unequivocal “proof of
correctness” and can replace testing. He bolsters his case with selected quotations
(mostly rather old) from Hoare, Dijkstra, and others that appear to lend credence
to this claim.

As I hope the earlier sections of this report have made clear, modern concep-
tions of formal methods do not claim unequivocal “correctness” (see, for exam-
ple [Coh89b]) and, in fact, are deeply concerned with balanced, whole-lifecycle ap-
proaches to assurance. Far from ignoring assumptions about the behavior of the
physical world, formal methods help identify these assumptions more clearly, so
that they may be examined and validated—empirically, if necessary. A concept
associated with formal methods for critical systems is design for validation [JB92],
which holds that systems should be designed so that it is feasible to validate all
assumptions, and to measure all parameters, empirically. The argument for this
approach focuses on the transition probabilities of Markov reliability models, but it
is applicable to all assumptions that underlie the design of critical systems. If an
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assumption cannot be validated, or a parameter measured, in feasible time on test,
then the system should be redesigned so that it does not depend on those uncer-
tain properties. Often, this may entail use of more sophisticated reasoning. If, for
example, a fault-tolerant system is designed to tolerate specific failure modes, then
we should require quantified or analytic evidence that no other modes of failure can
occur. If it is infeasible to provide such evidence, then perhaps the system should
be redesigned so that it does not depend on those specific assumptions. Providing
and demonstrating fault tolerance in the absence of assumptions about faults is dif-
ficult (this is what Byzantine fault tolerance is all about), and it may require formal
methods to achieve an adequate level of assurance that this has been achieved.

An older argument against formal verification is due to De Millo, Lipton, and
Perlis [DLP79]. Their case is that a proof is truly an argument that convinces other
people, not the formalist conception of a sequence of inferences in some formal
system: they claim that a proof can become accepted as such only through a “social
process” of human review. There is something to this point of view (which is
primarily an argument against automated Level 3 applications of formal methods):
at the highest level the arguments that sustain a verification should be subjected
to responsible human review, not delegated to an automatic theorem prover. Few
proponents of formal methods would disagree with this, but De Millo, Lipton, and
Perlis invent a parody of their position and excoriate them for it:

“The scenario envisaged by the proponents of verification goes something
like this: the programmer inserts his 300-line input/output package into
the verifier. Several hours later, he returns. There is his 20,000-line
verification and the message ‘verified’.”

In fact, a formal verification system or, more particularly, its theorem prover
does not act as an oracle that certifies programs for inscrutable reasons, but as an
implacable skeptic that insists on its human user providing justification for every
significant step of the argument. After persuading a formal verification system to
accept a verification, at least one human—the user of the verification system—
will have achieved great insight into the arguments that sustain the proof. In my
experience, this insight is often deeper than that obtained through ordinary informal
proofs, but can be distilled into an informal proof that can be communicated to
others. Usually, this informal distillation of a formal proof is superior to an informal
proof constructed normally in its attention to details and boundary cases, and yet
is sometimes simpler, too.

So a formal verification need not usurp the social process but can enhance it,
by providing a better proof for consideration. This is important because, while the
social process may be valuable in evaluating the broad structure of an argument,
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it does not seem particularly effective at scrutinizing intricate details. It is impor-
tant to recognize that the arguments involved in verification are rather different
from those of conventional mathematical theorems, which De Millo, Lipton, and
Perlis take as their model. First, the arguments in verification are seldom intrinsi-
cally interesting, nor are the theorems proved of general interest—facts that limit
widespread participation in a social process. Second, the arguments tend to be full
of intricate detail, boundary conditions, and case analysis—the types of reasoning
where human faculties seem most fallible, and mechanical assistance most effective.

I can cite my own experience in support of these observations. The journal
proof [LMS85] that the Interactive Convergence Clock Synchronization Algorithm
maintains synchronization despite the occurrence of Byzantine faults comprises five
lemmas and a main theorem. Formal analysis, conducted by Friedrich von Henke
and myself using Ehdm, demonstrated that four of the five lemmas, and the main
theorem, were false as stated [RvH93]. As far as I know, these flaws had not pre-
viously been detected by the “social process” of refereeing prior to publication and
peer scrutiny afterwards, despite this being a frequently cited paper. Some of the
faults in the proofs are painfully obvious once they have been spotted: for example,
the problem in the main theorem is that it seeks to establish a strict inequality by
an inductive proof, but the inductive step yields only an “approximate” inequal-
ity. Another example includes a modified algorithm for interactive consistency (the
problem of distributing consistent sensor samples in the presence of faults) [TP88]
that contains an outright bug, despite a refereed and published informal proof. If
published proofs of important algorithms are inadequately checked by the social
process, how are the larger and less interesting arguments for particular systems
to be adequately examined? Barwise [Bar89b] provides a thoughtful discussion of
these and related issues raised by Fetzer and by De Millo, Lipton, and Perlis.

Even those who are undisturbed by the general arguments against formal verifi-
cation may be troubled by use of mechanical theorem provers: “what if the prover is
wrong?” is a frequently asked question. Although this concern cannot be dismissed,
I do not consider it a significant threat to the overall utility of formally checked
verification—just as concern for possible numerical inaccuracies in programs for
finite-element analysis does not prevent engineers building better and safer struc-
tures with the aid of such programs than without.

All who build and use automated theorem provers must take care to ensure the
soundness of the deductions performed, but concern should not become paranoia.
Although theorem provers are complex programs, much of their complexity is in
the search procedures that look for an appropriate deduction to apply; once such
a deduction is found, the code that applies it can be relatively straightforward. A
bug in the search procedure will affect the prover’s ability to find proofs, but not
the soundness of the proofs produced. Soundness depends on the relatively small
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part of the system that applies the rules of inference. This code can reflect quite
directly the corresponding rules of inference in the logic and is exercised with great
frequency: often there are no more than a few dozen such rules, and they are called
tens or hundreds of thousands of times in even quite modest-sized proofs. Thus,
bugs in well-designed and well-tested theorem provers tend to be found in their
search procedures, not their basic mechanisms, and consequently their failure mode
is an inability to prove true theorems, not the erroneous “proof” of false ones.

There is some design freedom in choosing the number and complexity of the
basic deductions performed by a theorem prover. Some provers are deliberately
built on very few rules of deduction, with very direct implementations, in the belief
that this is the best way to ensure their soundness:50 HOL [GM93], for example,
has only seven primitive inferences. Unfortunately, this choice eliminates decision
procedures for arithmetic and other basic theories and renders HOL and similar
systems vastly less productive for proof development than more automated systems;
to my observation, it is economically infeasible, other than in research environments,
to use systems with a very austere foundation to prove theorems of any scale or
complexity.

Those who can be satisfied only with a proof that is checked by a system such as
HOL with a very direct implementation of the rules of inference for its underlying
logic, could consider using a more automated system for a similar logic to actually
develop the proof and switch to the more “secure” system only for its final “certifi-
cation.” The UK Interim Defence Standard 00-55 [MOD91a, paragraph 32.2.3] goes
further and requires that mechanically-checked proofs should be duplicated using a
“diverse tool.” In my opinion, the resources expended on such “second opinions”
would probably be better expended on independent scrutiny of the assumptions and
modeling employed, which are rather more likely to be faulty than mechanically-
checked proofs.

The soundness of the analysis performed with the aid of a mechanized tool de-
pends on more than the basic deductions performed by the theorem prover: the
specification text must be parsed correctly, definitions must be well-formed, the
consistency of axioms must be demonstrated, and dependence on unproved lemmas
must be identified. For these reasons, de Bruijn, in his excellent paper [dB91], sug-
gests that the term “justification system” should be preferred to “proof checking sys-
tem” since “they handle much more than proofs. . . some of these systems can check

50Soundness depends on more than just the number and simplicity of the basic deductions; the
representation used for formulas of the language is also very important. In particular, nested
quantifier and other variable-binding operators (such as λ-expressions) must be handled with great
care in order to avoid “variable capture.” Experts generally favor the “de Bruijn representation”
[dB72] for this purpose, and those concerned about the soundness of the tools that they use should
inquire about the treatment of these representational issues.
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complete theories including whether definitions and axioms are well-formed. . . and
they can check relations between different theories.”

Of course, bugs in a theorem prover or justification system must be detected
by a user noticing something wrong. Some may be skeptical of a user’s ability to
notice faulty reasoning in a theorem prover, and will complain that I am guilty of a
double standard: I advocate the use of mechanically-checked proofs because human
reasoning can be unreliable, and I minimize the seriousness of bugs in the theorem
prover because the human user will catch them. This is not quite so implausible as
it may seem: if the individual inference steps are well-matched to those employed
by humans (i.e., little more detailed than the steps of a journal proof), then the user
and the theorem prover are engaged in a kind of “social process,” each checking the
other’s work.

Finally, it should be remembered that the reason for using mechanized theo-
rem proving is not to relieve human users of responsibility, but to augment their
ability to conduct arguments of great length and in extreme detail. This recogni-
tion should also guard against extravagant interpretations of terms like “formally
proved.” As noted in the introduction and explained in more technical detail in
the earlier sections of this chapter, “proof” is a technical term for a certain kind
of “logical calculation,” and does not, on its own, connote complete certainty nor
fitness for purpose. An interesting lesson in this regard can be drawn from circum-
stances attending the British Viper microprocessor. The following description is
summarized from MacKenzie [Mac91].

Viper was a microprocessor designed by an agency of the British Ministry of
Defence for safety-critical applications [Cul88]. The specification and verification of
this device used a variety of Level 1, 2, and 3 formal methods [CP85, Pyg88]. The
portions that were subjected to Level 3 analysis employed HOL [Coh88, Coh89a].
A commercial company licensed some aspects of Viper and promoted it vigorously
using claims such as “the first commercially available microprocessor with a formal
specification and a proof that the chip conforms to it.”

When a NASA-commissioned review of the Viper concluded that the Viper

had been “extensively simulated and informally checked. . . but not formally veri-
fied” [BH90, BH91] (the reviewers reserved the term “formally verified” for top-to-
bottom Level 3 applications and seemed to miss some of the pragmatic utility of
the compromises made in the Viper development), the company that had licensed
Viper technology took legal action in the British High Court, alleging that the
claim that Viper had been “proved” was negligent misrepresentation.51 Shortly

51The scientific papers describing verification of Viper are scrupulously careful to describe the
limitations of what had been accomplished [Coh88, Coh89a, Coh89b]. It seems that the plaintiffs
were unaware of these papers.
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thereafter, the company went into liquidation and dropped the case, so the court
did not have to rule on what constitutes mathematical proof.

The lesson here is that the dispute did not center on whether there was adequate
assurance that the Viper was fit for its intended (safety critical) purpose, but on
whether the particular combination of formal methods that had been applied to
it constituted “proof.” Repetition of this foolishness should be avoided. Formal
methods can provide important evidence for consideration in certification, but they
can no more “prove” that an artifact of significant logical complexity is fit for its
purpose than a finite-element calculation can “prove” that a wing spar will do its
job. Certification must consider multiple sources of evidence, and ultimately rests
on informed engineering judgment and experience.

2.6 Mechanized Support for Formal Methods

In this section I discuss the main themes and directions in the development of
support systems and tools for formal methods; I focus primarily on those intended
for Level 3 applications. This is not a survey of particular systems, and I mention
by name only a few that are representative of the main directions that I identify.
My intent is to provide information that will enable users and certifiers to calibrate
claims about the effectiveness of various approaches and to alert them to potential
drawbacks as well as advantages. The reader should beware that this section reflects
personal opinions (acquired over more than a decade spent building and using tools
for formal methods), and does not represent a consensus view.52

There can be value in applying the techniques of formal methods using just pencil
and paper (i.e., Level 1). However, larger specifications may benefit from mechan-
ical assistance. Parsing and typechecking of specifications (i.e., Level 2) generally
detects numerous small mistakes, and attempting to prove conjectured properties of
a specification usually detects many more, and deeper, errors. Proofs of properties
of specifications or implementations often involve very lengthy, detailed, and error-
prone chains of argument. Use of automated theorem provers or proof-checkers (i.e.,
Level 3) can eliminate these errors, and allows a truly exacting degree of scrutiny
that is infeasible by other means. It is through use of mechanized tools that for-
mal methods contribute most obviously to assurance for safety-critical systems—by
replacing intuition and group consensus with repeatable, checkable, analysis.

A formal specification language and its Level 3 support tools need to be grounded
on formal logic, but simply mechanizing the standard notations of logic and the
techniques of proof theory would provide utterly inadequate support for practical

52The reader should also beware that one system which receives favorable mention here (PVS) is
a product of the laboratory to which I belong, and therefore conforms to my own prejudices.
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formal methods. The formal systems of logic were developed for study, not for
use: they were designed to answer questions about the foundations of mathematics
and about their own consistency and completeness. Logicians are mostly satisfied to
show that it is possible in principle to formalize parts of mathematics in some formal
system or other, they are generally not interested in actually doing so. In formal
methods, we want to formalize concepts and undertake formal proofs in practice—a
quite different goal from that of logicians. The languages and techniques that serve
logicians are no more appropriate for formal methods in computer science than the
5-tuples of a Turing machine are suitable as a practical programming language.

Hence, the challenge in developing languages and support tools for formal meth-
ods is to create systems that draw on the soundness and other properties and tech-
niques of logic, while recasting them in a manner that allows them to be used pro-
ductively in a practical setting. In the case of language design, this means a search
for conveniently expressive notations that nonetheless have a simple foundation (in-
expressive notations lead to the “Turing Tarpit” where everything is possible, but
nothing is easy); and in the case of theorem proving, it means a search for a combi-
nation of relatively few, relatively powerful basic inference mechanisms, that can be
combined to prove useful results in a manner that is both efficient and enlightening.
Basing a theorem prover on some standard method from logic (for example, natural
deduction) is to completely miss the point: we are not interested in mechanizing
what logicians do—their systems were built for their purposes, ours need to be built
for ours. Those who believe that only by mechanizing very elementary deductive
systems can we be assured of soundness, need to face the consequence of that choice:
namely, that it will be practically or economically infeasible to mechanically verify
results of any significant interest (another variation on the Turing Tarpit: everything
is possible in principle, but almost nothing is in practice).53 The more productive
approach is to establish the soundness of the implementations of techniques that are
effective in practice.

Current verification systems represent three separate lines of development. One,
which I will call the integrated line of development, consciously attempts to inte-
grate a specification language and a mechanized theorem prover or proof checker
into a single coherent system. The integrated verification systems were the first
to be developed. Early systems of this type generally made many compromises in
order to accommodate the technological limitations of their time: for example, the
specification language was generally a fairly simple extension to first-order pred-
icate calculus (sometimes closely linked to a programming language of the Pascal
family), and the proof checker was generally fairly primitive. Early examples of inte-
grated verification systems include Affirm [GMT+80, Mus80], FDM [LSSE80, SS84],

53“Just as in algebraic calculation and in almost all forms of notation commonly used by math-
ematicians, a workable instrument is preferable to one which is theoretically more perfect but in
practice far more cumbersome.” [Bou68, page 10]
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Gypsy [GAS89, SGD88], Iota [NY82, YN85], HDM [RLS79, RL76, SLR78], and the
Stanford Pascal Verifier [ILL75, LGvH+79]. Most of these systems embodied a par-
ticular approach to formal specification and analysis (e.g., state machines in the
case of HDM and FDM, or equational specifications for abstract datatypes in the
case of Affirm), and their versatility was correspondingly limited.

The second line of development grew from theorem-proving research; the avail-
ability of effective theorem provers encouraged people to write specifications di-
rectly in the logics supported by those provers. In most cases, the logic lacked
the conveniences of a specification language (e.g., conventional syntax, computer-
science data structures, support for modular specifications), but users were willing
to trade those linguistic advantages for effective theorem-proving support. Exam-
ples of theorem provers that have been used for verification include the Boyer-Moore
prover [BM79, BM88], Isabelle [Pau88], Otter [McC90] and RRL [KZ88].

The third line of development derives from efforts to provide truly expressive and
attractive specification languages, initially without concern for their mechanization.
Examples include VDM [Jon90] and Z [Spi93]. Users found these methods and
notations helpful [Hay93, HK91] and later started developing mechanized support
for them. Initially, the support was limited to typesetting, then parsing and type-
checking were provided, and more recently support for theorem proving has been
added [BR91, Nic89]. However, the capabilities of these tools, particularly the the-
orem provers, are currently very limited, scarcely equaling those of the integrated
verification systems developed more than a decade earlier (although the languages
are much richer).

None of the lines of development described above has yet provided a totally sat-
isfactory system for formal specification and verification: the theorem-proving line
offers inadequate support for specification, the specification line offers inadequate
support for verification, and most examples in the line of integrated verification sys-
tems have been comprehensively inadequate. When and where, then, can we expect
truly effective verification systems to emerge? I roughly characterize such a system
as one that

• Supports a specification language as attractive and rich as those that have
found favor in unmechanized applications,

• Provides support tools to assist in the validation and documentation of speci-
fications, including parsing and typechecking of sufficient strictness that most
simple faults are quickly flushed out,

• Is supplied with a theorem prover or proof checker that allows conjectures
of all kinds (large, small, easy, difficult, valid and invalid) to be proved or
found in error with an efficiency at least equal to that of the best stand-alone
theorem provers.
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One school believes that bringing modern theorem-proving techniques to bear
on the specification-language line of development will produce the desired result.
As noted, these attempts have not been successful so far, and I do not think it
likely that they will be. Rich specification languages such as Z and VDM are not
particularly well-suited to mechanical analysis. Their logical foundation is axiomatic
set theory, which is an essentially untyped system. Thus, strict typechecking, which
is desirable in a system subject to mechanical analysis, has to be grafted on in
an ad-hoc and necessarily partial way [DHB91] (also recall Subsection 2.3.1.1). In
addition, there are loose ends in the semantics of these notations, which may be of
little moment when they are used quasiformally by people of good will, but which
cannot be tolerated in fully mechanized systems that relieve the user of some of the
responsibility for ensuring soundness. In Z, for example, the exact interpretation
of partial functions, and of some aspects of schemas, still seem open to debate.
Resolution of these loose ends in ways that are amenable to effective mechanical
analysis and verification is proving difficult.

Faced with the challenge of mechanizing very rich logics, those developing the-
orem provers for the specification language line of verification systems have chosen
to provide relatively little in-built automation and instead provide an interface that
allows the user to select and apply basic rules of inference and to compose these into
larger units (the theorem provers of Raise [RAISE92], the Balzac/Zola support sys-
tem for Z [Har91], and mural [JJLM91] for VDM are like this). Attractive interfaces
with multiple windows and menus have been provided and the systems are referred
to as “proof assistants,” the implication being that they actively help a human user
develop and check a proof. Some systems of this kind, for example mural, aim to
be generic with respect to the formal system they support, so that the specific rules
for reasoning about VDM (its main application) are not built in to mural, but are
loaded as a library (although the result “is not a fully-fledged support environment
for VDM” [BR91, page 387]).

The motivation behind these approaches is reasonable, but the efficiency and
power of the theorem-proving support that is achieved leaves much to be desired.
Of one small example using mural, the authors state

“the task of verifying and validating an example like the one presented
here may take an experienced user two weeks. This is not a problem
specific to mural, but is more to do with the level of detail at which one
is forced to work when doing ‘fully formal’ development” [FEG92].

I can see nothing in this example that should detain an experienced user, armed with
effective tools, for more than a few hours. A step-by-step diary of the development
of a rather more challenging—though still small—example (the correctness of a
compiler for additions and assignments) using the Boyer-Moore prover, indicates
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that it was completed in about five hours [WW93]. This seems a more reasonable
expenditure of effort, and is consistent with my own experience: theorem provers
with built-in mechanisms for automation are at least an order of magnitude more
productive than systems that lack such mechanisms.

The woeful inefficiency of the “proof assistant” type of theorem prover does not
rule out more effective automation for the specification language line of verification
systems. However, theorem proving for the rich formal systems underlying the
attractive specification languages is a challenging problem—it is no accident that the
most powerful theorem provers tend to be associated with the most restricted logics.
For example, functions are inherently partial in set theory (where they are defined as
sets of pairs), and this is inimical to efficient theorem proving. VDM, for example,
uses a nonstandard three-valued logic to accommodate partial functions [BCJ84]
and incurs the necessity to constantly discharge definedness obligations at proof
time.54 Set operations also lend themselves less well to mechanical deduction than
predicates (the comparable notion in systems built on higher-order logic).55 All of
these problems can doubtless be overcome, but there is little indication that current
work in the specification language line of development is headed in directions that
will do so.56

If the specification language line of development is not yielding truly productive
verification systems, what of the theorem-proving line? Could we not take an effec-
tive theorem prover and use its logic as a foundation for a specification language?
An obvious difficulty is that, as noted above, the most effective theorem provers are
associated with the most restricted logics (e.g., the logic of the very powerful Boyer-
Moore prover is an unquantified, highly constructive first-order logic of recursive
equations) and therefore provide the least comfortable foundation for an attractive
specification language. Conversely, the proof checkers associated with more attrac-
tive logics, such as the higher-order logic of HOL [GM93] and TPS [AINP88] are

54Cheng and Jones [CJ90] consider some of the choices among multiple-valued logics. Other
treatments of partial functions retain the standard two-valued logic, but change the interpretation
of the quantifier rules. These are described in Appendix Section A.11.2.

55There are effective theorem provers for set theory, such as Eves [CKM+91] and Ontic [McA89]
(the latter is unconventional and very interesting), but these are outside the VDM and Z tradition.

56Building a theorem prover, let alone a complete verification system, is a demanding undertaking
that poses many challenges. I know of no group that got it right on their first attempt, so a good
question to ask the purveyors of any tool is: “how many previous tools of this kind have you built,
and what was wrong with them?” At the end of a very good tutorial paper on theorem prover
design [Pau92], Paulson states: “My final advice is this. Don’t write a theorem prover. Try to
use someone else’s.” For the same reason, I encourage those who would build special-purpose tools
for their own applications to think again: before long you will find yourselves involved in language
design and implementation, and in theorem proving techniques, and you will be distracted ever
further from the problems you set out to solve. An approach that is more likely to be productive
is to collaborate with the developers of an existing tool in order to augment it to provide the
specialized analyses desired.
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not particularly powerful. Intermediate points include provers for pure first-order
logic such as Otter [McC90], and first-order equations such as RRL [KZ88].

But the main reason why pure theorem provers offer an imperfect foundation
for verification systems is that few of them have the attributes required for really
effective theorem proving in support of verification. Formal verification is a spe-
cialized application of mechanized deduction and imposes distinctive requirements
on the theorem-proving tools that support it. It is not enough simply to provide
a “powerful” theorem prover; the prover must be tailored to the requirements of
verification. My colleagues and I, and others who have undertaken substantial
verifications [SGGH91], have found not only that verification imposes specialized
requirements on a theorem prover, but that different theorem-proving requirements
emerge at different stages of a verification and that truly productive theorem proving
must support the requirements of all stages.

My experience has been that each formal verification evolves through a succession
of phases, not unlike the lifecycle in software development. I have found it useful to
identify four phases in the “verification lifecycle” as follows.

Exploration: In the early stages of developing a formal specification and verifica-
tion, we are chiefly concerned with exploring the best way to approach the
chosen problem. Many of the approaches will be flawed, and thus many of
the theorems that we attempt to prove will be false. It is precisely in the
discovery and isolation of mistakes that formal verification can be of most
value. Indeed, the philosopher Lakatos argues similarly for the role of proof in
mathematics [Lak76] (see the quotation at the head of Section 3.6). According
to this view, successful completion is among the least interesting and useful
outcomes of a proof attempt at this stage; the real benefit comes from failed
proof attempts, since these challenge us to revise our hypotheses, sharpen our
statements, and achieve a deeper understanding of our problem: proofs are
“less instruments of justification than tools of discovery” [Kle91].

The fact that many putative theorems will be false imposes a novel requirement
on theorem proving in support of verification: it is at least as important for the
theorem prover to provide assistance in the discovery of error, as that it should
be able to prove true theorems with aplomb. Most research on automatic
theorem proving has concentrated on proving true theorems; accordingly, few
heavily automated provers terminate quickly on false theorems, nor do they
return useful information from failed proof attempts. By the same token,
powerful heuristic techniques are of questionable value in this phase, since
they require the user to figure out whether a failed proof attempt is due to an
inadequate heuristic, or a false theorem.
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Development: Following the exploration phase, we expect to have a specification
that is mostly correct and a body of theorems that are mostly true. Although
debugging will still be important, the emphasis in the development phase will
be on efficient construction of the overall verification. Here we can expect
to be dealing with a very large body of theorems spanning a wide range of
difficulty. Accordingly, efficient proof construction will require a wide range
of capabilities. We would like small or simple theorems to be dealt with
automatically. Large and complex theorems will require human control of the
proof process, and we would like this control to be as straightforward and
direct as possible.

Experience shows that formal verification of even a moderately sized example
can generate many hundreds of theorems, many of which involve arithmetic.
Effective automation of arithmetic, that is the ability to instantly discharge
formulas such as

x ≤ y ∧ x ≤ 1− y ∧ 2× x ≥ 1 ⊃ F (2× x) = F (1)

(where x and y are rational numbers), is therefore essential to productive
theorem proving in this context.57 Decision procedures are known for certain
other common theories, but to be useful these need to work with each other and
with those for arithmetic in order to decide the combination of their theories.
Practical methods for doing this are known [NO79, Sho84] and are used in
some systems.

Other common operations in proofs arising from formal verification are to ex-
pand the definition of a function and to replace one side of an equation by
the corresponding instance of the other. Both of these can be automated by a
technique called rewriting . But it is not enough for a prover to have arithmetic
and rewriting capabilities that are individually powerful: these two capabil-
ities need to be tightly integrated. For example, the arithmetic procedures
must be capable of invoking rewriting for simplification—and the rewriter
should employ the arithmetic procedures in discharging the conditions of a
conditional equation, or in simplifying expanded definitions by eliminating ir-
relevant cases. Theorem provers that are productive in verification systems
derive much of their effectiveness from tight integration of powerful primitives

57The formal system known as Presburger Arithmetic, that is arithmetic with constants and vari-
ables, addition and subtraction, but with multiplication restricted to the linear case (i.e., multiplica-
tion by literal constants only), together with the relations <, >, ≤, ≥, =, and 6=, is decidable—this
means there is an algorithm that can tell whether any such expression is valid or not. Imple-
mentations for verification systems generally need to consider extensions (e.g., the presence of
uninterpreted function symbols) that are undecidable in the general (quantified) case. Restriction
to the unquantified (also called “ground”) case is often feasible, and practical decision procedures
have been developed for this case [Sho77, Sho78, Sho79] and are highly effective in practice.
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such as rewriting and arithmetic decision procedures. And the real skill in
developing such provers is in constructing these integrations [BM86]. More
visibly impressive capabilities such as automatic induction heuristics are use-
ful, but of much less importance than competence in combining powerful basic
inference steps including arithmetic and rewriting.

An integrated collection of highly effective primitive inference steps is one
requirement for productive theorem proving during the proof development
phase; another is an effective way for the user to control and guide the prover
through larger steps. Even “automatic” theorem provers need some human
guidance or control in the construction and checking of proofs. Some perform
deduction steps on direct instructions from the user (PVS [ORS92] is like this);
others receive guidance indirectly, either through the order and selection of
results they are invited to consider (the Boyer-Moore prover [BM88] is like
this), or in the form of a program that specifies the proof strategy to be used
(the “tactics” of LCF-style provers [GMW79] such as HOL [GM93] are like
this), or through the settings of various “knobs and dials” that control search
parameters (Otter [McC90] is like this). In skilled hands, any of these forms of
control can be effective, although direct instruction is the easiest to understand
(provided the repertoire of basic steps is not too large).

A large verification often decomposes into smaller parts that are very similar
to each other. For example, the top-level verification of a microprocessor
design generally divides into a case analysis that separately considers each
instruction in the order code, and many of these instructions will have much
in common with each other. Similarly, a large part of the verification of the
security or partitioning provided by an operating system reduces to showing
that each operation preserves certain properties. In these cases it is useful if
the user can develop a customized proof control “strategy” that can automate
the repetitive elements of the proof. Methods inspired by LCF-style tactics
can do this very effectively.

Presentation: Formal verification may be undertaken for a variety of purposes;
the “presentation” phase is the one in which the chosen purpose is satisfied.
For example, one important purpose is to provide evidence to be considered in
certifying that a system is fit for its intended application. I do not believe the
mere fact that certain properties have been formally verified should constitute
grounds for certification; the content of the verification should be examined,
and human judgment brought to bear. This means that one product of verifi-
cation must be a genuine proof—that is a chain of argument that will convince
a human reviewer. It is this proof that distills the insight into why a certain
design does its job, and it is this proof that we will need to examine if we
subsequently wish to change the design or its requirements. Many powerful
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theorem-proving techniques (for example, resolution) work in ways that do not
lend themselves to the extraction of a readable proof, and are unattractive on
this count.

Generalization and Maintenance: Designs are seldom static; user requirements
may change with time, as may the interfaces and services provided by other
components of the overall system. A verification may therefore need to be
revisited periodically and adjusted in the light of changes, or explored in or-
der to predict the consequences of proposed changes. Thus, in addition to
the human-readable proof, a second product of formal verification should be
a description that guides the theorem prover to repeat the verification with-
out human guidance. This proof description should be robust—describing a
strategy rather than a line-by-line argument—so that small changes to the
specification of lemmas will not derail it. The easy rerunning of proofs is es-
sential in order that incorporation of improvements and adaptation to changed
requirements or environment may be assisted, not discouraged, by investment
in an existing verification.

In addition to the modifications and adjustments that may be made to accom-
modate changes in the original application, another class of modifications—
generalizations—may be made in order to support reuse in future applications,
or to distill general principles. For example, we may extract and generalize
some part of the specification as a reusable and verified component to be stored
in a library.

The conclusion I draw from this analysis is that although there is much that must
be learned from the specification language and the theorem-prover lines of develop-
ment, truly effective verification systems require careful compromise between lan-
guage and theorem-proving conveniences and a tight integration between language
and prover. This is the path of the integrated verification systems—a line of develop-
ment whose early examples were comprehensively inadequate. Later examples such
as Eves [CKM+91], HOL [GM93], Imps [FGT93], Larch [GH93b], Nuprl [CAB+86],
PVS [ORS92], and Veritas [HDL89] have achieved much more sophisticated integra-
tion of capabilities and one or two of these systems have been proved effective on
large or difficult problems. I believe that the next generation of integrated verifica-
tion systems will provide truly productive environments for Level 3 formal methods.

This assessment of the classes of verification systems and their development is
not intended to discourage potential users of this technology, nor to suggest that only
certain approaches and systems are worthwhile; rather, it is intended to encourage a
realistic appraisal of the likely capabilities, strengths, and weaknesses of the various
approaches. Almost all tools for formal methods can be and have been used to
undertake worthwhile activities. But successful application of any tool requires
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an appreciation of its capabilities. Using one of the tools for a rich specification
language to support a Level 2 application could be very successful; using it for
heavy theorem-proving exercise will lead to disappointment. Conversely, a theorem
prover for a raw logic might dispatch a verification very efficiently, but it might not
be easy for others to understand what it is that has been verified.

Unfortunately, there are no agreed benchmarks for evaluating verification sys-
tems and their theorem provers, nor are there many cases of the same exercises
being undertaken in more than one system, so potential users must evaluate differ-
ent systems very much on their own. The evaluation should focus on the needs of
the type and the scale of application concerned: small demonstration examples and
tutorial exercises can give very misleading impressions of the capabilities required
to undertake larger examples.

Finally, note that not all applications of formal methods require a general-
purpose support tool; for some purposes, a state-exploration system, or an ex-
ecutable specification language, or an environment similar to a CASE tool with
searching and cross-reference facilities may be all that is required.

2.7 Industrial Applications of Formal Methods

Formal methods can contribute to the development of systems in two ways (and
ideally both together):

1. They can improve the development process, leading to a better product,
and/or reduced time and cost, and

2. They can contribute to the assurance and certification of a system.

Most uses of formal methods that claim success in delivering the first of these
benefits have used primarily Level 1 or 2 formal methods in the early lifecycle;
those that have aimed at the second have been primarily late-lifecycle applications
of Level 3 formal methods. In my opinion, these characteristics reflect accidents of
history, rather than guides to future action. In this section I briefly outline a few of
the documented applications and point the reader toward the articles that describe
them in detail.

A good introduction to Level 1 and 2 formal methods in industry is the pa-
per by Hall [Hal90], which is one of the very best nontechnical papers available on
formal methods. Hall cites a number of successful applications of the Z notation.
One of these, which appears in the same issue of the journal as Hall’s paper, de-
scribes use of formal methods to model oscilloscopes at Tektronix [DG90]. Unlike
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most uses of formal methods, this exercise was not concerned with a specific de-
sign, but with gaining insight into system architectures for electronic instruments.
Informally checked proofs were used to probe and challenge the formal models that
were developed. Although it is not described in the paper, it seems that the real
benefit obtained from this exercise was the capture and explicit documentation of
much scattered experience and wisdom concerning system design for oscilloscopes
(a process called “asset capture”). Tektronix apparently regards the product of this
exercise as having outstanding proprietary value.

Perhaps the most widely known successful commercial application of formal
methods is IBM’s use of Z in the development of a major new release of its transac-
tion processing system CICS [HK91]. The motivations for the use of formal methods
were to improve the quality of the product and to reduce development costs, primar-
ily by reducing the overall number of faults and by detecting the remaining faults
as early as possible in the development cycle. The new release contained 500,000
lines of unmodified code, and 268,000 lines of modified code, of which 37,000 lines
were produced from Z specifications and designs, and a further 11,000 were par-
tially specified in Z. About 2,000 pages of formal specifications were produced. The
formally specified portion of the system had fewer faults at all development stages
except the very first, and a higher proportion of its faults were detected in the
earlier stages, compared with the portion of the system that had not been formally
specified. The numbers of problems per line of code reported by customers following
release were in the approximate ratio 2: 5 for the formally specified and nonformally
specified portions of the system. It was estimated that use of formal methods re-
duced costs for that portion by 9%. The formal specifications were subjected to
formal inspections. A tool for parsing, typechecking, and cross-referencing Z speci-
fications became available halfway through the project and markedly increased the
productivity of the specifiers and inspectors.

Other similar examples include the use of formal methods by the semiconductor
manufacturer Inmos in the development of a floating point unit for the T800 Trans-
puter [Bar89a]. It was estimated that use of formal methods enabled the chip to be
developed in less than half the time that would have been required for traditional
methods. Furthermore, faults were found in the IEEE floating point standard and
in other implementations used for back-to-back testing. Industrial applications of
the Cleanroom methodology are described by Dyer [Dye92], while industrial use of
VDM is considered by Plat [Pla93].

Fenton [Fen93] excoriates the claims of improved quality and reduced cost made
in many of the references cited above, and also the attribution of these to formal
methods. He argues that the data collected are so poorly controlled that they provide
anecdotal evidence, at best, for the efficacy of the methods concerned. For example,
skeptics might wonder whether the formal inspection process (or the fact that the
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developers were working on a second version of the system) might have contributed
as much to the success of the CICS project as the use of formal methods.

A rather different criticism of claims made on behalf of formal methods con-
cerns the British Viper microprocessor. The controversy surrounding this was
described in Section 2.5.2, but the salient point is that although the person who
performed the HOL verification was scrupulously careful to explain what had been
accomplished [Coh89b], some of the marketing material for Viper made rather
extravagant claims, suggesting that the device had a complete formal verification
from the specification of its external behavior down to its gate-level design. This
was rightly condemned in a report on the verification of Viper commissioned by
NASA [BH90, BH91].

The Viper story repeats, to an uncanny degree, some of the failings of the
SIFT project of a decade earlier. SIFT (Software Implemented Fault Tolerance)
was originally a systems design and implementation project whose goal was to de-
velop a fault-tolerant computer of sufficient reliability for fly-by-wire passenger air-
craft [WLG+78, Gol87]. Prior to SIFT, the units of redundancy in fault-tolerant
systems were generally components or functional blocks, not full computer channels
(the IBM Launch Vehicle Digital Computer for the Saturn V rocket [Tom87, page
212] is a classic example). SIFT took a radically different approach: running iden-
tical software in separate, synchronized channels, and subjecting the results to ma-
jority voting in order to mask faulty channels. While attempting to develop the
justification for the SIFT approach, Pease, Shostak, and Lamport (exploring intu-
itions described by NASA personnel) realized that there were fault modes in the
distribution of single source data that could not be overcome by simple majority
voting. Thus was the whole field of Byzantine agreement born [PSL80, LSP82].

When SIFT was well underway, a new project was started to apply formal ver-
ification to some aspects of the SIFT architecture. After several years, a formal
specification and verification of some aspects of the fault-tolerance mechanisms of
an abstraction of the SIFT architecture were developed. Another piece of work ver-
ified some pieces of code that resembled (small) parts of the SIFT operating system.
However, the design and construction of the SIFT system, and of its code, were con-
ducted entirely separately from its verification. What ran was not what was verified.
It is not clear what relationship, if any, existed between the actual SIFT system and
the abstractions that were subjected to verification. The papers that described the
SIFT verification did not make this clear: they gave the impression that what had
been verified was an actual flight-control system: “the formal proof, that a SIFT
system in a ‘safe’ state operates correctly despite the presence of arbitrary faults,
has been completed all the way from the most abstract specification to the Pascal
program” [MSS82]. A peer review convened by NASA to examine the substantia-
tion for these claims found them unwarranted: “Many publications and conference
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presentations concerning SIFT appear to have misrepresented the accomplishments
of the project. In many cases, the misrepresentation stems from omission of facts
rather than from inclusion of falsehood. . . Several panel members expressed serious
concerns regarding both the possible effects of such misunderstandings on those
seeking to apply the work and the reactions that might follow the discovery that
the work had been overstated.” [NAS83, page 24].

“Those who cannot remember the past are condemned to repeat it”
[George Santayana]

One would hope that the lessons of SIFT and Viper would remove any temp-
tation to overstate the accomplishments of formal methods. Yet even in 1992 one
could find a paper bearing the title “Formal Verification of a Fault Tolerant Com-
puter” [BJ92] that describes work which, whatever its merits, amounts to rather less
than is claimed by its title. In my opinion, the enthusiasm of the formal methods
community for its own accomplishments should be tempered by a rather greater
respect for the scale of the challenges faced by those who develop and certify real
safety-critical systems.

Formal methods in support of certification have been mainly undertaken in the
United States and in order to qualify for the government’s highest (A1) rating for
secure computer systems [DoD85]. The criteria against which these evaluations are
performed were drawn up in the early 1980s and based on concepts for secure systems
that were a good deal older than that [BL76]. The criteria require Level 3 verifi-
cation using either Gypsy [GAS89] or FDM [LSSE80, SS84] (HDM [Fei80, RLS79]
and its variants [HOPW87] were also used in the early days)—all tools with their
roots in the 1970s. The tools, evaluation criteria, and contractual mechanisms
that were imposed sometimes had the effect of divorcing the formal specification
and verification activities from the main development efforts. Nonetheless, several
substantial projects were completed, and some significant flaws were apparently
detected and corrected by these means [Sil83, Lin88, Wei88]. Some of these verifi-
cations were quite large: the proof logs for 461 lemmas undertaken for one project
totalled nearly 18 million characters and would have occupied 7,600 pages if printed
out [DGK+90]. The verification of a secure system called “Multinet Gateway” is
one of the case studies described in a recent survey of industrial applications of for-
mal methods [CGR93b] (summaries appear in [CGR93a, GCR93]). In the following
paragraphs I will mention three other cases covered in that study; readers should
consult the study report for more details.

Darlington is a nuclear power station under development on a site east of
Toronto. Each reactor has two independent shutdown systems, which are among the
first such systems to employ software. When the plant was almost ready to come
on line, the regulatory body (Atomic Energy Control Board of Canada) became
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very concerned about assurance for the shutdown software. Eventually, this led to
retroactive application of formal methods in order to document and analyze the
shutdown code [AHW+90]. The methods used were derived from the A7 method-
ology [H+78], and were performed almost entirely by hand. (A spreadsheet was
used to record the “function tables.”) Parnas [Par93] exhibits some simple theo-
rems that are “more difficult than the majority of the theorems that arose in the
documentation and inspection of the Darlington Nuclear Plant Shutdown Systems.”
(See [RS93] for automated proofs of these theorems.) He also exhibits the function
tables that gave rise to those example theorems and states that the Darlington
exercise “resulted in about 40 kg. of such trivial tables.” The overall cost of the
Darlington shutdown computer systems (including hardware) was about $16 mil-
lion (Canadian). Of that total, 25% was spent on the verification effort. The code
concerned was 1,362 lines of Fortran and 1,185 lines of assembler. Being required
to delay operation of the plant and to undertake a formal methods effort unexpect-
edly at a time when interest charges were costing the project $20 million a month
was “upsetting to the nuclear industry” and “resulted in considerable unfavorable
publicity to the project as well as enormous additional cost” [Cra92].

A rather happier “reverse-engineering” of formal specifications occurred on the
SACEM project for one line of the commuter train network in Paris [GH90]. Initially,
pre- and post- conditions and loop invariants were derived for the program code from
its informal design documentation, and Hoare-style code verification was performed
by hand. Later, an after-the-fact formal specification (it is called a “formal re-
expression”) was constructed in order to validate the theorems that had been proved.
Review of the formal specification “was not particularly easy because some of the
best signaling experts were not able to read mathematical material. . . for this reason
the re-expression team rewrites separately and directly from the formal specification
a complete natural language specification. It is this last specification which has been
checked by [signaling] experts. . . doing formal specifications forced the specification
teams to clarify everything and to go deeper into the real nature of the problem
to be solved” [GH90, page 191]. The total code was 21,000 lines of Modula-2, of
which 63% were considered safety-critical and subjected to formal specification and
verification. The V&V activity for SACEM required 315,000 hours of effort (i.e.,
rather more than 150 man-years, which was about 1.5 times the effort to develop the
system), of which formal proof consumed 32.4%, module testing 20.1%, functional
testing 25.9%, and formal re-expression 21.6%. For the on-board component of
the system, 111 of 180 procedures were formally proved, while for the trackside
component 21 of 167 procedures were formally proved. The developers of SACEM
have subsequently refined their formal development methodology (it is derived from
the “B Method” of Jean-Raymond Abrial [ALN+91]) and have partial automated
some of the proof-generation and checking [Cha92]. The method is being applied to
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a project for the Calcutta subway and is being proposed for a new driverless train
for the Paris Metro.

Another project where formal specification has apparently led to improved un-
derstanding concerns the Traffic Alert and Collision Avoidance System (TCAS II),
which is required to be installed on all airline aircraft with more than 30 seats by 31
December 1993. The purpose of the TCAS family of instruments (of which TCAS
II is a member) is to reduce the risk of midair collisions between aircraft. As a
result of the discovery of flaws in the “Minimum Operational Performance Stan-
dards” [RTCA89] which is essentially a pseudo-code description of TCAS II require-
ments, the RTCA formed a special committee (147A) to develop a new specification
and, ultimately, commissioned Nancy Leveson (then at the University of California
at Irvine, now at the University of Washington) to develop a formal specification.
Leveson’s specification is based loosely on statecharts [Har86]; it represents decision
logic in a tabular manner and is carefully typeset and presented. In my terminol-
ogy, it represents a sophisticated Level 1 formal method. Reviewers, who include
engineers and pilots, consider the formal notation better than the pseudocode and
certainly better than the English language specification that was developed in paral-
lel. No tools were used in the development of the formal specification. Even without
using analysis tools, there appears to have been a general increase in confidence and
understanding of the TCAS requirements.

At the other extreme from TCAS are projects involving state-exploration
methods—where powerful tools are of the essence. Protocol verification has been a
fruitful target for these techniques; errors have been discovered in the very impor-
tant and subtle cache-coherence protocols used in shared-store multiprocessors, and
some have been formally verified in this way [DDHY92, CGH+92, MS91]. AT&T’s
COSPAN system [HK90] has been used in the design of several significant VLSI
devices, with major reductions in the effort required (one project that was esti-
mated to require 30 man-years using conventional methods was completed in 6
using COSPAN). In addition, faults have been detected in certain protocols and
devices that had been subjected to very thorough conventional analysis (one had
been simulated for 13 months with no errors detected in the last 4; COSPAN found
a “showstopper” fault almost immediately). Intel apparently uses a system similar
to COSPAN to probe some of the trickier design problems in its advanced micro-
processors. It is interesting to note that whereas conventional formal methods are
often applied to simple problems such as sequential code and the datapaths of VLSI
devices, state-exploration is often applied to the very hardest problems: protocols
and other distributed algorithms, and to control-dominated devices.

Although hardly an industrial activity, the products of a research program
sponsored by NASA Langley Research Center are worth mentioning here since
they are among the few examples where formal methods have been applied to
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problems taken directly from avionics applications. The program has undertaken
mechanically-checked formal verification of the basic algorithmic and architectural
aspects of synchronous fault-tolerant systems [BCD91], including their global fault-
masking and transient-recovery properties [DB92, Rus93], and the crucial clock-
synchronization [RvH93, Sha92] and sensor-distribution [BY92, LR93a] algorithms
and their implementations [SB91, SB92]. In addition, some Ada library routines
have been subjected to mechanically-checked program verification [EH93]. Current
work involves collaborative projects between organizations with specialist skill in for-
mal methods (Computational Logic Incorporated, ORA, and SRI International) and
several aerospace companies (Allied Signal, Boeing, Honeywell, IBM, and Rockwell-
Collins).

Another documented example of formal methods applied to an avionics problem
involved use of the Lotos languages and tools to specify and model software for
the Flight Warning Computer (FWC) of the Airbus 330 and 340 aircraft [GH93a].
The goal of the project, which was undertaken by Aerospatiale, INRIA, CEAT (the
French certification authority), and British Aerospace, was to see whether formal
processes could significantly reduce development costs for avionics software. The
planned development process was to write the detailed design in an executable
specification language, assess its correctness by formal verification, and then gener-
ate executable code directly from the formal design. Assuming this last step were
performed by a verified compiler, unit test could be eliminated, thereby achieving
large cost savings. The specification language chosen for the exercise was Lotos,
which is an ISO standard notation (based on process algebra with an algebraic
datatype facility) intended for specification and analysis of telecommunications pro-
tocols [ISO88]. The FWC was chosen as a test case since it is representative of the
type and complexity of many other airborne systems, and because it had already
been implemented—thereby providing a base for comparison (and a debugged set
of requirements).

The FWC is a distributed system composed of three Intel 80386 CPUs, with
software programmed in Ada, PL/M, and assembler. Its purpose is to monitor inputs
from several analog, discrete, and digital input sources, check them for validity
(these are the functions of CPU 1), identify alarm conditions and post these to the
Display Management Computer (these are the functions of CPU 2; essentially it
simulates a large combinational Boolean circuit, reducing 11,000 possible signals to
2,000 possible alarms, and then executes “complex and imperative rules” to select
and organize presentation of the alarms). CPU 3 is used to generate audible alarms
and synthesized speech.

It was found that 95% of the design specification for the FWC comprised descrip-
tions of data structures and sequential algorithms. The data structures concerned
were those of a typical programming language (enumerations, records, arrays) plus
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“memories,” which model the I/O and communications resources of the FWC. The
datatype facility of Lotos was inconvenient for these purposes, so a preprocessor
was written to “compile” these structures into the recursive equational form re-
quired by Lotos. (At least two other such preprocessors were later discovered to
have been developed elsewhere in Europe). Similarly, the constructs required for
the sequential algorithms executed by the CPUs were those of a typical program-
ming language (if, case, while, for etc.) and, again, the facilities of Lotos did
not provide particularly convenient expression for these concepts (they had to be
encoded in terms of guarded commands, recursion, and sequential composition).

The remaining 5% of the design specification concerned real-time aspects, and
these could not be expressed in Lotos since it lacks the concept of an urgent action
(the nearest equivalent is nondeterministic, which is unacceptable in airborne appli-
cations). Consequently, the real-time aspects of the design were specified as timing
diagrams (and would have been translated into Ada by hand if the experiment had
been completed).

The design description for the FWC comprised over 27,500 lines of Lotos (a
total of 43,021 lines were written when the preliminary design is included). It was
observed that the Lotos specification for CPU 2 was approximately the same size
and level of abstraction as the existing Ada code. However, about 30% greater
effort was required to develop the Lotos specifications than the Ada code (some
of this was expended on tool development), and it took longer to debug the Lotos

specifications than the Ada code (since the Lotos diagnostics were insufficiently
explicit).

The Lotos design specifications of the FWC were too large to be processed by
the available formal verification tools. Consequently, the specification was validated
by simulation and testing. A special-purpose program was written to check for
nondeterminism (this seems to have been a simulator, driven by specific test data,
rather than a model checker to detect all nondeterminism). C code was compiled
from the Lotos design specification and subjected to a number of tests; the va-
lidity of the output behavior was determined visually by an Aerospatiale engineer.
Several faults were detected in the Lotos specifications by this means. The C code
generated from the specifications for CPUs 1 and 2 compiled into an object program
of 2.5 Mbytes that was able to process a set of input data “in some minutes” on a
Sparc 10. (The size and performance of the existing Ada code is not documented,
but the frame rate of the FWC is stated as 480 msec.) Due to lack of time, CPU 3
was not analyzed.

It is argued that because of the particularly simple, deterministic, character of
the computations performed by CPU 1 and CPU 2 (basically, straight-line com-
putations), formal verification, simulation, and testing all coincide. Thus, “it was
not necessary to use sophisticated verification tools . . .which are intended to [sic]
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the verification of complex systems, where concurrency and nondeterminism play
an important role.”

The lessons of the industrial applications of formal methods described in this
section are mixed. The applications where formal proofs were performed on de-
tailed designs or code (Darlington and SACEM) were from industries with little
prior experience of safety-critical software, and which lacked the established require-
ments and practices for stringent software quality assurance found in the aerospace
industry.58 It is debatable whether the formal methods concerned would add much
to the assurance currently achieved for flight-critical software. The relevance of the
relatively simple, small, sequential (and largely loop-free) systems of Darlington and
SACEM to the far greater size and complexity of flight-control systems (which are
generally measured in hundreds of thousands of lines of code and are replete with
the challenges of fault tolerance and of distributed, concurrent processing) is also
questionable.59

For similar reasons, the cost and quality improvements found in applications
such as CICS are of limited relevance to airborne software: formal methods may
improve the development process for commercial data processing, but evidence that
would translate to increased assurance for safety-critical functions is slight.

The TCAS experiment seems more encouraging: well-chosen and well-presented
formalized notations can apparently improve the review and inspection process
(SACEM has similar elements). Experience with COSPAN and similar systems
is also promising, suggesting that state-exploration methods can find bugs in com-
plex systems that have gone undetected by other methods (similar experience is also
reported by the NASA program using conventional theorem proving).

Finally, the experiment involving the Airbus 330/340 flight warning computer
serves as a salutary lesson in the misapplication of formal methods: choosing an
inappropriate goal, selecting unsuitable formal languages and techniques, targeting
a problem too large for the available tools, or too simple for them to be of much
value, are all good ways to vitiate any potential benefits of formal methods.

We should bear these lessons in mind when we consider the role of formal meth-
ods in validation of airborne systems.

58I understand that formal methods were required for Darlington only after the developers had
been unwilling or unable to perform more traditional processes for software assurance to the satis-
faction of the regulatory authorities.

59With few exceptions [AN89, CV91], digital railroad switching and train control does not use the
redundant channels of flight-control systems (perhaps because there is a safe state: stop the train).
Instead they use single processors with extensive self-checks, redundant computations, and error
correcting codes (the terminology is of “vital” systems and “coded processors”) that are intended
to make for fail-safe operation [Mon92, Mar92, Pat92, Hol86, HB86, Rut90].
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2.8 Further Reading

In this section I mention some books that may be useful for those who wish to learn
more about formal methods and related topics.

Logic and discrete mathematics provide the basis for formal methods and I
recommend the text by Gries and Schneider [GS93] as the best introduction to
these topics for those who wish to use them as tools in computer science. Those
who seek an introduction or refresher on the construction of traditional (i.e., not
specifically formal) mathematical proofs are recommended to consult Solow [Sol90].
Lakatos [Lak76] provides a thoughtful examination of the role of proof in mathe-
matics, much of which also applies to formal methods in computer science.

The standard notation and constructions of logic and discrete mathematics, and
the traditional mathematical conception of proof, are sufficient to undertake formal
methods with the rigor that I call “Level 1.” Moving beyond this, to the second level
of rigor, we find self-contained specification languages, and more structured treat-
ments of proof obligations, and (sometimes) of proofs themselves. Unfortunately,
I have found no books that can be recommended unreservedly as good general in-
troductions to this level of formal methods. Many of the current texts on formal
methods are from the United Kingdom and generally introduce formal methods in
the style of Z or VDM with no discussion of alternatives or drawbacks. They also
tend to stress data structures and applications that resemble data processing; they
are weak on the kinds of problems that give most concern in safety-critical systems,
fail to address adequately the need to validate complex specifications, and make lit-
tle reference to automation and mechanized proof checking. With those caveats, the
texts by Ince [Inc88] and by Woodcock and Loomes [WL89] can be recommended
as introductions to the use of mathematical concepts in specification, in the style
of VDM and Z, respectively, while Cohen, Harwood, and Jackson give a brief and
fairly general overview of formal specification techniques [CHJ86].

A book explicitly intended as an introduction to Z is that by Words-
worth [Wor92], while Spivey’s texts are the standard descriptions of Z [Spi93, Spi88].
A collection of case studies undertaken in Z has been published by Hayes [Hay93]
(a new edition is due shortly), and a more eclectic collection (using other nota-
tions such as Lotos) by Scharbach [Sch89]. VDM is introduced by Jones [Jon86,
Jon90], and the somewhat related RAISE languages and tools by George and col-
leagues [RAISE92].

Formal methods supported by automated tools, and especially those that provide
proof checking or theorem proving for the third level of rigor, are generally described
in books that are specific to individual systems. The HOL system, which is a the-
orem proving environment for higher-order logic, is described by Gordon and Mel-
ham [GM93]. LCF (the progenitor of HOL) is described by Paulson [C.P87], while
the mural proof assistant (whose main application is VDM) is described in [JJLM91].
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Returning to the United States, the ANNA annotation language for Ada is
described in [Luc90], the Larch languages and tools in [GH93b], and the Cleanroom
methodology in [Dye92]. The Nuprl system is described in [CAB+86], the Boyer-
Moore prover in [BM79, BM88], and ONTIC in [McA89].

A modern introduction to the basics of theorem proving is given by Paul-
son [Pau92]; an older but still useful account is given by Bundy [Bun83]. Connections
between specification and prototyping are explored by Hekmatpour and Ince [HI88]
(using VDM), by Alexander and Jones [AJ90], and by Henderson [Hen93].

Many of the books cited above describe formal methods and tools that could
be considered (by their authors at least) to be “ready for use.” Those who wish
to explore more widely should examine some of the classic texts, such as those of
Dijkstra [Dij76] (the debate [Dij89] is particularly accessible) and Hoare [Hoa85,
Hoa89] on mathematical approaches to computer programming, and should also
seek out current research articles on the formal modeling of concurrency, real time,
and fault tolerance.

Safety critical systems, with passing mention of formal methods, are considered
by Pyle [Pyl91], and jet engine control, also with some mention of formal methods,
by Thompson [Tho92]. A collection edited by Sennett [Sen89] provides more ex-
tended treatment of formal methods in the context of safety-critical systems. The
compendium edited by McDermid [McD93] contains good short survey treatments
of a number of relevant topics, including formal methods, background mathemat-
ics, safety, and management. All of these books are from the UK and reflect that
perspective.

Those seeking a technical introduction to logic should examine Barwise [Bar78],
Hodges [Hod83], or Ryan and Sadler [RS92]. Manna and Waldinger provide an
introduction to logic that is explicitly intended for computer scientists [MW93].
Many other books on logic are mentioned in the Appendix.

Those considering the issues of transferring formal methods from research to
practice may wish to consult Austin and Parkin [AP93], who analyze 126 ques-
tionnaires returned by organizations, mostly in the UK, on industrial use of formal
methods. Good accounts of the general problems of technology transfer are given
by Davis [Dav92] and by Potts [Pot93]. Systems engineering for computer-based
systems is the focus of a recent study group report [WAH+93].



Chapter 3

Formal Methods and Digital

Systems Validation

“Are we just going to happily scale up from system sizes in which you
can contemplate the whole system in front of you? A system that is small
enough that you can contemplate it in your head and have some idea of
what is going on in it. What happens as we go to systems that are beyond
the easy scope of an individual imagination, beyond the easy scope of a
single programmer running one single set of programs that that program-
mer can examine? What happens when it gets bigger than that?. . .We
abstract certain things. We aggregate parts of it and say: ‘Now we have
a model.’ When we analyze the model, we will in some sense understand
and have analyzed the thing itself. . .What is the nature of verifiability
when you say ‘I have a model and it describes what the object will be
like’—especially if it is a very complicated object so that testability is not
a very easy thing to do? . . .When we build things, how are we sure that
the model we have abstracted from the reality. . . is a good enough model to
enable us to find all those peculiarities? How are we going to do enough
testing so we know that some of those peculiarities (that we think are
well outside the operating range) don’t turn out to be inside the operat-
ing range for some strange operating configuration somebody is bound to
try when you have 1011 tries a year, and which you can’t find when the
test program has 103 or 104 tries per year. . .We can, I’m sure, succeed
in finding statistical methods to assure us that on the whole, everything
is all right. The bad cases are well out at the edge, and they are improb-
able; while in the region of the mean, or average behavior, everything is
fine. I must remind you, however, that disaster does not occur in the
mean. Disaster always occurs in the variance. That’s where the problem
is: where something unanticipated and unanticipatable happens.” From
a speech by former NASA Administrator Robert Frosch [Fro85].

107
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The more severe classes of aircraft failure conditions must be extremely rare. In
particular, system failures that could lead to a catastrophic failure condition must
be “extremely improbable,” which means that they must be “so unlikely that they
are not anticipated to occur during the entire operational life of all airplanes of one
type” [FAA88, paragraph 9.e(3)]. “When using quantitative analyses. . . numerical
probabilities. . . on the order of 10−9 per flight-hour1 may be used. . . as aids to en-
gineering judgment. . . to. . . help determine compliance . . .with the requirement for
extremely improbable failure conditions” [FAA88, paragraph 10.b].2

Clearly, software components of systems that have the potential for catastrophic
failure conditions must have low probabilities of anomalous behaviors, but this does
not mean that the software need have a reliability of 1 − 10−9: it may have much
lower reliability provided its failures do not contribute to serious failure conditions.
However, it does mean that software failures or anomalies that can lead to seri-
ous failure conditions must be extremely rare, and that strong assurances must be
provided that they are so. In this chapter, I consider how such assurances can be
provided for software (and custom digital devices such as ASICs, which have sim-
ilar characteristics to software), and examine the potential contributions of formal
methods.

3.1 Background to Assurance

Requirements and considerations for certification of software in airborne sys-
tems are described in FAA Advisory Circular 25.1309-1A [FAA88] and in DO-
178B [RTCA92], which is incorporated by reference into the former document
(see [FAA93], part of which is reproduced in Section 3.2). However, in order to
best understand the potential contributions of formal methods, it is first necessary
to examine the intellectual basis for assurance of safety-critical software.

The general approach to development and certification of safety-critical systems
is grounded in hazard analysis. Potential hazards (conditions that can lead to an
accident) are identified and analyzed for risk (the combination of severity and like-
lihood). Unacceptable risks are eliminated or reduced by respecification of require-
ments, redesign, incorporation of safety features, or (as a last resort) incorporation
of warning devices.

The criticality of a particular component or system is a measure of the severity
of the possible effects that could follow from failure of that component or system.

1Justification for this number was given in the Note on Terminology on page 4.
2In Europe, certification is performed by the Joint Airworthiness Authority (JAA) which was

set up in 1988 by the individual authorities of France, Germany, The Netherlands, and the United
Kingdom. The requirements and documents of the JAA parallel those of the FAA. In particular,
the material just quoted from FAA Advisory Circular 25.1309A [FAA88] is also present in the JAA
“Advisory Material–Joint” document AMJ 25.1309.
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Failure includes the possibility of performing functions incorrectly, or performing
unintended functions, as well as the loss of intended functions. Design alternatives
are explored in order to reduce the number of critical components and systems,
and their degree of criticality. The degree of criticality associated with a particular
component or system determines the degree of assurance that should be provided for
it: a system whose failure could have grave consequences will be considered highly
critical and will require very strong assurances that its failure will be extremely
improbable.

Failures can be random or systematic; the former are due to latent manufactur-
ing defects, wear-out and other effects of aging, environmental stress (e.g., single-
event upsets caused by cosmic rays), and other degradation mechanisms that afflict
hardware components, while the latter (which are sometimes called generic faults)
are due to faults in the specification, design, or construction of the system. The
probability of random failure in a system can be measured by sufficiently extensive
and realistic testing, or (for suitably simple systems) it can be calculated from his-
torical reliability data for its component devices and other known factors, such as
environmental conditions. Classical fault-tolerance mechanisms (e.g., n-modular re-
dundancy, stand-by spares, back-up systems) can be used to reduce the probability
of system failure due to random component failures to acceptable levels, though at
some cost in system complexity—which is itself a potential source of (systematic)
design faults.

Systematic failures are not random: faults in specification, design, or construc-
tion will cause the system to fail under specific combinations of system state and
input values, and the failure is certain whenever those combinations arise. But
although systematic failures occur in specific circumstances, occurrences of those
circumstances are associated with a random process, namely, the sequence over
time of inputs to the system.3 Thus, the manifestations of systematic failures be-
have as stochastic processes and can be treated probabilistically: to talk about a
piece of software having a failure rate of less than, say 10−9 per hour, is to say
that the probability of encountering a sequence of inputs that will cause it to ex-
hibit a systematic failure is less than 10−9 per hour. Note that this probabilistic
measure applies whether we are talking about system reliability or system safety;
what changes is the definition of failure. For reliability, a failure is a departure
from required or expected behavior, whereas for safety, failure is any behavior that
constitutes a hazard to the continued safe operation of the airplane. This, appar-
ently small, difference between the notions of reliability and safety nonetheless has
a profound impact on techniques for achieving and assuring those properties.

First, although there may be many behaviors that constitute failure from the
reliability point of view, there may be relatively few that constitute safety failures—

3Its environment—the states of the other systems with which it interacts—is considered among
the inputs to a system.
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especially of the higher severity classes. Thus, whereas reliability engineering seeks
to improve the quality of the system in general, safety engineering may prefer to
concentrate on the few specific failures that constitute major hazards; at the risk
of reducing these complex issues almost to caricature, we could say that reliability
tries to maximize the extent to which the system works well, while safety engineering
tries to minimize the extent to which it can fail badly.

Second, techniques for improving reliability naturally deal first with the major
sources of unreliability: that is, the most frequently encountered bugs get fixed first.
There is a huge variation in the rate at which different faults lead to failure, and
also in the severity of their consequences. Currit, Dyer, and Mills [CDM86] report
data from major IBM systems showing that one third of the faults identified had
a mean time to failure (MTTF) of over 5,000 years (and thus have an insignificant
effect on overall MTTF), and a mere 2% of the faults accounted for 1,000 times
more failures than the 60% of faults encountered least often. Reliability-based ap-
proaches would concentrate on detecting and removing the faults that contribute
most to unreliability (indeed, the cited data are used by Currit, Dyer, and Mills
to demonstrate that random testing would be 30 times more effective than struc-
tural testing in improving the reliability of the systems concerned). The most rarely
encountered faults can therefore hide for a long while under a testing and repair
regime aimed at improving reliability—but if just one or two rare faults could lead
to catastrophic failure conditions, we could have a reliable but unsafe system.4 Data
cited by Hecht [Hec93] indicates that such rare faults may be the dominant cause
of safety- and mission-critical failures.

Third, the reliability-engineering approach can lead to concentration on the re-
liability of individual components and functions, whereas some of the most serious
safety failures have been traced to poorly understood top-level requirements and
to unanticipated subsystem interactions, often in the presence of multiple failures
(Leveson [Lev86] quotes some examples and, although it does not concern software,
Perrow’s classic study [Per84] is still worth examination).

Elements of both the reliability and safety engineering approaches are likely to
be needed in most airborne systems: although a reliable system can be unsafe,
an unreliable system is unlikely to be safe in these applications. (Primarily because
there are few safe failure modes in flight-control applications. This can be contrasted
with nuclear power generation, where a protection system that shuts the reactor
down unnecessarily may be unreliable, but perfectly safe.)

Just as the subtly different characteristics of reliability and safety lead to differ-
ences in methods used to achieve those properties, so they also lead to differences in
their methods of assurance. Both reliability and safety are measured in probabilistic

4With 500 deployed systems, a single serious fault with a MTTF of 5,000 years could provoke
several catastrophic failure conditions over the lifetime of the fleet.
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terms and can, in principle, be assessed by similar means. However, the numerical
requirements for safety in airborne systems are orders of magnitude more stringent
than those normally encountered for reliability. Systems designated “highly reli-
able” may be required to achieve failure rates in the range 10−3 to 10−6 per hour,
whereas requirements for safety often stipulate failure rates in the range 10−7 to
10−12 per hour.5 I will speak of required failure rates of 10−7 to 10−12 per hour as
the “ultra-dependable” range, and will talk of such systems as “ultra-dependable.”
Bear in mind that these probabilities generally refer only to the incidence of safety-
critical failures, and not to the general reliability of the systems concerned, and are
assessed on complete systems—not just the software they contain.

The change in acceptable failure rates between highly-reliable and safety-critical
systems has such a profound impact that it goes beyond a difference of degree and
becomes a difference in kind: the reason being that it is generally impossible to
experimentally validate failure rates as low as those stipulated for safety.

There are two ways to estimate the failure rate of a system: the experimental
approach seeks to measure it directly in a test environment; the other approach
tries to calculate it from the known or measured failure rates of its components,
plus knowledge of its design or structure (Markov models are often used for this
purpose).

The experimental approach faces two difficulties: first is the question of how
accurately the test environment reproduces the circumstances that will be encoun-
tered in operation; second is the large number of tests required. If we are looking
for very rare failures, it will be necessary to subject the system to “all up” tests
in a highly realistic test environment—installed in the real airplane, or very close
facsimile (e.g., an “iron bird”), with the same sensors and actuators as will be used
in flight. Furthermore, it will clearly be necessary to subject the system to very
large numbers of tests (just how large a number is a topic I will come to shortly)—
and if we are dealing with a control system, then a test input is not a single event,
but a whole trajectory of inputs that drives the system through many states.6 And
since we are dealing with a component of a larger system, it will be necessary to
conduct tests under conditions of single and multiple failures of components that

5Nuclear protection systems require a probability of failure on demand of less than 10−4 [LS93];
failures that could contribute to a major failure condition in an aircraft require a failure rate less
than 10−5 per hour [FAA88, paragraph 10.b(2)]; the Advanced Automation System for Air Traffic
Control has a requirement for less than 3 seconds unavailability per year (about 10−7) [CDD90];
failures that could contribute to a catastrophic failure condition in an aircraft require a failure rate
less than 10−9 per hour [FAA88, paragraph 10.b(3)]; controllers for urban trains must have failure
rates lower than 10−12 [LS93].

6The key issue here is the extent to which the system accumulates state; systems that reinitialize
themselves periodically can be tested using shorter trajectories than those that must run for long
periods. For example, the clock-drift error that led to failure of Patriot missiles [GAO92b] required
many hours of continuous operation to manifest itself in a way that was externally detectable.



112 Chapter 3. Formal Methods and Digital Systems Validation

interact with the system under test. Obviously, it will be very expensive to set up
and run such a test environment, and very time-consuming to generate the large
and complex sets of test inputs and fault injections required.

So how many tests will be required? Using both classical and Bayesian proba-
bilistic approaches, it can be shown that if we want a median time to failure of n
hours, then we need to see approximately n hours of failure-free operation under
test [LS93].7 So if we are concerned with catastrophic failure conditions, we will
need to see 109 failure-free hours of operation under test. And 109 hours is a little
over 114,000 years! 8

To reduce the time under test, we could run several systems in parallel, and we
could try “accelerated testing,” in which the inputs to the system are fed in faster
than real time and, if necessary, the system is run on faster hardware than that which
will be used in actual operation. (This naturally raises questions on the realism of
the test environment—particularly when one considers the delicacy of timing issues
in control systems.9) But at best these will reduce the time required by only one or
two orders of magnitude, and even the most wildly optimistic assumptions cannot
bring the time needed on test within the realm of feasibility. Similarly, quibbles
concerning the probability models used to derive the numbers cannot eliminate
the gap of several orders of magnitude between the amount of testing required to
determine ultra-dependable failure rates experimentally, and that which is feasible.

The analyses I have considered so far assume that no failures are encountered
during validation tests; any failures will set back the validation process and lower
our estimate of the failure rate achieved. “Reliability growth models” are statistical
models that avoid the need to restart the reliability estimation process each time an
error is detected and repaired; they allow operational reliability to be predicted from
observations during system test, as bugs are being detected and repaired [MIO87].
But although they are effective in commercial software development, where only
modest levels of reliability are required, reliability growth models are quite imprac-
tical for requirements in the ultra-dependable region. Apart from concerns about

7The Bayesian analysis shows that if we bring no prior belief to the problem, then following n
hours of failure-free operation, there is a 50:50 chance that a further n hours will elapse before the
first failure.

8Butler and Finelli [BF93] present a similar analysis and conclusion (see also Hamlet [Ham92]).
Parnas, van Schouwen, and Kwan [PvSK90] use a slightly different model. They are concerned
with estimating trustworthiness—the probability that software contains no potentially catastrophic
flaws—but again the broad conclusion is the same.

9Its feasibility is also questionable given the fault injections that are needed to test the fault-
tolerance mechanisms of safety-critical systems: experiments must allow a reasonable time to elapse
after each injected fault to see if it leads to failure, and this limits the amount of speed-up that is
possible.
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the accuracy of the model employed,10 a law of diminishing returns greatly lessens
the benefit of reliability growth modeling when very high levels of reliability are
required [LS93].

Since empirical quantification of software failure rates is infeasible in the ultra-
dependable region, we might consider the alternative approach of calculating the
overall failure rate from those of smaller components. To be feasible, this approach
must require relatively modest reliabilities of the components (otherwise we cannot
measure them); the components must fail independently, or very nearly so (otherwise
we do not achieve the multiplicative effect required to deliver ultra-dependability
from components of lesser dependability); and the interrelationships among the
components must be simple (otherwise we cannot use reliability of the components
to calculate that of the whole). Ordinary software structures do not have this last
property: the components communicate freely and share state, so one failure can
corrupt the operation of other components [PvSK90]. However, specialized fault-
tolerant system structures have been proposed that seek to avoid these difficulties.

One such approach is “multiple-version dissimilar software” [RTCA92, Subsec-
tion 2.3.2] generally organized in the form of N -Version software [AL86, Avi85]
or as “Recovery Blocks” [Ran75a]. The idea here is to use two or more indepen-
dently developed software versions in conjunction with comparison or voting to
avoid system failures due to systematic failures in individual software versions. For
the N -Version technique to be effective, failures of the separate software versions
must be almost independent of each other.11 The difficulty is that since indepen-
dence cannot be assumed (experiments indicate that coincident failures of different
versions are not negligible [ECK+91, KL86], and theoretical studies suggest that in-
dependent faults can produce correlated failures [EL85]—though the correlation can
be negative [LM89]), the probability of coincident failures must be measured. But
for this design approach to be effective, the incidence of coincident failures must
be in the ultra-dependable region—and we are again faced with the infeasibility
of experimental quantification of extremely rare events [BF93]. For these reasons,
the degree of protection provided by software diversity “is not usually measurable”
and dissimilar software versions do not provide a means for achieving safety-critical
requirements, but “are usually used as a means of providing additional protection
after the software verification process objectives for the software level. . . have been
met” [RTCA92, Subsection 2.3.2]. A further limitation on the utility of N -version

10Different reliability growth models often make very different predictions, and no single model
is uniformly superior to the others; however, it is possible to determine which models are effective
in a particular case, but only at modest reliability levels [BL92].

11For the Recovery Block technique to be effective, failure of the “Acceptance Test” must be
almost independent of failures of the implementations comprising the body of the recovery block.
The test and the body are intrinsically “more dissimilar” than N-Version components, which must
all accomplish the same goal, but it is difficult to develop acceptance tests of the stringency required.
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software is that, anticipating data presented in the next section, the most serious
faults are generally observed in complex functions such as redundancy management
and distributed coordination. These employ fault-tolerant algorithms that work
under specific fault-hypotheses. For example, fault-tolerant sensor-distribution al-
gorithms are based on very carefully chosen voting techniques, and plausible alter-
natives can fail [LR93b]. Supplying N implementations and additional voting does
not necessarily make these functions more robust, but it certainly changes them and
may violate the constraints and fault-hypotheses under which they work correctly.
The daunting truth is that some of the core algorithms and architectural mecha-
nisms in fault-tolerant systems are single points of failure: they just have to work
correctly.

Another design technique suggested by the desire to achieve ultra-dependability
through a combination of less-dependable components is use of unsynchronized
channels with independent input sampling. Redundant computer channels (typi-
cally triplex or quadruplex) are required for fault tolerance with respect to random
hardware failures in digital flight-control systems. The channels can operate either
asynchronously, or synchronously. One advantage claimed for the asynchronous ap-
proach is that the separate channels will sample sensors at slightly different times
and thereby obtain slightly different values [McG90]. Thus, even if one channel suf-
fers a systematic failure, the others, operating on slightly different input values, may
not. Like design diversity, effectiveness of this “data diversity” depends on failures
exhibiting truly random behavior: in this case the requirement is that activations
of faults should not cluster together in the input space. As with the independence
assumption in design diversity, experimental evidence suggests that this property
cannot simply be assumed (there is some evidence for “error crystals” [DF90]) and
it must therefore be measured. And as before, experimental determination of this
property is infeasible at the low fault densities required.12

If we cannot validate ultra-dependable software by experimental quantification
of its failure rate, and we cannot make substantiated predictions about N -version or
other combinations of less-dependable software components, there seems no alter-
native but to base certification at least partly on other factors, such as analysis of
the design and construction of the software, examination of the life-cycle processes
used in its development, operational experience gained with similar systems, and
perhaps the qualifications of its developers.

12Like N-version software, asynchronous operation could also be proposed as a way to provide
additional protection beyond that required and achieved by an individual software channel. This
proposal overlooks the possibility that an asynchronous approach will complicate the overall design,
having ramifications throughout the system, from fault detection, through reconfiguration, to the
control laws. As the AFTI-F16 flight tests revealed (these are described below), this additional,
unmastered complexity has become the primary source of failure in at least one system.
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We might hope that if these “subjective” factors gave us a reasonable prior
expectation of high dependability, then a comparatively modest run of failure-free
tests would be sufficient to confirm ultra-dependability. Unfortunately, a Bayesian
analysis shows that feasible time on test cannot confirm ultra-dependability, unless
our prior belief is already one of ultra-dependability [LS93] (see also [MMN+92] for
a detailed analysis of the probability of failure when testing reveals no failures). In
other words, the requirement of ultra-dependability is so many orders of magnitude
removed from the failure rates that can be experimentally determined in feasible time
on test, that essentially all our assurance of ultra-dependability has to come from
“subjective” factors such as examination of the lifecycle processes of its development,
and review and analysis of the software itself.

This is a rather chastening conclusion: assurance of ultra-dependability has to
come from scrutiny of the software and scrupulous attention to the processes of
its creation; since we cannot measure “how well we’ve done” we instead look at
“how hard we tried.” This, in essence, is the burden of DO-178B (and most other
guidelines and standards for safety-critical software, e.g., [IEC86, MOD91a]). Of
course, extensive testing is still required, but it is perhaps best seen as serving to
validate the assumptions that underpin the software design, and to corroborate the
broad argument for its correctness, rather than as a validation of reliability claims.
Indeed, most standards for safety-critical software state explicitly that probabilities
are not assigned or assessed for software that is certified by examination of its
development processes:

“. . . it is not feasible to assess the number or kinds of software errors,
if any, that may remain after the completion of system design, develop-
ment, and test” [FAA88, paragraph 7.i].

“Development of software to a software level does not imply the assign-
ment of a failure rate for that software. Thus, software levels or software
reliability rates based on software levels cannot be used by the system
safety assessment process as can hardware failure rates” [RTCA92, Sub-
section 2.2.3].

(See also [MOD91b, paragraph 6.6 and Annex F].)

The infeasibility of experimental quantification of ultra-dependable software not
only impacts the process of validating software, it also places constraints on the
design of redundancy management mechanisms for tolerating hardware failures.
Although the assumption of independent failures cannot be assumed for different
software versions, it is a reasonable assumption for properly configured redundant
hardware channels. Overall reliability of such a redundant system then depends
on the failure rates of its components, and on properties of the architecture and
implementation of the fault-tolerance mechanisms that tie it together (in particular,
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the coverage of its fault-detection mechanisms). The overall system reliability can
be calculated using reliability models whose structure and transition probabilities
are determined by hardware component reliabilities and by properties of the fault-
tolerance mechanisms. These transition probabilities must either be calculated in
some justifiable manner, or they must be measured: if they cannot be calculated
or measured in feasible time on test, the architecture cannot be validated and its
design must be revised.

This analysis motivates the methodology for fault-tolerant architectures known
as “design for validation” [JB92], which is based on the following principles.

1. The system must be designed so that a complete and accurate reliability model
can be constructed. All parameters of the model that cannot be deduced
analytically must be measurable in feasible time under test.

2. The reliability model does not include transitions representing design faults;
analytical arguments must be presented to show that design faults will not
cause system failure.

3. Design tradeoffs are made in favor of designs that minimize the number of
parameters that must be measured, and that simplify the analytic arguments.

Johnson and Butler [JB92] present a couple of representative examples to show
how these principles might apply in practice. In one case, a dual-channel system
is shown to be able to meet its mission reliability requirements provided the fault-
tolerance software (which has to correctly recognize and shut down a faulty channel)
has coverage greater than 0.9995.13 Further analysis reveals that 20,000 tests will be
required to validate the fault-tolerance software to the necessary level of statistical
accuracy. If fault injections can be performed at the rate of one per minute, then
333 hours (a little over 14 days) of continuous time on test will be required. This is
feasible, and so this attribute of the proposed architecture can indeed be validated.

The second example concerns a two-fault-tolerant 5-plex. In this case, it is
shown that the coverage of the fault-tolerance mechanisms must exceed 0.9999982,
and that over a million fault-injections will be required to validate satisfaction of this
requirement. This amount of testing is probably infeasible (it is equivalent to 1.9
years on continuous test at one fault-injection per minute). We therefore have little
alternative but to abandon this architecture in favor of one whose critical design
parameters can be measured in feasible time.14

13What I am concerned with here is not design faults in the software, but the fact that it is
(provably) not possible to always correctly identify the faulty channel in a pair. The effectiveness (or
coverage) of a particular detection and diagnosis scheme generally has to be evaluated empirically.

14It might seem that we could enumerate all hardware failure modes and prove that the fault-
tolerance mechanisms correctly counter each one. The difficulty is providing evidence (to the
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To summarize the discussion so far: all software failures are of the systematic
variety—there is nothing to go wrong but the processes of specification, design, and
construction. Nonetheless, software failure can be treated as a random process and
can be quantified probabilistically. However, validation of achieved failure rates by
experimental quantification is infeasible in the ultra-dependable region. (This also
places constraints on the design of fault-tolerant architectures, since system relia-
bility models require accurately measured or calculated probabilities of coverage for
the redundancy-management and fault-tolerance software.) The realization that ex-
perimental validation is infeasible for software in the ultra-dependable region means
that its validation must derive chiefly from analysis of the software and from control
and evaluation of its development processes. Thus, the goals of the very disciplined
lifecycle processes required by almost all standards and guidelines for safety-critical
software are to minimize the opportunities for introduction of faults into a design,
and to maximize the likelihood and timeliness of detection and removal of the faults
that do creep in. The means for achieving these goals are structured development
methods, extensive documentation tracing all requirements and design decisions,
and careful reviews, analyses, and tests. The more critical a piece of software, the
more stringent will be the application of these means of control and assurance. In
the next section, I briefly describe the particular form given to these general consid-
erations in the RTCA Document DO-178B and also reproduce the sections of that
document that address formal methods directly.

3.2 RTCA Document DO-178B

The RTCA (“Requirements and Technical Concepts for Aviation, Inc.”) document
known as DO-178B [RTCA92] (a revision to the earlier DO-178A) provides industry-
accepted guidelines for meeting certification requirements for software used in air-
borne systems and equipment, and is incorporated by reference into European15 and
United States regulatory and advisory documents:

“RTCA Document RTCA/DO-178B was developed to establish software
considerations for developers, installers, and users when the aircraft
equipment design is implemented using microcomputer techniques. It

required level of statistical significance) that all failure modes have been accounted for (the issue
is called “assumption coverage” [Pow92]). There is an alternative, however: it is possible to prove
that certain architectures can mask failures (up to a specified number), no matter what the mode

of failure [HL91, KWFT88, K+89, WLG+78]. These architectures are based on Byzantine-resilient
algorithms [LSP82, PSL80, Sch90], which are proved correct without making any assumptions about
the behavior of failed components.

15DO-178B is known as EUROCAE ED-12B in Europe.



118 Chapter 3. Formal Methods and Digital Systems Validation

is expected that current and future avionics designs will make exten-
sive use of this technology. The RTCA document outlines verification,
validation, documentation, and software configuration management and
quality assurance disciplines to be used in microcomputer systems.

“An applicant for a TSO (Technical Standard Order), TC (Type Certi-
fication), or STC (Supplemental Type Certification) for any electronic
equipment or system employing digital computer technology may use
the considerations outlined in RTCA document RTCA/DO-178B as a
means, but not the only means, to secure FAA approval of the digital
computer software. The FAA may publish advisory circulars for specific
FAR’s (Federal Aviation Regulations) outlining the relationship between
the criticality of the software-based systems and the appropriate ‘soft-
ware level’ as defined in RTCA/DO-178B. Those may differ from and
will take precedence over the application of RTCA/DO-178B.” [FAA93]

DO-178B is quite long (over 90 pages when the appendices and index are in-
cluded) and densely packed with information. Here, I simply give an overview and
explain how formal methods are admitted into its guidelines. Where I quote material
from DO-178B, I present it in italics.

As noted in the FAA Advisory Circular quoted above, DO-178B provides guide-
lines and does not lay down specific certification requirements—those are based on
existing regulations or special conditions decided by the certification authority in
consultation with the applicant. This process is outlined in Sections 9 and 10 of
DO-178B. I interleave paragraphs from these two sections since it seems to make
for easier comprehension.

10.1. Certification Basis: The certification authority establishes the certification
basis for the aircraft or engine in consultation with the applicant. The certifica-
tion basis defines the particular regulations together with any special conditions
which may supplement the published regulations.

9.1. Means of Compliance and Planning: The applicant proposes a means of
compliance that defines how the development of the airborne system or equip-
ment will satisfy the certification basis. The Plan for Software Aspects of
Certification defines the software aspects of the airborne system or equipment
within the context of the proposed means of compliance. This plan also states
the software level(s) as determined by the system safety assessment process.
The applicant should

. . .

c. Obtain agreement with the certification authority on the Plan for Software
Aspects of Certification.
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10.2. Software Aspects of Certification: The certification authority assesses
the Plan for Software Aspects of Certification for completeness and consis-
tency with the means of compliance that was agreed upon to satisfy the certifi-
cation basis. The certification authority satisfies itself that the software level(s)
proposed by the applicant is consistent with the outputs of the system safety
assessment process and other system life cycle data. The certification author-
ity informs the applicant of any issues with the proposed software plans that
need to be satisfied prior to certification authority agreement.

9.2. Compliance Substantiation: The applicant provides evidence that the soft-
ware life cycle processes satisfy the software plans. Certification authority
reviews may take place at the applicant’s facilities or the applicant suppliers’
facilities. This may involve discussion with the applicant or its suppliers.16

The applicant arranges these reviews of the activities of the software life cycle
processes and makes software life cycle data available as needed. The applicant
should

. . .

b. Submit the Software Accomplishment Summary. . . to the certification au-
thority.

. . .

10.3. Compliance Determination: Prior to certification, the certification au-
thority determines that the aircraft or engine (including the software aspects
of its systems or equipment) complies with the certification basis. For the
software, this is accomplished by reviewing the Software Accomplishment Sum-
mary and evidence of compliance. The certification authority uses the Software
Accomplishment Summary as an overview for the software aspects of certifica-
tion.

Section 10 of DO-178B also notes that

16The Federal Aviation Act authorizes the FAA to delegate certification activities to designated,
FAA-approved employees of the manufacturer. These Designated Engineering Representatives
(DERs) act as surrogates of the FAA in analyzing, testing, and examining aircraft designs and
systems. FAA staff are responsible for overseeing DERs’ activities and making the final determina-
tion as to whether a design meets FAA’s safety requirements. Between 90 and 95% of all activities
are currently delegated to Boeing and McDonnell Douglas DERs; delegation to DERs can be even
greater in some software systems—for example, approval of the entire 747-400 flight management
system was delegated to Boeing DERs because FAA staff “were not sufficiently familiar with the
system to provide meaningful inputs to the testing requirements or to verify compliance with reg-
ulatory standards” [GAO93, pp. 17, 19, 20, 27]. For aircraft imported into the United States, the
FAA relies on foreign authorities to conduct many of the necessary certification activities, but is
responsible for certifying that the aircraft meet its requirements.
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“the certification authority considers the software as part of the airborne
system or equipment installed on the aircraft or engine; that is, the certi-
fication authority does not approve the software as a unique, stand-alone
product.”

Thus, the software must be considered in its relationship to the total system of
which it forms a part. As the design for the overall system develops, it generates
requirements for software components; and as the design of the software develops,
so it feeds constraints and requirements back into the system development process.
Among the important requirements and constraints that pass back and forth in
this way are those for system safety. The relationship between system and software
safety is discussed in Section 2 of DO-178B.

“The failure condition category of a system is established by consid-
ering the severity of failure conditions on the aircraft and its occu-
pants” [RTCA92, Section 2.2].

Failure condition categories are a five-point scale from “catastrophic” through
“hazardous/severe-major,” “major,” and “minor” to “no effect.”

“An error in software may cause a fault that contributes to a failure con-
dition. Thus, the level of software integrity necessary for safe operation
is related to the system failure conditions” [RTCA92, Section 2.2].

Software levels are identified as Level A through E based on the severity of
their potential failure conditions (i.e., Level A is software whose malfunction could
contribute to a catastrophic failure condition). The software level determines the
amount of effort and evidence required to show compliance with certification require-
ments [RTCA92, Subsection 2.2.2]; it does not imply the assignment of a reliability
figure or failure rate to the software [RTCA92, Subsection 2.2.3]. The variations
of processes and products by software level are tabulated in Annex A to DO-178B.
These variations include the extent to which configuration management controls are
imposed (lifecycle data in Control Category 1 (CC1) are subject to full configuration
management, those in Control Category 2 (CC2) to a subset of the configuration
management guidelines; the allocation of lifecycle data to CC1 or CC2 varies with
software level), and the extent to which independence (the involvement of people
other than the originators) is required during evaluations.

Section 3 of DO-178B discusses the processes of the software lifecycle. These
processes are divided into three major categories: “planning,” “development,” and
“integral” processes. The “planning” processes tie the development and integral pro-
cesses together. The development processes include software requirements analysis,



3.2. RTCA Document DO-178B 121

design, coding, and integration. The integral processes support the development
processes by ensuring the correctness and quality of all processes and the delivered
software. These processes comprise “software verification,” “software configuration
management,” “software quality assurance,” and “certification liaison.” DO-178B
discusses the planning process in its Section 4, and the development processes in
Section 5. The integral processes are discussed in Sections 6 through 9, which cover
verification, configuration management, software quality assurance, and certification
liaison, respectively. Section 10 of DO-178B discusses airborne system certification
(most of this section and a large part of Section 9 is reproduced above), and Section
11 describes software lifecycle data, which are produced to plan, direct, explain,
define, record, and provide evidence of activities throughout the software lifecycle.

Section 6 of DO-178B makes a distinction between reviews and analyses that is
pertinent when considering formal methods.

6.0. Software Verification Process: . . .

Verification is not simply testing. Testing, in general, cannot show the absence
of errors. As a result, the following subsections use the term “verify” instead
of “test” when the software verification objectives being discussed are typically
a combination of reviews, analyses, and tests.

. . .

6.2. Software Verification Process Activities: . . .

d. When it is not possible to verify specific software requirements by exercising
the software in a realistic test environment, other means should be pro-
vided and their justification for satisfying the software verification process
objectives. . .

. . .

6.3. Software Reviews and Analyses: Reviews and analyses are applied to the
results of the software development processes and software verification process.
One distinction between reviews and analyses is that analyses provide repeat-
able evidence of correctness and reviews provide a qualitative assessment of
correctness. (An earlier draft of DO-178B said “The primary distinction be-
tween reviews and analyses is that analyses provide repeatable evidence, and
reviews provide a group consensus of correctness.”) A review may consist of
an inspection of an output of a process guided by a checklist or similar aid.
An analysis may examine in detail the functionality, performance, traceabil-
ity and safety implications of a software component, and its relationship to
other components within the airborne system or equipment. (An earlier draft
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of DO-178B added “An analysis may include the use of a formal proof of
correctness”).

Section 12 of DO-178B discusses a variety of additional considerations. In par-
ticular, its Section 12.3 introduces “alternative methods,” among which are included
formal methods.

12.3. Alternative Methods: Some methods were not discussed in the previous
sections of this document because of inadequate maturity at the time this doc-
ument was written or limited applicability for airborne software. It is not the
intention of this document to restrict the implementation of any current or
future methods. Any single alternative method discussed in this subsection is
not considered an alternative to the set of methods recommended by this doc-
ument, but may be used in satisfying one or more of the objectives of in [sic]
this document.

Alternative methods may be used to support one another. For example, formal
methods may assist tool qualification, or a qualified tool may assist the use of
formal methods.

An alternative method cannot be considered in isolation from the suite of soft-
ware development processes. The effort for obtaining certification credit of an
alternative method is dependent on the software level and the impact of the
alternative method on the software life cycle processes. Guidance for using an
alternative method includes:

a. An alternative method should be shown to satisfy the objectives of this doc-
ument.

b. The applicant should specify in the Plan for Software Aspects of Certifica-
tion, and obtain agreement from the certification authority for:

(1) The impact of the proposed method on the software development pro-
cesses.

(2) The impact of the proposed method on the software life cycle data.

(3) The rationale for use of the alternative method which shows that the
system safety objectives are satisfied.

The rationale should be substantiated by software plans, processes, ex-
pected results, and evidence of the use of the method.

12.3.1. Formal Methods: Formal methods involve the use of formal logic, dis-
crete mathematics, and computer-readable languages to improve the specifi-
cation and verification of software. These methods could produce an imple-
mentation whose operational behavior is known with confidence to be within a
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defined domain. In their most thorough application, formal methods could be
equivalent to exhaustive analysis of a system with respect to its requirements.
Such analysis could provide:

• Evidence that the system is complete and correct with respect to its re-
quirements.

• Determination of which code, software requirements or software architec-
ture satisfy the next higher level of software requirements.

The goal of applying formal methods is to prevent and eliminate requirements,
design and code errors throughout the software development processes. Thus,
formal methods are complementary to testing. Testing shows that functional
requirements are satisfied and detects errors, and formal methods could be used
to increase confidence that anomalous behavior will not occur (for inputs that
are out of range) or unlikely to occur.

Formal methods may be applied to software development processes with con-
sideration of these factors:

Levels of the design refinement: The use of formal methods begins by
specifying software high-level requirements in a formal specification lan-
guage and verifying by formal proofs that they satisfy system require-
ments, especially constraints on acceptable operation. The next lower
level of requirements are then shown to satisfy the high-level requirements.
Performing this process down to the Source Code provides evidence that
the software satisfies system requirements. Application of formal methods
can start and stop with any consecutive levels of the design refinement,
providing evidence that those levels of requirements are specified correctly.

Coverage of software requirements and software architecture:
Formal methods may be applied to software requirements that:

• Are safety-related.

• Can be defined by discrete mathematics.

• Involve complex behavior, such as concurrency, distributed process-
ing, redundancy management, and synchronization.

These criteria can be used to determine the set of requirements at the
level of the design refinement to which formal methods are applied.

Degree of rigor: Formal methods include these increasingly rigorous levels:

• formal specification with no proofs.

• formal specifications with manual proofs.

• formal specifications with automatically checked or generated proofs.
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The use of formal specifications alone forces requirements to be unambiguous.
Manual proof is a well-understood process that can be used when there is little
detail. Automatically checked or generated proofs can aid the human proof pro-
cess and offer a higher degree of dependability, especially for more complicated
proofs.

The three areas identified in the quotation above for possible tradeoffs in the
application of formal methods (levels of the design hierarchy, coverage of software
requirements and architectures, and degree of rigor) correspond to those discussed in
Sections 2.1 and 2.2 of this Report. The degrees of rigor identified in DO-178B for the
application of formal methods do not quite correspond to my Levels 1, 2, and 3: DO-
178B does not consider methods corresponding to my Level 1 (general use of concepts
and notation from discrete mathematics), and subdivides my Level 2 into its degrees
of rigor 1 and 2, depending on whether manual proofs are performed; we agree on
level 3. The reason I do not subdivide my Level 2 according to whether proofs
are performed is that I attach little credibility (or utility) to specifications whose
consequences have not been explored by proof. For safety-critical applications, I
believe that my interpretation of Level 1 rigor (semi-formal mathematical notation
and proofs) is preferable to DO-178B’s (formal specifications and no proofs).

An earlier section of DO-178B considers the qualification of any tools used during
system development—which could include those to support formal methods. As
defined by DO-178B, such tools fall in the category of “Software Verification Tools”
and the qualification criteria are primarily that the tools must be shown to perform
as specified in normal operational use.

12.2. Tool Qualification: Qualification of a tool is needed when processes of this
document are eliminated, reduced, or automated by the use of a software tool
without its output being verified. . .The use of software tools to automate activi-
ties of the software life cycle processes can help satisfy safety objectives insofar
as they can enforce conformance with software development standards and use
automatic checks.

The objective of the tool qualification process is to ensure that the tool provides
confidence at least equivalent to that of the process(es) eliminated, reduced, or
automated.

. . .

Software tools can be classified as one of two types:

. . .

Software verification tools: Tools that cannot introduce errors, but may
fail to detect them. For example, a static analyzer, that automates a
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software verification process activity should be qualified if the function
that it performs is not verified by another activity. Type checkers, analysis
tools and test tools are other examples.

. . .

A tool may be qualified only for use on a specific system where the intention
to use the tool is stated in the Plan for Software Aspects of Certification.

12.2.2. Qualification Criteria for Software Verification Tools The qualifi-
cation criteria for software verification tools should be achieved by demon-
stration that the tool complies with its Tool Operational Requirements under
normal operational conditions.

12.2.3.2. Tool Operational Requirements Tool Operational Requirements de-
scribe the tool’s operational functionality. This data should include:

a. A description of the tool’s functions and technical features.

b. User information, such as installation guides and user manuals.

c. A description of the tool’s operational environment.

This excerpt concludes my overview of DO-178B. Before considering how formal
methods might contribute to the objectives of that document, I next present a brief
survey of experimental data on the efficacy of various software engineering and
assurance methods, and of the historical data on faults and failures discovered in
safety-critical systems. By knowing what seems to work, and what goes wrong, we
may be able to decide how formal methods can best supplement current assurance
methods.

3.3 Experimental and Historical Data on Assurance,

Faults and Failures

A rather startling fact is that very little documented evidence attests to the efficacy
of the various methods for software quality control and assurance when applied to
safety-critical software.

There are, however, studies that indicate significant reductions in “defects per
KSLOC” (i.e., programming faults per thousand lines of source code), compared
with industry averages, when certain software engineering methods or techniques
are employed. For example, Dyer describes a study performed by the Software
Engineering Laboratory (SEL) of the Goddard Space Flight Center, in which a
component of the ground support software for a satellite was developed using the
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Cleanroom methodology. The component comprised 31,000 lines of Fortran and
testing revealed a defect rate of 3.3 faults per KSLOC, compared with an SEL
average of 6 faults per KSLOC [Dye92, page 34]. But although they seem relevant
to our concerns, numbers such as these need to be interpreted with care, and on two
counts: control and relevance.

Before we attribute reductions in defect-rate to specific processes, we need to
be sure that all other factors are adequately controlled. Although researchers such
as Basili and his colleagues [BW84, BSH86] have described sound methodological
approaches to the gathering of data on software engineering processes, it is difficult
and expensive to perform the necessary experiments, particularly on other than
“toy” examples. Consequently, although Dyer’s data may have been well-controlled,
many of the other “successes” reported for various software engineering practices,
including formal methods, must be considered to provide anecdotal rather than
objective evidence for the efficacy of the practices concerned. For example, Vessey
and Weber examined the empirical evidence in support of structured programming
and found the results to be problematical and “a manifestation of poor theory, poor
hypotheses, and poor methodology” [VW84, page 398]. Fenton [Fen93] is similarly
critical of data cited in support of formal methods (including Cleanroom)—recall
Section 2.7.

Leaving aside the question of experimental controls, we must also question the
relevance to safety-critical systems of much of the data cited in support of formal
methods. For example, the defect rate of 3.3 faults per KSLOC cited above is
nowhere near that required for safety-critical applications. And even if there were
objective evidence that certain practices reduce the density of defects in delivered
software to extremely low levels, this would not necessarily guarantee fewer safety-
critical failures in operation—for the relationship between density of faults and rate
of serious failure is not straightforward (see, e.g., [Bis93]). It could be that certain
practices are good at reducing the total number of faults, but are not specially
effective on those that can lead to safety-critical failures (recall the earlier discussion
of the differences between reliability and safety).17 Thus, although there could be

17Recent work by Voas and others is pertinent here. Voas [Voa92] defines the testability of a
program P as the probability that if P could fail, P will fail under test (given a particular testing
strategy). Assessment of testability depends on a model of the relationship between faults and
failures. Voas proposes a simple model (with admitted defects): each location in a program is
considered to be the potential location of a fault. A possible fault can result in failure if and only
if all the following conditions apply.

Execution: An input results in execution reaching the location of the fault.

Infection: The data state that results from execution of the fault is in error.

Propagation: The error leads to failure.

A program with low testability “hides its faults” in the sense that they are unlikely to come to
light under test; this can be due to low probability of execution, infection, or propagation. Voas
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evidence that various methods are effective in quality control (i.e., in preventing,
detecting, and eliminating faults during the development process), there seems little
objective evidence to correlate these successes with any quantifiable level of quality
assurance, especially for failure densities at the safety-critical level.

Since controlled experimental evidence is lacking that various software engineer-
ing techniques confer ultra-dependable levels of assurance, perhaps we should turn to
the operational record. It can be argued that some deployed systems have demon-
strated the desired levels of ultra-dependability in actual operation; for example,
some Full-Authority Digital Engine Controls (FADECs) may be approaching 109

hours of operation—with no catastrophic failures.18 Surely, following similar devel-
opment practices should enable subsequent systems to achieve similar safety records.
Laprie [Lap92] argues this point of view, observing that we are not certifying iso-
lated products, but representatives of a continuing process with a measurable track
record. There is much sense in this argument, but it is not totally convincing.

First, what does it mean to follow similar development practices? How do we
know that certain unobserved and uncontrolled variables were not responsible for
the quality achieved on those previous projects? The first project might have been
particularly successful because it was the first , and attracted especially talented and
motivated people.19 We might retain or even improve the objective practices, yet
miss the unknown something that separates success in the ultra-dependable region
(10−9, and the expectation of no catastrophic failures) from failure (10−8, and the
expectation of 5 catastrophic failures in the lifetime of the fleet). The point here is
not to cast doubt on the seriousness and effectiveness of past and present practices,
but simply to make it clear that we do not know in any quantifiable sense what the
contribution of any particular method or practice is to the achievement, or to the
assurance of achievement, of ultra-dependability.

proposes ways to estimate each of these factors separately. Hamlet and Voas [HV93] discuss ways to
“amplify” reliability estimates derived from testing (i.e., ways ensure that the true reliability will be
greater than that estimated), by taking testability into account. They also give plausible accounts
why systematic test strategies (e.g., structural unit testing) may be superior to random testing in
the ultra-dependable region, and caution that instead of amplifying reliability, formal methods may
only reduce testability (i.e., rather than reducing the number of faults, formal methods may replace
faults that are easily found in testing by those that are hard to find). Based on this analysis, they
recommend two improvements that could be made to formal development methods (specifically,
Cleanroom): behavior on erroneous and out-of-range inputs should be analyzed, and structural
partition tests should be performed. In my opinion, this work is worth careful study.

18Digital autopilots have also been in use for many years. Up to the present, no airplane crash
has been attributed to a software problem. However, “service experience showing that the failure
mode has not yet occurred may be extensive, but it can never be enough” [FAA88, paragraph 7.g].

19Petroski’s book subtitled “the role of failure in successful design” [Pet85] is interesting in this
regard. It indicates that seldom does the first of a new kind of bridge structure collapse: disastrous
bridge failures are usually the result of later developments that, often in ignorance of the rationale
for some of the design decisions taken in the original, proceed to shave margins, or stretch capability,
or make apparently small variations in the design without comprehending their consequences.
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Second, the generation of airborne software that is approaching operational
demonstration of ultra-dependability was developed a dozen or more years ago, and
is vastly simpler in design and functionality than more recent systems. For example,
current goals for primary flight computers (PFCs) include the ability to continue
normal operation despite failed components (until regular scheduling brings the air-
plane to a maintenance base). One architecture developed to this requirement uses
asynchronously operating triple-redundant lanes (each employing different hardware
and programming languages20) within each of three synchronous channels [DH90].
Such elaborate architectures bear little resemblance to a dual-redundant FADEC.
Elsewhere, there seems interest in shaving redundancy from quad to triple [SM92].
Previously isolated functions are being integrated,21 and the sheer quantity of on-
board software is much greater than previously (e.g., 20 Mbytes in the case of the
Airbus A340 [GH93a]). All of these developments raise the scale of the challenge,
and diminish the relevance of earlier projects.

Given the absence of experimental evidence on the efficacy of formal methods
in safety-critical systems, let us turn instead to the fault and failure data for such
systems and see whether it offers any guidance on the best uses, and likely benefits,
of formal methods in quality control and assurance for safety-critical systems.

Considering quality control first of all, we can perhaps best seek guidance by
examining documented critical failures or critical faults found late in the assurance
process, and asking whether formal methods, or any other techniques, might have
been effective in eliminating the introduction, or at least reliably detecting the pres-
ence, of the faults concerned. As usual, paucity of documented evidence hampers
this exercise.22 There are extensive data on failures in information-processing sys-

20This architecture has evolved into that used for the PFCs of the Boeing 777. The goal of
programming the software independently and in a different programming language for each of the
three lanes has been abandoned because it led to too many nuisance disagreements. Different
processors and compilers continue to be used for each lane, but now only a single source program
is used.

21For example, the MD-11 Automatic Flight System (AFS) provides “in addition to autoland
and windshear functions,. . .Longitudinal Stability Augmentation Systems (LSAS) and roll control
wheel steering when autopilot is disengaged; speed envelope protection via autothrottle or LSAS;
yaw damper and turn coordination; elevator load feel and flap limiting control; attitude alert;
stall warning with stick shaker and autoslat extend; automatic ground spoilers; wheel spin-up
and horizontal stabilizer in motion detection; automatic throttle and engine trim via the FADEC;
takeoff, cruise, and Cat II approach autopilot and flight director; in flight maintenance monitoring
and ground maintenance functions interfacing with the central fault display system; annunciation,
warning, and alert interfaces with the electronic instrumentation system” [DG93] (the perplexing
punctuation is in the original).

22It is not only that the evidence may be considered proprietary and is therefore unpublished,
it is not clear that some of the most vital data are even collected. For example, it seems that
voting disagreement between redundant channels is not recorded in flight. Mandatory collection
and publication of such data would be of considerable scientific value.
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tems, but these have little similarity to critical airborne systems, and few studies
identify the procedural or intellectual source of the faults that led to failure.

Fortunately, one paper does provide some relevant and interesting data:
Lutz [Lut93a] reports on 387 software faults detected during integration and system
testing of the Voyager and Galileo spacecraft.23 197 of the faults were characterized
as having potentially significant or catastrophic effects (with respect to the space-
craft’s missions). Lutz calls these 197 faults “safety-critical.” Although spacecraft
have obvious differences to airplanes, the embedded, real-time control software ex-
amined by Lutz may be expected to have many similarities with airborne systems,
and the development practices at the Jet Propulsion Laboratory may also be con-
sidered representative of the aerospace industry (though bear in mind that Galileo
was built a decade ago, and Voyager a decade before that).

Lutz classified the faults using a scheme introduced by Nakajo and Kume [NK91]
that identifies the “human flaws” (root causes) as well as the “process flaws” re-
sponsible for the fault. Only 3 of the safety-critical faults found were programming
mistakes, and very few problems attributable to faults in programming have oc-
curred during flight. It seems that these faults are eliminated very effectively by the
development processes employed. The remaining faults were divided approximately
3:1 overall between “function faults” (faults within a single software module) and
interface faults (interactions with other modules or system components).

Two thirds of functional faults were attributed to flawed requirements; the re-
maining one third were due to incorrect implementation of requirements. Omissions
constituted the majority of flawed requirements, the rest were due to imprecise,
unsystematic, or wrong specifications of requirements. Incorrect implementation of
requirements (i.e., faulty design or algorithms) tended to involve inherent technical
complexity, rather than a failure to follow the letter of the requirements.

Half of all interface faults concerned misunderstood hardware interfaces. As is
to be expected, the large majority of interface faults (93% on Voyager and 78%
on Galileo) were attributed to poor communication between (as opposed to within)
teams, primarily between software developers and system engineers. Particularly
troublesome were undocumented or anomalous features of interfaces and of hard-
ware devices that led software developers to make incorrect assumptions about their
behavior.

Lutz’ own recommendations for improving the development and assurance pro-
cesses include: an early focus on internal interfaces, particular those between soft-

23Another interesting data point is provided by the Space Shuttle on-board flight-control software.
This comprises about 500,000 lines of code, and has a good record: typically at most one or two
defects are identified in each mission, and some have achieved their “zero-defect” goal. (Six faults
that could have been life-threatening if activated are know to have flown, all of them prior to the
Challenger disaster.) In contrast to this good record at the code level, there are over 400 “user
notes” that document various kinds of anomalies in the requirements for the software.
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ware and hardware; early identification of hazards; use of formal specification tech-
niques; promotion of communication between teams, especially as requirements
evolve; and use of defensive design techniques.

What specific contributions could formal methods make? It seems clear that de-
veloping and communicating requirements and assumptions (particularly concern-
ing hardware behavior and interfaces) is the major problem. Use of a pseudocode
based on a modern programming language such as Ada would allow the syntactic
attributes of interfaces to be specified, but it appears that the real problems are
associated with semantic attributes of the interfaces, such as initial states, timing
and sequencing constraints, sampling frequencies, fault modes, and so on. Formal
methods seem well suited to the task of documenting and modeling such properties
of hardware interfaces.

Regarding missed requirements: rapid prototyping, animation, and other exper-
imental approaches are advocated as ways to elicit complete and accurate require-
ments specifications. But while these methods seem appropriate for software with
significant human interactions, they seem less so for embedded control systems. The
proposals of Jaffe, Leveson, and Melhart [JL89, JLHM91] (recall Subsection 2.3.2)
seem more apposite to this case, and require at least a semi-formal method of re-
quirements specification.24 Formal specification of requirements could also support
formal challenges as a means of validation (similar to the “scenarios” generally
employed today), and might allow more requirements to be stated in terms of con-
straints or invariants—which may be more robust and complete than imperative
statements of required behavior.

Lutz’ data identifies weaknesses in software quality control , but what does it
suggest about assurance? One obvious, but important point is that if our primary
assurance of ultra-dependability is to come from control and scrutiny of the software
development process, then every fault that is discovered at a later stage of the
lifecycle than that in which it was introduced casts doubt on the adequacy of all
the intervening quality control processes. The greater the number of such faults
that are discovered, and the greater the number of lifecycle stages that separate the
comission and detection of each fault, the more seriously should the adequacy of the
development and control processes be questioned.

The faults described by Lutz were detected during system and integration test;
thus, though they were detected late, they were caught during what may be regarded
as part of the normal software development process. I now turn to software failures
in critical airborne systems detected during flight test: serious failures detected

24In recent work, Lutz [Lut93b] reports that a checklist derived from Jaffe, Leveson and Melhart’s
proposals would have identified 149 (i.e., over 75%) of the “safety-critical” faults examined in her
study.
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this late focus attention on the credibility of the processes employed for software
assurance.

The flight tests of the experimental Advanced Fighter Technology Integration
(AFTI) F16 were conducted by NASA, and are unusually well-documented [IRM84,
Mac88]. The AFTI-F16 had a triple-redundant digital flight-control system (DFCS),
with an analog backup. The DFCS had different control modes optimized for air-to-
air combat and air-to-ground attack. The Stores Management System (SMS) was
responsible for signaling requests for mode change to the DFCS. On flight test 15,
an unknown failure in the SMS caused it to request mode changes 50 times a second.
The DFCS could not keep up, but responded at a rate of 5 mode changes per second.
The pilot reported that the aircraft felt like it was in turbulence; subsequent analysis
showed that if the aircraft had been maneuvering at the time, the DFCS would have
failed.

The DFCS of the AFTI-F16 employed an “asynchronous” design. In such de-
signs, the redundant channels run fairly independently of each other: each computer
samples sensors independently, evaluates the control laws independently, and sends
its actuator commands to an averaging or selection component that drives the ac-
tuator concerned. Because the unsynchronized individual computers may sample
sensors at slightly different times, they can obtain readings that differ quite ap-
preciably from one another. The gain in the control laws can amplify these input
differences to provide even larger differences in the results submitted to the output
selection algorithm. During ground qualification of the AFTI-F16, it was found
that these differences sometimes resulted in a channel being declared failed when
no real failure had occurred [Mac84, p. 478]. Accordingly, a rather wide spread of
values must be accepted by the threshold algorithms that determine whether sensor
inputs and actuator outputs are to be considered “good.” For example, the output
thresholds of the AFTI-F16 were set at 15% plus the rate of change of the variable
concerned; in addition, the gains in the control laws were reduced. This increases the
latency for detection of faulty sensors and channels, and also allows a failing sensor
to drag the value of any averaging functions quite a long way before it is excluded by
the input selection threshold; at that point, the average will change with a thump
that could have adverse effects on the handling of the aircraft [Mac88, Figure 20].

The danger of wide sensor selection thresholds is illustrated by a problem discov-
ered in the X29A. This aircraft has three sources of air data: a nose probe and two
side probes. The selection algorithm used the data from the nose probe, provided
it was within some threshold of the data from both side probes. The threshold
was large to accommodate position errors in certain flight modes. It was discovered
in simulation that if the nose probe failed to zero at low speed, it would still be
within the threshold of correct readings, causing the aircraft to become unstable
and “depart.” Although this fault was found in simulation, 162 flights had been at
risk before it was detected [MA89a].
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An even more serious shortcoming of asynchronous systems arises when the
control laws contain decision points. Here, sensor noise and sampling skew may
cause independent channels to take different paths at the decision points and to
produce widely divergent outputs. This occurred on Flight 44 of the AFTI-F16
flight tests [Mac88, p. 44]. Each channel declared the others failed; the analog
back-up was not selected because the simultaneous failure of two channels had not
been anticipated and the aircraft was flown home on a single digital channel. Notice
that all protective redundancy had been lost, and the aircraft was flown home in a
mode for which it had not been designed—yet no hardware failure had occurred.

Another illustration is provided by a 3-second “departure” on Flight 36 of the
AFTI-F16 flight tests, during which sideslip exceeded 20◦, normal acceleration ex-
ceeded first −4g, then +7g, angle of attack went to −10◦, then +20◦, the aircraft
rolled 360◦, the vertical tail exceeded design load, all control surfaces were oper-
ating at rate limits, and failure indications were received from the hydraulics and
canard actuators. The problem was traced to a fault in the control laws, but sub-
sequent analysis showed that the side air-data probe was blanked by the canard at
the high angle of attack and sideslip achieved during the excursion; the wide input
threshold passed the incorrect value through, and different channels took different
paths through the control laws. Analysis showed this would have caused complete
failure of the DFCS and reversion to analog backup for several areas of the flight
envelope [Mac88, pp. 41–42].

Several other difficulties and failure indications on the AFTI-F16 were traced to
the same source: asynchronous operation allowing different channels to take different
paths at certain selection points. The repair was to introduce voting at some of these
“software switches.”25 In one particular case, repeated channel failure indications
in flight were traced to a roll-axis software switch. It was decided to vote the switch
(which, of course, required ad hoc synchronization) and extensive simulation and
testing were performed on the changes necessary to achieve this. On the next flight,
the problem was there still. Analysis showed that although the switch value was
voted, it was the unvoted value that was used [Mac88, p. 38].26

The AFTI-F16 flight tests revealed numerous other problems of a similar na-
ture. Summarizing, Mackall, the engineer who conducted the flight-test program,
writes [Mac88, pp. 40–41]:

25The problems of channels diverging at decision points, and also the thumps caused as channels
and sensors are excluded and later readmitted by averaging and selection algorithms, are sometimes
minimized by modifying the control laws to ramp in and out more smoothly in these cases. However,
modifying control laws can bring other problems in its train and raises further validation issues.

26This bug is an illuminating example. At first, it looks like programming slip—the sort of late-
lifecycle fault that was earlier claimed to be very reliably eliminated by conventional V&V. Further
thought, however, shows that it is really a manifestation of a serious design oversight in the early
lifecycle (the requirement to synchronize channels at decision points in the control laws) that has
been kludged late in lifecycle.
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“The criticality and number of anomalies discovered in flight and
ground tests owing to design oversights are more significant than those
anomalies caused by actual hardware failures or software errors.

“. . . qualification of such a complex system as this, to some given level
of reliability, is difficult . . . [because] the number of test conditions be-
comes so large that conventional testing methods would require a decade
for completion. The fault-tolerant design can also affect overall sys-
tem reliability by being made too complex and by adding characteristics
which are random in nature, creating an untestable design.

“As the operational requirements of avionics systems increase, com-
plexity increases. . . If the complexity is required, a method to make sys-
tem designs more understandable, more visible, is needed.

“. . .The asynchronous design of the [AFTI-F16] DFCS introduced a
random, unpredictable characteristic into the system. The system be-
came untestable in that testing for each of the possible time relationships
between the computers was impossible. This random time relationship
was a major contributor to the flight test anomalies. Adversely affecting
testability and having only postulated benefits, asynchronous operation
of the DFCS demonstrated the need to avoid random, unpredictable,
and uncompensated design characteristics.”

Clearly, much of Mackall’s criticism is directed at the consequences of the asyn-
chronous design of the AFTI-F16 DFCS. Beyond that, however, I think the really
crucial point is that captured in the phrase “random, unpredictable characteristics.”
Surely, a system worthy of certification in the ultra-dependable region should have
the opposite properties—should, in fact, be predictable: that is, it should be possible
to achieve a comprehensive understanding of all its possible behaviors. What other
basis for an “engineering judgment” that a system is fit for its purpose can there
be, but a complete understanding of how the thing works and behaves? Further-
more, for the purpose of certification, that understanding must be communicated to
others—if you understand why a thing works as it should, you can write it down,
and others can see if they agree with you. Of course, writing down how something
as complicated as how a fault-tolerant flight-control system works is a formidable
task—and one that will only be feasible if the system is constructed on rational
principles, with aggressive use of abstraction, layering, information-hiding, and any
other technique that can advance the intellectual manageability of the task. This
calls strongly for an architecture that promotes separation of concerns (whose lack
seems to be the main weakness of asynchronous designs), and for a method of de-
scription that exposes the rationale for design decisions and that allows, in principle,
the behavior of the system to be calculated (i.e., predicted or, in the limit, proved).
It is, in my view, in satisfying this need for design descriptions which, in principle at
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least, would allow properties of the designs to be proved, that formal methods can
make their strongest contribution to quality assurance for ultra-dependable systems:
they address (as nothing else does) Mackall’s plea for “a method to make system
designs more understandable, more visible.”

The AFTI-F16 flight tests are unusually well documented; I know of no other
flight-control system for which comparable data are publicly available. However,
press accounts and occasional technical articles reinforce the AFTI-F16 data by
suggesting that timing, redundancy management, and coordination of replicated
computing channels are tricky problems that are routinely debugged during flight
test.

• During flight tests of the HiMAT remotely piloted vehicle, an anomaly oc-
curred that resulted in the aircraft landing with its landing skids retracted.
“The anomaly was caused by a timing change made in the ground-based sys-
tem and the onboard software for uplinking the [landing] gear deployment
command. This coupled with the on-board failure of one uplink receiver to
cause the anomaly. The timing change was thoroughly tested with the on-
board flight software for unfailed conditions. However, the flight software
operated differently when an uplink failure was present” [MA89a, page 112].

• A significant software fault was discovered in flight testing the YC-14. “The
error, which caused mistracking of the control-law computation in the three
channels, was the result of incorrect use of cross-channel data for one pa-
rameter. Each synchro output was multiplied in software by a factor equal
to the ratio of the nominal reference voltage to the actual reference voltage.
Both the synchro outputs and the reference voltages were transmitted between
channels, and the three inputs would be compensated in each channel prior
to signal selection. However, because of an error in timing, each channel was
using the current correction factor for its own sensor, whereas the correction
factors for the other two sensors were from the previous frame. Thus, each
channel performed signal selections on a different set of values, resulting in
different selected input data for the three channels. Although the discrepan-
cies were small, the effect of threshold detectors and integrators led to large
mistracking between channels during flight. In the laboratory, the variations
in the simulated synchro reference voltages were sufficiently small that this
error would not be detected unless a bit-by-bit comparison between channels
had been made” [MG78].

• In the flight tests of the X31 the control system “went into a reversionary mode
four times in the first nine flights, usually due to disagreement between the
two air-data sources. The air data logic dates back to the mid-1960s and had
a divide-by-zero that occurred briefly. This was not a problem in its previous
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application, but the X31 flight-control system would not tolerate it.” [Dor91].
It seems that either a potentially dangerous condition (i.e., divide-by-zero) had
been present but undetected in the previous application, or it was known (and
known not to be dangerous in that application) but undocumented. In either
case, it seems to indicate inadequate assurance. This example also points
to one of the perils of reuse: just because a component worked in a previous
application, you cannot assume it will work in a new one unless all the relevant
characteristics and assumptions are known and taken into account.

• The C17 has a quad-redundant digital flight-control system [KSQ92]. During
the initial flight test of the C17 “On three occasions, warning/caution lights
in the cockpit annunciated that flight-control computer (FCC) ‘dropoffs’ had
occurred. . . .FCC 3 dropped offline twice, and both FCC 3 and FCC 4 dropped
off at the same time once” [Sco92]. For an account of software engineering and
management on the C17, see [GAO92a].

One of the purposes of flight test is to uncover problems, and so the discovery of
those just described can be considered a vindication of the value of flight test. Some
might even consider these problems merely a matter of tuning, and regard their
identification and repair during flight test as the proper course.27 Others might
argue the opposite point of view: flight test is for evaluating and tuning handling
and controls, and the discovery of basic software problems indicates that the tradi-
tional methods of assurance are seriously deficient. Whatever view is taken of the
seriousness of these problems, the salient fact seems to be that software problems
discovered in flight test often concern redundancy management, coordination, and
timing.

Overall, present development and assurance practices for aircraft seem to have
worked so far: to my knowledge, there is no case of a software fault leading to a
serious failure condition in a military or commercial airplane. There are several cases
where a computerized system has contributed to an accident, but the responsible
faults seem to have been in systems engineering and human-computer interfacing,
rather than in software development.

For example, according to Frankfurter Allgemeine, Wednesday 10th November:

“The computer-controlled Airbus A320 landing system was clearly one
of the causes for the Warsaw aircraft accident on the 14th September,

27For example: “the FMS of the A320 ‘was still revealing software bugs until mid-January,’
according to Gérard Guyot (Airbus test and development director). There was no particular type
of bug in any particular function, he says. ‘We just had a lot of flying to do in order to check it all
out. Then suddenly it was working,’ he says with a grin” [Lea88].
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concluded Lufthansa, which has instructed its pilots to employ a differ-
ent landing procedure in certain [weather] conditions, said the airline in
Frankfurt on Tuesday.

“The Luftfahrtbundesamt said that the thrust reversers and spoilers of
the Lufthansa Airbus were first activated after 9 seconds delay, ‘because
the logic of the airplane [design] doesn’t allow otherwise.’ . . .The logic
of the Airbus landing system requires that both main gear must be on
the ground before reverse thrust and brakes are activated.”

This and other press accounts indicate the following scenario. A shift in the wind
caused the airplane to land fast and with one wing high. The pilots tried to apply the
brakes but their input was overridden by the control logic of the software concerned.
The airplane did not settle onto its second main landing gear (thereby allowing the
brakes to be activated) for nine seconds, at which point it was still traveling at 154
knots—20 knots above normal landing speed—with only 1000 meters of runway left.
The airplane ran off the end of the runway, collided with an earth embankment, and
caught fire. Two people died. The A320 control logic requires the airplane to be
settled on both main landing gear before the brakes, ground spoilers, and thrust
reversers can be activated. Other airplanes use similar logic, but allow the ground
spoilers to be deployed with only one main landing gear down, thereby dumping lift
and hastening the settling of the other main landing gear.

Another example concerns the crash of an SAS MD-81 shortly after takeoff from
Stockholm in December 1991 [Lea93].

“An automatic engine-control function in the McDonnell Douglas MD-
81, of which the operating airline was unaware, was a major factor in the
Scandinavian Airlines System (SAS) accident near Stockholm, Sweden,
in December 1991, says the official report into the accident.

“SAS confirms the report’s implication that, had the engine-control func-
tion not been incorporated in the aircraft’s control software, or had the
pilots known about its existence, the aircraft might have been recovered
safely to Stockholm Arlanda Airport. In fact, it crash-landed in a field,
with the right engine failed and the left stalled. Although the fuselage
broke into three sections, no-one was killed.

“The report confirms the well-established main cause of the accident
as the failure of the airline to detect clear ice on the wings. The ice
broke free from the wings just after takeoff and entered the engines
‘. . . causing damage to the engine fan stages, which led to engine surges
which destroyed the engines,’ says the report.

“The connection with the engine-control system can be described by a
simplified sequence of events:
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• the ice entered the engines and damaged the fans;

• the right engine surged;

• the pilots reacted basically correctly to the surges by retarding the
right throttle;

• the automatic thrust restoration (ATR) system caused both throt-
tles to advance without the pilots noticing, making the surging
worse in the right engine and starting surging in the left engine;

• the surges ‘. . . destroyed the engines,’ says the report.

. . .

“The ATR is described by the accident report as a digital flight-guidance
system function, conceived as a sensitive system for guarding against the
accentuated dangers of single-engine failure just after takeoff at airports
with strict noise-abatement procedures where the engines are throttled
back. . . If a 7% difference in power is detected, the ATR automatically
opens the ‘good’ engine to go-around power.

“McDonnell Douglas had removed the external controls for selecting or
disarming the ATR from the SAS aircraft. The only way to disconnect
the ATR was to disconnect the entire autothrottle system.”

These accidents certainly seem to indicate flaws in systems engineering, in the
requirements specified for functions assigned to software, and in the (non)provision
of facilities for intervention by the pilots—but they do not indicate flaws in the
processes of software development and assurance, nor failures in software itself. If we
want to look at software failures in actual operation, it seems we have to look to fields
other than aviation. There are, of course, numerous examples of egregious software
failures (see [Neu92] for a partial list, and Wiener [Wie93] for an entertaining and
generally balanced discussion of the dangers of excessive dependence on software),
but few of these have arisen in fields that practice quality control and assurance to
the levels used in commercial aviation.28 Some examples from telecommunications,
space, and missiles seem pertinent, however.

• The nationwide saturation of AT&T switching systems on 15 January, 1990
was due to a timing problem in a fault recovery mechanism [Tra90]; “ironi-
cally, this was a condition that spread throughout the network because of our

28The most horrifying consequences of software faults known to me are those of the Therac 25
medical electron accelerator, which led to massive overdoses of radiation and the subsequent deaths
of six patients. However, as the account by Leveson and Turner [LT93] makes clear, no explicit
software quality control and assurance program was employed in the development of that machine,
and software engineering practices were rudimentary at best.
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redundancy,” said the AT&T Chairman, Robert Allen [MB90]. The problem
affected all 114 of AT&T’s 4ESS switching systems, and blocked about half of
the long-distance, international, SDN (software-defined network), and toll-free
800 calls dialed on AT&T’s public-switched network for a period of 9 hours.

• The first attempt to launch the Space Shuttle (STS-1) failed because the fifth
(backup) on-board computer could not be synchronized with the main quad:
“there was a very small, very improbable, very intricate, and very old mistake
in the initialization logic of the primary avionics software system” [Gar81].

• Voyager spacecraft suffered 42 SEUs in the intense radiation surrounding
Jupiter [Wil90]. The clocks lost synchronization and skewed 8 seconds, caus-
ing some scientific data to be lost. Clock synchronization was reprogrammed
for Voyager 2’s encounter with Neptune [Ano89].

• The Magellan spacecraft broke Earth lock and lost communications several
times in August 1990 (soon after entering Venus orbit). It took over six months
to identify the source of the problem, which was a timing error in the flight
software.

• “On February 25, 1991, a Patriot missile defense system operating at Dharan,
Saudi Arabia, during Operation Desert Storm failed to track and intercept
an incoming Scud. This Scud subsequently hit an Army barracks, killing
28 Americans.” The fault was in the way clock ticks were accumulated and
converted to time. The conversion “results in a loss of precision causing a less
accurate time calculation. The effect of this inaccuracy on the range gate’s
[i.e., target tracking] calculation is directly proportional to the target’s velocity
and the length of time the system has been running” [GAO92b].

As before, a common feature of these examples is that the faults arose in the con-
text of redundancy management and timing-dependent coordination. Hecht [Hec93]
offers some suggestions why this may be so: using data from a variety of sources,
including the final testing of Release 8B of the Space Shuttle Avionics Software (this
was the first release following the loss of Challenger), Hecht shows that safety- and
mission-critical failures are associated disproportionately often with the occurrence
of “rare events,” and that the simultaneous (and unanticipated) arrival of two or
more rare events seems the most common cause of severe failure. Rare events tend
to be component failures and exceptions of various kinds, and so it is the redundancy
management code that is stressed by these very unusual combinations of events.

The lessons of the data cited in this section seem to be that there is little hard
experimental evidence that formal methods improve the quality of safety-critical
software (though there is anecdotal evidence that they may do so), and that the
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most egregious and elusive faults in safety-critical systems are found in redundancy
management, and in other elements of the software that coordinate distributed,
concurrent, timing-dependent activities.

It seems to me that these two observations are not unrelated. Perhaps because it
is feared that their techniques and tools will be overstretched by larger challenges,
formal methods have usually been applied to relatively routine design problems,
where traditional methods are already adequate. But the areas that seem to need
most help are the hardest, most critical, and most fault-prone aspects of design—so
if formal methods are to make a real contribution to quality control in safety-critical
systems, this is where they should be put to work.

In addition, the quality assurance aspects of formal methods have not been fully
exploited. The problem with current methods of assurance is that they merely
reduce, and cannot eliminate, doubt. This is because assurance derives chiefly from
reviews, which are a consensus process: they increase our confidence that certain
faults are not present, but do not provide demonstrable evidence of that fact. Using
formal methods, we can replace or supplement reviews with analyses that do provide
repeatable evidence that certain kinds of faults are not present (at the stages of
development considered). There are powerful caveats on such assertions, however,
mainly concerning the fidelity of the mathematical modeling employed—so that
formal methods cannot eliminate doubt any more than can traditional processes.
But although they cannot eliminate doubt, formal methods can circumscribe it: with
their aid, we can become fully confident in the correctness of a critical algorithm,
say, and our residual doubts then focus on the fidelity of the assumptions employed,
the interpretation of the property that has been verified, and the correctness of the
implementation of the algorithm. Review processes can then be focussed on these
residual doubts.

In the next section I expand on these points and consider use of formal methods
in the context of DO-178B. In the section after that I discuss choice of the level of
rigor and the selection of tools.

3.4 Formal Methods in Support of Certification

There seem to be two reasons why an applicant might consider using formal methods
in support of certification: (1) to achieve the same level of quality control and
assurance as by other means, but to derive some other benefit such as reduced cost;
or (2) to provide a greater level of quality control and assurance than can be achieved
by other means. I will consider these cases separately.
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3.4.1 Use of Formal Methods for Reasons other than Improved

Quality Control and Assurance

In this subsection, I assume that a developer has decided that formal methods
offer some significant benefits, but that there is no intent to claim increased quality
control or assurance through their use. Presumably, the main motivation will be
to save time or money, and formal methods will be used either as a debugging
technique that can quickly eliminate faulty requirements, specifications, designs,
and implementations, or as a methodological aid that can systematize and render
more reliable the process of development. A rather more aggressive use of formal
methods to reduce development costs would be to substitute formal techniques for
certain review and test processes. It is up to the developer to decide whether formal
methods really can help achieve these improved efficiencies; here I consider only the
impact that formal methods might have on the process of certification. I consider
three increasingly ambitious applications of formal methods:

• To supplement traditional processes and documentation,

• To substitute formal specifications for some traditional documentation,

• To substitute formal proofs for some traditional reviews and analyses.

Formal methods as supplement to the traditional processes and docu-
mentation

In the most cautious form of this scenario, the standard development processes
would continue to be performed (though more efficiently, since it is to be hoped
that formal methods will ensure that less time and effort will be wasted on flawed
constructions), and the standard lifecycle data would be produced. This use of
formal methods is a strictly “internal” process, in that no external documentation
of their use is submitted in support of certification. It seems to me that this mode of
employing formal methods presents no challenges to certification; however, it seems
a useful precursor to more aggressive uses of formal methods, since it is one way to
gather “evidence of the use of the method” as required by Section 12.3 of DO-178B.

Formal specifications in place of some traditional documentation

A somewhat more aggressive use of formal methods would substitute formal speci-
fications for some of the requirements and design documents required by DO-178B,
but would retain traditional methods of review and analysis. This approach will
require attention to the software requirements and software design standards re-
quired by Sections 11.6 and 11.7 of DO-178B. For example, standards are required
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for “notations to be used to express requirements, such as data flow diagrams and
formal specification languages”29 [RTCA92, Section 11.6.b].

It will also require attention to the “guidance for using an alternative method”
documented in Section 12.3 of DO-178B (this was reproduced in Section 3.2 above).
The most demanding of the guidance items requires a “rationale for use of the alter-
native method which shows that the system safety objectives are satisfied” [RTCA92,
Section 12.3.b(3)].

I think what is required here is evidence that (1) the formal specifications contain
at least the same information as the informal ones they are to replace, and (2) they
support review, analysis, and other lifecycle processes as least as well as the informal
specifications. Perhaps the most challenging of these will be to provide evidence that
formal specifications can be reviewed as effectively as traditional specifications using
natural language.

One approach, which was used in the SACEM example described in Section 2.7,
finesses this problem by deriving a natural language description from the formal
text and using the natural language version in the review process. This is really a
retreat to the less aggressive use of formal methods that was discussed earlier, so
let us now consider the case where the formal specification itself is used in reviews
and other processes.

At bottom, the issue comes down to the extent to which those who write and
review formal specifications can demonstrate mastery of the formal method or nota-
tion concerned. When the formalism is a relatively simple tabular representation of
state machine transitions, as with Leveson’s TCAS specification or Parnas’ function
tables for the Darlington shutdown system (both described in Section 2.7), then it
seems plausible that all who need to do so can achieve adequate mastery of the no-
tation (indeed, these notations were developed for just that purpose). Furthermore,
it is an essential element of Parnas’ method that certain systematic analyses are
undertaken to check well-formedness of the tables (e.g., the conditions heading the
columns of a table must be shown to exhaust all possibilities and to be pairwise
disjoint).

Use of more elaborate formal specification languages for limited purposes, such
as describing data structures (VDM is often used like this), should also present few
challenges to those with programming experience. The difficult choices begin with

29The standards required are those for the project concerned: large aerospace projects establish
very detailed standards for every facet of their operation. These project standards incorporate
relevant regulatory and professional standards and guidelines, company policy, and a host of detailed
prescriptions (extending, for example, to the naming of identifiers in programs). The requirement
on standards for formal specification languages does not imply that any language used must have
been standardized by some national or international body, but that there must be some agreed
reference for the language, and guidelines for its use.
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larger scale applications of Level 2 formal methods involving, for example, significant
numbers of axioms, or operations specified by complex pre- and post-conditions, or
constructions with subtle semantics (e.g., schemas in the language Z). The problem
is that it is difficult to provide objective evidence that the authors of a specification
can reliably express themselves in such forms, and that its reviewers can interpret
them correctly; the problem is compounded by the fact that such specifications
often contain the equivalent of “programming faults” that render them inconsistent
or incorrect.

Those who learn a Level 2 formal specification language from textbooks or train-
ing courses, but who do not perform numerous proofs (preferably with automated
checking), are in a very similar position to those who would learn a programming
language by the same means and without the opportunity to execute the programs
that they write—in fact, worse, since experience with other programming languages
is likely to help them learn a new one, whereas many of those learning a specification
language are receiving their first exposure to formal methods, as well as to abstract
and axiomatic forms of expression. Just as the failure of an “obviously correct”
program teaches us that programming is difficult, so the discovery through dialog
with a theorem prover that an expected property is not entailed by an “obviously
correct” formal specification teaches us that specification may be no easier than
programming. In my experience, everyone has to learn this for themselves: only the
personal shock of discovering egregious errors in our own specifications teaches us
the requisite humility.

It is my opinion that an essential step in ensuring an effective review process
for formal specifications is to require that they are subjected to stringent (and
preferably mechanized) analysis before they are submitted to reviews. The purpose
of the analysis is to eliminate as large a class of potential faults as possible by
purely formal means (i.e., by calculational processes), so that the review process
may concentrate on the intellectual substance of the specification. The specific
forms of analysis that should be considered (in ascending order of stringency) are:

• Parsing,

• Typechecking (there are many degrees of stringency possible here; the most
stringent generally require use of theorem proving),

• Well-formedness checking for definitions (i.e., assurance of conservative exten-
sion),

• Demonstration of consistency for axiomatic specifications (e.g., exhibition of
models),

• Animation (i.e., construction of an executable prototype from the formal spec-
ification, so that it can be subjected to experiment). This form of analysis has
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a rather different character than the others listed here, and should be used
for specific purposes that are defined beforehand—otherwise it can degenerate
into hacking.30

• Formal challenges (i.e., posing and proving putative theorems that should be
entailed by the specification).

I have been surprised, and not a little shocked, to discover in some projects a re-
luctance to undertake some of these analyses (except animation). In one project, the
authors of a specification gave up attempting to typecheck it once the typechecker
revealed errors, yet they expected reviewers to study the specification. In another,
the proof obligations generated by typechecking were not discharged by the author,
but were examined during reviews; I consider it pointless to expend the intellectual
resources available during a review on matters that can be decided (more reliably)
by analytic processes.

The rationale submitted to satisfy Section 12.3.b(3) of DO178B, should clearly
state the analyses that are required to be completed prior to reviews, and should
describe the class of faults that are detected by means of these analyses, and whether
the detection is certain, or merely likely. The number and stringency of the analy-
ses performed may be determined by the criticality and sophistication of the formal
specifications considered. If the means of analysis includes automated tools, then it
will also be necessary to attend to the requirements of Section 12.2 (Tool Qualifica-
tion) of DO178B (relevant excerpts were quoted earlier in Section 3.2).

My experience is that mechanically-supported analyses of the kinds suggested
above are extremely potent forms of fault-detection for formal specifications. I
expect that in many projects it will also be worthwhile to develop additional forms
of mechanized analysis to check for specific classes of faults. By these means, we can
ensure that the formal specifications submitted for review are free of gross defects
and the reviews can focus on deeper issues. The question then remains: how much
confidence can we have in reviews of formal specifications by personnel who may not
be experts in formal methods? It seems to me that we must trust to the integrity of
the review process to decide this. Currently, reviews are conducted using checklists
with items such as “do you consider the requirements are complete?” and it will
be necessary to add items such as “do you consider that you have been able to
fully comprehend the formal specification?” The assurance that participants fully
comprehend a formal specification may be enhanced if the suggestions of Parnas

30Duke [Duk89] documents a methodology used at NASA Dryden that apparently involves devel-
opment of a working software prototype, extraction of requirements from that prototype, develop-
ment of fully engineered software to those requirements, and iteration until both software versions
and the requirements agree. Duke notes that this approach seems best suited to the development
of experimental systems.
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and Weiss [PW85] are followed: for example, someone other than the author of a
specification should be expected to explain it during the review, and the author
should pose questions to the reviewers (rather than vice-versa).

My experience has been that engineers have little difficulty in learning to read
formal specifications and are quite willing to do so once they see a payoff. What
constitutes an adequate payoff seems to be evidence that you can do something with
formal specifications—and one of the things that can be done is to eliminate most of
the trivial errors that waste a good deal of time in reviews of informal specifications.

Another payoff is that mechanical analysis may discharge some of the require-
ments for certification. For example, in its Section 6.3.1. (Reviews and Analyses of
High-Level Requirements), DO-178B requires

b. (Accuracy and consistency): The objective is to ensure that each high-level re-
quirement is accurate, unambiguous and sufficiently detailed and that the re-
quirements do not conflict with each other. (Similar considerations apply to
lower-level requirements described in DO-178B Section 6.3.2.).

Some aspects of consistency and non-conflict can be established mechanically for
formal specifications by strong typechecking and related analyses.

Yet another payoff of formal specifications, but one that requires very skilled
specifiers to achieve, is the ability to be precise without being excessively detailed.
Using natural language and informal methods of expression, the desire to be precise
often drives requirements authors into excessive levels of detail and to a notation
close to that of a pseudocode—but then the requirements become descriptions of
an implementation, and the rationale and intent behind them is lost.31 This is a
serious flaw, since requirements validation is primarily an examination of rationale
and intent, and cannot be performed adequately if these are not recorded. Some
current trends are exacerbating this problem. For example, requirements are often
developed with the aid of simulators. In these circumstances, the system engineers
sometimes cut and paste sections of their simulation program into the software
requirements document: in effect, the simulation code becomes the requirements
specification. Requirements validation then necessitates “reverse engineering” from
the simulator code to the goals and constraints (i.e., to the “real” requirements)

31For example, Tomayko [Tom87, page 111] reports that C-Level requirements specifications for
the Space Shuttle flight-control system “include descriptions of flight events for each major portion
of the software, a structure chart of tasks to be done by the software during that major segment,
a functional data flowchart, and, for each module, its name, calculations, and operations to be
performed, and input and output lists of parameters, the latter already named and accompanied by
a short definition, source, precision, and what units each are in. This is why one NASA manager
said that ‘you can’t see the forest for the trees’ in Level C, oriented as it is to the production of
individual modules.”
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that it is asserted to satisfy. A requirements analyst on one project observed that
the whole process then operates backwards: “the systems engineers write code, and
the software developers have to do systems engineering.”32

Formal methods could help reduce some of these problems: they offer the possi-
bility of documenting requirements precisely, yet without implementation detail, and
could also contribute to the documentation of rationale and intent (e.g., by allowing
intended consequences to be stated as theorems, and invariants and constraints to
be recorded as axioms or assumptions).

It requires considerable skill in formal methods to develop formal specifications
of this kind—and it also requires deep understanding of the problem domain and
of the lifecycle processes being followed. The last of these is sometimes overlooked
when formal methods experts and domain specialists are left to develop the spec-
ification on their own: it is not enough for the specification be elegant, or even
correct—it has to be appropriate for the part it is to play in the development pro-
cess. This means it must be presented in a form that is suitable for review in the
current stage of the lifecycle and that can be used as an input to the next. The
requirements for these processes can range from formatting rules (e.g., lines must
be numbered to facilitate inspections), through identifier-naming conventions, to
onerous documentation standards. It seems that the diverse skills required for the
development of effective formal specifications are best brought together through the
collaboration of several individuals, each skilled in particular facets of the overall
problem.

We have just considered formal specifications as a way to supplement or replace
some of the Software Requirements Data described in Section 11.9 of DO-178B.
Another opportunity is to apply formal methods to the Design Description required
by DO-178B Section 11.10.

32Another disadvantage of these excessively detailed forms of requirements specification is that
they close off implementation options. For example, one change to be introduced in the OI-24
version of the Space Shuttle on-board software is intended to ensure that reaction control jets are
selected for firing in a way that minimizes the angle between the acceleration that will be produced
by firing the selected jets and the direction desired (previously the aim had been to maximize the
scalar product between the acceleration produced by firing the selected jets and the direction de-
sired; the new scheme is intended to save propellant). The requirement is specified in pseudocode
(probably derived from a simulator) that has triply nested loops. An implementation of the re-
quirement as specified consumes 67 msec. of a frame in which only 40 msec. is available. Because
the requirement specification mandates a triply nested loop, rather than specify the properties de-
sired of the output of the computation, the implementors have little room for maneuver in reducing
execution time. It is possible that a costly revision to the requirements will be needed, or that this
attempt to reduce propellant usage will be abandoned.

In another example (found while performing formal verification), an optimization that could
safely be left to implementation (i.e., don’t recompute which jets to fire if none of the inputs
have changed since the previous frame), is instead promoted to the requirements level, where it is
expressed in an obscure manner that appears to admit the possibility of firing a failed jet (a very
bad idea!) in certain circumstances.
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11.10. Design Description: The Design Description is a definition of the soft-
ware architecture and the low-level requirements that will satisfy the software
high-level requirements. This data should include:

a. A detailed description of how the software satisfies the specified software
high-level requirements, including algorithms, data structures, and how
software requirements are allocated to processors and tasks.

. . .

Here the rationale for formal methods would be to enhance communication
among members of the design and implementation teams. Use of formal methods to
specify (sequential) algorithms, data structures, and interfaces is fairly straightfor-
ward, and some widely publicized, and apparently successful applications of formal
methods have been of this kind [HK91]. The concepts and notations employed
can be closer to those of programming and digital design than is appropriate for
requirements documentation and the consequences for certification seem slight.

Formal methods in place of some traditional processes

So far, I have envisaged that traditional reviews and analyses will continue to be
performed, although some traditional data may be supplemented or replaced by
formal specifications.

Larger savings may be possible if formal analyses can replace some of the tra-
ditional processes considered in certification. I have already suggested that formal
methods of analysis such as typechecking could supplement or replace reviews for
properties such as consistency of specifications. However, more significant savings
might be possible if formal “proofs of correctness” could replace some of the onerous
testing procedures required by DO-178B. (I have heard estimates that up to 30%
of all software development costs may be consumed in unit testing and that it costs
$100,000 for each bug found by structural unit test procedures—however, this latter
figure is of little relevance, since the purpose of unit testing in DO-178B is assur-
ance, not debugging.) The difficulty in doing this is the reason I put “correctness”
in quotes: formal methods deal with models of the system, not the system itself.
Consequently, some testing will be required to validate the modeling, though it is
plausible that this could be accomplished as part of integration testing, without
requiring unit testing. The Cleanroom methodology follows a very rigorous version
of this approach: developers must provide correctness arguments for their code and
are not allowed to run it; there are no unit tests, and integration tests use statistical
sampling methods [Dye92].33

33In order to support statistical testing, Cleanroom developers have to document the expected
“operational profile” of their software. Apparently, this extra requirement causes developers to
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The realities of airplane certification are such that unit test criteria are unlikely
to be relaxed in favor of formal verification or formal refinement without considerable
evidence supporting a “rationale for use of the alternative method which shows that
the system safety objectives are satisfied” required by Section 12.3 b(3) of DO-178B.
Since one of the purposes of unit test is to exercise the compiled code34 formal
verification of source code, or formal refinement of specifications into source code,
are unlikely to satisfy this safety objective (unless the compiler were verified).

However, it is feasible that formal methods could discharge one of the objectives
of testing rather more convincingly than conventional tests, and this may be a niche
that formal methods could occupy rather sooner than replacement of unit testing.
According to DO-178B [RTCA92, Section 6.4]:

“Testing of airborne software has two complementary objectives. One ob-
jective is to demonstrate that the software satisfies its requirements. The
second objective is to demonstrate with a high degree of confidence that
errors which could lead to unacceptable failure conditions, as determined
by the system safety assessment process, have been removed.”

The second of these objectives is rather difficult to verify by testing—it means
trying to demonstrate a negative. But if we can state precisely the properties that
could lead to unacceptable failure conditions, then formal methods can be used
to show the absence of those properties (we prove that the software entails the
negation of those properties for all inputs). This approach is suggested in DO-178B
itself [RTCA92, Section 12.3.1]:

“Testing shows that functional requirements are satisfied and detects
errors, and formal methods could be used to increase confidence that
anomalous behavior will not occur (for inputs that are out of range or
unlikely to occur).”

One specific technique that addresses concern for “inputs that are out of range”
is use of formal verification to prove that specific exceptions (e.g., array bounds
violations) will not occur. Techniques of this kind can be considered a very strong
form of typechecking; they were pioneered by German [Ger78] and are now available
in commercial tools [Egg90]. Best and Cristian give a formal treatment of more
general kinds of exceptions [BC81, Cri84].

think about their software from a novel perspective and has the unexpected side-effect of leading
them to discover faults that would otherwise have gone unnoticed at that stage.

34For example, the onerous unit test criterion required by DO-178B called Modified Condi-
tion/Decision Coverage (MC/DC) is intended to exercise all possible code sequences that a compiler
might generate from the Boolean expressions appearing in tests and loops [CM93].
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3.4.2 Use of Formal Methods to Improve Quality Control and As-

surance

Many of those who advocate use of formal methods for safety-critical systems do
so because they believe that existing practices are inadequate and that (only) for-
mal methods can significantly increase the assurance provided for these systems.
Standards, such as the British Interim Defence Standard 00-55 [MOD91a] and the
United States Trusted Systems Evaluation Criteria [DoD85], that mandate use of
formal methods for certain classes of systems seem motivated by these beliefs. In this
subsection I summarize the evidence in support of these beliefs, examine whether
increased quality control and assurance is needed for airborne systems (and if so,
for what aspects of those systems), and consider whether and how formal methods
can contribute to increased quality control and assurance.

The distinction between quality control and quality assurance is that the first
is concerned with methods for eliminating faults, while the second is concerned
with methods for demonstrating that no faults remain (although the distinction
is often somewhat blurred in practice). In considering how formal methods may
contribute to improved quality control, I will enquire whether there are classes of
faults that might escape detection using traditional processes (and might therefore
be present in operational systems), and I will examine whether formal methods
could help eliminate those faults. In considering their contribution to assurance, I
will enquire whether there are classes of faults that are often detected much later
than the lifecycle stage where they are introduced, and will examine whether formal
methods could help detect those faults earlier, and give assurance that they have
been detected.

Formal Methods to Increase Quality Control

As reported in Section 3.3, there is no documented evidence of inadequate qual-
ity control for airborne software in current operation—but since the generation of
commercial airplanes with truly extensive flight-critical software has accumulated
relatively few flight-hours to date (the Airbus A320 has about a million hours, the
Airbus A330 and A340 are about to enter service, and the Boeing 777 has not yet
flown), the software would have to be very bad indeed for any significant faults to
have shown up. The evidence recounted in Section 3.3 from experimental aircraft
and from spacecraft, where faults have been documented in flight test or in opera-
tion, suggests that if current quality control methods are inadequate, then they are
most likely to be so in those areas of intrinsically high technical complexity concern-
ing the management of concurrent, distributed activities in the presence of faults or
other rare combinations of events. If this assumption is correct, then it is possible
that definitive evidence for individual software faults occurring in operation will
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never be forthcoming, even if software quality is inadequate—for the circumstances
in which residual faults will be activated will be those of multiple failure, where the
exact sequence of events will be very difficult to determine and next to impossible
to reproduce, and evidence that could implicate the software (e.g., a trace of its
execution) is simply unavailable (the necessary instrumentation is seldom retained
after flight test). It is possible, therefore, that the only evidence for the adequacy
or otherwise of current quality control practices for flight-critical software will be
statistical—and it may require a decade or more to accumulate the quantity of op-
erational experience (i.e., in excess of 107 flying hours) that may be expected to
reveal very small, but unacceptable, failure rates.

In summary, software quality control and assurance practices have apparently
worked adequately in the past; if they are inadequate for the new generation of
software-intensive airplanes, their inadequacies will be on the margins and slow
to come to light, and the evidence will be equivocal. Therefore, in my opinion,
judgments concerning the adequacy of quality control methods for flight-critical
software must primarily be based on intellectual and introspective grounds. It is up
to systems developers and certification authorities to make these judgments, but I
think that if there are any areas where current processes for quality control might
be judged inadequate, then they will concern complex problems such as the coor-
dination, partitioning, timing, and synchronization of distributed and concurrent
activities in the presence of faults and other combinations of rare events. These are
areas of high and inherent technical complexity that must deal with vast numbers
of possible behaviors and are difficult, if not impossible, to validate through testing.

But can formal methods validate these vastly complex behaviors, and if so,
what type of formal methods? Once again, I believe the analysis must chiefly be an
intellectual and introspective one. And on that basis, the reason why formal methods
might be expected to help is that they provide a means for describing, specifying,
calculating, and thinking about complex behaviors: they can render intellectually
manageable a dimension of possibilities that otherwise exceeds our capacity. DO-
178B appears to concur with this assessment, and in its Section 12.3.1 states

Formal methods may be applied to software requirements that:

• Are safety-related.

• Can be defined by discrete mathematics.

• Involve complex behavior, such as concurrency, distributed processing, redun-
dancy management, and synchronization.

I suggest that those aspects of design that “involve complex behavior” should
be provided with at least the level of formal description and analysis that would
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be found in a refereed computer science journal. That is, for the mechanisms of,
say, fault tolerance, a specification of the relevant algorithms should be provided,
together with the fault assumptions, the fault masking or recovery objectives, and
a proof that the algorithms satisfy the objectives, subject to the assumptions. This
level of rigor of presentation is what I have been calling a “Level 1” formal method;
it is less rigorous than any of the levels of formality contemplated in Section 12.3.1
of DO-178B. Nonetheless, I believe this level of rigor would be an improvement on
current practice.

The mechanisms of fault tolerance, distributed coordination, and concurrency
management employed in aircraft systems owe little to those studied by academic
researchers.35 This is not a criticism (there is little reason to suppose that academic
researchers know more about flight-control systems than those who actually develop
them), but the salient point is that, because they do not derive from academic
traditions, the architectures and mechanisms used in aircraft systems cannot draw
on the analyses and proofs that have been published and subjected to peer review
in computer science journals and conferences. Hence, if it is not done already (and
if it is, it is not described in the open literature), a very desirable first step towards
increased quality control and assurance would be use of formal methods, at a modest
level of rigor, to demonstrate the correctness of the basic mechanisms and algorithms
concerned with complex behaviors. The intent of this exercise would be to contribute
to satisfaction of the software verification process objectives stated in Section 6.1 of
DO-178B:

The general objectives are to verify that

. . .

b. The high-level requirements have been developed into a software ar-
chitecture and low-level requirements that satisfy the high-level re-
quirements . . .

. . .

At a more detailed, level, the verification objectives stated in Section 6.3.1 of DO-
178B include:

35For example:

“Not far from CNRS-LAAS [a French research establishment with considerable exper-
tise in fault tolerance], Airbus Industrie builds the Airbus A320s. These are the first
commercial aircraft controlled solely by a fault-tolerant, diverse computing system.
Strangely enough this development owes little to academia” [Kir89].

The GEC architecture [DH90] for the primary flight computers of the Boeing 777 is similarly
without academic forbears. An exception to this general rule is Allied Signal’s MAFT architec-
ture [KWFT88], which was proposed for some of the design studies in the 7j7, 767x series.
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g. (Algorithm Aspects): The objective is to ensure the accuracy and
behavior of the proposed algorithms, especially in the area of dis-
continuities.

I suggest that the specific verification objective for formal methods would be to
demonstrate that certain fundamental algorithms and architectural mechanisms in-
volving complex behavior (i.e., behavior that consists almost exclusively of “discon-
tinuities”) satisfy their corresponding high-level requirements.

Since such requirements and behaviors may not be testable under all combi-
nations of circumstances, this use of formal methods addresses the guidance for
software verification activities given in Section 6.2 of DO-178B:

. . .

d. When it is not possible to verify specific software requirements by
exercising the software in a realistic test environment, other means
should be provided and their justification for satisfying the software
verification process objectives defined in the Software Verification
Plan or Software Verification Results.

. . .

In particular, I suggest that formal methods and proofs can provide the “other
means” required to satisfy the verification process objectives in the case of complex
behaviors.

I consider this objective an important one for formal methods since it addresses
the source of the observed faults described earlier in this chapter, and I do not see
how it can be accomplished by other means—though it seems prudent that formal
methods should supplement, not replace, existing practice.

The specific benefit provided by formal methods is that they allow “complex
behaviors” to be analyzed (by means of proofs), rather than merely reviewed—and
analyzed in their totality, rather than merely sampled as by testing or simulation.
Thus, the benefit derives from proof, not from formal specification alone: formally
specifying the individual state machines at either end of a protocol, for example,
adds little to our understanding—we need to calculate their combined behavior in
order to ensure that they accomplish the desired goal.

Level 1 formal methods can provide assurance that critical algorithms and archi-
tectural mechanisms achieve their requirements, relative to the level and abstract-
ness of description used, and subject to the fidelity of the modeling employed and
accuracy of the proofs performed. Beyond the modest step just recommended, we
should consider the extent to which quality control and assurance might be further
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enhanced by increasing the level of formal rigor employed, or the number of stages
of the lifecycle subjected to formal analysis.

When the concern is to establish that certain tricky or crucial aspects of design
are correctly handled by the algorithms and architectural mechanisms employed, I
see little advantage to Level 2 formal methods over Level 1: it is the proofs that mat-
ter, and both levels employ the traditional kind (presented and checked informally
“by hand”); all that Level 2 would add is a fixed syntax for the specification language
and possibly some built-in models of computation and concurrency. These last may
be a mixed blessing: useful if they match the needs of the problems considered,
otherwise an obstacle to be overcome. In my opinion, the latter is most likely to be
the case, since the assumptions built in to many notations (e.g., synchronous com-
munication in Lotos) require the very mechanisms (e.g., synchronization) whose
correctness we will be trying to establish.

But if Level 2 formal methods add very little in this domain, Level 3 may add
a great deal. We will be dealing with difficult problems, where a large number of
potential behaviors must be considered—that is why we have decided to use formal
methods—and the proofs may be expected to be replete with boundary conditions
and case analyses. These are precisely the kinds of arguments where informal reason-
ing may be expected to go astray—and go astray it does: for example, the published
proof for one synchronization algorithm [LMS85] has flaws in its main theorem and
in four of its five lemmas [RvH91], and one algorithm for distributed consensus that
was published with a detailed proof of its correctness [TP88] nonetheless contains a
bug [LR93b]. The flaws in the two examples just cited were discovered while under-
taking formal analysis at Level 3 and suggest the benefits that may be derived from
this level of rigor. As with Level 2, those Level 3 specification languages that provide
built-in models of computation and of concurrency may hinder rather than help the
kinds of analysis considered here; a specification language built on an expressive but
neutral logic, in which can be constructed models suited to the problems at hand,
may prove the most effective tool.

The value of undertaking mechanically-checked proofs is that the dialog with a
proof checker leads us to examine all cases and combinations of the argument. On
it own, a mechanically-checked proof is not a “means of compliance” with a certi-
fication basis and concern that “the theorem prover has not been proved correct”
is not an obstacle to deriving great benefit and additional assurance by applying
Level 3 formal methods in this domain (recall Section 3.2 where part of the Qual-
ification Criteria for Software Verification Tools was reproduced from DO-178B).
The analysis produced through dialog with any adequately validated proof-checker
will be considerably more complete and reliable (and repeatable) than one produced
without such aid—it is the ultimate walkthrough—but the “certificate” that comes
from a mechanized proof checker should not be accepted as unsupported evidence
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of fitness any more than should other computer-assisted calculations, such as those
of aerodynamic properties, or of mechanical stress. In my opinion, the analysis de-
veloped with the aid of a theorem prover should also be rendered into a clear and
compelling semi-formal (i.e., Level 1) argument that is subjected to intense human
review, and it is the combination of stringent mechanical and human scrutiny (and
other evidence, such as tests) that should be considered in certification.36

The construction of a mechanically-checked proof that certain algorithms and
architectural mechanisms accomplish certain goals subject to certain assumptions,
addresses only part of the problem: we also need to validate the modeling employed.
That is to say, we need to be sure that the model of computation employed, and the
statements of the assumptions made and of the goals to be achieved, are all true in
the intended interpretation. We also need to be sure that the algorithm and archi-
tectural mechanisms considered in the proof will be correctly implemented. There
is a tension between these concerns: it is generally easier to validate models that
make a few broad and abstract assertions (e.g., “it is possible for a nonfaulty pro-
cessor to read the clock of another nonfaulty processor with at most a small error
ǫ”) than those that make many detailed ones (e.g., that talk about specific mecha-
nisms for reading clocks and the behavior of particular interface registers), but the
“gap” between the verified specification and its implementation will be greater in
the former case. In my opinion, since the assurance objective of this analysis is
to ensure there are no conceptual flaws in the basic algorithms and mechanisms,
credibility of validation should take precedence over proximity to implementation.
This argues for performing the analysis early in the lifecycle and using abstract
modeling (i.e., suppressing all detail judged irrelevant). Validation is accomplished
by peer review, supported by analyses (recall the list given in the previous subsec-
tion) that demonstrate, for example, that axiomatic specifications are sound (i.e.,
have a model), that intended models are not excluded (e.g., that clocks that keep
perfect time satisfy the axioms for a “good clock”), that definitions are well-formed,
and that expected properties (i.e., “challenges”) can be proven to follow from the
specification.37 Concern that implementations are faithful to their verified specifi-
cations is a separate problem, and can be handled using either formal methods, or

36For this reason, I do not endorse the requirement in UK Interim Defence Standard 00-
55 [MOD91a, paragraph 32.2.3] that a second mechanically-checked proof using a “diverse tool”
should be required. The resources required would be better expended on diverse analysis, and on
human scrutiny of the argument and modeling employed.

37UK Interim Defence Standard 00-55 places great stress on validation through “anima-
tion” [MOD91a, paragraph 29.3.1 and guidance paragraph 29.6]. By this is meant: (1) use of
“formal arguments” to demonstrate consistency with higher-level requirements and to undertake
what I call “challenges,” and (2) construction of an “executable prototype” to “examine and inves-
tigate particular aspects of the specification that have been identified in advance, with particular
emphasis on the safety features.” While executable prototypes can be useful in some circumstances,
I do not consider it likely that they can contribute to increased quality control and assurance for
the difficult algorithms and architectural mechanisms under consideration here.
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traditional techniques for V&V. My personal opinion is that traditional techniques
are likely to be adequate: the evidence seems to be that it is the basic mechanisms
and algorithms that have been flawed, not their implementations.

A very reasonable concern about the type of formal methods activity I advocate
for increased assurance is that it requires specialized skills of a very high order: I am
suggesting nothing less than applying the most rigorous kinds of formal methods to
the hardest and most difficult aspects of design. But if we accept that quality control
and assurance of airborne software already achieves very high standards, we can
hardly expect to push the standards still further without significant effort, training,
and skill. However, although technically difficult and intellectually demanding, the
applications of formal methods that I advocate are few in number (just the problems
where concern is greatest) and small in scale (since they will be undertaken in the
early lifecycle and can employ abstract models), and can therefore be accomplished
using relatively few (but highly skilled) people. Thus, the challenge for technology-
transfer of formal methods into high-assurance contexts is not to bring relatively
large numbers of people up to relatively modest levels of accomplishment, but to
train relatively few people to extremely high levels—and not just in formal methods,
for to formalize the topics of interest and to work effectively with the senior systems,
safety, and software engineers concerned will require expertise in many aspects of
safety-critical systems design.

Another reasonable concern is that formal methods tools, and theorem provers
in particular, will not be adequate to the challenge of the hardest problems. Those
whose experience has been restricted to “proof assistants,” or other systems with
little automation, often have a very false impression of the capabilities of modern
theorem proving systems: they extrapolate from their own experience and assume
that theorems a little harder than those they have been able to prove must be at
the limit of feasibility. In truth, the more automated of modern theorem-proving
systems can, under the guidance of skilled and experienced users, prove rather hard
theorems rather expeditiously. Certainly, however, problems can be posed that will
stress the capability of any current theorem prover—or, rather, the patience of its
user—but abstraction may allow us to “downsize” such problems to a manageable
scale (or to divide them into several smaller problems). It takes great skill to do
this without abstracting away matters of real significance, but the simplification
achieved is likely to be of independent value (providing a better grasp on the real
issues). Once a problem is reduced to a tractable form, mechanical theorem proving
is not a major impediment: most of the time spent in dialog with the theorem prover
is spent revising the specification in response to faults discovered, not in developing
the final proof [Sha88].
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Formal Methods to Increase Quality Assurance

Under the previous heading, I considered the potential contribution of formal meth-
ods to aspects of design where traditional methods of quality control might be
inadequate and where faults could persist in operational software. In this section, I
examine the case where quality control seems adequate, but quality assurance may
be considered less than satisfactory. I am interested here in those lifecycle processes
that have a high “leakage rate” (i.e., faults are discovered at a later stage of the
lifecycle than that which introduced them), or where the assurance processes are
poorly controlled, so that it is difficult to provide evidence for their coverage and
effectiveness. As seen in Section 3.3, both these characteristics are most strongly
expressed in the early lifecycle, and in requirements specification and analysis in
particular.

The general problem in the validation of requirements specifications is that it
is difficult to measure “coverage” in any objective sense. Requirements analysts
collect and study as much pertinent information as possible and examine the writ-
ten requirements from several perspectives in order to determine whether they are
complete, consistent, and free from major faults. In addition, they identify and
mentally execute “scenarios” that are rather like tests in that each one explores
the ramifications of the requirements specification under a specific hypothesis. But
apart from the scenarios and reports of any deficiencies discovered, there are few
outputs from the requirements analysis process that are checkable or measurable—
basically all that is available is a statement “I checked this to the best of my ability
and apart from the items listed, I cannot find any other problems.” The effective-
ness of the process is thus heavily dependent on the experience, intelligence, and
diligence of the personnel involved. When faults are discovered later in the life-
cycle and those responsible for requirements analysis are asked how those faults
escaped their detection, they generally answer “I didn’t know it was meant to (not)
do that,” or “I didn’t think of that scenario.” While I do not suggest that formal
methods can eliminate these deficiencies, I do believe they can alleviate them, and
can contribute to a more analytical and manageable process. The objective would
be to contribute to satisfaction of DO-178B Section 6.3.1. (Reviews and Analyses
of High-Level Requirements):

a. (Compliance with system requirements): The objective is to ensure that the sys-
tem functions to be performed by the software are defined, that the functional,
performance, and safety-related requirements of the system are satisfied by the
software high-level requirements, and that derived requirements and the reason
for their existence are correctly defined. (Section 6.3.2., dealing with low-level
requirements, adds the objective of ensuring that . . . derived requirements and
the design basis for their existence are correctly defined.)
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b. (Accuracy and consistency): The objective is to ensure that each high-level re-
quirement is accurate, unambiguous and sufficiently detailed and that the re-
quirements do not conflict with each other. (Similar considerations apply to
lower-level requirements described in DO-178B Section 6.3.2.).

c. (Compatibility with the target computer): The objective is to ensure that no
conflicts exist between the high-level requirements and the hardware/software
features of the target computer, especially, system response times and in-
put/output hardware.

d. (Verifiability): The objective is to ensure that each high-level requirement can be
verified.

. . .

f. (Traceability): The objective is to ensure that the functional, performance, and
safety-related requirements of the system that are allocated to software were
developed into the software high-level requirements.

. . .

The difficulties of requirements capture and documentation are larger than those
addressed by formal techniques alone; what is really needed is a systematic method
for approaching these problems (and for applying formal techniques to them). For
control systems, the approach developed by Parnas and colleagues—variously known
as the “A7” or “Software Cost Reduction” (SCR) method—seems most suitable. (A
recent description of the A7 method is given by van Schouwen [vS90, vSPM93]; an
example, in which a duration calculus [Cha93] is used to support the method, is given
by Engel et al. [EKM+93].) A more comprehensive approach, developed specifically
for aerospace applications and combining object-oriented techniques with those of
A7, is the “Consortium Requirements Engineering” (CoRE) method of the Software
Productivity Consortium. (This method is currently being applied to Lockheed’s
C-130J (Hercules) avionics upgrade.)

I suggest that formal specifications and formal analyses should supplement tra-
ditional methods for requirements specification and analysis. Within the framework
provided by a requirements engineering method, such as A7 or CoRE, formal meth-
ods could render quality control and assurance of requirements a more systematic,
controlled, and repeatable process.

In particular, I believe that formal methods can help requirements authors state
what the component concerned is intended to do, what it should not do, what con-
straints it must satisfy, and what assumptions may be made about its environment.
Present techniques may lose these vital items of information; demands for increased
precision only drive the specifier towards more operational descriptions of how the



3.4. Formal Methods in Support of Certification 157

system is to be constructed. Nor do methodologies such as OMT [RBP+91] address
these problems of stating what is required; while excellent for many purposes, they
serve mainly to provide perspectives on how the system is to be put together.

Similarly, present techniques do not encourage requirements authors or analysts
to state explicitly the general constraints and assumptions that apply to a compo-
nent. Instead, scenarios are used to enumerate the intended circumstances of its
operation. Formally stated assumptions and constraints, on the other hand, could
capture general properties, and attempts to prove the conjecture

assumptions plus requirements specification imply constraints

should force systematic enumeration of all the significant scenarios. Work by de
Lemos, Saeed, and Anderson [dLSA92] illustrates some steps in this direction.

In addition to systematic exploration of requirements specification in relation to
its assumptions and constraints, a suitably detailed specification can be scrutinized
with respect to a number of consistency and completeness criteria. A formal spec-
ification can be checked for a specific kind of consistency by typechecking, and by
showing that its axioms are satisfiable (again, recall the list given in the previous
subsection). Similarly, a certain form of completeness can be systematically checked
using the methods of Jaffe, Leveson and Melhart [JLHM91].

It would not be necessary to use explicitly formal methods to follow some of
the steps suggested above. Natural language, possibly supplemented by diagrams,
tables, and some mathematical notation could be adequate for many purposes. And
some of the proposed analyses could be reduced to checklists without losing all ef-
fectiveness (recall Lutz’ report [Lut93b] that a checklist derived from Jaffe, Leveson
and Melhart’s proposals would have identified more than 75% of the safety-critical
faults discovered in the Voyager and Galileo spacecraft). However, specifically for-
mal methods would provide the additional benefit that some review steps could be
replaced or supplemented by analyses: that is by repeatable processes amenable
to independent, and possibly mechanical, checking. Such systematic analyses seem
most likely to contribute to an improvement in assurance.

Item [c.] “Compatibility with the target computer” in DO-178B Section 6.3.1.
(reproduced above) seems to raise the general question of interfaces (under “in-
put/output hardware”). Recalling Lutz’ data from Section 3.3 that 25% of all safety
critical faults in Voyager and Galileo were interface faults, and that half of those
concerned misunderstood hardware interfaces, it seems that more precise specifica-
tion of such interfaces would be advantageous. Since faults seem to be associated
with semantic attributes of the interfaces (e.g., initial states, fault modes, timing
and sequencing constraints), a formal notation that permits the expression of such
attributes is required; specification of syntactic attributes (e.g., using pseudocode)
will be insufficient. æ
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3.5 Selection of Formal Methods, Levels and Tools

Before applying formal methods to a system development, it is important to consider
carefully a number of choices and decisions: for what purpose are formal methods
to be applied, to what components and properties, and with what level of rigor?
Once these basic decisions are taken, more specific ones can be addressed, such as
the selection of individual methods and of tools.

In the previous section, I identified a number of ways in which formal methods
could be used in support of certification. The common thread among those different
ways is the ability of formal methods to reduce certain questions to calculation,
thereby allowing analyses to replace or supplement reviews. Even when the intel-
lectual substance of a formal specification is chiefly examined through reviews, it
is surely the fact that some questions, such as syntactic or type consistency, can
be settled by calculational processes that distinguishes it from a nonformal specifi-
cation; if we do not make use of the fact that formal specifications permit formal
calculations, then we have not used formal methods in any significant way and there
is no need to consider their impact on certification. (This is not to say that the no-
tational, educational, or mental aspects of formal methods might not benefit the
software engineering process—merely that they produce little novel evidence that
can be examined in support of certification.)

Therefore, in my opinion, the selection of a level of rigor, formal method, and
tools, should be largely determined by the type of analysis we wish to perform. Once
the kind of analysis is chosen, I believe it will generally be most useful to decide next
the level of rigor. If the goal is to analyze the correctness of crucial algorithms and
architectural mechanisms, then Level 1 rigor and carefully constructed traditional
proofs may be adequate (and certainly superior to no analysis at all); if the proofs
are intricate or numerous, then Level 3 rigor and mechanically-checked proofs may
be preferable. When specifications are mainly to be used as documentation and
examined by review, then a formalized specification notation and Level 2 rigor may
be appropriate—provided the notation is supported by tools that perform effective
detection of syntactic and semantic faults.

Once we have identified the type of analysis and level of rigor, we can select
the most appropriate methods and tools. For Level 2 documentation of sequential
components, a notation such as VDM or Z supported by a typechecker may be a
good choice. Alternatively, we may prefer the richer mechanization and stronger
guarantees of consistency afforded by the tools of a system that is normally used
at Level 3. The problem domain will naturally influence the choice of methods and
tools: for example, with real-time applications we have to decide whether to use
a system that supports those concerns directly, or whether to model them within
some more general framework.
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For Level 3 applications (i.e., those involving mechanized proof checking), it
will be necessary to match the capabilities of the tools used to the requirements
of the problem domain: it will seldom be productive to use a process-algebra such
as Lotos for the description of sequential programs and low-level data structures
(recall [GH93a]), nor is a program verification system likely to be the best choice
for abstract design specifications (see [SB89]). The intended analyses must also be
considered, and the methods and tools chosen appropriately. For example, if the
goal is to examine whether mode-switching or other complex control logic admits
undesirable properties, then a state-exploration system may be the most suitable.
But for verification of the correctness of fault-tolerant algorithms, a more general-
purpose theorem prover will be a better choice.

These points may seem obvious, but I know of projects where methods and tools
were selected apparently by chance, resulting in some strange pairings. For example,
one organization purchased a tool intended for the formal development of hardware
designs—and it is a perfectly fine tool for that purpose. When a later project was
started to formally analyze voting and redundancy management mechanisms, they
used the same tool. Now although it is possible to drive screws with a hammer,
the practice is unlikely to lead to sturdy joints, nor to refined appreciation of the
capabilities of either screws or hammers. Accordingly, in the next few pages, I list
some questions that should be considered when selecting tools to support formal
methods.

The questions are largely technical ones bearing on the effectiveness of the auto-
mated analyses that can be supported by the tools under consideration—although I
recognize that political and other nontechnical considerations may also be influential
in the selection of methods and tools. Principal among these nontechnical factors
are popularity, availability of training courses and textbooks, and standardization
and endorsement by various national and international bodies. These factors will
be important in many applications of formal methods, but I believe they should
generally be outweighed by technical considerations when contemplating applica-
tion to airborne systems. For flight software, we are less concerned with general
improvements in software engineering and more concerned with assurance of soft-
ware quality—in an industry that already achieves extremely high standards. The
main contribution that formal methods can make in assurance for flight software
is in providing mechanically-checked analyses for strong properties of requirements,
specifications, algorithms, and programs. These mechanized analyses require state-
of-the-art capabilities in formal methods and their support tools, and the art is
advancing very rapidly. Popular and standardized methods have generally achieved
that status over many years and therefore generally lag the state-of-the-art, and their
very popularity and standardization make the processes of change and improvement
rather ponderous.
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3.5.1 Issues in Tool Selection

Most of the topics mentioned here were considered at some length in the previous
chapter and are gathered together here mainly for convenience. I assume the tools
under consideration provide a formal specification language, parser, typechecker,
various utilities, and some support for mechanized proof checking or theorem prov-
ing. I generally refer to such a tool as a “verification system” (or simply “system”),
and consider its capabilities in the order listed in the previous sentence.

Verification System

• Does the system have adequate documentation and examples?

Clearly, these are required if productive use is to be made of the system.
However, it should not be an absolute disqualification if the documentation is
not precisely of the form desired: most aerospace projects develop substantial
standards and procedures documents, and it is likely that some specially tai-
lored description of the chosen formal method and system will be required, no
matter how good its own documentation.

Examples are important for evaluation and training. If examples directly
relevant to the planned application are not available, then a pilot project to
create them should be considered.

• Has the system been used on real problems?

Embarking on a major project using an untried verification system is risky.
Generally, users should expect that the chosen system has already shown its
mettle on some significant project, and preferably has been used for purposes
similar to those planned.

• Is it easy to learn? And does it provide effective support for experienced users?

An attractive user-interface, perhaps with pop-up menus and other conve-
niences, can ease the process of learning a new system. It is more important,
however, that the system should be a productive tool in the hands of experi-
enced users. A key requirement for a system to be truly easy to use is that it
should have a rational structure, so that users can form a mental model of its
operation that corresponds to its actual behavior [Nor88].

Users should be wary of opinions formed of verification systems on the basis
of demonstrations or elementary examples. Greater familiarity and more sub-
stantial exercises are required in order to estimate how a system will serve on
large projects.
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• Does the system support the selected formal methods and analyses effectively?

A verification system should be chosen to support the analyses desired, not
vice-versa. If the desired analysis is very strong typechecking, then a system
that uses an untyped logic will unsuitable, no matter how great its other capa-
bilities. Conversely, if the goal is to analyze correctness of difficult algorithms,
then a system with a feeble “proof assistant” will provide more frustration
than assistance.

In my opinion, ability to perform the desired analyses should take precedence
over support for a particular formal method. For example, if proofs of de-
sired properties are beyond the capabilities of the available proof assistants
for VDM, say, then it will be better to adopt the notation supported by a
system whose theorem prover is adequate to the task than to abandon the
analysis. It should also be borne in mind that resources are generally finite
and bounded: heroic efforts to perform an analysis with an unsuitable tool will
consume resources that might have been better used elsewhere in the overall
scheme of enhancing software quality control and assurance.

• Is the system generic or specific to a particular logic and language?

While most systems are crafted around a particular specification language
and its associated theorem-proving requirements, some provide a more generic
foundation that can be adapted to different notations and logics. Is-
abelle [Pau88], which has been instantiated for several logics including type
theory and ZF set theory, is an example of a system that provides a fairly
general-purpose foundation. Instantiating such a foundation for a particu-
lar logic requires rather specialized skill, and is unlikely to be attempted by
projects or users that are primarily interested in using, rather than building,
support tools for formal methods. Most users, therefore, will find it more
appropriate to evaluate the suitability to their needs of specific instantiations
(e.g., type theory in Isabelle), rather than the general foundation itself. How-
ever, an advantage of systems instantiated on a general foundation is that it
may be possible for users to extend or modify them to match special require-
ments; a potential disadvantage is that their capabilities may be less than
those of one hand-crafted for the logic or specification language concerned.

An alternative that can provide some of the advantages of a generic system is
one based on a very rich foundation, such as higher-order logic (type theory).
(More ambitious foundations, specifically intended to support a wide variety
of logics, include the Edinburgh Logical Framework (LF) [AHMP92].) It is
possible to encode the semantics of other logics (e.g., temporal logics, or Hoare
logics) or specification notations (e.g., Z) in higher-order logic. A disadvantage
of this approach is that some of the details of the encoding used may obtrude
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into specifications or proofs and, as with generic systems, the capabilities
achieved may be less than those of a system hand-crafted for the logic or
specification language concerned.

• Does the system support the implementation language concerned?

If the desired analyses include verification of implementation-level descriptions,
such as those written in Ada, then the verification system must support the
programming language concerned. However, it may be worth reexamining
the purpose of formal analysis of such low-level descriptions. The unit tests
required by DO-178B are extremely onerous and cannot easily be eliminated,
since they are intended to examine the code generated by the compiler and its
operation in the context of the particular operating system, run-time support
system, and hardware concerned. These tests accomplish many of the purposes
that would be achieved by code-level verification. If, on reflection, it seems
that the goals of the formal analysis are more concerned with correctness, or
other properties, of the algorithms employed, then more abstract modeling can
be used, and the link to a specific programming language will not be needed.

Specification Language

• Does the language have an explicit semantics?

A formal specification language must itself have a secure grounding in logic.
A complete formal semantics is probably not necessary, though it is desirable,
if the language is built on a fairly standard foundation (e.g., classical first-
or higher-order logic) without many embellishments. However, when novel or
nonstandard constructions are employed, the user has a right to expect that
an adequately detailed and formal semantic account has been subjected to
peer scrutiny and is available for examination.

• Is the logic underlying the specification language at least as expressive as first-
order predicate calculus, or is it a more specialized logic?

First-order predicate calculus with equality is generally considered the min-
imum foundation for a conveniently expressive specification language; more
restricted foundations may be adequate for specialized applications and may
offer compensating benefits, such as executability, or very powerfully auto-
mated theorem proving. For maximum versatility and convenience of expres-
sion, more powerful foundations than pure predicate calculus can be desirable;
examples include set theory and higher-order logic. The best choice will de-
pend on the intended application.

• Does the language have computer-science constructions (such as records, tu-
ples, enumerations, updates)?
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Specification languages, as opposed to raw logics, generally provide built-in
notations for these constructions, which are a great convenience in computer-
science applications. It is often possible to simulate these constructions if they
are absent, but considerable notational convenience will be lost, and theorem
proving support will also be less automated. Updates (also known as overrid-
ing) are the way in which new values of structured types (such as functions, and
records) are constructed from existing values in a purely functional manner
(they correspond to assignment to array elements or record fields in imperative
programming languages) and it is usually important for the theorem prover
to deal with them in a very efficient manner.

• Does the language have familiar and convenient syntax (e.g., infix + etc.)?

Although lisp-like prefix notation has some adherents, most users prefer more
familiar notation (i.e., x∗y+z rather than (plus (times x y) z)). The no-
tation used within the system assumes less importance if there are facilities for
typesetting it in a more attractive form for documentation and review. Some
systems use true mathematical notation (i.e., ∀, rather than a keyword such
as FORALL); this is not an unmixed blessing, since it can require a nonstandard
editor to create such symbols.

• Is the specification language strongly typed? How rich is the type-system, and
how stringent is the error-checking performed by the typechecker?

Strong typing is generally considered an advantage in specification languages,
just as it is in programming languages. In specification languages, however, the
type-system can be richer than is generally feasible for programming languages.
Among the more powerful type-constructions are those for predicate subtypes,
dependent types, and disjoint unions.

• How does the logic deal with partial functions?

Partial functions are those whose value is undefined for some values of their
arguments. Developing a semantics for a specification language that admits
partial functions is a challenging problem. The main choices are multiple-
valued logics (e.g., LPF [BCJ84]), or logics of partial terms (e.g., Beeson’s
LPT [Bee86]). The alternative is to treat all functions as total; this can be
rather unnatural (e.g., allowing division by zero) in languages with only el-
ementary type-systems, but becomes very effective when predicate subtypes
and dependent types are available. Some examples of these approaches were
presented in Subsection 2.3.1.2, and they are explained in more technical detail
in Appendix subsection A.11.2. In most cases, rather sophisticated theorem
proving is required for a sound treatment (LPF and LPT usually generate de-
finedness goals as proof-time, predicate and dependent types generally require
theorem proving during typechecking).
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• Does the specification language allow formulas to be introduced as axioms?

Specification languages that do not allow the introduction of axioms can im-
pose a rather constructive style: requiring the user to define a function (say)
having a required property, rather than being able to simply assert the prop-
erty axiomatically. The extent to which this is a drawback depends on the
application. Axioms are particularly useful when we wish to state assumptions
about the environment, and when we wish only to constrain (rather than fix)
certain properties.

When axioms are allowed, the system should support methods for demonstrat-
ing their consistency.

• Does the specification language have a definitional principle that guarantees
conservative extension? Is it mechanically checked?

It is not always desirable or necessary to introduce concepts axiomatically.
Properly constructed definitions have the advantage that they cannot in-
troduce inconsistencies; they are also conducive to efficient theorem proving
and can allow specifications to be directly executed. It is desirable for well-
definedness to be enforced by the system, so that malformed definitions are not
admitted. Checking the well-definedness of some constructions (e.g., recursive
definitions) can require theorem proving.

• Does the system support definition of recursively defined abstract datatypes?

Mechanisms for introducing recursively-defined abstract datatypes (such as
lists, trees, etc.) are extremely useful; similar mechanisms can be provided for
inductively-defined types and functions (such as transitive closure). Disjoint
unions (which are very useful for adjoining an “error” value to some other
type) can often be manufactured using an abstract datatype facility if they
are not provided directly.

• Are specifications required to be model-oriented, or property-oriented, or can
both styles be accommodated?

This question is closely related to those concerning whether axioms or defini-
tions are admitted. The model-oriented style is usually associated with def-
initional mechanism; the property-oriented with axioms. Ideally both styles
should be supported.

• Does the language have overloading and type inference?

Strongly-typed languages can become notationally complex if the system does
not provide some automatic way to associate appropriate types with expres-
sions. For example, addition on integers is often a different function from
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that on the reals in many specification languages, but it is generally con-
venient if both are denoted by the single symbol + (so that the symbol is
“overloaded”), and the system uses context to determine whether real or in-
teger addition is intended. Many degrees of sophistication are possible in
type-inference mechanisms; it becomes especially challenging (and necessary)
in systems that support higher-order logic, subtypes, dependent types, and
parameterized modules.

• Are specifications purely functional, or expressed in terms of pre- and post-
conditions on a state, or can both styles be accommodated?

Purely functional specifications are closer to ordinary logic and it is generally
easier to provide effective theorem proving for this case than for specifications
involving state. When an implicit state is present, it is generally necessary to
enrich the logic with Hoare sentences or some equivalent construction, or to
reduce the problem to ordinary logic by generating verification conditions.

When state is present, it is often necessary to distinguish variables and con-
stants that are part of the state from those that are purely logical (e.g., bound
variables). Some specification languages do not do this very well.

Specifications involving state are often appropriate for late-lifecycle program
verification, but can lead to overly complex and prescriptive specifications at
earlier stages, when functional specifications may be preferable.

• Does the specification language have an encapsulation or modularization mech-
anism? Can modules be parameterized? Can semantic constraints be placed
on the instantiations of parameters? How are the constraints enforced?

Just as reuse is supported in programming by procedures, and packages, so it is
also useful to encapsulate specifications in modules. And as with programming
languages, parameterization greatly increases the utility and genericity of such
specification modules: it is desirable to specify sorting, for instance, generically
in the type of entity to be sorted, and the ordering relation that is to be
used. When specification modules can be parameterized, it is usually essential
to be able to place semantic constraints on the allowed instantiations; we
should not be allowed to instantiate the sorting module with a relation that
is not an ordering. Specifying these kinds of constraints can either be done
directly, by attaching assumptions to the formal parameters that must be
discharged whenever the module is instantiated, or by allowing modules to
be parameterized by theories—OBJ [FGJM85] does this, and more elaborate
ideas are discussed in the language proposal Clear [BG77].

• Does the language have a built-in model of computation?
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In most applications, formal methods are used to reason about computational
processes. Thus, the chosen specification language must be able to represent
the kinds of computations concerned. Some specification languages have a par-
ticular model of computation built-in, in the form of programming-language
constructs (e.g., Gypsy), or a process algebra (e.g., Lotos). If such built-in
mechanisms are lacking, it may still be possible to model them if the underly-
ing logic is sufficiently rich. For example, imperative, concurrent, distributed,
and real-time computations have all been specified quite successfully in spec-
ification languages based on higher-order logic. Almost any logic can repre-
sent sequential programs by means of function applications and compositions
(i.e., they can model functional programming quite directly). As noted in Sec-
tion 2.2.1.3, important properties of distributed systems can often be analyzed
without requiring an explicit model of distributed or parallel computation—
for example, important properties of distributed, fault-tolerant algorithms can
be verified in models that treat them as recursive functions.

When a model of computation is built in, it is important to be sure that it is
suitable for the analysis concerned: a notation based on synchronous commu-
nication is not a suitable foundation for studying synchronization algorithms.

• Is the specification language executable, or does it have an executable subset,
or are there some capabilities for animating specifications?

Execution and animation provide ways to validate specifications; another way
to perform validation is by attempting to prove putative “challenge” theo-
rems. The argument against executable specification languages is that the
demands of executability may compromise its effectiveness as a specification
medium [HJ89].

• Is there support for state exploration, model checking, and related methods?

As explained in Section 2.2.3, some analyses can be performed efficiently using
a sophisticated form of brute-force that allows exploration of all the reachable
states entailed by certain kinds of specification. At present, theorem-proving
and state-exploration systems tend to be distinct breeds, so that if an analysis
will best yield to state-exploration, then it will advisable to use a system
specialized to that purpose. If theorem proving is required as well, then it
may be necessary to use two systems. An active area of research is concerned
with finding effective ways to combine these techniques, so potential users will
not be faced with quite such a sharp dichotomy in the future.
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Utilities

• Does the Formal Method have a comprehensive library of standard types, func-
tions, and other constructions? How well validated is the library?

A frustration to many who use a verification system is the discovery that very
little “background knowledge” is built-in or available in libraries. Each new
problem area may require significant investment to formalize the basic building
blocks of the field. Some systems do have libraries of such basic constructions
as n-bit words, searching, sorting, maxima and minima, majority, and so on
(those systems that do not have them built-in will also require libraries for
basic arithmetic, sets, trees etc.), and it can be a substantial advantage if the
appropriate foundation is already available in this form. Libraries can differ
in quality, and it is important to know how well validated are those on which
reliance is placed: an inconsistency in a library specification may undermine
a significant verification.

When it is necessary to construct or extend a library of basic definitions in
order to support a particular project, the process should not generally be
exposed to the “customer”: those who want formal methods to help them
understand some difficult design problem do not want to be asked to review
axiomatizations of, say, the majority function. The senior hardware designer
for one project refused to participate in further reviews of formal specifications
after a morning spent laboring over the theory of n-bit words—that level of
detail was not his concern.

• Does the system provide editing tools? Are they free-form or structure based,
or both?

Some form of editor is required in order to create and modify specifications.
Some verification systems require or allow this to be done using a separate
editor. The advantage of this arrangement is that it allows users to use their
own preferred editor; its disadvantage is that the interface between the prepa-
ration and the analysis of specifications may not be completely smooth. Other
systems require specifications to be created and modified using a particular
editor that is integrated with the verification system. The editor provided
may be a standard one such as Emacs or vi, or it may be special purpose.
Since they are widely used, standard editors may be considered free of gross
defects, but users often have strong preferences for one or the other, and this
is a factor that should be considered.

Special-purpose editors increase the time and effort required to learn the sys-
tem, and may be less capable than standard ones. Special purpose editors
are often structure-based (meaning that they “understand” the syntax of the
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language concerned). These are often impressive in demonstrations, and seem
attractive on small examples. Skilled users can become very frustrated with
such an interface, however, and it is very desirable that free-form text editing
should also be supported.

Some preferences concerning style of editing and interaction with the system
may be cultural: in North America, almost all engineers and scientists are
fast touch-typists, whereas this is a very unusual accomplishment among tech-
nical personnel in Europe. Thus, the keyboard-intensive style of interaction
preferred in North America may be very uncomfortable for Europeans; con-
versely, Americans, who may do all their interaction within Emacs and leave
their workstation’s pointing device untouched from one day to the next, can
be driven to distraction by the need to traverse lengthy menus and to point
and click on selections.

• Does the system support reviews and formal inspections?

Aerospace and other application areas that require high assurance make exten-
sive use of formal reviews, walkthroughs, or inspections. Formal specifications
will probably be subjected to the same processes and some tool support may
be useful. Basic support includes facilities for browsing and prettyprinting
specifications, and for generating cross-reference tables. More sophisticated
capabilities might include requirements tracing.

Specifications that are to be subjected to formal inspections must generally ad-
here to rigid standards for style and presentation. It is useful if a prettyprinter
can generate the required layout automatically. Note that it is often required
that lines should be numbered—a simple capability that is often lacking from
the prettyprinters of specification languages. Large projects often standardize
on a single document-preparation system, and compatibility with the chosen
documentation standard can be a make or break issue in selecting a formal
methods tool for such projects. The typesetting and document-preparation
tools that are familiar in academic and research environments (i.e., LaTEX and
troff) are largely unknown in industry.

Systematic renaming of the identifiers may be necessary in order to conform
to style standards. This can play havoc with saved proofs, and it is valuable
if a “rename identifier” command is provided to perform this elementary but
vital function in a fully robust manner.

• Does the system have facilities for producing nicely typeset specifications, or
for presenting specification in the form of tables, or diagrams?

Purely logical formulations may be most effective for deduction, and straight
ascii representations may be necessary for mechanical processing, but alterna-
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tive presentations may be best suited for human review, especially with those
unused to formal specification.

At the very least, it should be possible to typeset specifications in an attractive
manner, and mathematical or other compact and familiar notation should
be available to the user. Graphical or tabular representations may require
special-purpose support, but is desirable that the verification system provide
the necessary “hooks” to allow users to provide such extensions.

• Does the system provide facilities for cross-referencing, browsing, and require-
ments tracing?

Browsing capabilities, which allow the user to instantly refer to the definition
or uses of a term, can boost productivity quite considerably during the devel-
opment of large specifications or proofs. Cross-reference listings (preferably
typeset) provide comparable information in a static form suitable for docu-
mentation. These capabilities provide some support for requirements tracing
(which is usually a manual operation). It is possible that requirements tracing
can be partially automated in some applications, given suitable standards and
conventions. This will require special-purpose support and, again, it is prefer-
able if the verification system provides “hooks” so that users can provide such
extensions themselves.

• Does the system record the state of a development (including proofs) from one
session to the next, so that work can pick up where it left off?

This capability is obviously desirable. Naturally, it is best if saving the current
state of development is done continuously (so that not everything will be lost
if a machine crashes) and incrementally (so that work is not interrupted while
the entire state is saved in a single shot).

• Does the system support mechanisms for change control and version manage-
ment?

Large specifications and verifications are likely to require the efforts of many
people and some mechanism for coordinating access and changes will be re-
quired. Depending on their design, these capabilities can either be built-in
and specialized to the verification system, or can employ a generic version
management system such as RCS [Tic85].

• Does the system propagate the consequences of changes to the specification
appropriately? At what granularity are changes recognized? Are updates per-
formed incrementally?

Version management is concerned with the control of changes to a formal devel-
opment: ensuring that two people do not modify a component simultaneously,
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for example. A related, but different, issue concerns propagation of the conse-
quences of changes. If a definition is changed, for example, then any proof or
theorem which refers to that definition becomes suspect and so, transitively,
do any further proofs or theorems that refer to those newly suspect entities.
It is essential for a verification system to deal soundly with this propagation
of changes: whenever a component is pronounced type-correct, or a theorem
proved, these statements must be correct with respect to current versions of
the specifications and proofs. Not all systems manage these matters properly.
For example, HOL is often praised as a system with a very secure foundation,
but its early version did not track changes—so that it was possible to prove
a theorem, then modify definitions, and the system would still consider the
theorem proved.

Tracking the propagation of changes can be performed at many levels of gran-
ularity. At the coarsest level, the state of the entire development can be reset
when any part of it is changed; at a finer level, changes can be tracked at the
module level; and at the finest level of granularity, they can be tracked at the
level of individual declarations.

Once the consequences of changes have been propagated, another choice needs
to be made: should the affected parts be reprocessed at once, or only when
needed. Clearly, a more complex implementation is required to track changes
at the finer levels of granularity, and to reprocess affected parts incrementally
and as needed. However, the more complex implementation provides enormous
improvements in user’s productivity.38

Theorem Prover

• Does the system allow lemmas to be used before they are proved?

Lemmas are small theorems that are used in the proof of larger ones (rather like
subroutines in programming). When a lemma is first proposed, one generally
wants to know whether it is useful before attempting to prove it. Thus, it
is generally convenient to be able to cite unproven lemmas in the proof of a
larger theorem. The lemma can then be proven later, when its utility has
been established. Some systems do not allow things to be done in this order,
instead requiring that all lemmas are proved before they are used. In systems
that do allow use of unproven lemmas, it is necessary to provide some kind of
macroscopic “proof tree” analysis which checks that all postponed proofs are
eventually performed.

38These and other statements about productivity gains are derived from my own experience:
over the years we at SRI have incorporated new capabilities in our Ehdm and PVS systems and
observed the benefits. These observations are qualitative and informal, however: we have not
conducted scientific measurements.
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• Does the system allow new definitions to be introduced during proof? Does it
allow existing definitions to be modified?

Beyond even the use of unproved lemmas is the ability to invent and introduce
lemmas or definitions during an ongoing proof; such flexibility is very valuable,
but requires tight integration between the theorem prover and the rest of the
verification system.

A yet more daring freedom is the ability to modify the statement of a lemma
or definition during an ongoing proof. Much of what happens during a proof
attempt is the discovery of inadequacies, oversights, and faults in the spec-
ification that is intended to support the theorem. Having to abandon the
current proof attempt, correct the problem, and then get back to the previous
position in the proof, can be very time consuming. A system that allows the
underlying specification to be extended and modified during a proof confers
enormous gains in productivity. Needless to say, the mechanisms needed to
support this in a sound way are quite complex.

• Does the theorem prover allow cases to be postponed, and to be tackled in any
order?

Most interactive theorem provers work backwards from the theorem to be
proved, generating smaller and smaller subcases. Often, the user will be most
interested in the main line of the proof, and may wish to postpone minor cases
and boundary conditions until satisfied that the overall argument is likely to
succeed. Provers that do not allow cases to be postponed and reordered are
likely to disrupt the user’s thought processes.

• Does the theorem prover provide automated support for proofs by induction?

Proofs by induction are very common, and it is often quite easy to generate
the necessary lemmas automatically, once the user has proposed the induction
scheme to be used. Doing so can be a very useful service to the user. Some
theorem provers (notably that of Boyer and Moore) go further and provide
very sophisticated heuristics that are able to propose induction schemes in an
automated manner. Although impressive to behold, these may not provide
large productivity gains in general.39

Extensionality arguments (i.e., proving that two sets or functions are equal
by showing that they have the same members, or the same values for every
argument) are another example where the system can provide very useful
service by filling in the details of a proof step once the user has indicated the
sets or functions concerned.

39Because it lacks quantification, the Boyer-Moore prover must often use induction to deal with
cases that would otherwise be disposed of by quantificational reasoning.
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• Does the theorem prover provide facilities for comprehending the overall struc-
ture of a proof?

Losing sight of the forest is easy when grappling among the trees of a lengthy
proof. The system should provide mechanisms for displaying the overall struc-
ture of the ongoing proof.

• Does the system identify all the axioms, definitions, assumptions and lemmas
used in the proof of a formula (and so on recursively, for all the lemmas used
in the proof)?

This is another aspect of the “proof tree” analysis mentioned above. Even
in systems that require all lemmas to be proved before they are used, it is
useful, at the end of a proof, to be able to discover its foundations. Such
information helps eliminate unnecessary axioms and definitions from theories,
and identifies the assumptions that must be validated by external means.

• Does the theorem prover provide information that will help construct a human-
readable journal-style proof?

Proofs of significant theorems should be subjected to human review as well
as mechanical proof checking. It is beneficial if there is some similarity be-
tween the human- and machine-checked proofs: a preliminary informal proof
should help guide interaction with the theorem prover, and the mechanically-
checked proof should help construct a compelling journal-level argument. Not
all theorem-proving systems work in ways that resemble the steps of a journal-
style proof, and for some purposes may be considered unacceptable on that
account. Note that what are required are steps that resemble those of tra-
ditional mathematical demonstrations, not the primitive steps of textbook
treatments of formal deduction.

• Is it easy to reverify a theorem following slight changes to the specification?

Assumptions and requirements may change after a verification has been com-
pleted; often, too, it is necessary to revisit the earlier parts of a large ver-
ification as later work reveals the need for changes and extensions. Ideally,
the investment in completed portions of the verification should assist and
encourage these improvements by making it relatively easy to explore the con-
sequences of changes. This requires that proofs should be robust in the face
of small changes to the specification. Theorem provers are inherently more
robust than proof checkers in this regard, since they perform more of the
proof search themselves. However, apparently minor design choices can have
a significant impact on the robustness of a proof: for example, are quantified
variables recorded by name (so that a simple renaming of identifiers in the
specification may derail a saved proof) or by position? And if the latter, is
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the order sensitive to the number or order of presentation of other quantified
variables (so that adding a new variable will throw a proof off track), or to
deeper measures that may be expected to remain invariant over minor changes
to the specification?

When a change to the specification is sufficiently large that saved proofs cannot
automatically adjust to their new circumstances, the user must take over to
fix things. Once again, small design decisions can have great impact on the
ease of proof maintenance.40 For example, is the prover able to present the
user with just the failing proof branches, or must the user redevelop the whole
proof? And does the prover have “fast-forward,” “single step,” and “undo”
facilities so that the user can interactively “zoom in” on the failed parts of the
proof to splice in corrections?

While some of the facilities required for proof development are also useful in
proof maintenance, a verification system will be better suited to large tasks if
its developers have explicitly considered the maintenance issue.

• How is the theorem prover controlled and guided?

The distinction between a theorem prover and a proof checker is in the quantity
and nature of guidance that must be supplied by the user: theorem provers
require less guidance, and less direct guidance than proof checkers. Apart from
those based on exhaustive search41, even the most powerful theorem provers
require some direction from the user. The Boyer-Moore prover, for example,
is guided through the order in which lemmas are presented, and by the form
of those lemmas (for example, A = B has a different effect than B = A). The
advantage of a very automatic theorem prover is that the user has to provide
less information, and proofs tend to be robust in the face of changes. The
disadvantage is that guidance is provided in a very indirect manner, which
requires intimate understanding of the operation of the prover: users must
anticipate how the theorem prover will search for a proof, rather than instruct
it to execute their proof.

Proof checkers can require differing degrees of guidance, and the guidance
may be presented interactively, or up front. Those that require guidance to
be presented up front, and thereafter operate autonomously, generally cause
the user to break the proof down into many small lemmas, for it is difficult to
plan a proof in complete detail without seeing some of the intermediate steps.

40Life imitates art: Dijkstra’s series of EWD memos includes several parodies from the Chairman
of Mathematics Inc., such as “our Proof of the Riemann Hypothesis has been brought into the field,
contrary to the advice of our marketing manager who felt it still required too much maintenance. . . at
the end of March, we transferred fifty mathematicians from Production to Field Support” [Dij82].

41Resolution provers, for example, perform exhaustive search. Even these require human control,
in the form of selecting strategies, and assigning values to various parameters.
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Proof checkers that operate interactively are generally the easiest for users to
understand. Interactive checkers that require considerable guidance are often
called “proof assistants.”

My experience and that of my colleagues is that the most powerful interac-
tive proof checkers are comparable to the most powerful automatic theorem
provers in terms of human productivity, and are easier to learn and to use.
Noninteractive proof checkers require a great deal of skill to use effectively.
The productivity of proof checkers that lack effective low-level automation
(such as integrated arithmetic and rewriting) is orders of magnitude less than
that of more powerfully automated systems; the productivity of some proof
assistants may be so low as to render them unsuited to realistic applications.

• Does the theorem prover perform rewriting?

Rewriting (replacing an instance of one side of an equation by the correspond-
ing instance of the other) is one of the most useful strategies in theorem prov-
ing and a theorem prover that lacks this capability is unlikely to prove very
productive.42 For maximum productivity, however, much more than just a
straightforward rewriter is required. Conditional equations (those of the form
P ⊃ A = B) are very common, and require effective strategies43; the match-
ing that selects applicable instances of equations for rewriting must often be
performed modulo some theory44; and it is usually very important to silently
solve the conditional part when expanding definitions so that the user is not
overwhelmed with irrelevant cases45.

• Does the theorem prover provide automated support for arithmetic reasoning?

Most proofs require some reasoning involving the properties of numbers. Sim-
ple facts about the natural numbers and the integers arise in almost every
proof (often as a result of induction or counting arguments);46 more sophisti-
cated properties, and also properties involving rational or real numbers, arise
in explicitly numerical algorithms (which are common in flight-control applica-
tions). It is possible to provide powerful automation for arithmetic reasoning
in the form of “decision procedures” that guarantee to solve all arithmetic

42Some technical background on rewriting is provided in Appendix section A.5.1.2.
43The most conservative strategy will only do the rewrite if P can be discharged immediately;

another strategy will do the rewrite and carry P along as an additional hypothesis.
44For example, an equation f(x+1) = g(x)+ . . . can be matched against . . . f(x+2− 1) . . . only

in the presence of arithmetic. Cases of this kind arise very frequently indeed.
45For example, expanding a definition of the form f(x) = if x = 0 then A else B endif in the

context f(z + 1), where z is a natural number, should cause the prover to discharge the condition
z ≥ 0 ⊃ z + 1 6= 0, thereby allowing f(z + 1) to be rewritten directly to B.

46Some technical background is provided in Appendix section A.5.2.
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problems within a certain class (e.g., Presburger arithmetic). As with rewrit-
ing, this facility needs to be closely integrated with other reasoning procedures
for maximum benefit. Effective automation of arithmetic reasoning provides
an enormous boost to user productivity in all application domains, and is
essential for any work involving explicitly numerical calculations (e.g., clock
synchronization algorithms).

• Can the theorem prover handle large propositional expressions efficiently?
Does it employ BDDs?

Some problem areas (e.g., hardware design, or mode-switching and alarm logic
in avionics) can generate very large propositional formulas (i.e., boolean ex-
pressions), involving dozens or even hundreds of terms. Simple truth-table or
tableau-based procedures for propositional tautology checking or simplifica-
tion are easily overwhelmed by such formulas and may take hours to return
a result. There are, however, alternative procedures that generally operate
much faster (the speed-ups can be orders of magnitude). Those based on or-
dered Boolean (or Binary) Decision Diagrams (BDDs) are generally the most
efficient.47 As always, it is not sufficient for the theorem prover simply to call a
BDD package: efficient propositional reasoning needs to be tightly integrated
with the other basic inference mechanisms.

• Does the theorem prover present users with their own formulas or with canon-
ical representations? Are quantifiers retained?

Interactive theorem provers or proof checkers must display the evolving state
of a proof so that the user can study it and propose the next step. It is
generally much easier for the user to comprehend the proof display if it is
expressed in the same terms as the original specification. Provers that display
formulas in some canonical or “simplified” form are likely to complicate the
user’s task. Obviously, formulas change as proof steps are performed, but it
is usually best if each transformation in the displayed proof corresponds to an
action explicitly invoked by the user. Thus, for example, universal quantifiers
are almost always eliminated at some stage by the process of Skolemization,
but it is usually best to perform this only when the user explicitly requests it
be done.

• Does the theorem prover minimize the quantity and maximize the relevance of
information presented to the user?

Interactive theorem provers must avoid overwhelming the user with informa-
tion. That is why, as noted earlier, irrelevant cases should be silently discarded
when expanding definitions. Ideally, the user should be expected to examine

47Some references are given in Appendix section A.3.1.
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less than a screenful of information at each interaction. It can require powerful
low-level automation to prune (only) irrelevant information effectively. The
system can assist comprehension by highlighting what has changed since the
last display.

• Does the theorem prover provide automated support for instantiation of quan-
tified variables?

The major step in many proofs consists in supplying the appropriate instantia-
tions for existentially quantified variables.48 Often, however, plausible instan-
tiations can be found through the mechanism of unification. Productivity can
be considerably enhanced if the system assists the user with mechanizations
of this sort.

• Can proofs be “cut and pasted” from one formula to another?

Often several formulas are sufficiently similar that a proof for one will also work
(perhaps following small adjustments) on the others. It is therefore useful if
the proof for one can be “cut and pasted” on to the others. The proof must
be rerun to see if it works in the new context; if it does not, the facilities for
proof maintenance can be used to make the necessary adjustments.

• Does the theorem prover allow the user to compose proof steps into larger
ones?

Within a given application, proofs often take on a repetitive pattern: for ex-
ample, “rewrite with these formulas, then use induction and arithmetic.” The
“cut and paste” model of proof development described above can deal with
very repetitive cases, but more varied problems may best be dealt with by
user-written proof “macros” or “subroutines” (often called “tactics” or “strate-
gies”) that can be applied as single steps. Provers differ in the sophistication
of the “control language” that guides the application of such macros—some
providing only elementary selection (“apply these proof steps in order until
one succeeds”) and iteration (“repeat this proof step until it fails”) opera-
tors, while others provide full programming languages (e.g., the programming
language ML was originally developed as the control language for the LCF the-
orem prover). Generally speaking, a prover whose primitive steps are powerful
and robust can use a less elaborate control language than one whose primitive
steps are small and fragile.

48The Herbrand-Skolem-Gödel theorem reduces first-order theorem proving to instantiation plus
propositional calculus; since propositional calculus is decidable, it can be argued that instantiation
is the essentially hard part of first-order theorem proving.



3.6. Conclusion 177

• Can users extend the capabilities of the theorem prover with their own code?
Does the theorem prover have a “safe” mode that performs only the built-in
inference procedures?

Beyond macros lie abilities to extend the theorem prover itself. The advan-
tage of prover extensions over simple macros is that a prover extension can
examine the data structures maintained by the prover in order to perform
specialized search procedures. Clearly, any code that manipulates the data
structures maintained by the prover has the capability to introduce unsound-
ness. Soundness can be retained, however, if user-written code is used only for
search and is constrained to call the (presumably sound) standard inference
functions of the prover in order to change the data structures.49

More ambitious capabilities allow new proof procedures to be added, provided
that are proven correct beforehand. The metafunctions of the Boyer-Moore
prover [BM81] have this character. “Reflective” theorem provers, a research
topic, support reasoning about their own proof procedures and can be extended
in quite general ways.

3.6 Conclusion

“In science, nothing capable of proof ought to be accepted without
proof.” [Ded63, page 31]

“The virtue of a logical proof is not that it compels belief but that it
suggests doubts.” [Lak76, page 48]

This report has covered a lot of material, and I have tried to present it in a
balanced and neutral manner. In this section I will state my personal conclusions
and recommendations.

Formal methods should be part of the education of every computer scientist
and software engineer, just as the appropriate branch of applied mathematics is
a necessary part of the education of all other engineers. Formal methods provide
the intellectual underpinnings of our field; they can shape our thinking and help
direct our approach to problems along productive paths; they provide notations
for documenting requirements and designs, and for communicating our thoughts

49In systems based on the LCF model, there is no distinction between proof macros (called
“tactics” and “tacticals” in LCF) and prover extensions, and soundness is enforced in a very clever
way using the type system of ML. In PVS, on the other hand, macros are written in a limited
“strategy language,” while prover extensions are written in a restricted, purely applicative, fragment
of lisp and soundness is maintained because prover extensions cannot have side-effects.
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to others in a precise and perspicuous manner; and they provide us with analytical
tools for calculating the properties and consequences of the requirements and designs
that we document.

However, it will be many years before even a small proportion of those working
in industry have been exposed to a thorough grounding in formal methods, and
it is simply impractical to demand large scale application of formal methods in
airborne software—and unnecessary too, since the industry seems to be doing a
mostly satisfactory job using nonformal methods.

Nonetheless, I believe the industry should be strongly encouraged to develop and
apply formal methods that will permit more complete analysis and exploration of
those aspects of design that seem least well covered by present techniques. These
arise in redundancy management, partitioning, and the synchronization and coor-
dination of distributed components, and primarily concern fault tolerance, timing,
concurrency, and nondeterminism. Scrupulous informal reviews, massive simulation,
near-complete unit testing of components, and extensive all-up testing do not pro-
vide the same level of assurance in these cases as they do for sequential programs—
because the properties of interest are not manifest in individual components, and
because distributed execution is susceptible to subtle variations in timing and fault
status that are virtually impossible to set up and cover in tests.

These formal analyses should be additional to those presently undertaken and
can increase assurance without necessarily being totally comprehensive: the value of
formal methods lies not in eliminating doubt but in circumscribing it. For example,
in addition to all the other assurance techniques that may be applied, it will be
valuable to prove that mode-switching logic does not contain states with no escape,
and that sensor data is distributed consistently despite the presence of faults. These
are not the only properties required of mode switching and sensor distribution,
but they are among the most crucial and among the most difficult to assure using
traditional methods. To deal with such problems using current technology for formal
methods it will often be necessary to abstract away irrelevant detail, and possibly to
simplify even relevant detail. Doing so while continuing to model the issues of real
concern in a faithful way requires considerable talent and training. On the other
hand, since we will be dealing only with relatively small, albeit crucial, elements
of the system, the number of people required to possess that talent and training in
formal methods will be small.

The benefit provided by these formal analyses is a complete exploration of a
model of possible behaviors. Subject to the fidelity of the modeling employed (and
that must be established by extensive challenge and review), we will be assured
that certain kinds of faults are not present at the level of description and stage of
the lifecycle considered. One source of doubt will have been eliminated, and others
posed more sharply. Admittedly, this does not guarantee that the implementation



3.6. Conclusion 179

will not reintroduce the very faults that have been excluded by the formal analysis,
but current practices seem effective at tracing implementations. As resources and
capability permit, it will be worth seeing if formal methods can increase assurance
for these aspects also, but initially we should focus on cases where current prac-
tice seems weakest, not where it seems effective. By that measure, other promising
applications for formal methods are in the general area of requirements specifica-
tion and analysis—where current processes, though fairly effective, are ad-hoc and
unstructured.

In principle, all formal methods support the notion that properties of designs
should be calculated (i.e., proved) from their formal specification; in practice, formal
methods differ greatly in the extent to which they support the reality of that notion.
In my opinion, formal methods can provide benefit to industries that already employ
stringent processes for quality control and assurance only to the extent that they
exploit the opportunity to reduce questions to calculation; the unique attribute of
formal methods is that they allow reviews (i.e., activities based on consensus) to be
replaced by analysis (i.e., repeatable, checkable, calculational activities). Thus, I
consider that only Level 3 formal methods are likely to be fully effective in the role
described: that means methods supported by mechanized proof-checking or state-
exploration tools. To be maximally effective, these methods need to be applied
early in the lifecycle, to the hardest and most critical aspects of design, expressed
in relatively abstract form. By focusing on the hardest and most critical problems,
formal methods may best contribute to assurance; by using abstract modeling, we
render the verification and validation problems tractable; and by working in the
early lifecycle, the cost benefits of early debugging may offset the expense of applying
formal methods.

These conclusions and recommendations may seem modest to those who believe
that formal methods should be used more extensively (for example, in the manner
required by UK Interim Defence Standard 00-55), but I believe that the first step
is to get them used at all, and for serious purposes. They may also seem a retreat
from the traditional goals of formal verification: there would no claims of “proving
correctness,” and no ambition to apply formal methods from “top to bottom” (i.e.,
from requirements down to code or gates). Rather, the goal would be to establish
that certain properties hold, and certain conceptual faults are absent, in formal
models of some of the basic mechanisms necessary to safe operation of the system.
These may seem small claims in the total scheme of things, but they are the claims
that I think are least well supported by current practice and that cause the most
concern, since they are the most fundamental. Those who argue that more should
be required—that formal methods should be carried down to code or gates, or that
formal specifications should be used as part of the software engineering process—
need to provide evidence that this will increase assurance in an industry that has
an excellent record of accomplishment using traditional methods. They also need to
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provide evidence that resources expended on formal methods would not be better
spent on other (existing) forms of assurance. In my opinion, arguments for more
extensive use of some kinds of formal methods (e.g., formal specification of require-
ments) can be made, and indeed are better made, on grounds of cost: for although
the traditional practices do seem effective, they are undeniably expensive. This
represents an opportunity for formal methods, but it is not one that requires regu-
latory encouragement. However, if more extensive application of formal methods is
undertaken, then I believe that the material offered for consideration in support of
certification should include substantial evidence of an analytic, calculational charac-
ter. In particular, it should include evidence for type-correctness (extending beyond
individual modules to their interdependencies), for well-formedness of definitions,
for consistency of axiomatizations, and for validity of the modeling employed.

On the other hand, my recommendations may seem excessive to some readers:
I propose that the most stringent kinds of formal methods should be applied to the
hardest problems of design. These pose tough challenges, to be sure, but how could
anything less be expected to improve a process that is already very effective? And
although these challenges are tough, they are relatively few in number and small in
scale, and can be undertaken by a small team of highly skilled people. The tools that
are currently available to support these ambitious applications of formal methods
are not ideal, but I believe they are adequate.

Finally, I would like to observe that using all the techniques at our disposal,
even including formal methods, I do not believe we can provide assurance that
software of any significant complexity achieves failure rates on the order of 10−9 per
hour for sustained periods, and we should not build systems that depend on such
undemonstrable properties. System-level reliability and safety analyses must not be
predicated on software failure rates that cannot be substantiated by experiment or
analysis. To achieve a credible probability of catastrophic system failure below 10−9,
software must generally be buttressed by mechanisms depending on quite different
technologies that provide robust forms of diversity. In the case of flight control
for commercial aircraft, this probably means that stout cables should connect the
control yoke and rudder pedals to the control surfaces.
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Appendix A

A Rapid Introduction to

Mathematical Logic

“. . . our interest in formalized languages being less often in their actual
and practical use as languages than in the general theory of such use and
its possibilities in principle.” [Chu56, page 47]

“The formal systems of logic were created in order to be studied, not in
order to be used. It is an interesting exercise to try to formalize Hardy
and Wright’s number theory book in Peano Arithmetic. Any logician
will see that it can theoretically be done. But to do it in practice is far
too cumbersome. . .This has not bothered logicians, who. . . have not been
interested in actually formalizing anything, but only in the possibilities
of doing so.” [Bee86, pages 53–54]

Formal methods are grounded in mathematical logic, and some familiarity with
the main concepts and terminology of that field are essential to an understanding
of formal methods. Unfortunately, most textbooks on formal methods introduce
only the fragments of logic relevant to their particular methods and leave the reader
uninformed of alternatives. Textbooks on mathematical logic are also unsatisfactory
for those seeking an introduction to the background of formal methods: elementary
texts such as [Hod77, Cop67, Lem87], while excellent for their intended purpose,
omit much that is of importance concerning logic as a foundation for formal methods
in computer science, while more advanced texts such as [Chu56, End72, Kle52,
Men64, Mon76, Sho67] are rather challenging, yet still omit some of the topics
necessary for an appreciation of the mechanization of mathematical logic in support
of formal methods (while including many that are unnecessary for that purpose).

To help readers gain the necessary background, I provide in this appendix a
minimal introduction to mathematical logic without all the technicalities usually

219



220 Appendix A. A Rapid Introduction to Mathematical Logic

introduced in logic texts. My main goal is simply to acquaint the reader with the
main concepts and terminology of the field. There is, however, one important topic
where the going does get a little technical: this is the explanation of interpretation
and model in Sections A.2, A.3, and A.4. An appreciation of these concepts is
necessary in order to understand the relationship between “true” and “provable,”
and between the notions “sound” and “complete,” and I urge readers to whom this
material is new to persevere with it. Recent controversies, such as that surrounding
the British Viper microprocessor (see Section 2.5.2 in the main text) show that the
formal notion of “proof” is no longer of merely specialist interest: all those concerned
with formal methods and certification should understand the technical meaning of
“proof” as used in logic. Later sections that deal with somewhat esoteric topics that

can be skipped at first reading are marked with the “dangerous bend” sign�.

A secondary goal of this presentation is to sketch the origins and motivations
for some of the foundational approaches taken in mathematical logic, and to iden-
tify some of the alternatives that are often omitted from elementary introductions
to logic. The reason for doing this can be found in the quotations at the head
of this chapter: mathematical logic was developed by mathematicians to address
matters of concern to them. Initially, those concerns were to provide a minimal
and self-evident foundation for mathematics; later, technical questions about logic
itself became important. For these reasons, much of mathematical logic is set up
for metamathematical purposes: to show that certain elementary concepts allow
some parts of mathematics to be formalized in principle, and to support (relatively)
simple proofs of properties such as soundness and completeness. Formal methods in
computer science, on the other hand, is concerned with formalizing requirements,
designs, algorithms and programs, and with developing formal proofs in practice.
Thus, formal systems and approaches that are very suitable for mathematicians’
purposes may not be so suitable as a foundation for formal methods in computer
science—especially when mechanized checking of formalizations is desired. This is
particularly the case, in my opinion, with axiomatic set theory1—yet many books
on formal methods take their lead from the mathematicians and use axiomatic set
theory and Hilbert-style formalizations of predicate calculus as a foundation. Those
who are curious about alternatives and might want to learn something about type
theory, or the sequent calculus, say, must generally turn to rather advanced texts
on mathematical logic. So although this Appendix cannot provide an adequate
introduction to these alternatives, it does at least sketch them, and describe the
motivations behind the various different approaches, and some of their strengths
and weaknesses. I hope that readers who persevere to the end will find this mate-

1This is not to say that the notation of set theory is not useful in formal methods; the question
is whether set theory should be the foundation for formal methods.
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rial helps them to become more knowledgeable and critical in their use of formal
methods.

A.1 Introduction

Logic is concerned with methods for sound reasoning. More particularly, mathe-
matical or formal logic is concerned with methods that are sound because of their
form, and independent of their content. For example, the deduction

That jaberwocky is a tove;
All toves are slithy;
Therefore that jaberwocky is slithy

seems perfectly sound, because of its form, even though we have no idea what a
jaberwocky or a tove might be, nor what it means to be slithy . On the other hand,
the deduction

That plane is a Boeing 737;
Therefore it has two engines

is not logically sound, even though its conclusion is true, because the line of reasoning
employed is not generally valid—it jumps to a conclusion that is not supported by
the facts explicitly enumerated. The argument used has the same form as

That car is a Chrysler;
Therefore it has two engines,

which is palpable nonsense. We can correct the problem by adding a premise to
make explicit the “knowledge” used in coming to the conclusion:

That plane is a Boeing 737;
All Boeing planes, except the 747, have two engines;
Therefore that plane has two engines.

The line of reasoning is now sound; it doesn’t depend on the meaning of “Boeing
737” and the other terms appearing in its statement. To see this, we can abstract
the argument to the form

That A is an X;
P is true of all A’s, except Y;
Therefore P is true of that A
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and observe that it seems to be sound independently of what A, X, Y, or P mean.2

Note, however, that although the soundness of this line of reasoning does not
depend on what a “Boeing 737” is, it depends crucially on what “all,” “except,” and
“and” mean. Logic chooses some elements of language (such as “all,” and “and”),
gives them a very precise meaning, and then investigates the lines of reasoning and
argument that can be built up from those elements; in particular, logic seeks to
identify those lines of reasoning that are valid independently of the meaning of the
other (so-called proper) terms that appear in the argument. Logics differ from one
another in their choice of primitive elements, in the ways in which they allow terms
to be combined, and in the lines of reasoning that they permit.

Notice that a valid or sound argument does not guarantee that the conclusion
we draw will be true. For example, if the plane we saw was a Boeing 707 (or
727), the perfectly valid pattern of deduction given above would cause us to deduce,
incorrectly, that the plane has only two engines. A sound method of reasoning
guarantees true conclusions only if the premises are true statements. The truth of
a statement such as

All Boeing planes have two engines, except the 747

depends on the real-world interpretation we place on the terms such as “Boeing
planes.” If the interpretation we choose is “all Boeing passenger planes in current
service,” then this premise to our argument is false, and a perfectly valid line of
reasoning can lead us to a false conclusion.

Two sources of error can lead us to draw false conclusions about the world:
we can reason correctly from incorrect premises, and we can reason incorrectly from
correct premises (and, of course, we can also go doubly wrong and reason incorrectly
from bad premises). The contribution of mathematical logic is that it gives us the
tools to eliminate the second of these ways to draw incorrect conclusions. Logic
tells us what follows from what, so that we can be sure that our conclusions will
be at least as good as our premises. However, no formal method can assure us
that our premises are true statements in the intended interpretation; we have to
introspect, discuss them with others, test their consequences, and generally use
informal methods to accomplish this important task.3

2Though it does depend on knowing that an X is not a Y (i.e., a 737 is not a 747). When we
come to formalize this (in Section A.4), we will have to make even this “obvious” fact explicit.

3However, formal methods provide a precise and standardized notation, a repertoire of standard
constructions, and well-accepted sets of premises (i.e., axiomatizations) for many familiar notions.
In addition, formal methods can help us establish that our premises are mutually consistent, and
can support systematic exploration of their consequences (through attempts to prove properties
that ought to be true if the premises are correct). Thus the informal process of validating premises
can be made more systematic using formal methods.
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The practical value of mathematical logic arises when we use long or difficult
lines of reasoning to draw an important conclusion. If we can satisfy ourselves,
by informal methods, that the premises to our argument are true in our intended
interpretation, then mathematical logic can assure us that the conclusion will also
be true in that interpretation.

“The true method should provide us with. . . a certain sensible material
means which will lead the intellect, like the lines drawn in geometry and
the forms of operations which are prescribed to novices in arithmetic.
Without this, our minds will not be able to travel a long path without
going astray.” Leibniz, quoted in [Bou68, page 303].

Mathematical logic—Leibniz’ “true method”—provides us with rules of deduction,
analogous to those of arithmetic, that allow the validity of an argument to be checked
by a process akin to calculation.

A.2 General Concepts

In this section I give more detailed and precise explanations to some of the notions
introduced above.4 The explanations are given in terms of the abstract notion of
“formal system” and are generic to all logics; I give examples of specific logics and
theories in the subsections that follow.

The first thing that must be specified about a particular formal system is the
language in which its statements are expressed. Just as with a programming lan-
guage, there must be some grammar that defines the syntactic form of the things
we can write in the system. Mathematicians tend to prefer very terse, succinct lan-
guages, so the statements in most of their formal systems look very cryptic to the
untrained eye. Legal strings of symbols in the language of a formal system are called
well-formed formulas or wff s. Wffs that are “self contained” (technically, contain
no free variables) are called sentences.

Formal systems come in families, and there are usually two parts to a formal
system: one part that is common to all the systems in a given family, and one part
that changes from one member of the family to another. The first part is called the
logical part of the system, and the second the nonlogical or extralogical or proper
part. (I will use only the first of these alternative terms). For example, all first-order
theories have a common logical part variously called first-order logic or first-order
predicate calculus, or elementary logic or quantification theory. (I will use the simple
name predicate calculus.)

4My treatment draws on [Tar76, Dav89].
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Those symbols of the system that belong to the logical part are called the logical
symbols of the system. The other symbols are called the nonlogical symbols of the
formal system. The logical symbols generally include the propositional connectives
“not” (a monadic operator, usually written as prefix ¬ or ∼ by mathematicians),
“and” (a dyadic operator, often called conjunction and written as infix ∧), “or”
(dyadic, often called disjunction and written as infix ∨), “implies” (dyadic, written
as infix ⊃, →, or ⇒), and “if and only if” (dyadic, sometimes called equivalence,
and written as infix iff , ↔, ⇔, or ≡). More powerful logics include function sym-
bols (such as f , g, and some that may be given a built-in interpretation such as +),
predicate symbols (such as P , Q, and some that may be given a built-in interpreta-
tion such as = and <), the quantifiers “for all” (∀) and “there exists” (∃), and/or
modalities such as “necessarily” (2) and “possibly” (3).

The propositional connectives developed out of attempts to understand and cod-
ify principles of sound argument, and were intended to capture important construc-
tions used in natural language. Prior to the development of modern formal logic, the
usages of natural language were arbiters of what the connectives should mean, and
there could be disagreement over this: for example, some medieval logicians treated
“or” as inclusive (“either one or the other or both”), while others regarded it as
exclusive (“either one or the other, but not both”). In formal logic, the meanings of
the operators are determined by the rules of deduction (as explained shortly) and
do not depend on intuitive notions.� Although the meanings of the logical operators do not depend on in-

tuitive notions, they should clearly correspond to them—since logic is
intended to support and strengthen our innate capabilities, not oppose
them. Most of the logical operators do directly correspond to familiar
notions, but the “implies” operator is a little less straightforward.

The symbol ⊃ of logic is sometimes called material implication in
order to distinguish it from the unadorned term “implication” used in
ordinary discourse. The intent is that A ⊃ B should capture conditional
constructions of the form “if A then B.” From this intuition, it follows
that if A is a true statement, then A ⊃ B should be considered true only
if B is also a true statement. Thus

2 + 2 = 4 ⊃ Paris is the Capital of France

is a true sentence (because both the antecedent or condition “2+ 2 = 4”
and consequent or conclusion “Paris is the Capital of France” are true).
Observe that this example indicates one of the unintuitive aspects of
material implication: there need be no “causal” connection between the
antecedent and consequent. In natural language, we generally expect
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some connection or association between the clauses of a conditional,
such as “if Paris is the seat of French Government then Paris is the
Capital of France.”

Leaving these doubts aside, and proceeding with our examination of
material implication, we can see that

2 + 2 = 4 ⊃ London is the Capital of France

is a false sentence (because the antecedent is true but the consequent is
false). But what if A, the antecedent is false? Should

2 + 2 = 5 ⊃ Paris is the Capital of France

be considered a true sentence? And how about

2 + 2 = 5 ⊃ London is the Capital of France?

In natural language one could make a plausible case for any of the alter-
natives (or even argue that a conditional need be neither true nor false
when its antecedent is false), but in logic we adopt the convention that
if A is false, then A ⊃ B is true, whatever the value of B. One way
to see that this is reasonable is to consider the alternatives. We know
that when A is true, A ⊃ B must be true exactly when B is true. To
complete the definition, we need to assign truth values to A ⊃ B when
A is false, and there are just four possible ways to do this: (1) it could
be false whatever the value of B, (2) it could be true exactly when B

is true, (3) it could be true exactly when B is false, and (4) it could be
true whatever the value of B. If we choose the first of these alternatives,
then A ⊃ B is exactly the same as A ∧B (i.e., “implies” is the same as
“and”); if we choose the second, then A ⊃ B is the same as B and the
value of A is irrelevant; and if we choose the third, then A ⊃ B turns out
to be the same as A ≡ B. None of these corresponds to any reasonable
interpretation of “implies” or “if. . . then . . . ,” and so we are left with the
fourth alternative.

Although this treatment of material implication works perfectly well,
some logicians remain unhappy that it does not correspond exactly to in-
formal usages and have sought different formulations, such as the notions
of “strict” and “relevant” implication. The consideration of alternatives
that we conducted above shows that any satisfactory formulation that
is different to material implication will require modification of the basic
logic, not just tinkering with the operators. Consequently, strict im-
plication requires modal logic (which is described later), and relevant
implication requires relevance logic [Dun85]. Material implication may
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seem a little strange at first, but it soon becomes familiar.5 Alternative
formalizations of conditional sentences are of philosophical and techni-
cal interest, but do not rival the practical utility and importance of the
classical formulation in terms of material implication.

In addition to its language, a formal system specifies a selected (possibly infinite)
set of sentences that are taken as given and called axioms, and a set of rules of
inference, which are ways of deducing new sentences from given sets of sentences.
Axioms are divided into logical and nonlogical axioms; rules of inference usually
belong to the logical part of the system. The axioms and the rules of inference
constitute the deductive system of the formal system considered.

Axioms are generally specified by axiom schemes (mathematicians often say
schema and schemata), such as

φ ∨ ¬φ,
where φ stands for an arbitrary sentence. This example (it is the law of the excluded
middle) states that for any sentence φ, either φ or its negation must be true (there is
no middle ground). When we put a particular sentence (e.g., “it will rain tomorrow”)
in place of φ, we obtain a specific axiom as an instance of the axiom scheme, such
as

it will rain tomorrow ∨ ¬ it will rain tomorrow.

Axiom schemes are convenient, because they allow an infinite number of axioms to
be specified in a finite manner.

Similarly, rules of inference are often written in the form of schemes, exemplified
by

φ, φ ⊃ ψ
ψ

,

where φ and ψ stand for arbitrary sentences. This example (it is the rule known
as modus ponens) states that from a pair of sentences, one of the form φ and one
of the form φ ⊃ ψ, we may deduce the sentence ψ. We say that φ and φ ⊃ ψ

are the premises or antecedents to this rule of inference, and ψ is its conclusion or
consequent .

Notice that there are two mathematical languages in use here. One, the object
language, is the formal system we are trying to define; the other is the metalanguage
that we are using to do the definition. Here, the object language is a fragment of
propositional calculus, and our metalanguage is the traditional language of informal

5Particularly once some important laws are learned, such as that A ⊃ B ⊃ C is parsed as
A ⊃ (B ⊃ C), and is equivalent to (A ∧B) ⊃ C. Some of these laws are listed in Section A.3.
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mathematics expressed in English. It is necessary to keep the distinction between
object language and metalanguage clearly in mind, especially when the same symbols
are used in both; logicians use the terms use and mention to distinguish these cases.
When we talk about some object, we are said to mention it; when we use an object
to refer to some other object, we are said to use it. No confusion is likely with
physical objects (we do not use the planet Mars to refer to something else), but it
is possible with names or symbols. For example, from

“Toby is a short haired cat” and
“Toby is a name with four letters”

we might conclude that a certain name with four letters is a cat [Cur77]. In order to
avoid this absurdity, we must recognize that “Toby” is used in quite different senses
in these two sentences: in the first it is used to refer a certain cat, while in the
second it is mentioned as a particular word. In order to reduce confusion, symbols
are often enclosed in quotes when they are mentioned rather than used:

“ ‘Toby’ is a name with four letters”

The variables φ and ψ used in the examples given earlier are metalinguistic
variables, since they stand for arbitrary sentences of the object language. Axiom
schemes and the operation of substituting sentences for metavariables are elements
of the metalanguage; the resulting axioms are part of the object language. Similarly,
it is necessary to distinguish proofs and theorems about the object language (i.e.,
metaproofs and metatheorems) from proofs and theorems in the object language. I
am now ready to define the latter kind of proofs and theorems.

A proof of a sentence ψ from a set of sentences Γ is a finite sequence φ1, . . . , φn

of sentences with φn = ψ, and in which each φi is either an axiom, or a member
of Γ, or else follows from earlier φj ’s by one of the rules of inference. We say that
ψ is provable from the assumptions Γ (or simply “Γ proves ψ”) and write Γ ⊢ ψ.6

A theorem is a sentence that is provable without assumptions, and we write simply
⊢ ψ.7 The theory of a given formal system is the set of all its theorems.

A system is consistent if it contains no sentence φ such that both φ and its
negation are theorems (i.e., if its theory does not contain both φ and ¬φ). It is a
metatheorem of all the logics considered here that all sentences are provable in an
inconsistent system, and such systems are therefore useless.

6The symbol ⊢ is usually pronounced “turnstile.”
7The axioms can be thought of as assumptions that come “for free.” The reason we add (nonlog-

ical) axioms to a formal system, rather than simply carry them as assumptions to all our theorems,
is that there is generally an infinite number of axioms, and we need the metalinguistic notion of
scheme to represent them conveniently. Of course, we could introduce a notion of “assumption
scheme,” but this would not be the way things have traditionally been done.
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A system is decidable if there is an algorithm (i.e., a computer program that is
guaranteed to terminate) that can determine whether or not any given sentence is a
theorem. A system is semidecidable if there is an algorithm that can recognize the
theorems (i.e., the algorithm is guaranteed to halt with the answer “yes” if given
a theorem, but that need not halt if given a nontheorem—though if it does halt,
it must give the answer “no” in this case). A system is undecidable if it is neither
decidable nor semidecidable.

Notice that “proof” and “theorem” are purely syntactic notions: that is, they
are marks on paper (or symbols in a computer). The formal system provides rules
for transforming one set of marks into another; a proof is simply a sequence of
formulas that conforms to the rules and ends up with a series of marks that we
call the theorem. We do not have to know what any of these marks “mean” in
order to tell whether or not a purported proof really is a correct proof of a given
theorem; we simply have to check whether it follows the rules of the formal system
concerned. Of course, the rules of formal systems are not chosen arbitrarily; they
are chosen in the hope that if we interpret the marks on paper in some consistent
way as statements about the real world, then the theorems of the system will be
true statements about the world. The relationship between language and the world
is the concern of semantics, and the goal of mathematical logic is to set things up so
that the syntactic notion of theorem coincides with the semantic notion of truth. If
this can be done, and if our axioms and assumptions correspond to true statements
about (some aspect of) the real world, then the theorems that we can prove will also
correspond to true statements about the world. In other words, we will be able to
deduce (new) true facts about the world from given true facts simply by following
the syntactic rules of our chosen formal system. We do not need to “understand” the
world in order to carry out these syntactic operations; all our “understanding” (of
the particular domain of interest) is encoded in the nonlogical axioms of the formal
system used (and in the assumptions, if any, of the particular proofs performed).
Since no “understanding” of the world is required to construct (or check) the purely
syntactic objects that are proofs, these operations can, in principle, be performed by
machine. Understanding of the world is needed only to choose the nonlogical axioms
(and assumptions) and to interpret the utility of the theorems proved. Thus, the
attraction of formal methods is that the necessary intuition and understanding of
the world (i.e., the properties of the application domain concerned) are recorded
explicitly in axioms and assumptions that can be subjected to intense scrutiny, and
all the rest follows by deductions that can be mechanically checked.

The connection between syntax and semantics is established by an interpretation
that identifies some real-world “domain” D and associates a true or false statement
about D with each sentence. The statement associated with sentence φ is called
its valuation in D. Interpretations must satisfy certain structural properties that
depend on the formal system concerned. (For example, if the formal system has
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function symbols, then the interpretation of f(x, y) must be determined by the
interpretations of f, x, and y.)

An interpretation is a model for a formal system if it valuates all its axioms to
true; in addition, an interpretation is a model for a set of sentences T if, as well
as being a model for the formal system concerned, it also valuates all the sentences
in T to true. A set of sentences is satisfiable if it has a model. We say that a set
of sentences T entails a sentence ψ and write T |= ψ if every model of T is also a
model of ψ—that is, if ψ valuates to true in every model of T . We say a sentence ψ
is (universally) valid and write |= ψ if it valuates to true in all models of its formal
system. This connection between syntax and semantics, and the corresponding
relationship between “provable” and “valid” were known and used informally (e.g.,
by Gödel and Skolem) in the 1920s; they were formalized by Tarski in the early
1930s.

A formal system is sound if Γ |= ψ whenever Γ ⊢ ψ; it is complete if Γ ⊢ ψ
whenever Γ |= ψ. Roughly speaking, soundness ensures every provable fact is true,
completeness ensures every true fact is provable. Notice that an inconsistent system
cannot be sound. Obviously, only sound systems are of use in formal methods (or
mathematics).8 It would be nice if they were also complete (and even nicer if they
were decidable), but I will observe later that most interesting formal systems are
incomplete (and very few are decidable).� In some formal systems, additional constraints are placed on the selec-

tion of models, and it is sometimes necessary to distinguish between
soundness and completeness results relative to all models and those rel-
ative to certain preferred models. Other formal systems are constructed
in the hope that they capture some aspect of reality exactly—that is, in
the hope that they will have only one model, the intended or standard
one. For example, the postulates of Euclid were intended to capture
“ordinary” geometry exactly. Formal systems that have only one inter-
pretation (up to isomorphism) are called categorical . In general, it is not
possible to limit theories to just a single model; most interesting theories
have unintended or nonstandard models in addition to the intended or
standard ones (see section A.5.2).

Having established the general framework, I will now consider some specific
formal systems that are of particular importance.

8It was a goal of the formalist school, led by Hilbert, to demonstrate (using only elementary
methods) that the formal systems proposed as foundations for mathematics (such as set theory with
the Axiom of Choice—see Section A.5.4) are sound. Gödel’s results (see Section A.5.2) destroyed
this plan. Soundness of the formal systems underlying mathematics cannot be demonstrated con-
clusively within those same systems, and must ultimately appeal to our experience and intuition.
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A.3 Propositional Calculus

The simplest formal system generally considered is the propositional calculus, whose
purpose is to provide a meaning for the propositional connectives listed earlier (Sub-
section A.2).9 In its leanest form, the nonlogical part of the propositional calculus
is empty, and its logical part considers only the connectives “implies” (written here
as infix ⊃) and “not” (written here as prefix ¬). The rest of its language consists of
the parentheses, and some set of proposition symbols, which mathematicians gener-
ally write as P,Q,R, but which can be arbitrary strings such as “the cat is on the
mat” that are considered atomic (i.e., without internal structure). The grammar of
propositional calculus defines its sentences as follows:

• Any proposition symbol is a sentence, and

• If φ and ψ are sentences, then so are (¬φ) and (φ ⊃ ψ).

(This is the mathematicians’ description of propositional calculus, in which every
compound sentence is fully parenthesized. Mathematicians drop parentheses—and
so will I—when they are deemed unnecessary according to some informal rules.
Computer scientists might give a context-free grammar for the language and make
all these details explicit.)

There are three axiom schemes for propositional calculus:

A1. φ ⊃ (ψ ⊃ φ),

A2. (φ ⊃ (ψ ⊃ ρ)) ⊃ ((φ ⊃ ψ) ⊃ (φ ⊃ ρ)),

A3. (¬(¬φ)) ⊃ φ10

and one rule of inference
φ, φ ⊃ ψ

ψ

(modus ponens, often abbreviated MP).

The axioms of propositional calculus are infinite in number, since there are in-
stances of each of the three schemes for all possible combinations of propositions.
The symbols φ,ψ, and ρ appearing in the axiom schemes (and rule of inference)
above are metalinguistic variables (or metavariables). An axiom instance is ob-
tained from one of the axiom schemes by replacing its metalinguistic variables by
propositions in a consistent fashion. I indicate the axiom instance of scheme 1 in
which P replaces φ and Q replaces ψ by writing A1[φ← P,ψ ← Q].

9Sources used for this section include Barwise [Bar78b] and De Long [DeL70].
10Sometimes ((¬φ) ⊃ (¬ψ)) ⊃ (ψ ⊃ φ) is used instead.
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Using this machinery, we can prove the theorem ⊢ (P ⊃ P ).

1. ((P ⊃ ((P ⊃ P ) ⊃ P )) ⊃ ((P ⊃ (P ⊃ P )) ⊃ (P ⊃ P )))
A2[φ← P,ψ ← (P ⊃ P ), ρ← P ]

2. (P ⊃ ((P ⊃ P ) ⊃ P )) A1[φ← P,ψ ← (P ⊃ P )]
3. ((P ⊃ (P ⊃ P )) ⊃ (P ⊃ P )) MP on 1 and 2
4. (P ⊃ (P ⊃ P )) A1[φ← P,ψ ← P ]
5. (P ⊃ P ) MP on 3 and 4.

This derivation is completely unintuitive; the advantage of the “Hilbert-style” ax-
iomatization I have been using is that it allows the interpretations of the proposi-
tional calculus to be defined in a concise manner. This is done in the next couple
of pages. Following that, I introduce an alternative system that allows proofs in
propositional calculus to be developed in an intuitive manner.

The domain of the interpretations of the propositional calculus is the set of truth
values {T ,F} (T is an abbreviation for truth, F for falsehood). An interpretation
of the propositional calculus assigns exactly one of these truth values (called its
valuation) to every proposition symbol. Let v(φ) denote the valuation given to the
proposition φ in a particular interpretation. Then we require that the valuation given
to compound propositions in that interpretation is derived by recursive application
of the following two truth tables:

φ ¬φ φ ψ φ ⊃ ψ
T F T T T
F T T F F

F T T
F F T .

Sentences of the propositional calculus that valuate to T in all interpretations (i.e.,
the universally valid sentences) are called tautologies.

Interpretations constructed as described above provide models for the propo-
sitional calculus and it is possible to prove that the theorems and the tautologies
coincide. Thus, the propositional calculus is sound (all theorems are tautologies)
and complete (all tautologies are theorems). Furthermore, the propositional cal-
culus is decidable—simply transfer into the semantic domain and use truth tables.
Thus, another way to demonstrate ⊢ (P ⊃ P ) is to construct the truth table for
(P ⊃ P ) by substituting P for both φ and ψ in the general truth table for ⊃ given
above (note the second and third lines of the general table disappear, since they are
impossible when φ and ψ have to take the same value)

P P ⊃ P
T T
F T
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and observe that its value is always T . Hence, |= (P ⊃ P ), and so, by the complete-
ness of propositional calculus, ⊢ (P ⊃ P ).

The version of the propositional calculus I have given so far is rather impover-
ished. It is easy to add new connectives, either by treating them as abbreviations
(i.e., macros), or by extending the formal system. Using macros, we would, for
example, regard disjunction (φ ∨ ψ) as simply an abbreviation for (¬φ) ⊃ ψ and
would replace all instances of φ ∨ ψ by their corresponding expansions in both the
syntactic and semantic domains. Observe that this is a metalinguistic approach.

Using the alternative approach of expanding the formal system, we would add
∨ to the language as a logical symbol, and add the corresponding rules of inference

φ ∨ ψ
(¬φ) ⊃ ψ

(¬φ) ⊃ ψ
φ ∨ ψ .

Similarly, the interpretation of ∨ would be supplied by the truth table

φ ψ φ ∨ ψ
T T T
T F T
F T T
F F F .

It is usually a matter of taste whether the properties of new connectives are
added to the formal system by a rule of inference or by an axiom scheme. For
example, if the equivalence (≡) connective has already been introduced, we can
define ∨ by the axiom scheme

(φ ∨ ψ) ≡ ((¬φ) ⊃ ψ)

instead of the rule of inference given earlier. (Usually things are done in the opposite
order, and φ ≡ ψ is viewed as an abbreviation for (φ ⊃ ψ) ∧ (ψ ⊃ φ).)
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There are a number of tautologies (often called “laws”) that are worth learning
by heart for use in systems that contain a generous collection of connectives:

φ ∨ ¬φ law of the excluded middle
¬(φ ∧ ¬φ) law of contradiction

(φ ∨ φ) ≡ φ laws of
(φ ∧ φ) ≡ φ tautology
¬¬φ ≡ φ law of double negation

φ ⊃ ψ ≡ ¬φ ∨ ψ verum sequitur ad quodlibet
φ ⊃ ψ ≡ ¬ψ ⊃ ¬φ law of contraposition

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ De Morgan’s
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ laws

φ ∨ (ψ ∨ µ) ≡ (φ ∨ ψ) ∨ µ Associative
φ ∧ (ψ ∧ µ) ≡ (φ ∧ ψ) ∧ µ laws
φ ∨ (ψ ∧ µ) ≡ (φ ∨ µ) ∧ (φ ∨ µ) Distributive
φ ∧ (ψ ∨ µ) ≡ (φ ∧ µ) ∨ (φ ∧ µ) laws
φ ⊃ (ψ ⊃ µ) ≡ (φ ∧ ψ) ⊃ µ law of exportation
(φ ∧ ψ) ⊃ µ ≡ (φ ⊃ µ) ∨ (ψ ⊃ µ) unnamed
(φ ∨ ψ) ⊃ µ ≡ (φ ⊃ µ) ∧ (ψ ⊃ µ) laws

Notice that most of these laws come in pairs in which one member can be obtained
from the other by interchanging ∧ and ∨. Such pairs are called duals.

It is also worth remembering the derived inference rule

¬ψ, φ ⊃ ψ
¬φ

known as modus tollens. It follows from modus ponens by the law of contraposition.

Conventionally, the equivalence φ ≡ ψ is regarded as an abbreviation for a pair
of “simpler” expressions, such as (φ ⊃ ψ)∧ (ψ ⊃ φ) or (¬φ∧¬ψ)∨ (φ∧ψ) and it is
often expanded into one of these forms whenever it is encountered during a proof.
However, equivalence satisfies some beautiful laws, such as the Golden Rule:

(φ ∧ ψ) ≡ φ ≡ ψ ≡ (φ ∨ ψ)

(one of whose beautiful properties is that it does not matter how we associate—i.e.,
parenthesize—the equivalences). The book by Dijkstra and Scholten [DS90] make
extensive and effective use of laws for equivalence.

The propositional connectives introduced so far are not the only ones. Those
called nand and nor are defined by

φ nand ψ ≡ ¬(φ ∧ ψ)

φ nor ψ ≡ ¬(φ ∨ ψ)
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and are often used in digital circuits. All the other propositional connectives can
be defined in terms of either one of these two—a property first discovered by Pierce
but often attributed to Sheffer (who wrote nor in the form φ |ψ, where | is known
as “Sheffer’s stroke”).

Computer scientists generally like to have the three-way if. . . then. . . else con-
nective available. It can be defined by

if φ then ψ else µ ≡ (φ ⊃ ψ) ∧ (¬φ ⊃ µ).11

Finally, note that the constants true and false can be introduced by

true ≡ (φ ∨ ¬φ),

false ≡ (φ ∧ ¬φ).

A.3.1 Propositional Sequent Calculus

The axiom schemes and rule of inference I have given for propositional calculus make
for rather tedious proofs and are “barbarously unintuitive” [Hod83]. Usually, it is
simpler to exploit the soundness and completeness of the propositional calculus and
transfer into the semantic domain where theorems can be established using truth
tables.12 A case against doing this is that a proof should represent an argument for
the truth a theorem and should lead to improved understanding (not least when the
putative theorem is actually false and the proof attempt fails), whereas the truth-
table method merely says “true” or “false.” On the other hand, the propositional
calculus is so limited, and its theorems so straightforward, that the opportunity

11In richer logics, if. . . then. . . else is often extended to a polymorphic form that denotes a value of
a different sort (or type—these notions are explained in Sections A.9 and A.10) than a proposition.
For example, in

|x| = if x < 0 then − x else x

the if. . . then. . . else denotes a numerical value. These polymorphic forms can be converted to the
propositional kind by “lifting” the if. . . then. . . else over adjacent relations:

if x < 0 then |x| = −x else |x| = x.

12Large propositional expressions can arise in the specification and analysis of hardware circuits.
Methods based on Boolean (or Binary) Decision Diagrams (BDDs) [Ake78, Bry86, Bry92] are
generally the most efficient in practice by a considerable margin, and should be a basic component
of any tool for formal methods that is intended to address such problems. Although BDDs are
usually superior, methods derived from those of Davis and Putnam [DP60] can outperform BDDs
on some problems [US94].
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to gain insight from proofs is distinctly limited.13 In richer systems, however, the
ability to construct reasonably natural proofs in a reasonably effective manner will
clearly be desirable, so I use the propositional calculus to illustrate one approach to
doing this.

First, note that proofs can be simplified by using previously-proved theorems
(which effectively enriches the set of sentences that can be used as axioms), and by
deriving additional rules of inference. For example, there is an important metathe-
orem about propositional calculus called the deduction theorem, which I state as
follows:

Γ, φ ⊢ ψ
Γ ⊢ (φ ⊃ ψ)

where Γ is any set of sentences and Γ, φ is interpreted as the union Γ∪ {φ}. Notice
that I have stated the Deduction Theorem as an extended rule of inference: formerly
rules of inference were relations on sets of sentences; now I allow them to be relations
on proofs as well. This proves extremely convenient.

The deduction theorem is a metatheorem because it is a theorem about propo-
sitional calculus, not a theorem in propositional calculus. In order to prove the
deduction theorem, we can either use informal mathematical arguments based on
the informal definitions of proof and so on given earlier, or we can formalize propo-
sitional calculus within some more powerful formal system and do the proof within
that system. In either case, the proof is by induction on the length of the derivation
of ψ from S, φ.

Using the deduction theorem, the proof of ⊢ (P ⊃ P ) becomes trivial:

1. P ⊢ P Definition of proof
2. ⊢ (P ⊃ P ) Deduction Theorem[S ← ∅, φ← P,ψ ← P ].

But even with additions such as these, it seems clear that it will not be easy
or natural to develop formal proofs using the formulation of propositional calculus
that we have seen so far. This is not surprising, for that formulation is a “Hilbert-
style” calculus designed for metamathematical convenience—that is, it is chosen
to allow short statements of notions such as “interpretation,” and relatively simple
proofs of soundness and completeness. It is not, however, designed for actually doing
proofs. For that purpose, alternative formulations due to Gentzen are much more
convenient.

Gentzen’s natural deduction and sequent calculus formulations use fewer axioms
and more rules of inference than Hilbert-style formulations, and allow more “natu-
ral” proofs.14 Of Gentzen’s two formulations, natural deduction is quite convenient

13This is not to say that errors in using propositional calculus are not common in formal methods,
only that the line by line reasoning of a formal proof is seldom needed to detect or explain them.

14Sources used for this section include Barwise [Bar78b], Gallier [Gal86], and Sundholm [Sun83].
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on the (hand)written page or whiteboard, but the sequent calculus is much to be
preferred for computer-assisted activity since all the information relevant to the lo-
cal part of a proof is gathered together in a convenient way. A sequent is written
the form Γ → ∆15 where Γ and ∆ are lists of sentences called the antecedents and
succedents, respectively. The intuitive interpretation is that the conjunction of the
antecedents should imply the disjunction of the succedents. Equivalently, we want
to show that one (or more) of the succedents is true, or that one (or more) of the
antecedents is false.

A proof in sequent calculus is a tree of sequents, whose root (at the bottom) is
a sequent of the form → φ (i.e., with empty antecedent), where φ is the sentence to
be proved. The proof tree is “grown” upwards from the root by applying inference
rules of the form

Γ1 → ∆1 · · · Γn → ∆n

Γ → ∆
N.

This says that the rule named N takes a leaf node of a proof tree of the form Γ → ∆,
and adds n new leaves of the form given (n may be zero, in which case that branch
of the proof tree terminates). The goal is to apply rules of inference to construct a
proof tree whose branches are all terminated. This is sometimes called “backwards”
proof, since we start with the conclusion to be proved. (Natural deduction, on the
other hand, is an example of a “forwards” approach to proof in which we start with
assumptions and work towards the conclusion.) Although the proof is constructed
“backwards,” it can subsequently be read “forwards.”

I now give the inference rules for the propositional sequent calculus with the
operators ∧,∨,⊃, and ¬ (omitting the “structural rules,” which simply say that
the order of sentences within an antecedent or succedent is unimportant, and that
sentences can always be deleted from the antecedent or succedent). In the following,
upper case greek letters Γ and ∆ represent lists of sentences, and lower case letters
φ, and ψ represent individual sentences. I will often write sequents in a form such
as Γ, φ ⊃ ψ → ∆, meaning that the antecedents consist of some (possibly empty)
list Γ and a sentence of the form φ ⊃ ψ.

The Propositional Axiom rule is the one that terminates a branch of the proof
tree. It applies when the same sentence appears in both the antecedent and succe-
dent.

Γ, φ → φ, ∆
Ax.

This rule can be seen to be plausible by thinking of the sequent as expressing
the tautology (Γ ∧ φ) ⊃ (φ ∨ ∆) where the lists Γ and ∆ are interpreted as the

15Γ ⊢ ∆ is also used, but this may be confusing here.
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conjunction and disjunction, respectively, of their elements. Equivalently, under the
interpretation that we need to show that one (or more) of the succedents is true, or
that one (or more) of the antecedents is false, the propositional axiom rule can be
justified by noting that φ appears as both an antecedent and a succedent and must
be either true or false.

There are two rules for each of the propositional connectives, corresponding to
the antecedent and succedent occurrences of these connectives. The negation rules
simply state that the appearance of a sentence in the antecedent is equivalent to the
appearance of its negated form in the succedent, and vice-versa.

Γ → φ,∆

Γ, ¬φ → ∆
¬ →

Γ, φ → ∆

Γ → ¬φ, ∆
→ ¬.

The inference rules ¬ → and → ¬ are often called the rules for “negation on
the left” and “negation on the right,” respectively. Similar naming conventions are
used for the other rules. One way to see that the rule ¬ →, say, is reasonable is to
consider the sequent above the line as Γ ⊃ φ∨∆, which is equivalent to ¬Γ∨(φ∨∆),
which is equivalent to (¬Γ ∨ φ) ∨∆, which is equivalent to ¬(¬Γ ∨ φ) ⊃ ∆, which
is equivalent to (Γ ∧ ¬φ) ⊃ ∆, which is an interpretation of the sequent below the
line.16 Equivalently, under the interpretation that we need to show that one (or
more) of the succedents is true, or that one (or more) of the antecedents is false,
the negation rules can be seen as simply trading demonstration of the truth of φ for
that of the falsity of ¬φ, and vice-versa.

The rule for conjunction on the left is a consequence of the fact that the an-
tecedents of a sequent are implicitly conjoined; the rule for conjunction on the right
causes the proof tree to divide into two branches, in which we separately prove each
of the two conjuncts.

φ, ψ, Γ → ∆

φ ∧ ψ, Γ → ∆
∧ →

Γ → φ, ∆ Γ → ψ, ∆

Γ → φ ∧ ψ, ∆
→ ∧.

The rules for disjunction are “duals” of those for conjunction.

φ, Γ → ∆ ψ, Γ → ∆

φ ∨ ψ, Γ → ∆
∨ →

Γ → φ, ψ, ∆

Γ → φ ∨ ψ, ∆
→ ∨.

The rule for implication on the right is a consequence of the implication “built
in” to the interpretation of a sequent; the rule for implication on the left splits the
proof into two branches: on one we must prove the antecedent to the implication,
and on the other we may assume the consequent.

16In this chain of equivalences, I used the identities (φ ⊃ ψ) ≡ (¬φ∨ψ), and one of De Morgan’s
Laws.
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ψ, Γ → ∆ Γ → φ, ∆

φ ⊃ ψ, Γ → ∆
⊃→

Γ, φ → ψ, ∆

Γ → φ ⊃ ψ, ∆
→⊃.

Notice how the rules of the sequent calculus have an intuitively plausible charac-
ter, and entirely symmetric construction. This makes proof construction relatively
systematic and natural. To see how it works, consider a proof of the sentence

(P ⊃ Q ⊃ R) ⊃ (P ∧Q ⊃ R).

(Note, the implies symbol ⊃ associates to the right and binds less tightly than ∧,
so this sentence is actually an instance of the law of exportation.)

First we construct the goal sequent

→ (P ⊃ Q ⊃ R) ⊃ (P ∧Q ⊃ R).

Then we must seek an inference rule whose part “below the line” has an instance
equal to this sequent. There is only one choice in this case, since the sole top level
operator is an implication on the right. Hence, we apply the rule for implication on
the right (with [φ← (P ⊃ Q ⊃ R), ψ ← (P ∧Q← R)] and Γ and ∆ empty):

(P ⊃ Q ⊃ R) → (P ∧Q ⊃ R)

→ (P ⊃ Q ⊃ R) ⊃ (P ∧Q ⊃ R)
→⊃.

Now we focus our attention on the sequent above the line:

(P ⊃ Q ⊃ R) → (P ∧Q ⊃ R)

and look for a rule whose part below the line can be made to match this sequent.
There are two choices here: implication on the left or implication on the right. The
former rule will cause the proof tree to branch and it is usually best to put this
off as long as possible. So we again choose implication on the right (this time with
[Γ← (P ⊃ Q ⊃ R), φ← P ∧Q,ψ ← R] and ∆ empty):

(P ⊃ Q ⊃ R), (P ∧Q) → R

(P ⊃ Q ⊃ R) → (P ∧Q ⊃ R)
→⊃.

Again we focus on the sequent above the line

(P ⊃ Q ⊃ R), (P ∧Q) → R

and seek an applicable rule. There are two candidates: implication on the left, or
conjunction on the left. The former rule will cause the proof tree to branch, so we
use conjunction on the left:

(P ⊃ Q ⊃ R), P,Q → R

(P ⊃ Q ⊃ R), (P ∧Q) → R
∧ →
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Now the sequent above the line is

(P ⊃ Q ⊃ R), P,Q → R

and we have no choice but to use the rule for implication on the left:

(Q ⊃ R), P,Q → R P,Q → P,R

(P ⊃ Q ⊃ R), P,Q → R
⊃→

The right-hand branch can be closed immediately:

P,Q → P,R
Ax.

The left-hand branch requires another application of the rule for implication on the
left:

R,P,Q → R P,Q → Q,R

(Q ⊃ R), P,Q → R
⊃→.

Its left and right branches can then be closed:

R,P,Q → R
Ax

P,Q → Q,R
Ax

Since all the branches are closed, the theorem is proved.

We can collect all the steps together into the following representation of the
proof tree:

R,P,Q → R
Ax

P,Q → Q,R
Ax

(Q ⊃ R), P,Q → R
⊃→

P,Q → P,R
Ax

(P ⊃ Q ⊃ R), P,Q → R

(P ⊃ Q ⊃ R) → (P ∧Q ⊃ R)
→⊃

→ (P ⊃ Q ⊃ R) ⊃ (P ∧Q ⊃ R)
→⊃

⊃→.

Notice how we were able to develop this proof in an entirely “logical” and orderly
way. The reader might want to compare this proof with one using the Hilbert-style
formulation of the propositional calculus introduced at the beginning of Section A.3.
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A.4 Predicate Calculus

Propositional calculus is a very limited formal system and allows us to express only
very simple ideas. For example [Dav89, page 43], we cannot express the idea “if x
is even, then x + 1 is odd” in propositional calculus. To see this, suppose we try
and split the idea up as two propositions: x

e
will mean “x is even” and x+ 1

o
will mean “x + 1 is odd.” Then it might seem that we could express the intended
idea with the compound proposition x

e
⊃ x+ 1

o
. But this does not work: x

e

and x+ 1
o

are independent propositions without internal structure (which is why
I have written them in boxes), whereas the sense we want to convey requires that
both refer to the same x. The predicate calculus (also called first-order logic or
elementary logic or quantification theory) is an extension to propositional calculus
that gives us individual variables and the expressive power we need to make this
and very many other statements concerning mathematics and the world.

The formal system of the basic predicate calculus has no nonlogical part. Its log-
ical symbols include the propositional connectives and the quantifiers “for all” (also
called the universal quantifier and written ∀) and “there exists” (also called the ex-
istential quantifier and written ∃). The other symbols include constants (generally
written as lowercase letters near the front of the alphabet: a, b, . . .), variables (gen-
erally written as lowercase letters near the end of the alphabet: . . . , y, z), function
symbols (generally written as the lowercase letters: f, g, . . .), and predicate symbols
(generally written as uppercase letters: P,Q, . . .).

The grammar of predicate calculus defines its language as follows:

• A term is a constant symbol, a variable symbol, or a function application
f(σ, τ, . . . , ν) where f is a function symbol and σ, τ, . . . , τ are terms. (Actually,
the symbols σ, τ, . . . , τ are metavariables representing terms). For convenience,
I often write function applications using infix notation, such as 2 + 3, rather
than +(2, 3).

• An atomic formula has the form P (σ, τ, . . . , ν) where P is a predicate symbol
and σ, τ, . . . , ν are terms. (As before, σ, τ, . . . , τ are actually metavariables
representing terms). Computer scientists may find it more familiar to think
of predicates as functions that return truth values (Russell and other early
writers actually called them “propositional functions”). For convenience, I
often write atomic formulas using infix notation, such as 2 < 3, rather than
< (2, 3).

There are obvious consistency constraints on the sentences we should write:
if f appears somewhere applied to two arguments (e.g., in a term of the form
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f(x, y)) we should not use it somewhere else applied to fewer or greater num-
bers of arguments. The same applies to predicates.17

• A well-formed formula (wff) is an atomic formula, or a series of wffs combined
using the propositional connectives, or an expression of the form (∀x : φ) or
(∃x : φ) where x is a variable symbol and φ is a metavariable representing a
wff.

The scope of a quantifier is the wff to which it applies (i.e., the one following
the colon). For example, in

(∀x : even(x) ⊃ odd(x+ 1)) (A.1)

the scope of the ∀ is the expression even(x) ⊃ odd(x+ 1). A variable is bound
if it appears in an expression in the scope of a quantifier naming that variable;
otherwise it is free. A wff is open if it contains free variables, otherwise it is
closed .

• The sentences of the predicate calculus are the closed wffs. By convention,
open wffs are usually interpreted as sentences by automatically providing outer
levels of universal quantification to bind any free variables (this is called taking
the universal closure). Thus the open wff (∃y : y = x + 1) is closed by
interpreting it as (∀x : (∃y : y = x+ 1)).18

Numerous syntactic shorthands are generally applied to make predicate calculus
sentences more readable. For example, in the examples above, I used even and odd
as predicate symbols, and used infix = to denote a predicate symbol, infix + to
denote a function symbol, and 1 to denote a literal constant. In the most primitive
predicate calculus notation, we might have to write (A.1) as

(∀x : E(x) ⊃ O(s(x)))

where s is intended to indicate the successor function on the integers, and E and
O are meant to indicate the “even” and “odd” predicates, respectively. No matter
how they are written, this example assumes that numbers, together with certain
functions (e.g., + or s) and predicates (e.g., odd or O) on them, are part of the
formal system concerned. In fact, these concepts are not part of the predicate
calculus, but must be axiomatized or defined within it. I examine how this can

17To be really thorough, we should distinguish different sets of n-ary function and predicate
symbols, for each n.

18Notice the difference between (∀x : (∃y : y = x + 1)) and (∃x : (∀y : y = x + 1)). The former
says that for each x, there is some y such that y = x+ 1—this is obviously valid. The latter says
that there is an x such that, for every y, y = x + 1, i.e., x is one less than every y—which is
obviously unsatisfiable (in the usual interpretation of arithmetic).
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be done in later sections; first I examine deduction and interpretation in the basic
predicate calculus.

In a Hilbert-style formulation, the axiom schemes and rules of inference for
predicate calculus are those of propositional calculus (whose metavariables are now
to be replaced by formulas of predicate calculus, rather than by proposition symbols,
in order to construct axioms and rule instances), together with the two axiom and
two rule schemes shown below. In these schemes, the notation φ(x) means a formula
φ in which x is a free variable, and φ[x ← t] means the substitution instance of φ
with all free occurrences of x replaced by the term symbolized by t.19

The following axiom schemes are added to those of propositional calculus given
on page 230:

A4. (∀x : φ(x)) ⊃ φ[x← t], provided no free occurrences of x in φ lie in the scope of
any quantifier for a free variable appearing in the term t (we say that t is free
for x in φ).20 This axiom scheme simply says that if some formula φ is true
for all x, then it is certainly true when some particular term t is substituted
for x in φ (provided no free variables get “captured”).

A5. φ[x ← t] ⊃ (∃x : φ(x)), provided t is free for x in φ. This axiom scheme says
that we can conclude that there exists some x satisfying the formula φ if some
substitution instance of φ is true.21

The following rule schemes of generalization are added to those of propositional
calculus:

ψ ⊃ φ(v)

ψ ⊃ (∀x : φ(x))
,

and
φ(v) ⊃ ψ

(∃x : φ(x)) ⊃ ψ
where the variable v is not free in ψ. The rule of universal generalization can best be
understood by considering the simpler case where ψ is true. Then the rule becomes

φ(v)

(∀x : φ(x))

19Mathematicians usually indicate a substitution instance by φ[t/x] rather than φ[x ← t]. I
prefer my notation because the arrow makes it easy to remember the direction of the substitution.
Substitution is an operation in the object language (it transforms one formula into another). I have
also been using the notation A1[φ ← P ] to indicate the metalevel operation in which an axiom
or rule instance is constructed by letting φ be P in the scheme A1. This ambiguous notation is
nonstandard, but I find it convenient.

20This caveat is called the “occurs check.” To see why it is necessary, let φ be (∃y : x + 1 = y)
and let t be y. Prolog interpreters ignore the occurs check in the interest of speed, and are unsound
for this reason among others [NS93, Chapter III].

21Some formulations include only the universal quantifier; in these cases, the existential quantifier
can be introduced by the definition (∃x : φ(x)) ≡ ¬(∀x : ¬φ(x)).
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which says that if φ is true for some arbitrary v, then it must be true for all x.
Existential generalization can be derived from universal generalization by the trans-
formation mentioned in the previous footnote.� The models of predicate calculus are constructed as follows.22 Given a nonempty

set D as the domain of interpretation, an interpretation associates an n-place
total function on D with each n-place function symbol, an n-place relation with
each n-place predicate symbol, and an element of D to each constant symbol.23

The interpretation of P (t1, t2, . . . , tn) for predicate symbol P is true if and only
if the tuple (v(t1), v(t2), . . . v(tn)) is in the set v(P ) where v(P ) is the relation
interpreting P , and v(ti) is the interpretation of the term ti. The interpretation of
f(t1, t2, . . . , tn) for function symbol f is the value v(f)(v(t1), v(t2), . . . v(tn)) where
v(f) is the function interpreting f , and v(ti) is the interpretation of the term ti.
The propositional connectives have their usual (truth-table) meaning; (∀x : φ(x))
is interpreted to be true if and only if the interpretation of φ is true for all values
of the variable x in the domain D, and (∃x : φ(x)) is interpreted to be true if and
only if the interpretation of φ is true for some value of the variable x taken from the
domain D. (If φ does not contain the variable x, the interpretations of (∀x : φ(x))
and (∃x : φ(x)) are the same as the interpretation for φ.)

Like propositional calculus, predicate calculus is sound and complete (soundness
is relatively straightforward; completeness was established by Gödel in his Ph.D.
thesis in 193024). That is, the theorems (i.e., the sentences that can be deduced
using the axioms and rules of inference given above) coincide with the universally
valid sentences (i.e., those that valuate to true in all interpretations).

We have now covered enough material to formalize and interpret the example
that began this appendix:

That plane is a Boeing 737;
All Boeing planes, except the 747, have two engines;
Therefore that plane has two engines.

22The definitions that follow use the terminology of set theory. An n-place relation on the set D
is any set of n-tuples on D, that is any set of objects of the form (a1, a2, . . . , an), where each ai is a
member of D. An n-place function f on the set D can be considered as n+1-place relation with the
property that if (a1, a2, . . . , an, x) and (a1, a2, . . . , an, y) are both members of f , then x = y (i.e.,
the last member of the tuple is uniquely determined by the first n). In this case, the application of
f to the arguments (a1, a2, . . . , an) is written f(a1, a2, . . . , an) and yields the value x. A function
is total if it has a value for every combination of arguments.

23I am simplifying a bit here. Interpretations are correctly defined relative to a sequence of values
from D that supplies arbitrary, but fixed, interpretations to free variables.

24Skolem had essentially demonstrated consistency some years earlier, but did not realize
it [Hod83].



244 Appendix A. A Rapid Introduction to Mathematical Logic

We can formalize this in first-order predicate calculus

is a Boeing plane(p) ∧ is a 737(p)
∀x : is a Boeing plane(x) ∧ ¬is a 747(x) ⊃ has two engines(x)

has two engines(p)

where is a Boeing plane, is a 737, is a 747, and has two engines are predi-
cates, p is a constant, and x is a variable. A little thought shows that this deduction
is not valid: we also need another premise to state that 737s and 747s are different.
The following is adequate for our purposes:

∀x: is a 737(x) ⊃ ¬is a 747(x).

Then, applying the logical axioms and rules of inference given earlier (use A4 to in-
stantiate the two universally quantified premises with [x← p], then use propositional
reasoning), we can prove the conclusion from the three premises. Since predicate
calculus is sound, this tells us that the conclusion will be true in any interpretation
that valuates the premises to true. Notice, however, that if we substitute is a 727

for is a 737, we would still have a valid proof, but a conclusion that is false when
the domain D of interpretation is “airplanes in current service” and the predicates
have their intuitive meaning. How can this be? The explanation is that the second
premise

∀x : is a Boeing plane(x) ∧ ¬is a 747(x) ⊃ has two engines(x)

is false in this interpretation. But if that is so, then our original conclusion (about the
737) is also suspect in this interpretation. And indeed it is: although the conclusion
happens to be true in this interpretation, and although the line of reasoning is
valid (so that the conclusion must be true in any interpretation that validates the
premises), one of the premises is false in the intended interpretation. This example
illustrates a central issue in formal methods: because we intend to make use of any
conclusion we prove, we must have a particular interpretation in mind and we need
to pay great attention to validating our premises in that interpretation.

A.4.1 Skolemization and Resolution

Unlike propositional calculus, predicate calculus is only semidecidable. Because it
introduces some concepts and terminology that are useful in understanding certain
theorem proving strategies, I will sketch one of the ways to demonstrate semidecid-
ability of predicate calculus. Recall that semidecidable means there must be some
computer program that is guaranteed to terminate with the answer “yes” when
given a theorem; it is not required to terminate when given a nontheorem (but if it
does, it must give the answer “no”). Because the predicate calculus is sound and
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complete, the desired semidecision procedure could either be proof theoretic (i.e.,
it could look for a proof of the given sentence), or model theoretic (i.e., it could
attempt to show that the sentence is universally valid). The approach I will follow
is model theoretic.

Suppose we have to establish a sentence of the form (∀x : φ(x)); to make things
concrete, consider (∀x : x < x + 1). If this sentence is valid, then any particular
substitution instance, say 17 < 17+1, must be true. So one way to prove the sentence
might be to choose some substitution instance such as this “at random” and check
that one instance. The problem, of course, is that a particular, interpreted constant
such as 17 might have some special properties, and we might just happen to pick one
that satisfied the sentence, whereas another might not (e.g., (∀x:x× x = x) might
appear valid if it were enough to exhibit [x ← 1]). But if instead of a particular
numeral, we choose a new symbolic constant, say c, that appears nowhere else and
could still establish c < c+1, then we would surely have done enough to establish the
original sentence. Reverting to the general case, the idea is to establish (∀x : φ(x))
by establishing φ(c) for some new constant c. Notice that φ(c) has no quantifiers
nor variables: it is a propositional sentence and therefore, by the decidability of
the propositional calculus, we can decide its validity. We seem to have reduced the
decision problem for universally quantified formulas of predicate calculus to that of
propositional calculus.

Now consider a slightly more complicated sentence: (∀x : (∃y : y = x+ 1)). To
establish this, we can start by substituting some arbitrary constant, say c, for the
universally quantified variable x to yield the simpler sentence (∃y : y = c+1). Then,
to establish this existential sentence it is enough to find some constant term that
can be substituted for y in order to make y = c+ 1 true (obviously, [y ← c+ 1] does
the job here). The quantifier-free formula y = c + 1 is called a Skolem form of the
original formula (∀x : (∃y : y = x+1)). A substitution instance of the Skolem form,
in which all its free variables are replaced by terms involving only constant symbols,
is called a ground instance of the original formula. The idea behind the process I
am developing is that the original first-order sentence must be valid if some ground
instance is propositionally valid (i.e., a tautology). Now the construction of the
Skolem form is a mechanical process (I will explain it shortly), and propositional
validity is decidable—so to test the validity of a first-order formula, all we have
to do is generate the Skolem form, and then search for a ground instance that
is a tautology.25 If the original formula is valid, then eventually our search will
terminate, but if it is invalid, then our search may go on forever, generating more
and more complicated ground instances without ever finding one that is a tautology.

25This is not quite accurate: as explained shortly, we may need a disjunction of ground instances
to obtain a tautology.
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I have just given a crude sketch of the semidecidability of first-order predicate
calculus.26 This idea can be exploited in mechanical “theorem provers” (I use quotes
because this is a model-, not proof-theoretic approach)—although it is usual to
employ heuristics, or user-supplied hints, to generate ground instances rather than
exhaustive search.27 In order to use this approach, it is necessary to understand
Skolemization (as the process of constructing the Skolem form is called) in a little
more detail.

My simple example might have made it appear that to Skolemize a first-order
sentence, all we have to do is replace the universally quantified variables with (dif-
ferent) arbitrary constants, leave the existentially quantified variables alone, and
then remove all the quantifiers. If we apply this naive scheme to the (obviously
false) sentence (∃x:φ(x)) ⊃ (∀y:φ(y)) we would obtain φ(x) ⊃ φ(c), which has a
valid ground instance under the substitution [x← c]. We have just “proved” a false
theorem, so something must have gone wrong.

Our mistake was that we did not take care of the “implicit” negation in the
antecedent to an implication. Since a ⊃ b is the same as ¬a ∨ b, the original sen-
tence could have been written as ¬(∃x:φ(x)) ∨ (∀y:φ(y)), and this is equivalent to
(∀x:¬φ(x))∨ (∀y:φ(y)). Our Skolemization procedure (correctly) transforms this to
¬φ(d)∨φ(c), which is not a tautology. The problem, then, is that existential quanti-
fiers in the antecedent to an implication are “essentially” universal (and vice-versa).
We see that Skolemization has to replace the essentially universally quantified vari-
ables with different arbitrary constants, and to leave the essentially existential ones
alone. To determine the essential “parity” of a quantifier, simply count the number
of negations in whose scope it occurs, noting the implicit negation in the antecedent
of an implication (and expanding equivalences of the form φ ≡ ψ as two implications:
φ ⊃ ψ ∧ ψ ⊃ φ); if a quantifier appears within an odd number of negations, then
its essential parity is the opposite of its appearance (i.e., an existential is essentially
universal, and vice-versa).

Even with this adjustment, our Skolemization process is still flawed. Consider
the example we looked at earlier, but with the order of the quantifiers reversed:
(∃y : (∀x : y = x+ 1)). This sentence is unsatisfiable (it says there is some y which
is equal to x + 1 for every x, whereas the original, valid, sentence said that for
every x, there is some y that is equal to x + 1). Yet our modified, but still naive,
Skolemization algorithm produces exactly the same Skolem form, namely y = c+ 1,
as for the original sentence.

26My examples used predicate calculus enriched with arithmetic; this is also semidecidable, pro-
vided certain restrictions are placed on the fragment of arithmetic employed. This is discussed later
in Section A.5.2.

27If the search is not exhaustive, the process is no longer a semidecision procedure: if a valid
ground instance is found, then the original sentence is certainly valid, but there is no guarantee
that the search will find such an instance.
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One way to better understand what is going on is to imagine the process of
forming the final ground instance as a contest between ourselves, seeking to find
substitutions for the essentially existential variables, and a malign opponent who
chooses instances for the essentially universal variables [Hod83]. We and our oppo-
nent take turns, working from the outside quantifiers towards the innermost; our
goal is reach a valid ground sentence, the opponent’s goal is prevent us doing so.

If we first consider the valid sentence (∀x : (∃y : y = x + 1)) we see that the
opponent plays first (since the outermost quantifier is essentially universal). The
opponent might decide to substitute 17, say, for x, leaving us with (∃y : y = 17+1).
We can now choose to substitute 18 for y, yielding 18 = 17 + 1, so we win.

Now consider the unsatisfiable form: (∃y : (∀x : y = x + 1)). Here, we have to
play first, so we choose some arbitrary constant, say 9, to leave (∀x : 9 = x+1). Now
our opponent plays, and is careful to choose any number but 8—say 13—thereby
winning the contest.

Notice that what happened in the last case was that our opponent did not need
to choose a substitution for x until we had made a choice for y; thus, the choice
made by the opponent could depend on our choice of y—in other words, it could be
some function f(y) of y. To perform Skolemization correctly, we may only replace
essentially universal variables with constants when they are not in the scope of
some essentially existential quantifier. When they are in the scope of essentially
existential quantifiers, the universal variables must be replaced by arbitrary new
function symbols (called Skolem functions) that take the existential variables as
arguments. Thus, the correctly Skolemized form of (∃y : (∀x : y = x + 1)) is
y = f(y) + 1, which has no valid ground instance. For an example of this kind that
is valid, consider (∃y : (∀x : y < x + 1)), where the variables are constrained to be
natural numbers. The Skolem form is y < f(y) + 1, which has the valid ground
instance 0 < f(0) + 1 (i.e., [y ← 0]). (The constraint to natural numbers ensures
0 ≤ f(y) no matter what function is chosen for f .) Because we know nothing about
the Skolem function f , it models any strategy our opponent may choose. If we can
construct a valid ground instance in the presence of Skolem functions, it means we
can always win the contest, no matter what the opponent’s strategy.

We now know how to Skolemize first-order sentences correctly, but there is one
last problem in this approach to theorem proving. To see this, consider the (valid)
sentence

(∃x : φ(x)) ∨ (∃y : ψ(y)) ⊃ (∃z : φ(z) ∨ ψ(z)).

The Skolem form of this sentence is

(φ(a) ∨ ψ(b)) ⊃ (φ(z) ∨ ψ(z))

where a and b are arbitrary Skolem constants, and we have to find a ground substi-
tution for z that will make the formula a tautology. Unfortunately, it is not hard to
see that no such substitution exists.
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The problem is that we have to find a single substitution for z without knowing
which of φ(a) or ψ(b) is true (although we do know that at least one of them is true).
If we knew which were true, we could find the right substitution ([z ← a] if φ(a) is
true, otherwise [z ← b]). A little thought should convince us that this is enough:
no matter what the true state of affairs, there is always some satisfiable ground
instance. Indeed, this is enough, and the result that justifies it is the Herbrand-
Skolem-Gödel theorem,28 which says that a first-order sentence is valid if and only
if some finite disjunction of ground instances of its Skolem form is tautological. In
the case of our example, the disjunction

(φ(a) ∨ ψ(b)) ⊃ (φ(a) ∨ ψ(a))

∨
(φ(a) ∨ ψ(b)) ⊃ (φ(b) ∨ ψ(b))

is valid, and we have succeeded in proving the original theorem.

Almost all mechanical theorem provers employ Skolemization in one form or an-
other, so it is worth having some familiarity with the process. Some systems convert
formulas to prenex form (in which no quantifiers appear in the scope of a propo-
sitional connective) before Skolemizing. This is done by repeatedly using the law
(∃x : φ) ≡ ¬(∀x : ¬φ) and its dual, and by renaming variables if necessary so that
expressions such as (∀x:φ) ∨ ψ can be rewritten as (∀x:φ ∨ ψ) (x must not occur
free in ψ), and similarly for expressions involving other connectives. In an interac-
tive system, such transformations are disadvantageous, since users are required to
examine formulas presented in a very different form than those they typed in. In au-
tomatic theorem provers, however, conversion to various special forms can assist the
systematic search for a proof. Resolution provers, for example, generally eliminate
all connectives other than ∧, ∨, and ¬ (by, for example, transforming φ ⊃ ψ into
¬φ ∨ ψ), convert the resulting formulas to prenex form, Skolemize them, and then
convert to conjunctive normal form (CNF) by repeated applications of de Morgan’s
laws. In CNF, each formula is written as a conjunction of clauses, where a clause is
a disjunction of literals, which are atomic formulas or negations of atomic formulas
(the empty clause is identified with false).

Propositional formulas in CNF can often be shown to be unsatisfiable by repeated
application of the one-literal rule: if a clause consists of just a single literal, then
that clause can be deleted, and all instances of the negated form of that literal29

can be deleted from all other clauses: if that deletion results in any clause becoming
empty (i.e., false) then the original formula was unsatisfiable. For example:

28This result in model theory should not be confused with Herbrand’s Theorem, which is a much
deeper result in proof theory.

29If the literal is a negation, then its negated form is the unnegated atomic formula (e.g., the
negated form of ¬P is simply P ).
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(P ∨Q ∨ ¬R) ∧ (P ∨ ¬Q) ∧ ¬P ∧R ∧ S apply one-literal rule to ¬P
(Q ∨ ¬R) ∧ ¬Q ∧R ∧ S apply one-literal rule to ¬Q
¬R ∧R ∧ S apply one-literal rule to ¬R
empty ∧ S we are done.

The resolution rule for propositional calculus extends the one-literal rule by
looking for clauses that contain a complementary pair of literals P and ¬P . Such a
pair of clauses, for example (P∨R) and (¬P∨Q), are then replaced by their resolvent
(R ∨Q) (thus the one-literal rule is the special case of resolution when either R or
Q is empty). Resolution is extended to first-order clauses (i.e., those containing
variables) by seeking a single substitution that can be applied to two literals to
make them a complementary pair, and then applying the same substitution to the
resolvent. The process of constructing a substitution that will cause two literals to
become a complementary pair is called unification, and the substitution that results
is called a unifier . Here is an example of first-order resolution:

(¬S(y) ∨ C(y)) ∧ S(b) ∧ V (a, b) ∧ (¬C(z) ∨ ¬V (a, z)) [y ← b] on clauses 1, 2
C(b) ∧ V (a, b) ∧ (¬C(z) ∨ ¬V (a, z)) [z ← b] on clauses 1, 3
V (a, b) ∧ ¬V (a, b) Clauses 1, 2
empty we are done

Resolution is a complete refutation procedure for first-order logic: if a sentence
is unsatisfiable, then resolution will terminate with the empty clause. For theorem
proving, we simply conjoin all the premises with the negated conclusion, and then use
resolution to test whether the result is unsatisfiable: if it is, then the original theorem
is true. If the original theorem was untrue, then resolution may not terminate.

The basic resolution and unification algorithms are due to Robinson [Rob65]. A
great many extensions and heuristic optimizations to resolution have been developed
over the years; some of the more fundamental ones are described in the standard text
by Chang and Lee [CL73]; Otter is a modern theorem prover based on highly efficient
implementations of several resolution strategies [McC90]. A variety of resolution
called SLD-resolution is very effective for Horn clauses (clauses that contain at most
one negated literal) and is the technique underlying interpreters for the language
Prolog [NS93, Chapter III].

Although resolution theorem provers can be quite effective in some domains, they
are of little use in formal methods. Formal methods generally require more than
just pure first-order predicate calculus (e.g., they require theories for arithmetic and
various datatypes, and possibly set theory or higher-order quantification), and res-
olution is not at all effective in these contexts.30 In addition, many of the theorems

30If we simply add the axioms for the theories concerned, then the search space becomes so huge
that resolution seldom terminates in reasonable time. If we add decision procedures for the theories
concerned, then unification needs to be performed modulo these interpreted theories and it is a
research topic to make this work effectively [Sti85].
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we try to prove in formal methods are untrue when first formulated, and resolution
provides little help in such cases (though it can sometimes generate counterexam-
ples). And for true theorems, resolution simply affirms their truth: it does not assist
us to develop an argument that can be subjected to human review. Nonetheless,
some of the ideas from resolution find application in almost all modern theorem
provers. In particular, unification is a fundamental technique for creating substi-
tution instances, and highly efficient (i.e., linear-time) unification algorithms have
been developed, as have extensions to the higher-order case.

A.4.2 Sequent Calculus

The alternatives to model theoretic approaches to “theorem proving,” such as that
sketched in the previous section, are proof theoretic approaches. These include
the first-order sequent calculus, which is obtained by extending the propositional
sequent calculus of Section A.3.1 with the following rules.

There are four “quantifier rules.” In the → ∀ and ∃ → rules (i.e., those on the
top right and bottom left), a must be a new constant31 (these rules are the analogs
of Skolemization).

Γ, A[x← t] → ∆

Γ, (∀x:A) → ∆
∀ →

Γ → A[x← a], ∆

Γ → (∀x:A), ∆
→ ∀

Γ, A[x← a] → ∆

Γ, (∃x:A) → ∆
∃ →

Γ → A[x← t], ∆

Γ → (∃x:A), ∆
→ ∃

We also need a rule for terminating a branch of the proof tree when we en-
counter a nonlogical axiom or a previously-proved lemma among the consequents of
a sequent:

Γ → φ, ∆
Nonlog-ax

where φ is a nonlogical axiom or previously-proved lemma.

For convenience in developing proofs, it is useful to provide an additional rule
called “cut.” This can be seen as a mechanism for introducing a case-split or lemma
into the proof of a sequent Γ → ∆ to yield the subgoals Γ, φ → ∆ and Γ → φ,∆.
These are equivalent to assuming φ along one branch and having to prove it on the
other.32

31Actually, a constant that does not occur in the consequent of the sequent. This constraint is
called the eigenvariable condition.

32Alternatively, applying the rule for negation on the right, this can be seen as equivalent to
assuming φ along one branch and ¬φ along the other.
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φ, Γ → ∆ Γ → φ, ∆

Γ → ∆
Cut.

The Cut Elimination Theorem (also known as Gentzen’s Hauptsatz) is one of
the most famous results in proof theory: it says that any derivation involving the
cut rule can be converted to another (possibly much longer one) that does not use
cut. Since cut is the only rule in which a formula (φ) appears above the line that
does not also appear below it, it is the only rule whose use requires “invention”
or “insight”; thus the cut elimination theorem provides the foundation for another
demonstration of the semi-decidability of the predicate calculus.

A.5 First-Order Theories

First-order theories are simply those that add some nonlogical axioms (and possibly
rules of inference) to the predicate calculus. In this section, I consider four very im-
portant classes of first-order theories: equality, arithmetic, simple computer science
datatypes (such as lists, trees etc.), and set theory.

All of these are very useful in computer science, and any system intended to
support formal methods should normally provide all four.

A.5.1 Equality

The first-order theory of equality (or “identity” as it is sometimes called) simply
adds a distinguished two-place predicate (generally called equals and written as infix
=) to the symbols of the predicate calculus. The fundamental idea of equality is
that x = y if and only if “anything that may be said of x may be said of y, and
vice-versa.”33 This idea of the “identity of indiscernibles” was first stated explicitly
by Leibniz. In more technical terms, if some property φ holds for x, and x = y, then
φ should also hold when y is substituted for some or all instances of x in φ. This
can be formalized as follows:

Leibniz’ law: (∀x, y : x = y ⊃ φ ⊃ φ[[x← y]])34

where I use φ[[x ← y]], rather than φ[x ← y], to indicate that only some instances
of x need be replaced by y.

To get things started, we assert that everything equals itself:

reflexivity: (∀x : x = x).

33Most of this material is drawn from Tarski [Tar76].
34The symbol = binds tighter than the propositional connectives.
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From these axiom schemes, it is possible to deduce that = satisfies the prop-
erties of symmetry and transitivity in addition to reflexivity, and is therefore an
equivalence relation.

symmetry: (∀x, y : x = y ⊃ y = x),

transitivity: (∀x, y, z : x = y ∧ y = z ⊃ x = z).

We can also deduce that = satisfies the property of substitutivity:

substitutivity: for any term or atomic formula φ, x = y ⊃ φ = φ[x← y]

which is what distinguishes true equality from a mere equivalence relation: it says
that we can always substitute equals for equals.

Sometimes the quantifier ∃! (pronounced “there exists exactly one”) is added to
first-order theories with equality. It is defined by

(∃!x : φ(x)) ≡ (∃x : φ(x)) ∧ (∀x, y : φ(x) ∧ φ(y) ⊃ x = y).

Notice that the first conjunct on the right-hand side expresses “at least one,” while
the second expresses “at most one.”

The propositional connective ≡ (equivalence, or “if and only if”) satisfies Leibniz’
law, and therefore functions as an equality relation on wffs. This means that certain
sentences can be proved by applying the rules for equality reasoning to ≡. For
example, (x ≡ y) ⊃ (x ⊃ y) can be proved from Leibniz’ law (let φ be x). When
this approach can be used, it is fast and simple and generally to be preferred to
reasoning from the propositional properties of the connective. However, ≡ is more
than an equality relation, so equality reasoning does not capture all its properties
and it is sometimes necessary to revert to propositional reasoning on≡. For example,
(¬x ∨ y) ≡ (x ⊃ y) requires propositional reasoning.�When constructing models for a first-order theory with equality, we usually

want the interpretation of “=” to be the identity relation on the domain of
the interpretation. Such models are called normal and it is possible to show that a
first-order system with equality has a model if and only if it has a normal model.
Thus, nothing is lost (or gained) by restricting attention to normal models.� Often, we will also want our models to have “no confusion” and “no junk.”

Suppose we have a theory with just two axioms: a = b and c = d (where
a, b, c, and d are constants). Then we could have a model in which the domain
of interpretation has but a single element, and all four constants are assigned to
that single element. The equation a = c will be true in this model, but cannot be
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proved from our axioms: the model makes too many things equal (it has confusion).
Alternatively, we could have a model with six members ma,mb,mc,md,mx, and
my. The constants of our theory might be assigned to the first four, leaving the last
two as “junk” superfluous to our needs. Initial models are, roughly speaking, those
that have enough elements so that those assigned to terms that the axioms do not
require to be equal can, in fact, be distinct (no confusion), yet with no elements left
over (no junk) [GTWW77].

A.5.1.1 Sequent Calculus Rules for Equality

These rules directly encode the axiom schemes of reflexivity and Leibniz’ law.

Γ → a = a, ∆
Refl

a = b, Γ[[a← b]] → ∆[[a← b]]

a = b, Γ → ∆
Repl

Observe that the rule Refl is an instance of the rule Nonlog-ax given in the
previous section.

A.5.1.2 Rewriting and Decision Procedures for Equality

Reasoning about equality is so fundamental that most theorem provers provide
special treatment for it. For example, chains of equality reasoning such as that
required to prove the following theorem arise frequently in formal methods:

i = j ∧ k = l ∧ f(i) = g(k) ∧ j = f(j) ∧m = g(l) ⊃ f(m) = b(k).

Trying to prove formulas such as this by repeated application of Leibniz’ law, or the
derived axioms and inference rules given earlier, soon becomes hopelessly inefficient
as the number or size of the formulas increases. A very efficient method for reasoning
with ground equalities of this kind is based on congruence closure [DST80, Sho78b].

Equations also commonly arise in the form of definitions, such as that for the
absolute value function:

|x| = if x < 0 then − x else x.

One way to prove a theorem such as |a+b| ≤ |a|+ |b| is to expand the definitions
and then perform propositional and arithmetic reasoning. “Expanding a definition”
means finding a substitution for the left hand side of the definition that will cause
it to match a term in the formula (e.g., [x ← a + b] will match |x| with |a + b|),
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and then replacing that term by the corresponding substitution instance of the right
hand side of the definition concerned—for example,

|a+ b| = if a+ b < 0 then − (a+ b) else a+ b.

Expanding definitions is a special case of the more general technique of rewriting ,
which can be used with arbitrary equations provided the free variables appearing
on the right hand side of each equation are a subset of those appearing on its left.
The idea is to find substitutions for the free variables in the left hand side of an
equation that will cause it to match some part of the formula being proved; that
part is then replaced (“rewritten”) by the corresponding substitution instance of the
right hand side of the equation concerned. The process of finding substitutions for
the free variables in the left hand side by trying to make it equal some subexpression
in the formula of interest is called matching ; it is similar to unification, except that
we only seek substitutions for the variables in the equation being matched, and not
for the variables in the expression it is being matched against (hence, matching is
sometimes described as “one way” unification). Notice that although equations are
symmetric (i.e., they mean the same whether written as a = b or as b = a), rewriting
gives them a left-to-right orientation; when viewed in this way, they are generally
called rewrite rules rather than equations.

Selection and orientation of equations to be used as rewrite rules, and identifica-
tion of the target locations where rewriting is to be performed, can be undertaken
either by the user or by some automated strategy. One strategy is to rewrite when-
ever it is possible to do so. Unfortunately, this process may not terminate; a set
of rewrite rules is said to have the finite termination property if rewriting does al-
ways terminate.35 Often there will be two or more opportunities for rewriting in
a given expression; if the final result after rewriting to termination is independent
of the choices made at each step, then the set of rewrite rules is said to have the
unique termination (also known as Church-Rosser) property. If a theory can be
specified by a set of rewrite rules with the finite and unique termination properties,
then rewriting can serve as a decision procedure for the theory concerned: to decide
whether two terms are equal, simply rewrite them to termination; if the results are
syntactically identical, then the original terms were equal (i.e., rewriting to termi-
nation yields a normal form). This procedure is sound, and for ground formulas it is
complete. We must be careful, however, if we wish to deduce disequality. Suppose,

35Rules that express commutativity (e.g., x+y = y+x) can be applied repeatedly (e.g., a+b→ b+
a→ a+b . . .) and so render a set of rewrite rules nonterminating. This difficulty can be overcome by
imposing restrictions that lead to a true normal form (e.g., only apply the rewrite if the substitution
instance for x is less than that for y in some suitable ordering). Similar techniques can be used for
operators that are associative (and for the combined associative-commutative case) [Sti81]. These
techniques are usually embedded in the matching rather than the rewriting mechanism, and referred
to as AC-matching .
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for example, we used the rewrite rules a→ b and c→ d to rewrite a to b and c to d
and then observed that b and d are in normal form, but not syntactically identical:
may we then deduce a 6= c? Plainly it would not be sound to do so in the standard
semantics, since we could have a model with only a single element (so that all terms
are equal). However, deducing disequalities in this way is sound (and complete)
for the initial model. Consequently, systems that use rewriting to normal form as
their main (or only) means of deduction generally use the initial model semantics
(OBJ [Gog89] does this), whereas systems that use rewriting as merely one method
among several generally use the classical semantics and do not infer disequalities
from unequal normal forms (disequality can then only be inferred from axioms that
mention it explicitly).

Given an arbitrary set of equations, there are some quite effective heuristic pro-
cedures for testing for the finite and unique termination properties [DJ90]; one,
known as Knuth-Bendix completion, can often extend a set of rewrite rules that
does not have unique termination into one that does. Beyond ordinary rewriting is
conditional rewriting, which is used for axioms having the form a ⊃ b = c. Various
control strategies are possible: the simplest will only rewrite b to c if a can be proved,
others will do the rewrite and carry a along as an additional proof obligation.

Term rewriting is so effective that it provides the main means of deduction in
some systems, for example Affirm [Mus80], Larch [GH93], and RRL [KZ88]. The
very powerful Boyer-Moore prover [BM79, BM88] integrates a number of techniques,
but rewriting is one of the most central. Techniques similar to rewriting are used in
resolution provers under the name “paramodulation” and its variants. In general,
congruence closure and term rewriting are fundamental to productive theorem prov-
ing, and theorem provers lacking these mechanisms should find little application in
formal methods.

A.5.2 Arithmetic

Numbers are fundamental to mathematics. Peano’s arithmetic [Pea67] (much of
which should really be attributed to Dedekind) is a formal system that characterizes
the natural numbers (i.e., the nonnegative integers 0, 1, 2, . . .)36 by adding nonlogical
axioms to the predicate calculus with equality. The first four axioms introduce the
constant 0, the successor function succ and the predicate N , which we can read “is
a number”:

• N (0) (0 is a number),

36Sometimes (and, indeed, in Peano’s original formulation) the natural numbers are considered
to start at 1; nowadays it is more common to refer to the numbers starting from 1 as the positive
integers.
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• N (x) ⊃ N (succ(x)) (the successor of a number is a number),

• N (x) ⊃ succ(x) 6= 0 (0 is not the successor of any number),

• N (x) ∧ N (y) ∧ succ(x) = succ(y) ⊃ x = y (numbers with identical successors
are identical).

The fifth axiom is the scheme of mathematical induction:

• (φ(0) ∧ (∀x : N (x) ∧ φ(x) ⊃ φ(succ(x)))) ⊃ (∀z:N (z) ⊃ φ(z)).

This says that to establish that some property φ holds for any natural number,
it is sufficient to prove that it holds for 0 and, given that it holds for some
arbitrary natural number x, to prove that it also holds for succ(x).

The first four axioms imply that there are infinitely many numbers; the fifth axiom
ensures there are not too many.

The numerals are introduced by regarding 1 as succ(0), 2 as succ(1), and so on.
The remaining axioms introduce addition (written as infix +): and multiplication
(written as infix ×). I drop the tedious predicate N and simply assume that the
variables range over numbers (cf. many-sorted logic in Section A.9):

• x+ 0 = x,

• x+ succ(y) = succ(x+ y),

• x× 0 = 0,

• x× succ(y) = x× y + x.� Although Peano’s system is considered sound, it is incomplete: there are valid
statements in arithmetic that cannot be proved using Peano’s axioms. It might

seem that this could be remedied by adding more powerful axioms, but this is not
so. Gödel’s incompleteness theorems, probably the most famous theorems in the
whole of logic, show that all reasonably powerful formal systems are necessarily in-
complete. The first incompleteness theorem says that any consistent formal system
that includes arithmetic must be incomplete;37 the second says that the consistency
of such a system cannot be proved within the system (i.e., the formula that asserts
consistency is an example of a true but unprovable statement).38 Profound though
it is, Gödel’s first incompleteness theorem is not a limitation on the decidability of

37The first incompleteness theorem has been formally verified [Sha94]—almost certainly the hard-
est mechanically checked formal verification ever undertaken.

38Gentzen and Gödel demonstrated the consistency of Peano Arithmetic using metamathematical
arguments that cannot be formalized within Peano Arithmetic.
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formulas that arise in formal methods any more than the existence of algorithmically
unsolvable problems (e.g., the halting problem for Turing machines) is a limitation
on the practical utility of computers. The true but unprovable statements concern
sweeping properties of logic itself, not the specific kinds of properties we are con-
cerned about in formal methods.39 Gödel’s incompleteness theorems are best seen
as affirmations of the remarkably expressive power of arithmetic, rather than limi-
tations on the everyday applicability of logic. The practical limitation on our ability
to decide whether or not a certain statement is valid is our ability to find a proof,
not whether a proof exists.� There are other arithmetic theories besides Peano’s. For example, there are

axiomatizations (mostly due to Dedekind [Ded63]) of the rational and the real
numbers [Fef89, Sup72]. Axiomatizations of the reals suffer from limitations as sur-
prising as those imposed by the incompleteness theorems. The Löwenheim-Skolem
Theorem says that if a first-order theory has a model of infinite cardinality, then
it has models of all infinite cardinalities.40 In particular, this means that any ax-
iomatization of the real numbers has a model that is only countably infinite (i.e.,
has only as many elements as there are natural numbers). Since Cantor showed
(by his “diagonal” argument), that the real numbers are not countably infinite (i.e.,
they cannot be put into 1-1 correspondence with the natural numbers), this means
that no axiomatization of the real numbers can capture the properties of the reals
uniquely—there will always be nonstandard models that satisfy the axioms, but are
different from the reals. This discovery is not as disappointing as it may seem: it led
to the invention of nonstandard analysis [Rob74], which provides a consistent inter-
pretation to infinitesimals and allows analysis to be built up without recourse to the
usual notions of limits and convergence, thereby providing a rigorous reconstruction
of early treatments of the calculus [Dau88, Lak78]. Neither do these limitations
diminish the practical utility of formal systems of arithmetic in computer science.
In fact, nonstandard analysis provides a basis for formal verification of the accuracy
of certain floating point calculations [Pra92].

39A few unprovable formulas of a genuinely mathematical (as opposed to logical) character are
now known: “Since 1931, the year Gödel’s Incompleteness Theorems were published, mathemati-
cians have been looking for a strictly mathematical example of an incompleteness in first-order
Peano arithmetic, one which is mathematically simple and interesting and does not require the
numerical encoding of notions from logic. The first such examples were found in 1977” [PH78].
The example in the cited paper concerns an extension to the Finite Ramsey Theorem.

40Infinite cardinalities are explained in Section A.8. There are actually two parts to the
Löwenheim-Skolem Theorem as I have stated it: the “downward” half, which allows smaller models
to be obtained from bigger ones, is the original Löwenheim-Skolem Theorem; the “upward” half,
which allows larger models to be obtained from smaller ones, is really a consequence of the Com-
pactness Theorem. The Compactness Theorem says that if every finite subset of a set of sentences
has a model, then the set of sentences has a model.
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there must be some countable model that validates this theorem. A simpler

observation of the same kind is “Skolem’s Paradox”: the set of subsets of the natural
numbers must be uncountable (Cantor’s Theorem establishes that the powerset of
a set has greater cardinality than the original set [Dun91, Chapter 12]), but the
formalization of this result is satisfied in some countable model. These are really
not the paradoxes they seem: the sets concerned will be uncountable in the model ,
but countable in the “real universe” [EFT84]. That is, the model will be sufficiently
impoverished that we cannot construct an injection from the interpretation of the
set to that of the naturals, but in the “real universe” we will have more functions
available to us and will be able to construct the injection. (Boolos and Jeffrey
provide a good discussion of this topic [BJ89, pp. 152–155].)

Formal systems for integer and rational arithmetic similar to one first investi-
gated by Presburger in 1929 are very useful in computer science. Essentially, these
are linear arithmetics with addition, subtraction, multiplication, equality, and a
“less than” predicate <. (By simple constructions, the predicates >,≤, and ≥ can
be added as well.) By linear is meant the restriction of multiplications to literal
constants—so that 3×x is admitted, but c×y (where c is a symbolic constant) and
x×y (where x is a variable) are not. A valuable property of these arithmetics is that
they are decidable, and therefore conducive to efficient theorem proving [Rab78].
Since arithmetic is ubiquitous, support tools for formal methods that lack effective
automation of arithmetic reasoning are extremely tedious and unproductive to use.
Classical Presburger arithmetic is a first-order theory (i.e., it permits quantification),
but it allows only simple constants and not function symbols. Because function sym-
bols are also ubiquitous (they can arise, through the process of Skolemization, even
in formulas that do not include them originally), variations on Presburger arith-
metic that make different tradeoffs to maintain decidability can be more useful in
practice. In particular, tools for formal methods often use Presburger arithmetic
restricted to the propositional (i.e., ground) case only, but with extensions (such as
equality with uninterpreted function symbols) [NO79, Sho77, Sho79, Sho84] that are
undecidable in the quantified theory. These arithmetics are adequately expressive
for most problems in computer science, and formal methods tools incorporating effi-
cient implementations of their decision procedures can be very effective in practical
applications.

A.5.3 Simple Datatypes

Peano’s axioms serve as a prototype for axiom systems specifying other datatypes
commonly used in computer science, such as lists, trees, and so on. Usually, these
datatypes have some constructors, which are constants or functions that generate
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values of the kind considered (e.g., 0 and succ in Peano arithmetic), and some
accessors, which are functions that reverse the process—breaking a value of the kind
under consideration into the components that generated it (there are no accessors in
Peano arithmetic as I defined it; the predecessor function would be an accessor if it
were added to the theory). Datatypes require some axioms to specify the relationship
among the constructors and accessors, others to specify that values constructed from
equal components are equal, and another that specifies an induction scheme.

As an example, here is a theory of lists, with constructors Λ (a constant, repre-
senting the empty list) and cons (a function that builds a new list from a term and
an existing list), and accessors car and cdr .41 L is a predicate that recognizes lists;
L(l) is true exactly when l is a list. The first three axioms state that Λ and cons
construct lists, and that Λ is different from any list constructed using cons.

• L(Λ),

• L(l) ⊃ L(cons(x, l)),

• L(l) ⊃ cons(x, l) 6= Λ.

The next two axioms describe the relationship between the accessors car and cdr
and the constructor cons:

• L(l) ⊃ car (cons(x, l)) = x,

• L(l) ⊃ cdr (cons(x, l)) = l,

Note car (Λ) and cdr(Λ) are left unspecified; they are usually taken as errors.
More sophisticated logics allow them to be explicitly disallowed.

Next is an extensionality axiom (one that says values are equal if their components
are).

• L(l1)∧L(l2)∧ l1 6= Λ∧ l2 6= Λ∧ car(l1) = car(l2)∧ cdr (l1) = cdr (l2) ⊃ l1 = l2.

The following is an example of what is sometimes called an eta rule (one that says
a value is equal to that constructed from its components); it is a lemma that can be
proved from extensionality.

• L(l) ∧ l 6= Λ ⊃ l = cons(car (l), cdr (l)).

Next, we have a structural induction scheme: to prove a property φ of a general list
l, it is enough to prove it for Λ and to prove that if it is true for a list l′, then it will
also be true for the list cons(x, l′).

41Sometimes the names hd (head) and tl (tail) are used instead of car and cdr , respectively.
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• (φ(Λ) ∧ (∀x, l′:L(l′) ∧ φ(l′) ⊃ φ(cons(x, l′)))) ⊃ (∀l:L(l) ⊃ φ(l)).

One consequence of the induction scheme is that all lists are either Λ or a cons:

• L(l) ⊃ l = Λ ∨ ∃x, l′ : l = cons(x, l′).

Finally, we have a length function that can be used in termination arguments for
recursively-defined functions on lists:

• length(Λ) = 0 ∧ length(cons(x, l)) = length(l) + 1.

(More generally, we sanction functions defined in a similar manner to that used for
length.)

Many datatypes commonly used in computer science (such as trees, stacks, etc.)
can be specified by axioms similar to those shown above for lists. Because they
are so regular, some computer systems supporting formal specification languages
can generate suitable axioms automatically for a certain class of data structures,
given only a very compact description of the datatype concerned. For example,
PVS [ORS92] generates axioms equivalent to all those shown above (they are slightly
different because PVS is a typed logic) from the following specification.

list[t:TYPE] : DATATYPE

BEGIN

null: null?

cons (car: t, cdr: list): cons?

END list

The “shell” mechanism of the Boyer-Moore prover [BM88] provides similar capabil-
ity.

A.5.4 Set Theory

During the nineteenth century, several mathematicians attempted to provide a de-
fensible basis for the manipulations performed in analysis (canceling by dx and the
like). Cauchy, for example, gave precise definitions to the notions of limit and conver-
gence that had troubled mathematicians since the invention of calculus. Dedekind
and Peano’s abstract formulations of the real and natural numbers suggested that it
might be possible to construct all of mathematics on a few broad, basic principles.
Central to these constructions were the ideas of set theory (mainly developed by
Cantor) and logic.42

42Sources for this material include Hatcher [Hat82], Levy [Lev79], Fraenkel [FBHL84], and Shoen-
field [Sho78a].
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Frege was the first to develop the notion of logic as a formal system in the
modern sense. His system was similar to a modern higher-order system,43 with
a nonlogical component that defined a form of set theory, now known as naive set
theory. The nonlogical part of Frege’s system included a two-place predicate written
as infix ∈ and pronounced “is a member of.” The intended interpretation is that
x ∈ y expresses the idea that x is a member of the set y. The important point is
that as well as being composed of its members, a set can also be regarded as single
entity, and can itself be a member of other sets. Furthermore, it is essential to the
constructions of Dedekind and Cantor that sets can have infinitely many members.

It seems reasonable to suppose that two sets are equal if and only if they have
the same members. This is called the principle of extensionality , and it was an
axiom of Frege’s system. A set can be specified extensionally by simply listing all
its members: for example

y = {red, blue, green}.
Another way to specify a set is by stating a property that its members must satisfy:
for example,

y = {x |φ(x)}
is the usual notation for saying that the set y consists of exactly those members
x satisfying the property φ. This is called specifying a set intensionally . The
idea that every property determines a set (i.e., that we are allowed to specify sets
intensionally) is the principle of set comprehension (also called abstraction). The
principle of comprehension, which was another axiom of Frege’s system, can be
expressed as

(∃y : (∀x : x ∈ y ≡ φ(x))).

It says that for any property (wff) φ of one free variable, there is a set y consisting
of exactly those x satisfying φ.

Frege showed that he was able to construct the building blocks of mathematics
(such as the natural numbers) within his system, and gave convincing arguments
that it could serve as a foundation for the whole of mathematics. Unfortunately,
this plan was destroyed by Russell in 1902 [Rus67], who pointed out that Frege’s
system is inconsistent, and therefore unsound (any sentence can be proved in an
inconsistent system). Russell’s Paradox, as it is called,44 is simply the principle of
comprehension with x 6∈ x for φ(x). Intuitively, this can be interpreted as follows: if
every predicate determines a set, then consider the set y determined by the predicate

43Higher-order systems are described in Section A.10.
44It should really not be called a paradox; it is a plain contradiction. Other contradictions were

known in naive set theory prior to Russell’s discovery. These, too, are generally called paradoxes,
although technical literature often uses the term antinomies. These other antinomies (for example,
those of Cantor and Burali-Forti) involve ideas from set theory (in particular, infinite cardinal and
ordinal numbers), whereas Russell’s goes to very heart of logic itself.
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x 6∈ x. That is, y is the set of all sets that are not members of themselves. Now, is
y a member of itself or not? If it is, then it satisfies its defining predicate, so that
y 6∈ y—that is, it is not a member of itself. Conversely, if y is not a member of itself,
it does not satisfy the defining predicate, so that y ∈ y—that is, it is a member of
itself. Either way we obtain a contradiction.

Frege acknowledged that Russell’s Paradox destroyed his system’s founda-
tion [Fre67] but it was left to others to reconstruct those foundations on a secure
footing. The basic problem is in the unrestricted principle of comprehension; fixing
the foundations requires placing some control on the way this principle is employed.
There are two main approaches by which this can be done. Axiomatic set theory is
one approach, type theory is the other. Here I sketch the axiomatic approach; type
theory is described in Section A.10.

The idea behind axiomatic set theory is to allow new sets to be constructed only
from existing sets—that way, we avoid things getting out of hand and leading to
the antinomies. The best known axiomatic set theory is called Zermelo-Fraenkel (or
ZF), after its inventors. In the most austere presentations of ZF, everything is a
set (i.e., has zero or more members); sometimes “urelements” (also called “individ-
uals”) are provided as well—these can be members of sets but cannot themselves
have members. Since everything can be encoded in set theory without urelements,
and since it makes some of the statements simpler, I will consider only sets. Also
note that ZF uses a very limited predicate calculus, in which ∈ and = are the only
predicate symbols, and there are no function symbols. Functions and additional
predicates (not to mention numbers, and the whole of mathematics) are later con-
structed within ZF.

There are eight axioms in ZF; they can all be stated in several different forms
(see [FBHL84] for an extended discussion and [Hal84] for an examination of the
underlying intuitions), and I will merely describe them, rather than give their formal
statements, here.

Extensionality: says that two sets are equal if they have the same members. In
symbols

(∀x:x ∈ a ≡ x ∈ b) ≡ a = b.

We can introduce the notion of subset by a similar construction:

(∀x:x ∈ a ⊃ x ∈ b) ≡ a ⊆ b,

but notice that this is merely a definition (i.e., a metalinguistic abbreviation),
not an axiom.

Pair: says that if we have two sets a and b, then we can form a new set whose
members are just a and b. This set is called the pair-set of a and b. By taking
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a = b, this also allows us to form the set {a, a}, which by extensionality is the
same as the singleton set {a}. (This axiom can be dispensed with if certain
technical adjustments are made to provide “function-classes” [Lev79]).

Separation: says that given a set a, we can form a new set b consisting of just those
members of a satisfying a property φ. This is similar to the unsound axiom
of comprehension, except that members of the set defined by the property are
required to come from some existing set a. This construction is usually written

b = {x ∈ a |φ(x)}.

Union: says that if we have a set a (of sets), then we can form a new set consisting
of the members of all its members. This set is sometimes called the sum-set
and written

⋃

a.

Iterated application of the axioms of pairing, separation, and union allow us
to construct many familiar sets. For example, we can define the union a ∪ b
of two sets a and b to be the sum-set of their pair-set. Then we can construct
the set {a, b, c, d} as the union of two pairs: {a, b} ∪ {c, d}. Intersection and
set difference can be defined using separation:

a ∩ b = {x ∈ a |x ∈ b},

a \ b = {x ∈ a |x 6∈ b},
and the properties of associativity and distributivity can be proved from these
definitions.

Power set: says that the powerset of a set is a set (i.e., we can talk of the set of
all subsets of a given set). The powerset of a set a is usually denoted P(a) or
2a.

Infinity: says that there is an infinite set. The axioms introduced so far tell us how
to combine existing sets to yield new ones, but they do give us any sets with
which to start the process. If we suppose that we had a set to start with—call
it X, say, then we could form the emptyset by separation: ∅ = {x ∈ X |x 6= x}.
We could then form an infinite collection of sets by a recurrence such as

n0 = ∅
ni+1 = ni ∪ {ni}

(so that n0 = ∅, n1 = {∅}, n2 = {∅, {∅}}, n3 = {∅, {∅}, {∅, {∅}}} and so on45).
But although we then have an infinite collection of sets, we have nothing that

45Note the difference between the emptyset and the set having the emptyset as its only member.
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allows us to call that collection a set , and no other way to be sure that there
is an infinite set.

There are many ways to state the axiom of infinity, but one way is to say that
the collection of sets ni defined as above is a set (it is usual also to state that
the emptyset is a set, in order to avoid the need to “seed” the process with
some arbitrary set X). The set of ni created in this way is called ω, and it
plays a fundamental role in the development of numbers (the number 2, say,
is defined to be the set n2 and so on), but how do we know it is infinite? One
definition of an infinite set (due to Dedekind) is one whose members can be
put into one-to-one correspondence with some strict subset of itself. Since the
members of ω can be put into one-to-one correspondence with the strict subset
ω \n0 (just associate ni with ni+1) we see that ω is infinite. The particular set
ω might seem an arbitrary choice, so more general statements of the axiom of
infinity sanction the kind of recurrence we used to create the members ni of
ω, without singling out that particular construction.

Replacement: says that if f is a function and x is a set, then the collection of all
f(y) for y ∈ x is a set. I have expressed this axiom in terms of a function f ,
but functions are not primitive in ZF (I will define them shortly), so formal
statements of the axiom can be rather complicated.

To understand why it is needed, consider the infinite collection of sets defined
by:

V0 = ∅
Vi+1 = P(Vi)

(so that V0 = ∅, V1 = {∅}, V2 = {∅, {∅}}, V3 = {∅, {∅}, {{∅}}, {∅, {∅}}} and
so on). We would like to say that this collection is a set, and the axiom of
replacement allows us to do so by exhibiting the function f such that f(ni) =
Vi. Since the ni form a set (by the axiom of infinity), so do the Vi.

Most of the axioms of ZF were first stated by Zermelo, but the axiom of re-
placement is usually credited to Fraenkel (although Skolem and von Neumann
have stronger claims). The importance of this axiom is that it is what al-
lows the construction of the “higher” infinities (e.g., by allowing the collection
{ω,P(ω),P(P(ω)) . . .} to be a set; we then take its sum-set, and start taking
powersets again, and so on).

Regularity (also called foundation): says that every nonempty set (of sets) has
a member that has no members in common with the original set. This is a
technical axiom, intended to eliminate unintuitive possibilities, such as sets
which are members of themselves.
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Among its consequences are that every set is well-founded : that is, if a is any
set and a0 ∈ a, and a1 ∈ a0 . . . and ai+1 ∈ ai and . . . , then this sequence
eventually terminates.46 Well-foundedness allows us to prove things about
sets by induction over the ∈ relation. Non well-founded sets have been studied
recently, and may have some application in computer science [Acz88].

The eight axioms given above are generally augmented by one more:

Choice: says that for any set of sets, there is a choice function that selects a member
from each of the member sets. (By the axiom of replacement, we can then
form a set containing just the members so chosen.) This axiom was added
to support the constructions used in a number of important theorems (e.g.,
Zermelo’s well-ordering of the reals).

ZF plus the axiom of choice is generally denoted ZFC and is considered an
adequate foundation for the whole of mathematics.

The axiom of choice is rather different from the other axioms because of its
essentially nonconstructive character: it asserts that a choice function exists,
but doesn’t tell us how to construct one. For this reason, the axiom is some-
times considered a little suspect, and there have been many attempts to find
more constructive replacements for it. It turns out that weaker axioms are
unable to support some parts of mathematics, and alternative axioms of ad-
equate power (e.g., “every set can be well-ordered” or the result known as
Zorn’s Lemma) are all equivalent to the axiom of choice [RR63].

Gödel showed in 1939 that the axiom of choice was consistent with the other
axioms (i.e., if you couldn’t get a contradiction from the other axioms, adding
the axiom of choice wouldn’t enable you to get one). In 1963, Cohen showed
that the negation of the axiom of choice is also consistent with the other
axioms—so that this axiom is truly independent of the others.� ZFC minus the axiom of replacement is called Zermelo set theory, and is
strictly weaker than ZFC, since it excludes certain transfinite sets. There are
other set theories, of which the best known is that of von Neumann, Bernays
and Gödel (known as NBG or VNB set theory). This theory has a notion of
(proper) “classes” as well as sets (proper classes can have sets as members,
but cannot themselves be the members of sets or proper classes). NBG is
sometimes preferred to ZFC because it has a finite axiomatization.47

46A relation ≻ is well-founded if there are no “infinite descending chains”—i.e., no infinite se-
quences a0 ≻ a1 ≻ . . . ≻ ai ≻ . . . A well-founded set is one such that the ∋ relation (a ∋ b ≡ b ∈ a)
is well-founded. This and other properties of relations are described in more detail in Section A.7.

47It is also a conservative extension of ZF. Conservative extensions are described in the next
section.
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Some of these distinction can be important when mechanizing formal methods.
Although ZF is used by most tools for formal methods based on set theory,
Mizar, for example, uses a set theory due to Tarski and Grothendieck [Rud92].� The operator known as Hilbert’s ε symbol is related to the axiom of choice.
When φ is some wff with a single free variable x, then εx : φ denotes “the x
such that φ”—that is some value that satisfies φ, if any such exists, otherwise
some arbitrary value. The symbol can be specified by the axiom scheme

(∃x:φ(x)) ⊃ φ(εx:φ)

and can be used to define a choice function (for a set a, let φ be x ∈ a). If
we denote ZF plus the ε symbol as ZFε, then it might look as though ZFε =
ZFC. This is not so, however, for ZFε merely adds the ε operator, it does not
strengthen the axioms of separation and replacement to allow wffs involving ε
(see [FBHL84, page 73, footnote 1] and [Lei69, section 4.4]); thus, although we
could use ε to select representatives from a set of sets, we cannot say that this
collection of representatives is a set. Hilbert’s Second ε Theorem states that
any theorem of ZFε not involving ε in its statement is also a theorem of ZF
(i.e., ZFε is a conservative extension of ZF and so the axiom of choice is not
a theorem of ZFε). If the axioms of separation and replacement are extended
to allow wffs involving ε, then we do obtain the axiom of choice.48

I have already sketched how familiar set operators such as ∪ and ∩ can be defined
within ZF, next I briefly describe how relations and functions are constructed. This
process is essentially similar to “programming” in a very restricted language.

First, the ordered pair (a, b) is represented by the set {a, {a, b}} (this “coding
trick” is due to Kuratowski and Wiener). Then we can define the Cartesian product
x× y of two sets x and y by

x× y = {(a, b) | a ∈ x ∧ b ∈ y}.

This construction can be justified (i.e., we can establish the right-hand side is a set)
by observing that

(a ∈ x ∧ b ∈ y) ⊃ (a, b) ∈ P(P(x ∪ y))
and then using the separation axiom. A predicate P on a set x is a subset of x, and
I generally write P (a) for a ∈ P . A relation R between x and y is defined to be a
subset of x× y and I usually write aRb for (a, b) ∈ R (if x = y, we say a relation on
x).

48In systems (such as PVS) that are based on higher-order logic (see section A.10), it is a simple
exercise in specification and theorem proving to state and prove a type-restricted form of the axiom
of choice from the axiom for ε.
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In set theory, quantified expressions of the form (∀x : x ∈ S ⊃ φ(x)) are usually
abbreviated to (∀x ∈ S : φ(x)). Similarly, (∃x ∈ S : φ(x)) is an abbreviation for
(∃x:x ∈ S ∧ φ(x)). Using these notations, the domain of R is the set {a ∈ x | ∃b ∈
y : aRb} (i.e., the set of all first components of pairs in R), and its range is the
set {b ∈ y | ∃a ∈ x : aRb} (i.e., the set of all second components of pairs in R).
(Relations on three or more sets can be defined by iterating the construction). The
domain restriction of R to a set s is {(x, y) ∈ R |x ∈ s} and is denoted s ⊳ R; The
range restriction of R to a set s is {(x, y) ∈ R | y ∈ s} and is denoted R⊲s. The image
of a set s under the relation R is the range of s ⊳R; the inverse image is the domain
of R⊲s. The inverse relation R−1 of R is given by R−1 = {(b, a) ∈ y×x | (a, b) ∈ R}.

A relation f is a function from x to y if (∀a ∈ x: (∀b, c ∈ y : a f b∧a f c ⊃ b = c))
(i.e., if at most one member of the range relates to each member of the domain); f is
total if its domain is the whole of x (otherwise it is partial); it is surjective if its range
is the whole of y. A function is injective if (∀c ∈ y: (∀a, b ∈ x : a f c∧ b f c ⊃ a = b))
(i.e., if at most one member of the domain relates to each member of the range); a
function is bijective if it is both injective and surjective. When f is a total function
and a ∈ x, the unique b such that a f b is denoted f(a). It is a matter of considerable
debate how f(a) should be treated when f is partial and a ∈ x is not in its domain;
some of the options are discussed in Section A.11.2.

Although ZF set theory provides the underpinnings for some well-known speci-
fication notations such as Z [Spi88], there are rather few theorem proving systems
for classical set theory. Ontic [McA89], and the theorem prover (called “Never”)
of the Eves system [CKM+91], are the most substantial. Also, the generic theorem
prover Isabelle [Pau88] has an instantiation for ZF set theory. Decision procedures
for fragments of set theory have been extensively studied by Cantone and others
(see, e.g., [Can91]). Over a period of 20 years, the Mizar project has formalized and
mechanically checked an extensive body of mathematics from a set-theoretic foun-
dation [Rud92]. The Mizar proof-checker seems to provide very little automation,
however.

A.6 Definitions and Conservative Extension

In Section A.3 I explained how new propositional connectives could be introduced
either as abbreviations (a metalogical approach), or by extending the formal system
with additional axioms. In this section I examine how new predicate and function
symbols can be introduced into a formal system.49

It is clear that we can introduce new predicate or relation symbols as abbre-
viations (they are then generally called defined symbols) and that we do not add

49Sources for this section include Gordon [Gor88] and Shoenfield [Sho67].
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anything new (other than notational convenience) to the formal system by so doing
(since we can always simply expand the abbreviations). Thus, if we already have
the relation < available, we can introduce ≤ as a defined symbol using

x ≤ y def
= x < y ∨ x = y.

If we want x ≤ y to be an expression in the object language, then we must
expand that language by adding ≤ as a new predicate symbol, and then supplying

x ≤ y ≡ x < y ∨ x = y

as a new axiom.

Now there are many sentences involving ≤ that we might have chosen to add as
its “defining axiom,” and some of these might be dangerous. For example,

(x ≤ y ∨ x = y) ∧ (x ≤ y ⊃ (x < y ∨ x = y))

enables us to deduce a contradiction (from 3 6= 2, deduce 3 ≤ 2 from the first
conjunct, and hence the contradiction 3 < 2 ∨ 3 = 2 from the second). What we
need are some simple rules that stop us ruining our formal system by introducing
inconsistencies under the guise of defining a new symbol. The requirement that a
defining axiom should leave the formal system consistent is a little too strong, since
the system might have already been inconsistent; what we can require is that the
defining axiom should add no new inconsistencies or, equivalently, that if the formal
system was consistent before, then it will remain so after the addition of our defining
axiom.

A definition is presumably intended to introduce some new concept to the formal
system, not to add new properties to existing concepts. Thus we should require
that the addition of a definition to a theory creates a conservative extension of the
existing theory. The enlarged theory is an extension of the original if all theorems of
the original remain so in the enlarged theory; the extension is conservative if every
theorem of the enlarged theory that is expressed in the language of the original
theory is also a theorem of the original theory. Whether or not an extension is
conservative can depend on how the additions are made. For example, if we have
a theory T to which we add two new constants a and b to form a theory T ′, then
T ′ is indeed a conservative extension of T . But if we then add the axiom a = b to
create the theory T ′′, then T ′′ is not a conservative extension of T ′, since a = b is
a theorem of T ′′ that is expressed in the language of T ′, but it is not a theorem
of T ′. However, T ′′ is a conservative extension of T . Distinctions such as this are
significant when extensions are made incrementally, since many support systems for
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formal methods require that each step is conservative; such systems would allow T
to be extended to T ′′ in one step, but not in two steps via T ′.50

Our original search for ways of extending theories without introducing inconsis-
tencies can now be recast as one for rules of definition that guarantee conservative
extension. In the case of a predicate symbol P , the rule that the defining axiom
should be of the form

P (x1, . . . , xn) ≡ φ,
where P does not appear in the wff φ and no variables but x1, . . . , xn are free
in φ does the job. Our original definition for ≤ has this form, and is obviously
satisfactory.

For a function symbol f , a suitable defining axiom51 is one of the form

y = f(x1, . . . , xn) ≡ φ,

where φ is a term not containing f and in which no variables but x1, . . . , xn and y

are free, provided we can prove the existence condition

∃y : φ

and the uniqueness condition

φ ∧ φ[y ← z] ⊃ y = z.

For example, to introduce the square root function
√
x, the defining axiom would

be

y =
√
x ≡ y × y = x

50There are more powerful ways of building up consistent theories than by simply making in-
cremental conservative extensions. For example, Robinson’s Consistency Theorem says that if two
consistent first order systems are in “complete agreement” on their common language (i.e., for each
formula φ in their common language, at most one of φ or ¬φ is provable in both systems), then the
union of the two systems is consistent [BJ89, chapter 24].

51It is reasonable to ask whether every concept (i.e., constant, predicate, or function) can be
introduced by an explicit defining axiom: might there not be some that can only be defined implicitly
by a complex web of axioms? First of all, we can say that an axiom is independent of the others
in a theory if there is a model for the others that falsifies the one under consideration. (E.g.,
non-Euclidean geometries are interpretations of Euclid’s system that make the Fifth Postulate
false but all the others true, thereby demonstrating that the Fifth postulate is independent of the
others.) Padoa extended this idea to a method for showing that a concept q is independent of others
p0, . . . , pn under axioms A0, . . . , Am: if there are two models that both give the same interpretations
to p0, . . . , pn and both valuate A0, . . . , Am to true, but give different interpretations to q, then q
is independent of the other concepts. Beth’s Definability Theorem shows that Padoa’s technique is
complete: if a concept q is, in fact, independent of the others in a theory, then Padoa’s technique
will succeed in demonstrating that fact. From this it follows that any concept that is implicitly
definable in first-order logic is also explicitly definable (see [BJ89, chapter 24] or [Kle67, § 57]).
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(so that φ is y × y = x), the existence condition would be

∃y: y × y = x,

and the uniqueness requirement would be

y × y = x ∧ z × z = x ⊃ y = z

(which might be hard to prove on the reals!).

An important special case is the one where y does not appear in φ; in this case,
the defining axiom is equivalent to the equation

f(x1, . . . , xn) = φ

and the existence and uniqueness conditions are always provable. This convenient
result can be extended to recursive definitions (i.e., those in which f appears in φ)
provided they have certain simple forms.

The simplest such form is that of primitive recursion:

f(0, x1, . . . , xn) = g(x1, . . . , xn)

f(i+ 1, x1, . . . , xn) = h(f(i, x1, . . . , xn), i, x1, . . . , xn)

where g and h are already defined functions that need not take all of the arguments
x1, . . . , xn (nor i in the case of h). This can be also be written in the form

f(i, x1, . . . , xn) = if i = 0 then g(x1, . . . , xn)
else h(f(i− 1, x1, . . . , xn), i− 1, x1, . . . , xn).

(Clearly, the induction variable i need not be the first argument.) As an example,
observe that Peano’s axioms for multiplication

x× 0 = 0

x× (i+ 1) = x× i+ x

are primitive recursive (n = 1, g(x) = 0, h(z, i, x) = z + x) and can also be written
in the alternative form

x× i = if i = 0 then 0 else x× (i− 1) + x.

When we enlarge our formal system with constants, functions, and predicates
that define some new “datatype,” we often wish to define additional functions by
recursion on the structure of the datatype. For example, if we have introduced lists,
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with Λ, cons, car , and cdr , we might want to define a function sum that adds up
the value of all the nodes. We might define this by

sum(Λ) = 0

sum(cons(x, l)) = x+ sum(l)

or, equivalently, by

sum(l) = if l = Λ then 0 else car (l) + sum(cdr (l)).

Plainly, we could prove a metalogical theorem that this construction provides con-
servative extension just as primitive recursion does, and we could even prove more
general results for all datatypes defined by certain structured sets of axioms. How-
ever, another way to justify these definitions is by providing a measure function
from the recursion variable (here l) to the natural numbers and proving that the
value of this function strictly decreases across the recursion. In this case, the obvi-
ous measure function is the length of the lists concerned, and the theorem we would
have to prove is

l 6= Λ ⊃ length(cdr (l)) < length(l),

which will be provable in any well constructed theory of lists.

There are several tricky details that need to be taken care of in specification
languages that provide a “definitional principle” for recursions of this sort. For
example, taking the identity function as the measure, the definition

silly(n) = if n = 0 then 0 else silly(n− 2)× n

might appear conservative, despite the fact that it “steps over” the “termination
condition” n = 0 when applied to an argument that is an odd number. Obviously,
the definitional principle must eliminate this possibility if it is to be sound, but
methods for doing this are best examined in the context of the particular language
concerned.52

Not all functions are primitive recursive. The standard example is a function
due to Ackermann, which in its modern form is given by

ack(m,n) = if m = 0 then n+1
elsif n = 0

then ack(m-1, 1)
else ack(m-1, ack(m, n-1)).

52In PVS [ORS92], for example, the definition of silly would be considered type-incorrect because
the recursive argument n− 2 cannot be shown to be a natural number (unlike n− 1, which could
be shown to be a natural number if n is, in the context n 6= 0).
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This function cannot be defined by (first-order) primitive recursion.53 However, a
definition such as this can be shown to be conservative by demonstrating that the
“size” of its pair of arguments (notice that ack is recursive in both its arguments)
decreases across the recursions according to a lexicographic ordering on pairs:54

(m1, n1) < (m2, n2) ≡ m1 < m2 ∨ (m1 = m2 ∧ n1 < n2).

Here, we need

(m− 1, 1) < (m, 0),

(m− 1, ack(m,n − 1))55 < (m,n), and

(m,n − 1) < (m,n),

which are all true in the lexicographic ordering.

We might try to justify use of lexicographic ordering to ensure conservative
extension using a naive extension to the measure function approach. That is, we
could look for a function size that would map the pair of arguments to ack into a
single number that is strictly decreasing across the recursions:

size(m− 1, 1) < size(m, 0),

size(m− 1, ack(m,n − 1)) < size(m,n) and

size(m,n− 1) < size(m,n).

A plausible function is
size(m,n) = ξ ×m+ n,

provided ξ is big enough to ensure

ξ × (m− 1) + ack(m,n − 1) < ξ ×m+ n

(from the second case)—that is

ξ > ack(m,n − 1)− n.
Now ack(m,n−1) grows much faster than n, so the right-hand side is unbounded—
and this suggests that ξ needs to be infinite!

In fact, this is not so implausible as it might seem, and it serves to motivate
introduction of the transfinite ordinals, which are numbers with the properties we
require.

53Though it can be defined by a higher-order primitive recursion: that is, a definition restricted
to the form of primitive recursion, but with functions allowed as arguments [Gor88, pp. 96, 97].

54This ordering is called lexicographic because it is the way words are ordered in a dictionary—
first on the initial letter, then on the second, and so on.

55Since ack is the function whose termination we are trying to prove, it should not appear in its
own termination argument. A better form of this obligation is ∀f : (m − 1, f(m,n − 1)) < (m,n).
The quantification over all functions f (of the appropriate signature) is a higher-order construction.
Since I have not yet introduced higher-order logic (see section A.10), I will continue with the rather
suspect construction that uses ack itself.
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A.7 Ordinal Numbers

Natural numbers can be used in two ways. If we have the members of a set somehow
arranged in order, then we can count off its members, and can speak of the “second”
member, and the 365th, and so on. Numbers used in this way are called ordinals.
Alternatively, we can simply ask how many members there are in the set; numbers
used in this way are called cardinals. For finite sets, the natural numbers serve
as both ordinals and cardinals; with infinite sets, however, things get a little more
complicated.

The extension of ordinal and cardinal numbers to infinite sets was the work of
Cantor.56 First, though, it is necessary to distinguish different kinds of infinity.
Aristotle distinguished the potential from the actual or completed infinite; the po-
tential infinite typically arises when some variable can take on values without limit.
Any particular value is finite, but the range of possibilities is unbounded. Prior to
Cantor, it was generally assumed that mathematics could only be concerned with
the potential infinite; the actual infinite was considered unfathomable. Cantor broke
through this restriction of thought and divided the actual infinite into the increasable
infinite, or transfinite, and the absolute infinite. For Cantor, the transfinite

“is in itself constant, and larger than any finite, but nevertheless un-
restricted, increasable, and in this respect thus unbounded. Such an
infinite is in its way just as capable of being grasped by our restricted
understanding as is the finite in its way.” [Hal84, page 14]

Ordinal numbers are used to count the members of a set arranged in some order,
so first we need some terminology for ordering relations. A binary relation < on a
set a is said to be

reflexive: if x < x,

irreflexive: if ¬(x < x),

symmetric: if x < y ⊃ y < x,

asymmetric: if x < y ⊃ ¬(y < x),

antisymmetric: if x < y ∧ y < x ⊃ x = y,

transitive: if x < y ∧ y < z ⊃ x < z,

56Sources for this section include Cantor [Can55], Hallett [Hal84], Hatcher [Hat82], John-
stone [Joh87] and Phillips [Phi92]. A less technical but very readable introduction to Cantor’s
work is provided by Dunham [Dun91, chapters 11 and 12].
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connected: if x < y ∨ y < x,

trichotomous: if x < y ∨ y < x ∨ x = y, and

well-founded: if ∀b ⊆ a : b 6= ∅ ⊃ ∃x ∈ b : ¬∃y ∈ b : y < x (i.e., every nonempty
subset of a has a <-minimal member or, equivalently, there are no infinite
<-descending chains).

Furthermore < is said to be a

preorder: if it is reflexive and transitive,

partial order: if it is reflexive, transitive, and antisymmetric,

total order: if it is reflexive, transitive, antisymmetric, and trichotomous,

strict order: if it is irreflexive, transitive, and antisymmetric (actually, the third
is implied by the first two),

strict total (or linear) order: if it is irreflexive, transitive, antisymmetric, and
trichotomous (again, the third is implied by the first two),

well-order: if it is irreflexive, transitive, antisymmetric, trichotomous, and well-
founded (actually, the last condition implies the first, the last two imply the
second, and the first two imply the third—so that all we really need is well-
founded and trichotomous). Equivalently, we can say that a well-ordering is a
well-founded linear order.

The idea of the ordinals is that they should be sets with a canonical well-order.
Then, since every set has a well-ordering in ZFC (the existence of a well-ordering
is equivalent to the axiom of choice), the members of any set can be placed in
order alongside those of an ordinal, whose members then act as numbers for all the
positions in the line. (The unique ordinal isomorphic to a given set a, well-ordered
by <, is called the order-type of (a,<).)

In ZFC, the only primitive relations are ∈ and =, and of these only ∈ is a
candidate for forming a well-ordering. Then, in order to achieve trichotomy, we will
need to construct sets whose members are such that of any distinct pair of members,
one is a member of the other (this is connectedness on ∈). It turns out that sets
with these properties can be found among the transitive sets, where a set a is called
transitive if

y ∈ x ∧ x ∈ a ⊃ y ∈ a.
(Transitive sets a have the properties

⋃

a ⊆ a and a ⊆ P(a)—i.e., every element of
a is also a subset of a.) We then define the ordinals as the transitive sets that are
well-ordered by ∈ (or, equivalently, the sets that are both transitive and connected).
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∅ is an ordinal, and if x is an ordinal, then so is x ∪ {x} (which I will denote
x′). Consequently, the sets n0, n1, . . . ni, . . . , which were defined in just this way in
the previous section but one, are ordinals (they are called the von Neumann natural
numbers). An ordinal y such that y = x′ for some ordinal x is called a successor ;
all other ordinals (except ∅) are called limits. Now, we know (from the axiom of
infinity) that the set ω of all the von Neumann natural numbers exists; it can be
seen to be transitive and connected, and is therefore an ordinal. It can be shown
not to be a successor, and is therefore a limit ordinal (in fact the smallest one). It is
also our first infinite number. We can create larger infinite ordinals by iterating the
process used to create ω. That is, we can form the successors ω′, ω′′, ω′′′, . . . and then
collect these (together with 0, 1, 2, . . . , ω) up into a set, which we will call ω× 2 and
which is another ordinal. In this way we can form ω × 3, ω × 4, . . . To get further,
we need to define the operations of addition, multiplication, and exponentiation
on ordinals. These are each defined by recursion, with separate cases according to
whether the second argument is 0, a successor, or a limit.

α+ 0 = α

α+ β′ = (α+ β)′

α+ β =
⋃{α+ γ | γ < β} where β is a limit

(The less-than relation < on the ordinals is just set-membership ∈.) If α is the
order-type of a set a, and β the order-type of a set b, then α+ β is the order-type
of the disjoint union of a and b.

α× 0 = 0
α× β′ = α× β + α

α× β =
⋃{α× γ | γ < β} where β is a limit

If α is the order-type of a set a, and β the order-type of a set b, then α × β is the
order-type of the Cartesian product a× b under lexicographic ordering.

α0 = 1

αβ′

= αβ × α
αβ =

⋃{αγ | 0 < γ < β} where β is a limit

If α is the order-type of a set a, and β the order-type of a set b, then βα is the
order-type of the function space a→ b.

Note that the first two cases in each set of equations are the same as the corre-
sponding Peano axioms (with the ′ operator in place of succ), so that the successor
ordinals (and, in particular the von Neumann natural numbers) behave just like the
natural numbers. The case of the limit ordinals is a little different, however, for
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addition and multiplication are not commutative in these cases (e.g., 1 + ω = ω

whereas ω + 1 = ω′, and 2× ω = ω whereas ω × 2 = ω + ω).

In this way we can form ordinals up to ǫ0, which is the limit of the sequence

ω, ωω, . . . , ωωω
.
.
.

and has the property ωǫ0 = ǫ0. (The ordinals continue beyond this,
but for formal methods ǫ0 is usually adequate.)

Each nonzero ordinal α below ǫ0 has a unique representation (called Cantor
normal form) with the structure

α = ωα0 × a0 + ωα1 × a1 + · · ·ωαn × an,

where α ≥ α0 ≥ α1 ≥ · · · ≥ αn are ordinals, and a0, a1, . . . an are nonzero natural
numbers.

Constructive representations of the Cantor normal form are quite convenient
in formal methods for establishing “termination” arguments for recursions on tree-
like data structures, and are used, for example, in the Boyer-Moore prover and in
PVS. (The ordering relation < can be defined by primitive recursion on the ordinals
below ǫ0, so its own well-definedness is easily established in most formal methods).
Returning to the example of Ackermann’s function that motivated this introduction
of the ordinals, we can now see that our treatment of its termination becomes
satisfactory if we set ξ = ω.

The definitions given above for ordinal addition, multiplication, and exponenti-
ation are examples of definition by transfinite recursion. There is a corresponding
induction scheme called transfinite induction, which can be described as follows:

If







φ(0) ∧
∀α ∈ O : φ(α) ⊃ φ(α′) ∧
∀β ∈ OL : (∀γ < β : φ(γ)) ⊃ φ(β)






then ∀α ∈ O : φ(α).

Where α ∈ O means that α is an ordinal, and α ∈ OL that it is a limit ordinal.

Another way to write transfinite induction is

(∀α ∈ O : (∀β ∈ O : β < α ⊃ φ(β)) ⊃ φ(α)) ⊃ (∀γ ∈ O : φ(γ)).

Written in this form, it can be seen that transfinite induction owes more to the
fact that < is a well-ordering, than to the fact that the values concerned are ordi-
nals. This gives rise to well-ordered induction, which is simply the second form of
transfinite induction generalized to the case where S is a set well-ordered by <

(∀α ∈ S : (∀β ∈ S : β < α ⊃ φ(β)) ⊃ φ(α)) ⊃ (∀γ ∈ S : φ(γ)).

In fact, this induction scheme is sound when < is merely a well-founded rela-
tion, in which case it is known as well-founded induction (it is also called Noetherian
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induction, after Emmy Noether). Well-founded induction is the most general induc-
tion scheme: transfinite induction, and all the other induction schemes that we have
seen, can be derived from it. It is a great convenience if tools for formal methods
are able to support these very general induction schemes.

A.8 Cardinal Numbers

The transfinite ordinals are needed to establish the soundness of certain construc-
tions in formal methods. Transfinite cardinal numbers, on the other hand, find little
application in formal methods, so I will just briefly mention them.57

The cardinality (or cardinal number) of a set a, often written |a|, is the “number”
of members it contains. This concept of “number” is straightforward for finite sets,
but needs care when we consider infinite sets. The key idea (due to Cantor) is to
start by defining two sets to have the same “size” (the technical term is equipollent)
if the members of one can be put into bijective (i.e., 1-1 and onto) correspondence
with those of the other. A set a is smaller than a set b if there is an injection (i.e.,
1-1 function) from a to b, but not vice-versa.58

The cardinal number of a set could be defined as some canonical member chosen
from the collection of sets that have the same size. The trouble is that this collec-
tion is too big to be a set, so we cannot define it within set theory. However the
ordinals having the same size as a given set do constitute a set; and since any set
of ordinals is well-ordered, we can choose the least member of that set to be the
canonical representative that is the cardinal number of the original set. It is easy to
see that the transfinite cardinals are chosen from the limit ordinals. The smallest
transfinite cardinal is ω; when considered as a cardinal, it is usually written ℵ0 and
pronounced “aleph-null.” Sets of cardinality ℵ0 (i.e., those whose members can be
put into bijective correspondence with the natural numbers) are called countably or
denumerably infinite. (Recall Dedekind’s definition that a set is infinite if it has the
same size as some strict subset of itself.) All the ordinals mentioned in the previous
section, including ǫ0 are countable. The smallest uncountable ordinal is denoted Ω;
as a cardinal it is denoted ℵ1.

Cantor’s theorem demonstrates that the size of any set is strictly less than that
of its powerset,59 so we know |ω | < | P(ω) | . We have defined |ω | = ℵ0, and
cardinal arithmetic is defined so that | P(ω) | = 2ℵ0 . Thus ℵ0 < ℵ1 ≤ 2ℵ0 . The

57This section draws on Halmos [Hal60].
58The Schröder Bernstein theorem states that if there is an injection from a to b, and vice-versa,

then the two sets have the same size. Its proof is a standard test piece in mechanized theorem
proving. (It is the transfinite cases that are interesting.)

59This is another standard small problem for mechanized theorem proving. Again, it is the
transfinite cases that are interesting.
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continuum hypothesis conjectures that the second of these relations is not strict:
i.e., ℵ1 = 2ℵ0 . Now the set of real numbers has the same size as P(ω), so another
(in fact, the original) way to state the continuum hypothesis is that the cardinality
of the reals is the least uncountable cardinal. (The set of real numbers is also known
as the continuum, hence the name of the hypothesis.) The continuum hypothesis
is known (by results of Gödel and Cohen) to be independent of the axioms of set
theory.

A.9 Many-Sorted Logic

Classical first-order theories treat all individuals as belonging to some single uni-
verse. It is sometimes convenient to distinguish different sorts of individuals within
the universe. For example, we may want some variables to represent natural num-
bers, others reals, and so on. Many-sorted logic allows first-order systems to be
extended in this way. Mathematicians generally use subscripts to indicate the sort
to which a variable belongs, so that xσ, for example, indicates a variable x of some
sort called σ. Quantification in many-sorted logic extends only over the sort of the
variable concerned, so that

(∀xσ : φ(x))

means that the formula φ with free variable x is true whenever x is replaced by any
value of sort σ (for simplicity, I generally drop the sort subscript once the variable
has been introduced). Functions and predicates also indicate the sorts of values
over which they operate. For example, the function abs whose value is the natural
number that is the absolute value of its integer argument will be described as having
signature Z → N , where Z is the sort of integers, and N that of natural numbers.
As with individuals, the signature of a function can be indicated in formulas as a
subscript, for example

xZ 6= 0 ⊃ absZ→N (xZ) > 0.

The model theory of predicate calculus is adjusted in the many-sorted case so
that each sort is interpreted by its own specific “carrier set” and various technical
adjustments are made (for example, sorts should generally not be empty) so that the
resulting system is sound and complete. Many-sorted systems are very natural for
computer science, since computer programs usually need to distinguish the different
kinds of objects represented and manipulated.
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A.10 Typed Systems and Higher-Order Logic

While Zermelo and Fraenkel developed axiomatic set theory, Russell [WR27] ex-
plored a different approach to the construction of a consistent set theory.60 Con-
sidered from one perspective, Russell’s paradox demonstrates that Frege’s axiom
of comprehension is dangerously unrestricted. This is, essentially, the perspective
of axiomatic set theory: the ZF axioms break the unrestricted connection between
predicates and sets given by the axiom of comprehension and substitute more con-
strained ways of constructing sets. But there must be more to it than this, for
it is possible to reproduce Russell’s paradox without ever mentioning sets: simply
consider the predicate that characterizes those predicates that do not exemplify
themselves.61 Predicates such as this are higher order : their construction involves
predicates that apply to predicates, and quantification over predicates. For example,
if we abbreviate the predicate that characterizes those predicates that do not exem-
plify themselves by PNET (for Predicates Not Exemplifying Themselves), then the
definition for this predicate is PNET (P ) ≡ ¬P (P ). Russell’s paradox is obtained
by substituting PNET for the free predicate variable P in this definition to obtain
PNET (PNET ) ≡ ¬PNET (PNET ).

Frege’s system was higher-order, and we can now see that axiomatic set theory
does much more than replace the axiom of comprehension with the axioms of ZF:
it also eliminates all functions and all predicates but ∈ and = from the logic and
restricts quantification to the first-order case (i.e., variables can range only over
sets).62 ZF then reconstructs functions and predicates within set theory (as sets
of pairs) and in this way develops an adequate foundation for mathematics. This
approach is that associated with the formalist school of Hilbert, and is essentially
mathematical and pragmatic; it is mathematical because it is based on essentially
mathematical intuitions. No one would claim that the axiom of replacement, say, is
an elementary truth, fundamental to all rational thought; rather, it is a mathemat-
ical construction (and a pragmatically motivated one at that).

Unlike the formalists, Frege and Russell were logicists: they wanted logic to
comprise exactly the fundamental truths of rational thought, and then wanted to
show that mathematics followed from such a logic: they didn’t want to axiomatize
mathematics, they wanted to derive it. What Russell sought to do, therefore, was

60Sources for this material include Andrews [And86], Hatcher [Hat82], Benacerraf and Put-
nam [BP83], van Bentham and Doets [vBD83], and Hazen [Haz83].

61A predicate exemplifies itself if it has the property that it characterizes: for example, the
predicate that characterizes the property of being a predicate is clearly a predicate, and does
exemplify itself; whereas the predicate that characterizes the property of being a man is not a man,
and so does not exemplify itself.

62The idea that set theory should be based on first-order logic was due to Skolem. A very readable
account of the emergence of first-order logic is given by Moore [Moo88].
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to retain all the generalities of Frege’s system, with arbitrary function and predicate
symbols, and higher-order quantification (because these are necessary to capture
informal logical discourse, and to derive mathematics without additional axioms),
but to find some minimal and plausibly motivated restriction that would keep the
antinomies at bay.

Russell and Poincaré, in the course of an exchange of letters, decided that the
source of the antinomies was what Russell called “vicious circle” constructions, and
what Poincaré called impredicative definitions [Gol88]. An impredicative definition
is one that has a particular kind of circularity; it is not the circularity of recursion,
but one where a thing is defined by means of a quantification whose range includes
the thing being defined. Thus, a set b is defined impredicatively if it is given by
forms such as

b = {x | ∀y ∈ a:P (x, y)},

where P is a predicate and b may be an element of a.

In work culminating in the Principia Mathematica [WR27] (written with A. N.
Whitehead), Russell developed his ramified theory of types that augments higher-
order logic with rules that exclude impredicative definitions.63 There are two com-
ponents to the ramified theory: types and orders. The second of these causes certain
technical difficulties, and Russell introduced an “axiom of reducibility” to get around
them. Chwistek and Ramsey thought that this axiom vitiated the purpose of or-
ders, and that one might as well have started out with just the notion of types and
never bothered with orders. However, this simpler theory is not predicative and is
vulnerable to some paradoxes that are avoided by the ramified theory.

Accordingly, Ramsey (building on an observation of Peano) divided the para-
doxes into those he called logical (such as Russell’s, Cantor’s and Burali-Forti’s), and
those he called semantic or epistemological (such as the Liar, Richard’s, Grelling’s,
and Berry’s64); he then argued that the epistemological paradoxes are the concern of
philosophy or linguistics, not logic, since they concern the interpretation of concepts
like “nameable,” not basic problems in the machinery of deduction. Ramsey argued
that the requirement on a logic is that it should exclude the logical paradoxes. He

63Limitation to predicative definitions is a powerful restriction: it eliminates construction of the
Dedekind cut, and with it a good part of analysis, and also Cantor’s theorem and the general
theory of cardinal numbers and the higher infinities. Furthermore, from the Platonist perspective
adopted by most mathematicians (namely, that mathematical objects really exist), there is nothing
objectionable in impredicative definitions: the “vicious circle” disappears if we conceive of the
offending definitions as selecting some member from a pre-existing collection. Consequently, few
mathematicians espouse the rigors of a predicative type theory. (See Hazen [Haz83] for a readable
account of predicative logics.)

64Berry’s is the easiest of these to describe: consider “the least natural number not nameable by
an English phrase of less than 200 letters.” The material in quotation marks is an English phrase
of less than 200 letters that names this number.
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noted that types are adequate, on their own, for this; orders and the complexities
of the ramified theory are needed only to exclude impredicative definitions and the
epistemological paradoxes. Ramsey [Ram90] then reconstructed Russell’s system
(principally by eliminating orders) so that “its blemishes may be avoided but its ex-
cellences retained” to yield what is now called the simple theory of types (its modern
formulation is due to Church).65

Roughly speaking, simple type theory avoids the logical paradoxes of naive set
theory by “stratifying” sets according to their “type” or “level.” Individual elements
can be considered to belong to level 0, sets of those elements to level 1, sets of sets
of elements to level 2, and so on. The comprehension axiom

(∃y : (∀x : x ∈ y ≡ φ(x)))

is then restricted to the case where x is of a lower level than y. I say “roughly
speaking” because simple type theory is a logic of predicates rather than sets: instead
of saying “x is a member of the set y” (i.e., x ∈ y), in type theory it is more common
to say “x has property y” (i.e., y(x)). In terms of predicates, simple type theory
requires that each predicate has a higher type than the objects to which it applies
(and therefore a predicate cannot apply to itself). The “definition” of the predicate
PNET given earlier is inadmissible because its right-hand side is not well-typed.

I just said that simple type theory is a logic of predicates, but it is usually built
on a more primitive foundation that takes (total) functions as the basic elements,
with predicates as a special case. Within this framework, functions are allowed to
take other functions as arguments and may return functions as values. The type of
a function indicates the “level” at which it operates in a more sophisticated way
than the simple numbering scheme for levels suggested earlier. Thus, if ι is the type
of individuals (which can be considered as functions of zero arguments), the type of
functions from individuals to individuals can be denoted ι → ι, and a function on
those functions will have type (ι→ ι)→ (ι→ ι).66

It is generally convenient to use a many-sorted foundation, and to subsume
sorts within the type structure, so that a function type (Z → N ) → N indicates

65The simple theory of types is not the same as the ramified theory plus the axiom of reducibility:
the simple theory is extensional , whereas the other is not. Extensional means that coextensive
properties are considered identical (i.e., (∀x:φ(x) = ψ(x)) ⊃ φ = ψ). Examples of nonextensional
properties are “propositional attitudes”: a person may want or wonder about one proposition but
not another even though they are, in fact coextensive. The classic example is:

Scott is the author of Waverley,
King George wonders whether Scott is the author of Waverley,

King George wonders whether Scott is Scott,
whose absurdity is taken as evidence that “wonders whether” in nonextensional. Unlike the simple
theory, the ramified theory of types (even with the axiom of reducibility) can give an account of
nonextensional properties [Haz83, section 5].

66Types allow us to distinguish (ι → ι) → (ι → ι) from (ι → ι) → ι, which cannot be done by
simply numbering “levels.”
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a function whose values are of type67 natural number and whose arguments are
functions from integers to natural numbers. Within this framework, we distinguish
a type B (for “Boolean,” though mathematicians generally write it o), and then
view predicates as functions returning type B. Thus, the predicate < on the natural
numbers can be considered a function of type N ×N → B. Next, since the principle
of comprehension holds that every predicate determines a set, we dispense with the
separate notion of set and simply identify sets with predicates: x ∈ y is identified
with y(x).68

In this scheme, dropping some of the more tedious subscripts, the comprehension
axiom becomes

(∃yσ→B : (∀xσ : y(x) ≡ AB))

where AB is a formula in which y does not occur free. The typing restrictions
attached to x and y prevent the kind of self-reference that leads to the paradoxes
of naive set theory. The same construction can be used to assert the existence of
general functions as well as predicates:

(∃yσ→τ : (∀xσ : y(x) = Aτ )). (A.2)

The function yσ→τ whose existence is thereby asserted can be denoted

(λxσ : Aτ )σ→τ .

The λ here is called the abstraction operator; (λxσ : Aτ )σ→τ is the name of the
function whose value on argument xσ is Aτ , where xσ presumably occurs free in Aτ .
For example,

(λxZ : (if x < 0 then − x else x)N )Z→N

is the “absolute value” function on the integers. λ is a variable-binding operator,
just like the quantifiers.69

Using this notation, the comprehension axiom (A.2) becomes

(∀xσ : (λxσ : Aτ )σ→τ (xσ) = Aτ )

67Actually this is a sort, but the distinction between sorts and types is generally dropped in type
theory.

68Note that the restrictions of sorts and types mean that sets are homogenous in simple type
theory: it is not possible to form sets such as {x, {x}}, since x and {x} are of essentially different
types.

69In fact it is possible to define the quantifiers in terms of λ by means of the construction

(∀x : φ)
def
= (λx:φ) = (λx: true).
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and since the innermost xσ is bound by the λ, whereas the others are bound by the
∀, we can instantiate the ∀-bound instances with a term tσ to obtain

(λxσ : Aτ )σ→τ (tσ) = Aτ [xσ ← tσ],

which is the rule of β-conversion.

Church first developed a system for defining and manipulating functions defined
by λ-abstraction. His system is called the λ-calculus, and it provides a foundation for
the semantics of functional programming languages. In addition to β-conversion,
there are two other “conversions” (sometimes also called “reductions”) in the λ-
calculus.

alpha-conversion: this is the renaming of bound variables—that is,

(λxσ : Aτ (x))σ→τ = (λyσ : Aτ (y))σ→τ .

eta reduction: this says that a function equals its own abstraction—that is,

(λxσ : fσ→τ (x))σ→τ = fσ→τ .

In axiomatic set theory, individuals, sets, sets of sets, and so on all belong to
the same universe, and quantification extends over the entire universe. In type the-
ory, the universe is stratified by the type hierarchy, so that quantification applies
to each type separately. This means that type theory allows (in fact, requires)
quantification over functions and predicates. For this reason, it is also known as
higher-order logic: propositional calculus allows no quantification and can be re-
garded as “zero-order” logic, predicate calculus allows quantification over individuals
and is also known as “first-order” logic, “second-order” logic allows quantification
over functions and predicates of individuals, “third-order” allows quantification over
functions and predicates of functions, and so on up to ω-order logic, which allows
quantification over arbitrary types. In this scheme, type theory or higher-order logic
corresponds to ω-order logic.� In higher-order logic, functions can take other functions as arguments and re-

turn functions as values (functions that do so are sometimes called functionals,
and the term function is then reserved for those functions that operate on, and
return, simple values). Functions of several arguments can be treated as function-
als of a single argument in higher-order logic by a process known as “Currying”
(named after the logician H. B. Curry, although it was actually first described by
Schönfinkel [Sch67]). To see how this works, suppose we have a function f that
takes two arguments and returns the result of adding the first to the square of the
second:

f
def
= (λxN , yN : x+ y2)N×N→N
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so that we have f(2, 3) = 11. We could instead define a functional f ′ that takes
a single argument and returns a function that takes another single argument and
returns the square of that value, plus the argument to the first functional:

f ′ def
= (λxN : (λyN : x+ y2)N→N )N→(N→N ).

In this case we have f ′(2) = (λy : 2 + y2)N→N , so that f ′(2)(3) = 11. In general, a
function application g(x, y, . . . , z) is equivalent to a sequence of Curried applications
g′(x)(y) · · · (z). Currying makes it easier to define the logic since it is only necessary
to consider functions and predicates of one argument (I am implicitly doing this
in the presentation here). Some formulations and mechanizations of higher-order
logic (e.g., HOL) require all functions to be Curried, whereas others merely allow
it. The mandatory use of Curried functions makes for unfamiliar constructions and
is a difficult hurdle for many users; however, the freedom to use functionals is very
valuable when used appropriately.

Type theory or higher-order logic has the same axioms and rules of inference
as first-order logic with equality (generalized to allow quantification over functions
and predicates), together with the type-restricted form of the comprehension axiom
given earlier, and an axiom of extensionality :

Extensionality: (∀xσ : fσ→τ (x) = gσ→τ (x)) ⊃ f = g.

This simply says that two functions (or predicates) are equal if they take the same
value as each other for every value of their arguments.� There are two main classes of models for type theory. The details are very

technical but a rough idea can be conveyed as follows. Since we can quantify
over functions in type theory, we have to ask what we mean when we speak of all
functions from D to D, say. Under the standard interpretation, we really do mean
all functions on the domain that interprets D. A formula is valid if it valuates to
true in all such interpretations. On the other hand, we might want to interpret all
as ranging over just some particular class of functions (e.g., the continuous func-
tions). In this latter case, the interpretation is relative to what is variously called
a frame [Mon76] or a type structure [And86] that identifies the particular class of
functions concerned. Under the general models interpretation of type theory (due
to Henkin), a formula is valid if it valuates to true in all frames or type struc-
tures. Since the standard interpretation is included as one frame among those of
the general models interpretation, it is clear that fewer formulas are valid under the
general models interpretation than under the standard one. The standard interpre-
tation is the more natural one, but the axioms given above are not complete in this
case (though they are sound and consistent). The advantage of the general models



A.10. Typed Systems and Higher-Order Logic 285

interpretation is that the axiomatization is complete for this case (it cuts out the
valid but unprovable formulas), and several other metamathematical properties can
also be established. Furthermore, under the general models interpretation, there is
a way to translate or interpret higher-order logic formulas into (sorted) first-order
logic.

The logicist’s hope was that with type theory as a “self evident” foundation, it
would be possible to derive mathematics in a consistent way without the need to
introduce additional axioms such as those of Peano, or Zermelo-Fraenkel:

“What were formerly taken, tacitly or explicitly, as axioms are either
unnecessary or demonstrable” [WR27, preface].

Natural numbers can be defined using an idea due to Frege: 3, for example,
is the predicate that designates the property of being a triple. I will not give the
formal definitions here, since they are tricky, but the idea is that 0 is the property
of being the empty set, and the property of being the successor succ(n) to some
natural number n is that of being a set that can be formed by adding an element
to a set that has the property n.70 The problem with this approach is that there
is nothing that requires the individuals to be infinite in number, and so we cannot
guarantee that any large numbers exist. This difficulty is overcome by adding an
axiom of infinity to the other axioms of type theory. There are several ways to
state this axiom, but one way is to assert that there exists some relation < on the
individuals that is irreflexive, transitive, and unbounded (i.e., (∀x : (∃y:x < y))).
With this foundation, it is possible to derive Peano’s axioms as theorems.

As noted earlier, type theory without the axiom of infinity is consistent and
(under the general models interpretation) complete. Since the addition of the axiom
of infinity allows us to develop arithmetic, it is not surprising, in light of Gödel’s
results, that the full system (with the axiom of infinity) is incomplete. In terms of
power, this form of simple type theory is equivalent to Zermelo set theory (i.e., ZF
without the axiom of replacement). For computer science, the consequent loss of
the higher infinities is unimportant.

Type theory is notationally complex71 and has some properties that mathemati-
cians find inconvenient. For example, the empty set is not a simple notion: for

70Since sets and properties are equivalent in type theory, another way to say this is than n is
the set of all n-element sets. This way of looking at things led to much criticism: surely the set
of all triples, conceived as a totality, is “an extravagant affair” [Car58, page 141]. This indicates
the significant difference between set theory and type theory. In set theory, sets are conceived as
totalities, and to avoid the paradoxes we have to make sure they do not get “too big.” In type
theory, sets are conceived as determined by their properties, and to avoid the paradoxes we must
obey the restrictions of typing.

71Especially using the mathematicians’ notation; they Curry all functions, drop all punctuation,
reverse the order of the type-symbols, and write function application without parentheses—see
Andrews [And86], for example.
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each type, the empty set of elements of that type is distinct from the empty set of
a different element type. This duplication seems perfectly acceptable on linguistic
grounds (e.g., is having no money the same as having no worries?); rather less so is
the realization that the construction of the natural numbers undertaken above was
performed relative to a type (I glossed over this), so that every type has its own
version of the natural numbers, and its own arithmetic.72

Type theory also lacks some of the interesting metamathematical properties of
first-order logic, such as the Compactness, Löwenheim-Skolem, and Interpolation
Theorems.73 This is no accident, for some of the metamathematical properties
of first-order logic are unique: Lindstrom’s Characterization Theorem says that
first-order logic is the “strongest” logic with both a compactness theorem and a
(downward) Löwenheim-Skolem Theorem. Since these two theorems are the prin-
cipal tools for deriving metamathematical results in first-order logic, logicians are
reluctant to forsake them, and many therefore regard first-order logic as the only
“true logic.” Barwise [Bar85] observes that this attitude confuses the subject matter
of logic with one of its tools. He likens first-order logic, a tool constructed to help
investigate the general conception “logic,” to the telescope, a tool constructed to
help study the universe. Logicians who assert that logic is first-order logic are like
those who would claim that astronomy is the study of telescopes.

Although first-order logic has many interesting properties, there are several use-
ful and important notions that cannot be defined within it; for example, none of
infinite set, countable set, open set, continuous function, well-ordering , and random
variable are first-order definable. These can all be defined in type theory, however.
Other concepts, such as induction or Hilbert’s ε operator, which require set-theoretic
constructions or metalogical assistance from schemes to specify in first-order logic,
can also be stated simply and directly in type theory.

For formal methods in computer science, the expressive power of type theory
may be more important than the metamathematical richness of first-order logic.
Moreover, the complex notation of type theory can be considerably streamlined
when used as a specification language for formal methods: computer scientists are
used to typed systems in programming languages, and their practice of “declaring”
variables and constants before use supplies type information implicitly, without
the sub- or superscripts of the mathematicians notation; “overloading” (allowing
a single symbol such as + or “emptyset” to denote several similar functions of

72Fraenkel, Bar-Hillel, and Levy call the “reduplication” of notions such as numbers and the
empty set “repugnant” [FBHL84, page 160].

73The first two of these were described earlier; the last, often called Craig’s Interpolation Lemma
(or Theorem), says that if φ(A,B) ⊃ ψ(B,C), where φ(A,B) denotes a formula built up from
names in collections A and B, then there is a formula γ(B) (i.e., one built up from such names as
are common to both φ and ψ) such that φ(A,B) ⊃ γ(B) ⊃ ψ(B,C). The Interpolation Theorem
is used in the proof of Beth’s and Robinson’s Theorems.
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different types that are distinguished by context) also contributes to simple, familiar
notation.74 The duplication of numbers and arithmetics can be overcome by simply
adopting Peano’s axioms, so that the (canonical) natural numbers are available as
a base sort.75 The incompleteness of type theory under the standard interpretation
renders it unattractive to metamathematicians, but this is of little concern in formal
methods, since we will need arithmetic and other incomplete theories in any case.

The great advantages of type theory as a foundation for formal specification
languages are the very strong and mechanized “typechecking” that can be provided
(this makes for very effective early error-detection in specifications), and the ex-
pressive convenience of higher-order constructions and quantification. The fact that
everything is built on total functions also allows for rather effective mechanical the-
orem proving in type theory (recall that in set theory, total functions are a special
case).

Formal methods and theorem proving systems based on the simple theory of
types include HOL [GM93], PVS [ORS92], and TPS [AINP88].

A.11 Additional Topics

In this section I briefly touch on a number of topics. The aim here is simply to
give readers exposure to certain terms they may run across in the literature or
in discussions on formal methods. My treatment will be very brief and rather
superficial, but should at least point to the relevant literature and help the reader
identify the field to which a particular concept or piece of terminology belongs.

A.11.1 Modal Logics

Aristotle and, later, medieval logicians conceived of many modes of truth, such as
necessary truths, and those things that ought to be true, or that we know to be
true, or believe to be so.

It is possible to formalize these notions by adding the modal operators (also called
modalities) 2 and 3 to the propositional calculus (thereby yielding a propositional
modal logic).76 For example, 2A can read as “it is necessary that A,” in which case
3A is read as “it is possible that A.”

74Russell employed a similar approach, which he called “typical ambiguity”: type symbols were
usually omitted, and the user was expected to mentally supply them in a manner that provided a
well-formed construction.

75This would be repugnant to Russell, since he wanted to minimize use of axioms; but for formal
methods we are concerned with utility, not philosophical purity.

76Mints [Min92] is a good introduction to modal logic.
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All modal logics define 3 in terms of 2 by the identity

3A
def
= ¬2¬A.

They also include all the theorems of propositional calculus (generalized to include
those with modal operators, such as 2A ⊃ 2A), modus ponens, and the inference
rule of necessitation:

A

2A
.

What axiom schemes are added depends on the readings ascribed to the
modal operators. There are several axiom schemes with standardized names:
K: 2(A ⊃ B) ⊃ (2A ⊃ 2B)
D: 2A ⊃ 3A

T: 2A ⊃ A
4: 2A ⊃ 22A

B: A ⊃ 23A

5: 3A ⊃ 23A.

Modal logics are given names such as KT4, which identifies the logic that contains
just the axiom schemes K, T, and 4. Some standard modal logics are KD, KT4 (also
known as S4), KT5 (also known as S5), and KD45. S5 is historically important as
the logic of necessity, but more recently it has become widely used in computer
science as a logic of knowledge (2A is then read as “it is known that A”). Using this
modal logic to reason about “who knows what” has proved a powerful way to analyze
distributed systems [HF89]. S4 gives rise to many temporal logics (2A is then read
as “always A” and 3A as “sometimes” or “eventually” A), which can be used to
reason about the properties of concurrent and distributed systems. The modal logic
KD45 can be used as a logic of belief (2A is then read as “it is believed that
A”) and has found applications in reasoning about cryptographic key distribution
protocols [Ran88]. KD is a “deontic” logic: one for reasoning about obligations.

Leibniz was the first to conceive a recognizably modern semantics for modal
logic. He imagined that there could be many worlds: necessary truths would be
those that are true in all worlds, possible truths would be those that are true in
only some of them. Models for modal logics are based on this idea of a “possible
world” semantics (also called “Kripke” semantics after Saul Kripke, who developed
the formal treatment while still in his teens). The details are a little too lengthy
to go into here, but a key component is an “accessibility” relation between pos-
sible worlds; the various standard modal logics can then be characterized by the
algebraic properties of the accessibility relation in their models. For example, S5
is characterized by an accessibility relation that is an equivalence relation. These
topics are developed in standard texts on modal logics, such as those by Hughes and
Cresswell [HC68, HC84], and Chellas [Che80].
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As noted, temporal logics are modal logics (generally specializations of S4) in
which the operators 2 and 3 are read as “always” and “eventually,” respectively.
Pnueli [Pnu77] was the first to recognize that these logics could be used to reason
about distributed computations and, in particular, about liveness properties (that
is, about things that must happen eventually). There are two families of temporal
logics: linear time and branching time [Lam83]. Both families have their adherents,
and both have led to effective specification techniques. It is usually necessary to em-
bellish the basic logics of either family with additional operators in order to achieve
a comfortable degree of expressiveness; examples include “next state,” “until,” and
backwards-time operators. Interval logics are temporal logics specialized for reason-
ing over intervals of activity. The Temporal Logic of Actions (TLA) [Lam91] is a
temporal logic in which the modal operators are generalized from states to pairs of
states (actions); it achieves considerable expressiveness with very little mechanism.

As with predicate calculus, a valid formula in modal logic is one that valuates to
true in all interpretations. Many modal logics have what is called the “finite model
property,” which renders them decidable. The models of temporal logic are essen-
tially finite-state machines; conversely a finite-state machine is a potential model
for a temporal logic formula. This observation gives rise to “model checking”: the
goal is to check whether a finite-state machine describing a system implementation
satisfies a desired property specified as a temporal logic formula. This process is
equivalent to testing whether the specified machine is a model for the specified for-
mula. Because temporal logic can be quite expressive, and because model-checking
is decidable, this technique offers a completely automatic means for verifying cer-
tain properties of certain systems [CES86]. Very clever model-checking algorithms
allow finite-state machines with large numbers of states to be checked in reasonable
time [BCM+90]. Model checking is an example of a state-exploration method (recall
Section 2.2.3); it is not a replacement for conventional theorem proving in support
of verification (it is applicable to only certain properties and implementations), but
it can be a very valuable adjunct.

Despite their name, temporal logics do not provide ways to reason about “time”
in a direct or quantitative (i.e., “real-time”) sense: they provide a tool for reasoning
about the order (i.e., temporal sequencing) of events, and about eventuality prop-
erties. Several extensions have been proposed to both temporal [AH89, Koy90] and
classical [JM86, Ost90] logics for reasoning about real-time properties, but these are
best regarded as promising research, rather than techniques ready for immediate
exploitation.

All the modal logics I have considered so far are propositional. It is possible to
combine modal operators with quantification to yield first-order modal logics but
the details prove rather tricky, as exemplified by the following formula.

3∃x:φ(x) ⊃ ∃x:3φ(x).
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This is called the Barcan formula (after Ruth Barcan), and it is provable if S5
is combined with first-order logic. The difficulty posed by this formula is that,
interpreting 3 as “possibly,” it seems to require that we admit the existence of (or,
as logicians and philosophers say, “include in our ontology”) merely possible objects.
For example, if it is possible that a cow jumped over the moon, then the Barcan
formula tells us that there is a specific cow that has possibly performed this act.
This ontological commitment is considered objectionable (or, at least, controversial)
and so there have been many attempts to combine modal and first-order logics in
ways that exclude the Barcan formula (see [Gar84, HC68]).

A.11.2 Logics for Partial Functions

Partial functions are those whose values are not defined for all arguments in their
domain: for example, division is not defined when the divisor is zero. The question
then is what meaning to ascribe to expressions such as

x

y
× y = x (A.3)

when it is possible that y could be zero. I briefly mention five main approaches.
Cheng and Jones [CJ90] consider a few others but do not, in my opinion, do adequate
justice to the third and fifth of the alternatives below. Farmer [Far90] gives a very
readable discussion at the beginning of an otherwise very technical paper.

Russell’s Theory of Descriptions. In set theory, functions are sets of pairs, and
the meaning of f(x) is “the y such that (x, y) ∈ f .” The problem is then
that of ascribing a meaning to expressions of the form “the such and such”
when there is no object with the property “such and such.” (“The present
king of France” is the standard example.) Expressions of the form “the such
and such” are called definite descriptions and are intended to single out some
unique individual satisfying the description “such and such.” How to interpret
a definite description when it does not identify a unique individual (either
because there is none, or more than one, having the given property) was one
to which Russell devoted a great deal of effort in the early 1900s. He used the
notation ιx:φ(x) for “the x such that φ(x),” where ι is the definite description
operator.77 Russell’s solution to the problem of how to deal with ιx:φ(x)
when this did not identify a unique individual was a contextual one: he gave
no meaning to ιx:φ(x) considered in isolation, but set the expression in which
it occurred to false. Thus, “the present king of France” has no meaning on its
own, but “the present king of France is bald” is false in Russell’s treatment.

77Russell actually used an upside-down ι, but that is a typographical trick that is not so easy to
perform in LaTEX as it is with metal type.
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Using Russell’s operator, the value of f(x) is given by ιy: (x, y) ∈ f ; this is
well-defined if ∃!y: (x, y) ∈ f , otherwise any expression in which it appears is
false. The expression (A.3) is therefore false in this treatment when y = 0.

One problem with Russell’s approach is that it raises the question of scope:
how large an enclosing expression should be set to false when a definite descrip-
tion does not denote a unique individual? Discussion of this question occupies
much of Russell’s papers on the subject (one written with Whitehead is the
most accessible [WR67]). Another problem is that identity is no longer reflex-
ive: f(x) = f(x) is false if x is not in the domain of f . For these reasons,
Russell’s approach is seldom employed today, but his theory of descriptions
has influenced much of the work that followed.

All functions are total. In this scheme, every function has some value assigned
for each member of its domain—so that x

0 , for example, does have a value. We
can choose whether or not to supply axioms that enable any properties of such
“artificial” values to be deduced. If, for example, we choose not to specify any
properties of the value x

0 , then we will not be able to prove (A.3) as a general
theorem, though we will be able to prove the weaker form

y 6= 0 ⊃ x

y
× y = x. (A.4)

This approach is quite natural in type theory, where (total) functions are
primitive. In set theory, it is equivalent to defining the value of f(x) to be
εy: (x, y) ∈ f , where ε is Hilbert’s choice operator (recall subsection A.5.4 on
page 266).

The arguments against this approach are that it does not correspond to in-
formal mathematical practice (rather than a way to treat partial functions, it
is really a way of doing without them), and that we have to be very careful
to avoid inadvertently defining (and hence having to implement) properties of
the artificial values or, worse, introducing inconsistencies. For example, if we
took (A.3) as an axiom, then the case y = 0 gives x

0 × 0 = x. But another
rule of arithmetic is z× 0 = 0, so that the substitution z ← x

0 gives x
0 × 0 = 0,

which contradicts the earlier result (when x is nonzero).

Functions are total, on a precisely specified domain. This scheme is the
same as the previous one, except that it is performed in the context of a
logic with a very rich type system, including what are called predicate sub-
types and dependent types, that allow the domains of functions to be specified
very precisely.

As its name suggests, a predicate subtype is one associated with a predicate.
In the case of division, for example, we can associate the subtype Q′ of the
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rationals Q with the predicate (λq : q 6= 0) and can then type the division
operation as a total function Q ×Q′ → Q. An expression like x

0 then has no
meaning since it does not satisfy the rules of typing. The expression (A.3)
is perfectly valid (and can be taken as an axiom), provided y is of type Q′.
More interestingly, the theorem (A.4) is valid, even when y is of type Q (and
could, therefore, be zero), because the value of the expression is independent
of the type-incorrect application x

0 : if y = 0, then (A.4) is true because the an-
tecedent to the implication is false (and the value of x

0 is irrelevant); otherwise
y is of type Q′ and (A.3) applies.

Dependent types are most easily understood by means of an example. Consider
the function

f(x, y)R×R→R
def
=
√
x− y.

This function is undefined (on the reals) if its second argument is larger than
its first. But if we change the domain of the function from R×R to

x:R× {y:R|x ≥ y} (A.5)

(i.e., to pairs of real numbers in which the first is not less than the second),
then the partiality disappears: the function is total on this more precisely
specified domain. Types such as A.5 are called dependent because the type
of the second component depends on the value of the first. Dependent types,
and several other innovations in the treatment of types, had their origins in
the pioneering Automath project of de Bruijn [dB80].

The advantages of this approach over the previous one are that it obviates
any need to construct artificial values or axioms for expressions such as x

0 or
pop(empty), and it disallows (and typechecking will flag) unsafe expressions
such as (A.3) when y is of type Q, thereby forcing us, early on, to recognize
the need for the guarded form (A.4). Its disadvantage is that typechecking
becomes undecidable: theorem proving may be needed to decide the accept-
ability of formulas. Pragmatically, however, this approach appears quite effec-
tive (especially when its mechanization includes a powerful theorem prover),
and seems attractively close to informal mathematical practice. Approaches of
this kind are used in the Nuprl [CAB+86], PVS [ORS92], and Veritas [HDL89]
systems.

Multiple-Valued Logics. If we admit truly partial functions into the logic, then
several further choices must be faced. One choice, typified by the “free” logics
discussed in the next item, allows terms that have no denotation, but does not
allow “undefined” as a value. The alternative introduces a special “undefined”
value, often denoted ⊥ that can be manipulated like an ordinary value.
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Once “undefined” is admitted as a value, we have to further decide whether
undefinedness is allowed to propagate from the term to the (logical) expression
level: for example, does an expression like f(x) < g(y) always yield an ordinary
truth value, even if f(x) could be undefined, or could the expression itself
be undefined? Attempts to restrict “undefined” to the term level (Russell’s
treatment attempts to do this) have not been very successful, so it is generally
necessary to admit “undefined” into the logic as an additional truth value.
The Logic of Partial Functions (LPF) [BCJ84] is of this kind; it provides the
logical foundation for the VDM specification notation. A disadvantage of this
approach is that all the logical connectives must be extended to the case of
undefined expressions and, more importantly, certain properties of traditional
logic must be adjusted to retain soundness. In the case of LPF this leads,
for example, to the loss of the law of the excluded middle and the deduction
theorem.

The main argument against LPF is that it is awkward, nonstandard, and
unfamiliar. A consideration of some alternative partial logics, and the identi-
fication of one that is free of many of the disadvantages of LPF, has appeared
recently [Owe93].

Free Logics. The original motivation for free logics was to avoid certain “para-
doxes” that arise when constants are assumed always to refer to objects in
the domain of quantification [Ben85]. For example, starting from the identity
K = K, where K is some constant, we can obtain the theorem (∃x : x = K)
by existential generalization. If K abbreviates “The King of France,” then
we have just proved that there is a King of France! Free logics avoid this
anomaly by introducing a predicate E called the existence predicate (E(a) is
interpreted as “a exists”) and restricting quantifiers to range only over existing
objects. The quantifier rules are modified so that we can deduce (∃x : x = K)
from K = K only if we have already established E(K)—which is tantamount
to what we are trying to prove.

Logics to deal with partial functions have been proposed along these
lines [TvD88, volume I, chapter 2, section 2]. The challenge is to construct a
logic that is as faithful to informal mathematical practice as possible. Scott’s
formulation [Sco79], for example, has the disadvantage that (∀x : φ(x)) is no
longer equivalent to φ(x). Beeson introduced an alternative system that over-
comes most objections [Bee86] (more accessible references are [Bee85, Chapter
6, Section 1] and [Bee88, Section 5]).

Whereas Scott’s is a logic of partial existence (it allows models with objects
that do not satisfy the existence predicate), Beeson’s is a logic of partial terms
(LPT) that is concerned with the definedness of names and terms. LPT in-
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troduces the atomic formula a↓, where a is a term, with the interpretation “a
is defined.” The quantifier axioms become

A4′. (∀x : φ(x)) ∧ t↓⊃ φ[x← t],

A5′. φ[x← t] ∧ t↓⊃ (∃x : φ(x)).

In addition, we have c↓ and x↓ for each constant symbol c and variable x.
Atomic formulas evaluate to true only if their arguments are defined:

φ(s, t, . . . , u) ⊃ s↓ ∧ t↓ ∧ · · · ∧ u↓, (A.6)

where s, t, . . . , u are metavariables representing terms. Two notions of equality
are used: = is strict equality (false if either of its arguments is undefined), and
≃ is “Kleene equality,” which is true if both its arguments are undefined:

s ≃ t def
= (s↓ ∨ t↓) ⊃ s = t.

The equality axioms are

x = x ∧ (x = y ⊃ y = x),

s ≃ t ∧ φ(s) ⊃ φ(t), and

s = t ⊃ s↓ ∧ t↓ .

(Here x and y are variables). The last of these is a special case of (A.6), as is

f(s, t, . . . , u)↓⊃ s↓ ∧ t↓ ∧ · · · ∧ u↓

(i.e., functions are defined only if their arguments are).

In the case of the example (A.3), we will presumably have x
y
↓ ≡ y 6= 0, so

that (x
y
× y)↓ ≡ y 6= 0. Thus, the left hand side of (A.3) is defined (and

equal to x) provided x 6= 0, and the right hand side is always defined (i.e.,
x↓). An equation is false if either of its arguments is undefined, so (A.3) is
always defined, and is true if y 6= 0, and false otherwise. The form (A.4) is
unconditionally true.

PX [HN88] is a computational logic based on these ideas, while a (higher-
order) logic of this kind is mechanized in the IMPS system [Far90, FGT93],
and variants have been proposed for other specification languages [MR91].
Gumb [Gum89, Chapter 5] uses a free logic to express facts about execution-
time errors in programs, and Parnas presents a “logic for software engineer-
ing” [Par93] that uses similar ideas.
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All these approaches to partial functions, except the second, generally require
the user to prove subsidiary theorems in order to discharge definedness obligations.
The third approach requires these subsidiary proofs to be performed during type-
checking, the first, fourth and fifth require them during proof construction. Doing
the subsidiary proofs at typecheck time avoids some duplication of effort (the other
approaches can require the same subsidiary results to be proved separately in proofs
of different theorems), and allows some faults to be detected earlier. In addition
to their treatment of partial functions, the rich type systems of the third approach
allow terms to be typed more precisely, and thereby increase the information present
in a specification [HD92].

A.11.3 Constructive Systems

The earliest conceptions of mathematical existence were constructive: to Euclid,
proving that through every point there exists a line parallel to another given line
meant that there was a procedure for constructing that line (with ruler and compass).
There were some early proofs by contradiction (for example, of the irrationality
of
√

2), but these dealt with nonexistence or impossibility, rather than existence.
More troubling are proofs of existence by contradiction. For example, there exist

two irrational numbers x and y such that xy is rational: if
√

2
√

2
is rational, we

are done; otherwise take this number as x and let y be
√

2. This is surely a little
unsatisfactory, as we do not know which of the two cases is true.

During the 19th and early 20th centuries, the advent and rapid application of
set theory led to many nonconstructive proofs of this kind.78 One of the most
controversial was Zermelo’s nonconstructive 1905 proof of the well ordering of the
reals. Several mathematicians were dissatisfied with such proofs, but it was Brouwer
who launched a full scale assault on the admissibility of nonconstructive methods:

“the only possible foundation of mathematics must be sought. . . under
the obligation carefully to watch which constructions intuition allows
and which not. . . any other attempt at such a foundation is doomed to
failure” [from Brouwer’s PhD Thesis, quoted in [Bee85, page 430]].

Brouwer’s position became known as intuitionism, and although he opposed several
nonconstructive techniques and concepts (for example, the completed infinite) it
was his criticism of the “law” of the excluded middle [Bro67] (i.e., φ ∨ ¬φ, as used
about xy above) that became the sine qua non of intuitionistic mathematics.

78The Historical Appendix to Beeson’s book [Bee85] is a good, brief source for those who would
like to read more of the history of these topics. Beeson’s book and the two-volume work of Troelstra
and van Dalen [TvD88] are standard texts on constructive mathematics.
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Although Brouwer was not particularly interested in creating a formal system
for intuitionism (after all, he rejected the axiomatic method as a foundation), Kol-
morgorov, Heyting and others developed intuitionistic propositional and predicate
calculi that do without the law of the excluded middle; in this context, “ordinary”
logical systems that retain the excluded middle are called classical logics.

Both Brouwer and the opposing camp (the formalists, led by Hilbert) thought
that strict adherence to intuitionistic principles would force the abandonment of
large tracts of mathematics (by logicians at least; “practical” mathematics would
proceed undisturbed by such arcane disputes). The intuitionists seemed to accept
this, but the formalists saw it as a challenge to the relevance and utility of founda-
tional studies (for example, Ramsey writes of “the Bolshevik menace of Brouwer and
Weyl” [Ram90, page 229]) and were inspired to shore up their foundations: Hilbert
declared

“Wherever there is any hope of salvage, we will carefully investigate fruit-
ful definitions and deductive methods. We will nurse them, strengthen
them, and make them useful. No one shall drive us out of the paradise
which Cantor has created for us” [Hil83].

However, Gödel later showed (via what is called the double-negation interpreta-
tion) that intuitionistic and classical arithmetic have the same strength [NS93, Sec-
tion V.6],79 and Bishop provided a practical demonstration that much of analysis
could be developed in an entirely constructive (though not specifically intuitionistic)
manner [BB85]. Thus, restriction to constructive methods does not seem to limit
to an unacceptable degree the amount of mathematics that actually can be done.

What does all this have to do with computers? Well, anything that can be done
by a computer is necessarily constructive; thus, if we seek a logical foundation for
computing (as opposed to general mathematics) it seems natural to seek it within
a constructive framework. Intuitionistic logic is a particularly strong candidate
because of what is known as the “Curry-Howard isomorphism,” which establishes a
direct correspondence between intuitionistic proofs and functional programs:80 an
intuitionistic existence proof can be converted into a program that constructs the
thing concerned. An idea of the flavor of this approach can be obtained as follows.
In intuitionism, a proof that A implies B means a procedure which will take any
(intuitionistic) proof of A and convert it into a proof of B; thus, if we have a program
that constructs A, the proof of A ⊃ B gives us a program that constructs B.

79Gödel also demonstrated a connection between modal and intuitionistic logics [KK62, page
680]. ( [KK62] is a standard, and accessible, text on the history and development of logic.)

80This really goes back to Kleene, who showed that any formula that could be defined in intu-
itionistic (Heyting) arithmetic was Turing computable; thus, Heyting arithmetic could serve as a
high-level programming language.
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As with classical systems, intuitionistic logics that are adequate for actually
specifying and reasoning about interesting computations require more than just the
intuitionistic fragment of predicate calculus: we need arithmetic, sets, and/or types.
Constructive type theories, especially those built on ideas first widely canvassed
by Martin-Löf, dominate this enterprise (often under the slogan “propositions as
types”). Martin-Löf’s theories are not theories in ordinary predicate calculus, so
they cannot be described by simply listing their axioms: the entire apparatus of the
system has to be developed, and I do not have space to attempt this here. Interested
readers can find a good introduction in [Tho91].

Constructive type theories are the foundation for a number of interesting sys-
tems for formal specifications and proofs, of which the oldest and best known is
Nuprl [CAB+86] (which is based on, and extends, Martin-Löf’s approach), and one
of the most recent is COQ [DFH+91] (which mechanizes the “Calculus of Construc-
tions,” which itself is derived from a system variously known as the “second-order”
or “polymorphic” λ-calculus and as “System-F.”) Arguments in favor of these ap-
proaches are that they bring programming and proof into intimate correspondence.
Arguments against them are that their foundation is unfamiliar to most users, and
that the need to constantly discharge existence obligations is tedious. However, very
similar proof obligations arise in classical logics with rich type systems when try-
ing to establish admissibility of definitional forms or consistency of axiomatizations.
Hence, it may be that the actual practice of formal methods in constructive and
classical settings is more similar than might at first appear.

A.11.4 Programming Logics

Functional programs can be specified quite directly in any logic that supports re-
cursive definitions; reasoning about such programs can then be performed directly
within the logic concerned. Imperative programs, on the other hand, operate on an
implicit “state” that has no counterpart in ordinary logic. For example, the Fortran
assignment statement x = x+1 must be interpreted as saying that the value of x
in the “new state” is to be equal to 1 plus the value of x in the “old state.” Pro-
gramming logics are logics that provide ways to specify and reason about imperative
programs and their effects on a program state.

Hoare [Hoa69] introduced the notation {P}S{Q} (often called a Hoare sentence)
for specifying the behavior of a program fragment S. In this construction, P and
Q are expressions involving the “variables” of the program S and the intuitive
interpretation is that if execution of S starts in a state in which the expression P

is true, and if execution terminates, then it will do so in a state in which Q is true.
A typical programming language logic will include the following axiom for the skip
(do nothing) statement

{P} skip {P}
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and the following for the assignment statement

{P [v ← e]} v := e {P},

where v is a “program variable” and e is an arithmetic expression, together with
axioms or rules of inference for each of the other constructs in the programming
language concerned. Standard rules include the following ones for sequential com-
position, and for the conditional and while statements, respectively:

{P}S1{Q} ∧ {Q}S2{R}
{P}S1;S2{R}

,

{P ∧B}S1{Q} ∧ {P ∧ ¬B}S2{Q}
{P} if B then S1 else S2 endif {Q} ,

{P ∧B}S{P}
{P}while B do S {P ∧ ¬B} .

In addition, there will be some rules concerning the interaction between the pro-
gramming logic and the classical logic that underlies it, such as the following rule
of precondition strengthening :

(P ′ ⊃ P ) ∧ {P}S{Q}
{P ′}S{Q} .

As an example, let us prove that the statement

if x<0 then x := -x else skip endif

causes the final value of x to be the absolute value of its initial value. We can specify
this requirement by

{x = X} if x<0 then x := -x else skip endif {x = |X|},

where Xis a logical variable (implicitly universally quantified over the whole Hoare
sentence). By the rule for conditional statements, we need to prove

{x = X ∧ x < 0} x := -x {x = |X|}

and

{x = X ∧ ¬x < 0} skip {x = |X|}.
By precondition strengthening, the second of these follows from

(x = X ∧ ¬x < 0 ⊃ x = |X|) ∧ {x = |X|} skip {x = |X|},
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whose first conjuct follows by predicate calculus, arithmetic, and the definition of
the absolute value function, and whose second conjuct is an instance of the skip rule
given earlier. The other case of the conditional follows by precondition strengthening
from

(x = X ∧ x < 0 ⊃ −x = |X|) ∧ {−x = |X|} x := -x {x = |X|},
whose first conjuct follows by predicate calculus, arithmetic, and the definition of
the absolute value function as before, and whose second conjuct is an instance of
the assignment rule given earlier.

A programming logic can be cast into the more familiar form of a classical logic
by making explicit the program state that is implicit in the axioms and rules of the
programming logic. In this interpretation, the precondition P and postcondition Q
of a Hoare sentence {P}S{Q} are regarded as classical predicates over the “before”
and “after” states s and t, respectively, and the program fragment S is regarded
as a shorthand for its denotation or “meaning” [[S]], which is a relation on states:
[[S]](s, t) is true if execution of the program fragment S, when started in state s, can
terminate in state t. Then the interpretation of the Hoare sentence {P}S{Q} is

∀s, t : P (s) ∧ [[S]](s, t) ⊃ Q(t).

In this interpretation, the rule of precondition strengthening becomes

(∀s : P ′(s) ⊃ P (s)) ∧ (∀s, t : P (s) ∧ [[S]](s, t) ⊃ Q(t))

(∀s, t : P ′(s) ∧ [[S]](s, t) ⊃ Q(t))

which is classically valid.

Similarly, the rule for sequential composition becomes:

(∀s, t : P (s) ∧ [[S1]](s, t) ⊃ Q(t)) ∧ (∀s, t : Q(s) ∧ [[S2]](s, t) ⊃ R(t))

(∀s, t : P (s) ∧ [[S1;S2]](s, t) ⊃ R(t))
.

I have not gone into enough detail, nor developed enough notation, to give the
interpretation of the axiom for assignment in the general case (see Gordon [Gor89]),
but the general idea can be conveyed by considering the particular example

{−x = |X|} x := -x {x = |X|}

encountered earlier. The interpretation of an integer program “variable” such as
x is a function from state to integer (so that x(s) is its value in state s), and the
interpretation of this Hoare sentence is then

(∀s, t,X : −x(s) = X ∧ [[x := -x]](s, t) ⊃ x(t) = |X|).
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The End

That concludes this rapid introduction to those aspects of mathematical logic that I
consider most relevant to formal methods. Experts will notice that I have simplified
or ignored some details—but not, I hope, to the point of inaccuracy. I recommend
those who wish to read further to consult initially the books noted near the beginning
of the section of this appendix that deals with the topic of interest to them.
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