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Abstract

Computer systems are increasingly employed in circumstances where
their failure (or even their correct operation, if they are built to flawed
requirements) can have serious consequences.

There is a surprising diversity of opinion concerning the properties
that such “critical systems” should possess, and the best methods to
develop them. The dependability approach grew out of the tradition of
ultra-reliable and fault-tolerant systems, while the safety approach grew
out of the tradition of hazard analysis and system safety engineering.
Yet another tradition is found in the security community, and there are
further specialized approaches in the tradition of real-time systems. In
this report, I examine the critical properties considered in each approach,
and the techniques that have been developed to specify them and to
ensure their satisfaction.

Since systems are now being constructed that must satisfy several
of these critical system properties simultaneously, there is particular
interest in the extent to which techniques from one tradition support
or conflict with those of another, and in whether certain critical sys-
tem properties are fundamentally compatible or incompatible with each
other. As a step toward improved understanding of these issues, I suggest
a taxonomy, based on Perrow’s analysis1, that considers the complexity
of component interactions and tightness of coupling as primary factors.

1C. Perrow. Normal Accidents: Living with High Risk Technologies. Basic Books, New York,
NY, 1984.
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Chapter 1

Introduction

In this report, we ask what is meant by a “critical system,” examine some of the
properties required of these systems, attempt to classify those properties in a sys-
tematic taxonomy, and consider the extent to which different “critical properties”
and their associated techniques are compatible with each other.

There is a surprising amount of disagreement concerning the definition of a crit-
ical system, and the best methods to develop such systems. One view, which we can
call the dependability approach, grew out of the tradition of ultra-reliable and fault-
tolerant systems; another, which we can refer to as the safety approach, grew out of
the tradition of hazard analysis and system safety engineering. Yet another tradi-
tion is found in the security community, and there are further specialized approaches
in the tradition of real-time systems. There is also disagreement on the relation-
ships between the different properties that may be required of critical systems—for
example, the relationship between safety and security is much debated.

In addition to differing views regarding overall philosophy and the relationships
among properties, quite different mechanisms and means of specification and assur-
ance are often employed by the various traditions that have been concerned with
critical systems. For example, the security community has developed the idea of
kernelized systems, whereas the nuclear industry employs protection systems.

Systems are now being constructed that must satisfy several of these critical
system properties simultaneously, so there is particular interest in the extent to
which techniques from one tradition support or conflict with those of another, and
in whether certain critical system properties are fundamentally compatible or in-
compatible with each other.

To answer these questions, we must begin by understanding the motivations
and techniques of the various traditions and approaches that have contributed to
the development of critical systems. Accordingly, Chapter 2 presents a survey of the
main features of each of the four traditions considered, concentrating on the critical
properties addressed and the mechanisms employed to safeguard them. Since formal
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2 Chapter 1. Introduction

methods are increasingly considered an essential component in the development of
critical systems, Chapter 3 examines the specification and assurance techniques that
have been proposed and used in the four traditions.

Finally, Chapter 4 attempts a synthesis of the information presented, and pro-
poses a taxonomy of critical system properties. It is hoped that this will provide
some guidance in determining which properties and approaches are likely to be
compatible, and capable of being achieved simultaneously.

It is not the purpose of this report to suggest new approaches to the various topics
described, nor even to offer a critique of existing approaches; rather, I hope that a
single document describing some of the main themes and traditions will provide a
foundation for future work that draws on elements of several different approaches in
order to allow the specification, development, and assurance for systems that must
simultaneously satisfy several different notions of “criticality.”



Chapter 2

Traditions and Approaches

We consider four traditions in critical systems: dependability, system safety engi-
neering, security, and real time.

2.1 The Dependability Approach

The concept of dependability was introduced by Jean-Claude Laprie [Lap85] as
a contribution to an effort by IFIP Working Group 10.4 (Dependability and Fault
Tolerance) to establish a standard framework and terminology for discussing reliable
and fault-tolerant systems. This effort culminated in a book describing the basic
concepts and terminology in five languages [Lap91]. The term “dependability” is
used to escape the specialized technical meanings that have become attached to
terms such as “reliability,” and in order to have a term for a general approach that
can embrace, subsume, and unify many issues and techniques that have generally
been considered separately—such as fault tolerance, reliability, correctness, safety,
survivability, and security.

In this framework, a dependable system is one for which reliance may justifiably
be placed on certain aspects of the quality of service that it delivers [Lap85]. The
quality of a service includes both its correctness (i.e., conformity with requirements,
specifications, and expectations) and the continuity of its delivery.

A departure from the service required of a system constitutes a failure—so that
a dependable system can also be described as one that does not fail. Not all failures
are equally serious, however. A benign failure is one where the consequences are on
the same order as the benefits provided by normal system operation; a catastrophic
failure is one whose consequences are incommensurably greater than the benefit of
normal system operation [Lap91, Glossary].

Failures are attributed to underlying causes called faults. Faults can include mis-
takes in design and implementation (i.e., “bugs,” which are all comprehended in the
term “design fault”), component failures, improper operation, and environmental
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4 Chapter 2. Traditions and Approaches

anomalies (e.g., electromagnetic perturbations). Not all faults produce immediate
failures, however. Failure is a property of the external behavior of a system—which
is itself a manifestation of its internal states and state transitions. Suppose a system
progresses through a sequence of internal states s1, s2, . . . , sn and that its external
behavior conforms to its service specification throughout the transitions from s1 to
sn−1 but that on entering state sn the external behavior departs from that required.
Is it reasonable to attribute the failure to state sn? Clearly not, since there could
have been something wrong with an earlier state sj , say, that, while it did not pro-
duce an immediate failure, led inevitably to the sequence of transitions culminating
in the failure at sn. In this case, a fault is said to have been activated in state sj ,
which then contains a latent error that persists through the states that follow and
becomes effective in state sn when it affects the service delivered and failure occurs.
In general, an error is that part of the system state that has been damaged by the
fault and (if uncorrected) can lead to failure. Fault-tolerant systems attempt to
detect and correct latent errors before they become effective.1

Fault tolerance has its roots in hardware systems, where random component
failures are intrinsic to the physical characteristics of the devices employed. The first
step in fault tolerance is error detection: latent errors must be detected before they
become effective. This can be done by “reasonableness” and internal consistency
checks,2 or by comparison with redundant computations. Once an error has been
detected, the next step is error recovery , in which the erroneous state is replaced by
an acceptable valid state. The replacement state may be constructed by repairing
the erroneous state, or it may be a copy of some prior state that is believed to pre-
date the activation of the fault. The first of these methods is called forward error
recovery, and the second is backward error recovery. Exception handling [Cri89] is a
principal means for organizing forward error recovery in software; checkpoints and
“recovery blocks” [Ran75] provide a means for organizing backward error recovery.

An alternative to error recovery is fault masking (also called error compensa-
tion). Classically, this is achieved by modular redundancy, in which several com-
ponents perform each computation independently and the final result is selected by
majority voting. To mask certain types of fault, more complex Byzantine resilient
algorithms [LSP82] may be required in addition to majority voting. To be effective,
modular redundancy requires statistical independence (or very nearly so) among
component failures. This is reasonable for physical faults in the underlying hard-
ware; more questionable is its application to software design faults in the form of
“N -version programming” (also called software diversity) [Avi85,KL86].

1It is normally desirable to detect and fix latent errors as soon as possible: even though a
particular error may pose little immediate danger, it may cause the system to be much more
susceptible to failure should a second fault be activated.

2Often referred to as “built-in self-test,” or BIST .



2.1. The Dependability Approach 5

Error recovery actions may attempt to achieve the same purpose as the orig-
inal, but faulty, function by different means (e.g., using a different component or
algorithm), or they may perform some different, and presumably less desirable, but
still acceptable function. Similarly, the fault masking technique may revert to some
alternative behavior when failures have exhausted its redundancy (for example, an
airplane control surface may lock in the neutral position when there is no clear ma-
jority among its control signals). The response required of the system to a series
of failures is generally described by sequences such as “fail-op, fail-op, fail-safe,”
meaning that the first two failures must leave the system fully operational, but the
third is required only to leave it in a safe state.

Fault tolerance can be provided at many different levels in a system hierar-
chy, and in many different ways, so some organizing principles are needed. Cris-
tian [Cri91] presents an excellent overview of design issues and choices in fault-
tolerant systems. Some of the main concepts are the “depends” relation between
components, and the distinction between the standard and failure semantics of a
component. One component depends on another if its correctness is contingent on
that of the other; failure semantics specify the behaviors that a component may
exhibit when it fails to provide its standard (i.e., correct) behavior—that is, they
specify what a failed component may do. There are various classifications of fail-
ure semantics: an omission failure occurs when a component fails to respond to
an input; a timing failure occurs when a correct response is delivered, but outside
the real-time interval required; response failures occur when a component either
delivers an incorrect value or performs an incorrect state change. A crash failure
occurs when a component suffers an omission failure and thereafter performs no
actions until it is restarted; a symmetric fault is one that is observed consistently
by nonfaulty components; an arbitrary (or Byzantine) failure is one that is totally
unconstrained (in particular, it may be asymmetric and can display different symp-
toms to different observers). Failure semantics can be ordered by inclusion: for
example, a system that satisfies crash-failure semantics also satisfies (trivially) the
requirements for arbitrary failure semantics. Thus, crash semantics are a stronger
failure property than arbitrary failure semantics. Faults can be classified accord-
ing to the semantics of the failures they may induce; whereas we speak of failure
semantics, it is normal to speak of fault modes. The “difficulty” of a fault mode
is inversely related to the strength of the corresponding failure semantics; that is,
faults that lead to arbitrary failures are in some sense more difficult than those that
lead to crash failures (primarily because error detection is so much more difficult).

In developing a hierarchical fault-tolerant system, the designer must consider the
failure semantics to be provided at each level, together with those provided by the
components on which it depends. It is generally straightforward to “pass through”
failure semantics from one layer to another, and generally more difficult and expen-
sive to “improve” on them. For example, it requires a sophisticated architecture
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to provide crash-failure semantics for a layer that depends on components that can
exhibit arbitrary failures.

Although failure semantics are usually far removed from the standard or de-
sired semantics for the component concerned, it is possible to consider intermediate
semantics that correspond to various forms of degraded, rather than totally bro-
ken, behavior; thus, notions of graceful degradation can be incorporated into this
framework for fault tolerance [HW91].

In addition to their semantics, it is necessary to also consider the stochastic
properties of failures: that is, how often failures (of each type) may be expected to
occur. A design is usually constrained by requirements to provide reasonably rare
and reasonably clean failure semantics at the application level (e.g., “mask any two
failures and crash fail on the third”), and by physically determined failure properties
of the lowest-level components. Careful design choices are required to balance fault
tolerance and performance objectives; in particular, it is not always advisable to
provide very strong failure semantics low down in the hierarchy, because mechanisms
higher up the hierarchy may be able to mask low-level faults inexpensively [SRC84].

Fault-tolerant systems that cover many different fault modes may provide a
different recovery mechanism for each, thereby promoting complexity—itself a sig-
nificant source of design faults. One advantage of designing to very weak fault
assumptions is that all less difficult fault modes are then included automatically. In
particular, by designing to arbitrary failure semantics, we are assured of tolerating
all possible faults (up to some number). Such uniformity and economy of mechanism
may be bought at a price, however: it generally requires more redundancy to toler-
ate the more difficult fault modes, so that treating all faults in the manner required
for the worst case may reduce the number of faults that can be tolerated. Thus,
for a given level of redundancy, the designer must tradeoff the difficulty against the
number of faults that can be tolerated. For example, a quad-redundant Byzantine
fault-tolerant system can withstand a single fault of any kind, whereas a differently
organized quad-redundant system can withstand as many as three crash faults, but
no other kind; the Byzantine fault-tolerant system will fail if two crash faults arrive,
and the other will fail under a single Byzantine fault. An interesting new line of
investigation is the development of uniform algorithms and architectures that are
effective with respect to hybrid fault models; that is, they are able to tolerate faults
of several different kinds, and the trading of difficulty against number of faults toler-
ated is performed at run time, with respect to the faults that have actually arrived.
Thus, a quad-redundant hybrid fault-tolerant system should be able to withstand
either a single Byzantine fault, or a symmetric fault and a crash fault, or as many
as three simultaneous crash faults. Unfortunately, the published algorithm for in-
teractive consistency under hybrid faults [TP88] is incorrect. However, it can be
repaired [LR93a, LR93b] and holds promise as the basis for a valuable new line of
development.
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Electronic devices are often afflicted by transient faults, in which a cosmic ray
or electromagnetic disturbance temporarily disrupts operations but then goes away,
leaving the device operating normally, but with possibly corrupted state data.3 Ex-
perimental data indicate that transient faults are many times more common than
permanent faults, so inexpensive and effective techniques for transient recovery are
very valuable. In redundant systems, a transient fault is often manifested as a loss
of coordination among the redundant components, and attractive recovery mecha-
nisms can be based on the idea of self-stabilization, in which global coordination is
restored through the local actions of individual components—rather in the way that
certain physical processes automatically recover to a stable state in spite of small
disturbances.

Self-stabilization was introduced by Dijkstra in 1974 [Dij74], but did not be-
come widely appreciated until Lamport described it as “Dijkstra’s most bril-
liant work. . . almost completely unknown. . . a milestone in work on fault toler-
ance” [Lam84]. One of the most attractive features of self-stabilization is that
it provides a uniform mechanism for recovering from a variety of transient faults.
Schneider [Sch93] and Arora and Gouda [AG93] provide good introductions to this
topic.

Even in the absence of faults, maintaining coordination among the components
of a distributed system poses a number of interesting challenges. If different compo-
nents can simultaneously undertake activities that access global data, we need to be
sure that the different activities do not interfere with each other—as they could if
one changed data that another was using. The usual way to deal with this problem
is to encapsulate activities within transactions and to run a distributed concurrency
control algorithm that arranges matters so that the observed behavior is as if trans-
actions ran in some serial order. In addition to concurrency control, transactions
usually provide failure atomicity , which means that if a transaction fails, then any
actions it may have performed (such as changing global data, or sending a message
to some other transaction) are undone, so that the end result is as if the transaction
had never been run. Of course, such repudiation of previous actions may cause
other transactions to roll back also, which makes these distributed commit algo-
rithms rather complicated, and their consequences potentially drastic. In addition,
global data may be subject to integrity constraints that require certain properties of
the data to be held invariant. Rather than rely on individual transactions to police
these invariants, we may prefer to have the transaction management system fail any
transaction that violates them. For example, a banking system might disallow any
transaction that overdraws an account.

3Program code is usually held in ROM and is not vulnerable to this threat. Imporoper sequencing
is possible if the cosmic ray hits internal registers, but such afflictions can often be overcome by a
watchdog timer interrupt that forces a reset.
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For efficiency, the components of a distributed system may cache some global
data locally, and for reliability the system may maintain several copies of global data
that are voted in some way. Cache coherence and replica consistency algorithms are
needed to maintain consistency among such replicated data.

We use the single term coordination to cover to all these issues of concurrency
control, consistency, integrity, and so on in distributed systems. The degree of co-
ordination that can be maintained generally depends on the fault modes that can
occur. For example, strong notions of replica consistency require that all compo-
nents are able to communicate with each other, and require all activity to cease
if the system divides into mutually isolated partitions. It is therefore necessary to
adopt weaker notions of consistency in systems where partitioning is possible (e.g.,
if the system stays unpartitioned for a sufficient length of time, then consistency of
replicated data will eventually be achieved).

No useful system stands alone: it must interact with (and exist within) an
environment—and that environment may be a source of faults. Thus, dependable
systems must usually provide fault tolerance with respect to external faults (or,
more precisely, for externally induced errors). More controversial, however, is the
use of fault-tolerance techniques to overcome errors due to faults in the design or
implementation of the system itself (i.e., design faults). One such approach is “de-
sign diversity” (or “dissimilarity”), generally organized in the form of N -Version
software [AL86, Avi85]. The idea is to use two or more independently developed
software versions in conjunction with comparison or voting to avoid system fail-
ures due to design faults in individual software versions (this is discussed in more
detail in Section 3.2). The alternative to tolerating design faults is to develop sys-
tems that are free of them; this approach is referred to as (design) fault exclusion.4

Under the heading of fault exclusion fall those techniques that attempt, either di-
rectly by construction or indirectly by analysis, testing, and subsequent correction,
to produce systems free from design faults. Systematic design methodologies, es-
pecially those with a strong mathematical foundation, aim to eliminate faults at
their source; validation and systematic testing strategies, together with formal and
informal verification, aim to discover and eliminate faults during the development
process.

While endorsing the methods of fault exclusion, the dependability tradition rec-
ognizes that they may be imperfectly effective and advocates design fault tolerance
to a greater degree than other traditions. While few would argue against fault tol-
erance as a way of providing protection against residual design faults, it is difficult
to assess the reliability (with respect to design faults) achieved in this way unless
we can estimate the correlation between failures in different versions. A simplistic
analysis assumes that design faults in dissimilar components arise independently

4What I have called fault exclusion is generally termed fault avoidance; I prefer the former term
since it has a more active and positive connotation.
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and produce uncorrelated failures. This assumption has been found to be incorrect
in several experiments [ECK+91,KL86], and has also been questioned in theoreti-
cal studies [EL85], which show that even independent faults can produce correlated
failures—though the correlation can be negative (i.e., beneficial) [LM89]. We con-
sider assurance in some detail in Section 3.2, but will note here that it is not only
software fault tolerance whose contribution to reliability is hard to quantify: there
is no objective way to assign a reliability figure to software on the basis of fault-
exclusion methods either.

The suggestion that system properties such as availability, reliability, safety, and
security should be regarded as attributes of dependability does not meet with uni-
versal approval. In the dependability approach, safety, for example, is viewed as the
absence of catastrophic failures, while security is seen as dependability with respect
to “prevention of unauthorized access and/or handling of information” [Lap91, Glos-
sary]. An objection to this interpretation of safety is that the notion that catas-
trophic failure (and hence safety) is relative to the benefit of normal system operation
runs counter to other usages of the term “safety”—which are concerned only with
the gravity of external consequences. This objection can be overcome by substi-
tuting more standard definitions (e.g., safety is the avoidance of unplanned events
that result in death, injury, illness, damage to or loss of property, or environmental
harm),5 but other objections remain.

One of these concerns the basic definition of failure, which is interpreted with
respect to the system service requirements. Even the revised definitions of safety,
security, and so on, have the form “a departure from system service requirements
that results in . . . (some qualifying phrase).” Thus, the possibility that a system
might operate correctly, yet be unsafe (i.e., that the requirements on the system
service might be wrong), is simply not admitted: it is assumed that the service
requirements accurately capture all the “real” requirements. This goes contrary to
the evidence claimed by Leveson [Lev91] and Perrow [Per84], that most accidents
are due to inadequate design foresight and requirements specification, including
incomplete or wrong assumptions about the behavior or operation of the controlled
system,6 and unanticipated states of the controlled system and its environment.
This objection, too, can be overcome by recognizing that some requirements may
be real but not written down (and perhaps recognized only with hindsight)—what
matters is that there is some way to identify when a system has “gone wrong.”

Finally, the mechanisms and techniques most associated with the dependability
approach tend to focus on reliability and fault tolerance and place less stress on
several alternative methods that have been found useful in practice. For example,

5 [Lap91, page 4] gives a definition of safety different from the one in the glossary of that volume:
“avoidance of catastrophic consequences on the environment.”

6Safety concerns generally arise in real-time control systems, where the computer system is
managing some physical system called the “controlled system” or “plant.”
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concern that the system service requirements might admit the possibility of unsafe
operation is likely, under the dependability approach, to focus on methods for im-
proving the quality of requirements elicitation and specification,7 whereas methods
that focus directly on safety might be more effective (for that specific purpose).
These points can be seen most sharply by considering the very different interpreta-
tions of the safety engineering approach, which we consider next.

2.2 The Safety Engineering Approach

To safety engineers, reliability is not the same as safety, nor is a reliable system
necessarily a safe one. Reliability is concerned with the incidence of failures; safety
is concerned with the occurrence of accidents or mishaps—which are defined as
unplanned events8 that result in death, injury, illness, damage to or loss of property,
or environmental harm. Whereas system failures are defined in terms of system
services, safety is defined in terms of external consequences. If the required system
services are specified incorrectly, then a system may be unsafe, though perfectly
reliable. Conversely, it is feasible for a system to be safe, but unreliable. Enhancing
the reliability of software components, though desirable and perhaps necessary, is
not sufficient to ensure that they will not contribute to a mishap.

Leveson [Lev86, Lev91] has discussed the issue of “software safety” at length
and proposed that some of the techniques of system safety engineering should be
adapted and applied to software. The basic idea is to focus on the consequences that
must be avoided rather than on the requirements of the system itself (since those
might be the very source of undesired consequences). Next, because the occurrence
or nonoccurrence of a mishap may depend on circumstances beyond the control of
the system under consideration, attention is focused on preventing hazards, which
are conditions (i.e., states of the controlled system) that can lead to a mishap,
rather than preventing mishaps directly. For example, the mishaps for an air traffic
control system certainly include mid-air collisions. But the occurrence of a mid-air
collision depends on a number of factors: the planes must be too close, and the
pilots must not be aware of that fact, or must fail—or be unable—to take effective
evading action, and so on. The air traffic control system cannot be responsible for
the state of alertness or skill of the pilots; all it can do is attempt to ensure that
planes do not get too close together in the first place. Thus, the hazard that must

7And on correcting and expanding the requirements definition when experience, in design, test-
ing, or operation, reveals inadequacies [PC86].

8The caveat “unplanned” is required because safety is often considered in the context of weapons
systems, which are designed to cause destruction and death—and so we have to distinguish between
planned destruction (of enemy assets) and that which is unplanned (e.g., of the launch vehicle, or
during storage and transportation).
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be controlled by the air traffic control system is planes getting closer than, say, two
miles horizontally, or 1,000 feet vertically of each other.9

Some of the other terms used in system safety engineering include damage, which
is a measure of the loss in a mishap. The severity of a hazard is an assessment of
the worst possible damage that could result, while danger is the probability of the
hazard leading to a mishap. Risk is the combination of hazard severity and danger.
A principal tool in system safety engineering is hazard analysis; this is a rather large
topic (see for example [MOD91b]), but the basic ideas are fairly straightforward.
First, potential hazards are identified (e.g., planes getting too close) and categorized
according to severity. The categories can range from “catastrophic,” meaning that
the hazard has the potential to lead to extremely serious consequences, down to
“negligible,” which denotes that the hazard has no significant consequences. Then
a systematic exploration is performed to determine how or whether that hazard
might arise. This can be done by reasoning backwards from the hazard (“what
could possibly cause this situation to come about?”), or forwards from hypothesized
failures (“what if the altitude transponder fails?”). Hazards that are found to have
unacceptable risk must be dealt with by, for example, respecification or redesign
of the system, incorporation of safety features or warning devices, or by instituting
special operating and training procedures (in declining order of preference [MOD91b,
section 4.3.1]).

For example, if the mishap concerned is destruction by fire, then the primary
hazards are availability of combustible material, an ignition source, and a supply
of oxygen. If at all possible, the preferred treatments are to eliminate or reduce
these hazards by, for example, use of nonflammable materials, elimination of spark-
generating electrical machinery, and reduction in oxygen content (e.g., substitution
of air for pure oxygen during ground operations after the Apollo 1 fire). If hazard
elimination is impossible or judged only partially effective, then addition of a fire
suppression system and of warning devices may be considered. The effectiveness
and reliability of these systems then becomes a safety issue, and new hazards may
need to be considered (e.g., inadvertent activation of the fire suppression system).

Hazard analysis is performed at several different stages in the design lifecycle
(e.g., preliminary, subsystem, system, and operational hazard analysis), and there
are a number of supporting methodologies (e.g., hazard and operability studies,
or HAZOPS, fault tree analysis, or FTA, and failure modes and effects analysis,

9Issues such as alertness and skill of the pilots are hazards that should be controlled, to the
extent possible, by the larger system—that is, the air transportation system—of which the air
traffic control system is a part. Regulations concerning pilot training and testing, and standards
for good user-interface design, can eliminate or reduce certain sources of pilot error. But the
central point is that the air traffic control system cannot control these hazards; its responsibility is
to eliminate or control those hazards that are reasonably considered within its purview.
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or FMEA10). Leveson has advocated application of these techniques to software.
In particular, “Software Fault Tree Analysis” (SFTA) [LH83] is an adaptation to
software of a technique that was developed and first applied in the late 1960s to
minimize the risk of inadvertent launch of a Minuteman missile.

The goal of SFTA is to show that the logic contained in the software design will
not cause mishaps, and to determine environmental conditions that could lead to
the software contributing to a mishap. The basic procedure is to suppose that the
software has caused a condition which the hazard analysis has determined could
lead to a mishap, and then to work backward to determine the set of possible causes
for the condition to occur. The root of the fault tree is the hazard to be analyzed,
and necessary preconditions are described at the next level of the tree with either an
and or an or relationship. Each subnode is expanded in a similar fashion until all
leaves describe events of calculable probability or are incapable of further analysis
for some reason. Cha, Leveson, and Shimeall [CLS88] present a tutorial example of
SFTA in which a subtle timing error is revealed in an Ada program for a traffic-light
controller.

An experimental application of SFTA to the flight and telemetry control system
of a spacecraft is described by Leveson and Harvey [LH83]. They report that the
analysis of a program consisting of over 1,250 lines of Intel 8080 assembly code took
two days and discovered a failure scenario that could have resulted in the destruction
of the spacecraft. Conventional testing performed by an independent group prior to
SFTA had failed to discover the problem revealed by SFTA. Leveson attributes the
success of SFTA in finding errors undiscovered by other techniques to the fact that
it forces the analyst to examine the program from a different perspective than that
used in development; she likens it to vacuuming a rug in two directions: conventional
approaches “brush the pile” in one direction, SFTA in the other, so that between
them they do a better job than either used alone.

There is some similarity between SFTA and formal techniques for deriving the
placement of exception checks [BC81,Cri82]. These techniques use predicate trans-
former semantics to work backwards from the postcondition and forwards from the
initial condition; the derived conditions should agree at the point where they meet—
if not, an exception should be signaled in order to control the failure that would
otherwise result.

An advantage of the safety engineering approach is that it explicitly considers
the system context. This is important, because software considered on its own
might not reveal the potential for mishaps. For example, a particular software
error may cause a mishap only if there is a simultaneous human and/or hardware
failure. Alternatively, it may require an environmental failure to cause the software
fault to manifest itself. For this reason, safety and similar properties are said to

10FMEA is often extended to FMECA—failure modes, effects and criticality analysis—which
explicitly considers the criticality of the consequences of component or subsystem failures.
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be “emergent,” meaning they are manifested only by the system as a whole, and
are not to be found in microcosm within its components. This is in accord with
the history of system failures, which are usually the result of multiple faults and
unexpected subsystem interactions [Per84].

We have described the methodological approach of system safety engineering, but
have not yet said anything about specific implementation mechanisms. Among the
mechanisms employed in safety-critical systems are those for “lockins,” “lockouts,”
and “interlocks.” Lockin and lockout mechanisms are intended to lock the system
into safe states and out of hazardous states, respectively. An interlock mechanism
is concerned with sequencing; it might require that an event A may not occur until
another event B has taken place, or that A may not occur while event C is active,
and so on. An example is a switch that breaks the circuit when an access door to
high-voltage equipment is opened.

These mechanisms are normally conceived as physical ones, but software analogs
exist. For example (this is taken from Leveson [Lev91]), a program for the protection
system of a nuclear reactor must test several plant variables and mark as “tripped”
those that are beyond their set points. The protection system will then shut down
the reactor if certain combinations of variables are tripped. The näıve way to pro-
gram the comparisons of the plant variables against their set points would start
with all variables untripped, and then examine each variable in turn and set it to
tripped if it exceeds its set point. This is hazardous: if the program gets interrupted
or stalled for some reason, certain variables that should be tripped might not be
examined, and the protection might fail to shut down the plant when it should (this
assumes a watchdog timer to break the processor out of loops and stalls). A “design
for safety” approach, on the other hand, would use the idea of a lockin and seek
to maintain the system state in a “safe” configuration at all times. Observing that
the system is in a safe state when all variables are tripped, such an approach would
lead to a design that starts with all variables tripped, and would then examine each
variable in turn and set it to untripped only if it is below its set point. Premature
exit from such a program would render the plant unreliable, but not unsafe.

The safety engineering approach can be applied to properties other than safety.
For example, security can clearly be approached in the same way, where mishaps
are interpreted as unauthorized disclosure of information. (I understand such an ap-
proach is actually used in the case of cryptographic devices. The “security scenario”
considers threats, vulnerabilities, safeguards, countermeasures.)

A characteristic that distinguishes the safety engineering approach from the de-
pendability approach is that safety engineering focuses directly on the elimination of
undesired events, whereas the dependability approach is rather more concerned with
providing the expected service—and avoids catastrophic failure only as a side effect.
At the risk of reducing the approaches to caricature, we could say that dependability
tries to maximize the extent to which the system works well, while safety engineer-
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ing tries to minimize the extent to which it can fail badly. Each approach seems the
most natural in the application areas to which it is traditionally applied. For exam-
ple, the dependability approach seems very natural in circumstances for which there
is no safe alternative to normal service (aircraft flight control is the quintessential
example), whereas the safety engineering approach is clearly attractive where there
are specific undesired events (e.g., inadvertent release of weapons).

2.3 The Secure Systems Approach

Secure systems are those that can be trusted to keep secrets and safeguard privacy.
Traditionally the main concern has been to prevent unauthorized disclosure of in-
formation; secondary concerns have been to protect the integrity of information,
and to prevent denial of service to those entitled to receive it. Various policies
and models (i.e., specifications) have been proposed for these attributes of security.
Nondisclosure policies are mainly concerned with mandatory security in which infor-
mation is given a classification drawn from some partially ordered set, individuals
have clearances drawn from the same set, and the goal is to ensure that information
is not disclosed to individuals unless their clearances are greater than or equal to
the classification of the information concerned. The threat to be countered is that
untrusted programs operating on behalf of highly cleared users may somehow leak
highly classified information to users without the necessary clearance. The threat
includes not only direct transmission or copying of information, but also covert
channels whereby information is conveyed indirectly, generally by modulating the
behavior of shared resources.

The more formal specifications of security policies are called security models.
These usually comprise two components: a system component and a security com-
ponent. The system component defines what is meant by “computing system” in
the context of the model, while the security component defines what “security”
means for that system model. Originally, it seemed that one security model (that
of Bell and La Padula [BL76]) captured most of what was required. Bell and La
Padula’s is an access-control model: it is assumed that the underlying hardware can
control “read” and “write” access to data. Bell and La Padula then require that
classifications are assigned to processes and data (the model is actually couched in
terms of “subjects” and “objects”) and that the access-control mechanisms are set
up so that processes can only read data classified at or below their own level (this is
called the simple security property), and can only write data classified at or above
their own level (this is called the *-property11).

Because security concerns arise in many different contexts, many additional mod-
els beyond that of Bell and La Padula have subsequently been developed. These

11Pronounced “star-property.”
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can differ from each other in their system components (e.g., sequential systems, dis-
tributed systems, databases, or expert systems), and in their security components
(e.g., whether or not covert channels, or the problems of inference and aggregation,
are considered). Millen and Cerniglia [MC83] give a good overview of many of these
concerns, although it predates much recent work.

The identification of “security” with mandatory access control, which was preva-
lent in the early days (and perpetuated to some extent by the “Orange Book” criteria
that govern evaluation of secure systems [DoD85]), is increasingly being replaced, or
at least augmented, by application-specific interpretations. These can include con-
cepts such as “roles” [LHM84] (so that, for example, a user with the role “security
officer,” has privileges different from those of other users, and orthogonal to those
conferred by clearance level), “two-man” rules (so that two independent users must
authorize certain critical operations), and procedural constraints (so that a message
must be reviewed by a “release officer” before being transmitted over a network).
Further variations arise in “guards,” where information must essentially flow the
“wrong way,”12 and in dynamic policies, such as the “Chinese Wall” [BN89], where
the data that may be accessed depends on what has been accessed before (e.g., an
accountant user can access financial data of either of two competing companies, but
not both).

Integrity has received rather less attention than disclosure, although it is ar-
guably more important in some applications. The simplest notions treat integrity
as the dual of security in an access-control formulation [Bib75]; that is, integrity
levels are assigned to processes and to data, and processes are allowed to read data
only of equal or higher integrity level, and to write data only of equal or lower
integrity level.

Clark and Wilson [CW87] consider integrity from the perspective of commercial
applications, and focus on two key elements: well-formed transactions, and sepa-
ration of duties. The former requires that important data cannot be modified by
arbitrary actions, but only by certain procedures (i.e., well-formed transactions)
that have been certified to preserve its integrity in some suitably defined sense. Ac-
tivation of such a procedure requires human authorization; the person giving the
authorization is then accountable for that action. In order to avoid fraud and min-
imize faults, separation of duties requires that different individuals authorize the
different procedures that constitute a larger action. For example, the person who
authorizes purchase of an item should not be the same as the person who selects
its supplier. Clark and Wilson claimed that mechanisms developed for mandatory

12Many older computer systems cannot adequately segregate data of different classifications, so
everything is treated the same as the most highly classified data managed by the system. When
data is to be transmitted from this “system high” environment to a more lowly cleared destination,
it is necessary to check that the data concerned is of the correct classification, and has not been
contaminated by its proximity to more highly classified material. A guard is an automatic (or
semiautomatic) device that performs the necessary checking and transfer.
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security are inadequate to enforce their model of commercial integrity—a claim that
has generated much debate [BK85,Kar88,KR89,Lee88,Lip82].

Denial of service has received even less attention in the literature, than integrity,
the main contributions being those of Gligor [Gli84,YG90] and Millen [Mil92]. One
process can deny service to another by monopolizing some resource. Crude attacks,
such as a task that refuses to relinquish the CPU or that acquires all available disk
space, can be overcome using quotas. More subtle attacks exploit logical interde-
pendences among tasks, and the coordination mechanisms described earlier. For
example, a task that holds a write-lock (one of the implementation mechanisms for
concurrency control) to a file can deny service to another task that also needs to
write that file. Situations where a low-priority task delays a high-priority one in this
way can arise innocently in real-time systems (where they are called “priority inver-
sions” [DS92]), and can be overcome by allowing the low-priority task to complete
its execution (“priority inheritance” is one of the mechanisms for arranging this).
Obviously, this approach will be ineffective if the denial of service is malicious (or if
the delaying task is broken); in this case the delaying task must be aborted and its
transaction rolled back.

Clearly, a delicate balance must be struck between failure to prevent denial
of service, and over-zealous aborting of tasks that simply overrun their allocation
without impeding other tasks. Gligor and Millen therefore specify denial of service
polices in terms of “user agreements” and finite (or maximum) waiting time. Such
policies can be enforced by a trusted operating system component, rather similar to
the “kernels” used to ensure nondisclosure, and which are described next.

Kernelization is a unique feature of the secure systems approach; the desired crit-
ical property—in this case, the absence of unauthorized disclosure of information—is
ensured by a single mechanism, called a security kernel. This approach had its ori-
gins in the Anderson Panel recommendations of 1972 [And72], which introduced the
concept of a reference monitor : a single isolated mechanism that would mediate all
accesses to data in order to enforce the given security policy. A reference monitor
is required to be:

Correct: it must correctly enforce the chosen security policy. It should be suffi-
ciently small and simple that it can be subject to analysis and tests whose
completeness is assured.

Complete: it must mediate all accesses between subjects and objects. It must not
be possible to bypass it.

Tamper-Proof: it must protect itself from unauthorized modification. This prop-
erty is also called isolation.

The Anderson panel identified the idea of a security kernel as a means of realizing
a reference monitor on conventional hardware. A security kernel may be considered
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as a stripped-down operating system that manages the protection facilities provided
by the hardware and contains only those functions necessary to achieve the three
requirements listed above. The rest of the system, and that should include most
of the operating system as well as all user code, is constrained to operate in the
protected environment maintained by the kernel—and may therefore be completely
untrusted (with respect to security).

Ideally, a security kernel should contain only the code necessary to achieve the
three requirements listed earlier. In practice, however, certain other operating sys-
tem functions usually need to be brought inside the kernel interface in order to
achieve acceptable performance on a conventional hardware base. Conversely, it
is rarely possible to bring all the security-critical functions inside the kernel, and
so trusted processes are introduced. These operate outside the security kernel, but
are not subject to the same constraints on their behavior as ordinary untrusted pro-
cesses. In time, the combination of a security kernel and nonkernel trusted processes
came to be known as a trusted computing base (TCB), and this is the concept that
is described in the Department of Defense Trusted Computer System Evaluation
Criteria [DoD85].

There is some similarity between the mechanisms of security and safety: a secu-
rity kernel is essentially a run-time lockin mechanism for “secure” states. A kernel
can also provide interlocks—for example, to enforce a requirement that certain pro-
cesses are executed in a certain order (e.g., “ready, aim, fire”)—although it cannot
ensure that the processes correctly perform the tasks required of them. Herbert and
Needham [HN81] show how other techniques from security (in this case, capabilities)
can be used to enforce similar properties across a network.

Whereas fault tolerance is primarily a mechanism to ensure normal, or accept-
ably degraded, service despite the occurrence of faults, kernelization and the various
forms of system interlocks are primarily mechanisms for avoiding certain kinds of
failure, and do very little to ensure normal service. The interesting question is,
what kinds of failure can they avoid? Rushby [Rus89] argues that kernelization can
be effective in avoiding certain faults of commission (doing what is not required),
but not faults of omission (failing to do what is required). A kernel can achieve
influence over higher levels of the system only through the facilities it does not pro-
vide; if a kernel provides no mechanisms for achieving certain behaviors, and if no
other mechanisms are available, then no layers above the kernel can achieve those
behaviors.13 The kinds of behaviors that can be controlled in this way are primar-
ily those concerning communication, or the lack thereof. Thus, kernelization can
be used to ensure that certain processes are isolated from each other, or that only
certain interprocess communication paths are available, or that certain sequencing

13It might seem that a kernel could enforce certain “positive” properties by providing the only

way to achieve certain behaviors, but this seems a second-order effect, the first-order effect being
the denial of other means to achieve the behavior.
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constraints are satisfied. Rushby [Rus89] gives a formal characterization of these
properties.

In addition to safety, security techniques also have some application to depend-
ability and fault tolerance. A major issue in fault tolerance is fault containment :
ensuring that the consequences of a fault do not spread and contaminate other com-
ponents of the system [Add91,Hel86].14 Clearly, this is a function that computer-
security techniques can handle very well: simple memory protection and control of
communications can do much to limit fault propagation. More sophisticated fault
containment requirements extend the need for protection across processor bound-
aries, so that a faulty processor cannot write another’s memory [HD92].

Although security has clear applications to fault tolerance, there has been rel-
atively little consideration of the converse—namely, use of fault tolerance in the
context of security. The exceptions include the work of Neumann [Neu86], who
advocates a holistic approach, Dobson and Randell [DR86], who argue for broad ap-
plication of fault-tolerance techniques to security and, more concretely, that of Fray,
Deswarte, and Powell [FDP86], who propose breaking data into pieces that are scat-
tered to different locations15 as a means both for fault tolerance and to reduce the
losses if an intrusion occurs, and also that of Joseph and Avižienis [JA88], who ad-
vocate virus detection using the mechanisms of N -version programming. Intrusion
detection [Den87], which has received much attention of late, can also, perhaps, be
regarded as a step towards a fault-tolerant approach to security: an intrusion can be
considered an error16 that is to be detected automatically by the intrusion-detection
system, but with recovery delegated to human operators.

Denial of service is related to (un)availability (a dependability property): the
most gross denial of service is that which deliberately crashes or otherwise renders
unavailable the service concerned. Fault-tolerant mechanisms could possibly help
prevent such denials of service, and fault containment (a safety concern) also seems
relevant. Other facets of denial of service seem related to real-time properties, which
are considered next.

2.4 The Real-Time Systems Approach

A real-time system is one whose correctness depends not only on values of its out-
puts, but also on the times at which they are produced. Generally, a real-time
system executes a collection of tasks subject to both deadline and jitter constraints:

14The consequences of the absence of fault containment are well-illustrated by the Phobos space-
craft [Che89,Coo90].

15This is how the disk technology known as raid actually works [PGK88].
16It probably indicates a failure of the primary security mechanisms (unless it is an “insider”

attack), but need not be considered a failure at the level of the larger system until the confidentiality
or integrity of data is breached.
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once activated (either by a timer, if it is a periodic task, or by some external event if
it is aperiodic), a task is required to produce its outputs before its deadline, and with
low variability (jitter) from one activation to another. Tight constraints on jitter
arise in feedback control, where the stability of the transfer function may depend
on consistent timing in the feedback loop, and in some systems dependent on I/O
devices that require precise timing between inputs and outputs [Loc92]. In some
systems it can be important not to produce results too early, so that deadlines are
often best treated as intervals, rather than points, in time. Hard real time refers to
circumstances where a missed deadline is potentially catastrophic; for soft real-time
constraints, there is still some (diminished) utility in the results of a task that has
missed its deadline [SR90]. Thus, to be considered correct or useful, real-time sys-
tems must deliver results within specified time intervals, either without exception
(hard real time), or with high probability (soft real time) [HLCM92].

There are two main issues in the development of real-time systems: the derivation
of the timing constraints, and the construction of a system structure (particularly a
scheduling regimen) that guarantees to satisfy those constraints. Traditionally, the
second of these—especially scheduling theory—has received the most attention, but
it can be argued that the first is the more fundamental.

A real-time system usually begins with some qualitative timing requirements,
such as constraints on the simultaneity and ordering of events. For example, “cars
and trains must not be on the crossing at the same time,” or “the valve must be
closed before the hose is disconnected” (examples such as these could derive from
hazard analysis performed in the system safety engineering tradition). Sometimes,
quantitative constraints are present, too: for example, “close the valve, wait 10 sec-
onds, and then check the pressure” or “the control loop must execute at a frequency
of 40 Hz, with no more than 2 msec jitter on sensor sampling or actuator output.”17

In either case, detailed timing requirements emerge as the top-level requirements
are elaborated into designs. For example, one way to avoid cars and trains occupying
a crossing at the same time is to lower a gate across the road shortly before a train
arrives on the crossing. We can calculate how long it takes to lower the gate, and
the minimum time that can elapse between a train passing a sensor and reaching
the crossing, and from that we can deduce timing constraints on the gate controller.
The specification problem at this level is to describe the combination of functional
and timing constraints that the gate controller is to satisfy; the verification problem
is to prove that this specification satisfies the requirement that trains and cars
are not present on the crossing simultaneously. Recently, there has been much
interest in developing logics to support these kinds of specification and verification
problems [AH89,JM86,Koy90,Ost90].

17It can be argued that these are really derived requirements, following from qualitative higher-
level requirements or constraints (e.g., “it takes a few seconds for the pressure sensor to stabilize,”
or “here are the equations for the control laws”).



20 Chapter 2. Traditions and Approaches

Once a detailed functional and timing specification is available, the next job is to
implement it. The issues here are, firstly, how to organize a system implementation
so that its timing behavior is predictable and, secondly, how to use that organization
to guarantee the particular timing behavior required. The largest body of work in
real-time systems concerns these issues, particularly the behavior of preemptive
scheduling algorithms. These topics can be rather arcane, but it is important to
understand their consequences for system structure, and their failure modes (i.e.,
their behavior under overload).

There are two basic ways to organize a real-time system: a cyclic executive,
or a preemptive one. In the cyclic executive, a fixed schedule of tasks is executed
cyclically at a fixed rate. Tasks that need to be executed at a faster rate are allocated
multiple slots in the task schedule. This means that all task iteration rates are some
multiple of the iteration rate of the basic cycle (which can lead to tasks being
scheduled rather more frequently than necessary, thereby wasting CPU resources,
or rather more slowly, thereby possibly compromising basic timing constraints, or
reducing performance). Even tasks that need to be executed aperiodically (e.g.,
only when there is keyboard input) are still scheduled periodically (to poll for input
and process it if present). The maximum execution time of each task is calculated
and sufficient time is allocated within the schedule to allow each task to run to
completion. This static allocation of CPU resources allows other resources (e.g.,
communications bandwidth, I/O devices) to be statically scheduled, also. These
fixed allocations mean that the time slots of tasks that finish early cannot generally
be allocated to other tasks (usually, such time is used to run self-checking diagnostic
tasks).

One disadvantage of cyclic executives is that sufficient time must be allocated
to each task to allow it to run to completion in the worst case. This can lead to
very low CPU utilization, and to low iteration rates. This problem is exacerbated
with modern CPU and communications architectures that use pipelines, caches, and
contention protocols: the average case performance of these systems is considerably
improved at the price of a very long tail on the worst-case probability distribution.
Cyclic executives must be designed for this very pessimistic worst case.

The other main disadvantage of the cyclic executives is the fragility and com-
plexity they impose on their application tasks. Suppose, for example, that one task
requires 100 msec to perform its functions but is only scheduled every 400 msec,
while another takes only 5 msec but must be scheduled every 50 msec. The only
way to accommodate these conflicting requirements is to break the longer task into
several smaller fragments, thereby complicating its design and the vulnerability of
its intermediate state data to interference by (possibly erroneous) intervening tasks.
Requirements for low jitter on output may also cause a single task to be broken into
two: because the execution time of the basic task may not be accurately predictable
(it may be data dependent), the task is broken into one part that does the calcula-
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tion and leaves its result in a buffer, and another part that relies on the accuracy of
the cyclic scheduler to invoke it at exactly the right time to transfer the data from
the buffer to its actuator, or other time-critical destination.

The fragility of this organization becomes apparent when it is necessary to in-
sert a new task, or to change the iteration rate of an existing task. All the static
allocations of resources must be recalculated and adjusted, taking into account the
interdependencies of tasks that are really components of some larger task. So diffi-
cult can these adjustments become that, rather than adjust the whole schedule to
accommodate new tasks, it is common to squeeze them into the tail end of existing
tasks of the correct iteration rate that do not use all their time slot. Thus, the cyclic
executive can impose high software engineering costs when maintenance and other
lifecycle expenses are considered for its application tasks.

An advantage of the cyclic executives is their complete determinism. This al-
lows accurate prediction of their timing behavior and makes for simple and efficient
implementations. The downside to their determinism is their fragility when timing
assumptions are violated: there is no good solution if a task overruns its allocation.
Allowing the task to complete and slipping the rest of the schedule is extremely
hazardous to all other timing-dependent behavior; aborting the task risks creating
an inconsistent state that can also have unpredictable downstream consequences.
Locke [Loc92], from whom most of this discussion is derived, observes that “virtu-
ally every practical system will encounter frame overruns at some point during its
lifetime, frequently under unanticipated high load stress (i.e., the time when cor-
rect system execution is most critical).” In an early version of SIFT [W+78], for
example, data errors could lead to the voting tasks taking longer than anticipated,
thereby causing them to miss their deadlines and leading good channels to disagree
on fault status ([PB85, p. 16] describes the sensitivity of the voting time to errors,
but the failure scenario is not documented).

The major alternative to the cyclic executive is the priority-driven preemptive
executive. Here, each task has a fixed priority and the executive always runs the
highest-priority task that is ready for execution. If a high-priority task becomes
ready (e.g., because of a timer or external interrupt) while a lower-priority task is
running, the lower-priority task is interrupted and the high-priority task is allowed
to run. Note that this organization requires relatively expensive context switching to
save and later restore the state of an interrupted task (since tasks run to completion
under cyclic executives, context switching there can be simple and fast). The chal-
lenge with priority-driven executives is to allocate priorities to tasks in such a way
that overall system behavior is predictable and all deadlines are satisfied. Originally,
a number of plausible and ad-hoc schemes were tried (such as allocating priorities
on the basis of “importance”), but the field is now dominated by the rate monotonic
scheduling (RMS) scheme of Liu and Layland [LL73]. Under RMS, priorities are
simply allocated on the basis of iteration rate (the highest priorities going to the
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tasks with the highest rates18). The deadline for each task is taken to be the end of
the period in which it is scheduled for execution, and it can be shown that all tasks
will meet their deadlines as long as the utilization of the processor does not exceed
69%.19 Furthermore, it can be shown that if any priority scheme allows a particular
task set to meet its deadlines, then RMS will.

The early theory of RMS made many simplifying assumptions—for example,
that the context-switch time was zero, and that tasks were independent (so that no
synchronization was required). More recent treatments have lifted most of these re-
strictions [SLR86,SRL90]. In particular, the priority inheritance and priority ceiling
protocols [SRL90] have overcome the problems of “priority inversions.” Inversions
arise primarily when tasks synchronize on shared resources [DS92]; for example,
a high-priority task may be blocked by a low-priority task that has locked a re-
source needed by the high-priority task (the high-priority task cannot preempt the
low-priority task because it will not be able to access the locked resource until the
low-priority task releases it), but a medium-priority task that does not need the
locked resource will be able to preempt the low-priority task, thereby delaying the
time when the high-priority task will be able to execute. Priority inheritance over-
comes this problem by causing the low-priority task to inherit the priorities of the
tasks that it is blocking. In the example, the low-priority task will temporarily exe-
cute with the priority of the blocked high-priority task, thereby avoiding preemption
by the medium-priority task. Mechanisms such as this also seem necessary to avoid
denial of service in secure systems that employ priority-based scheduling, even in
the absence of hard real-time constraints.

The main advantage of priority-based executives is that they greatly simplify the
software engineering of the application tasks. There is no need to break long tasks
into several shorter ones20 (long tasks will be preempted by tasks of higher iteration
rates, and the executive will look after the problem of saving and restoring their
states), and no difficulty in adding new tasks, nor changing the iteration rates of
existing tasks. Furthermore, there is no need for all tasks to execute at some multiple
of the basic iteration cycle: tasks can execute at their most appropriate rates. It can
be argued that by not requiring tasks to execute with excessive frequency, simply
to match a multiple of the basic cycle, priority-based executives recover more than
enough time, relative to cyclic executives, to compensate for their more expensive
context switches.

Priority-based executives behave much more gracefully than cyclic executives
when a task runs longer than expected: as long as total CPU utilization does not

18Another scheme is “earliest deadline first”; this is claimed to have some advantages over RMS.
1969% (the natural logarithm of 2) is a worst-case figure; the actual bound depends on the periodic

relationship of the tasks and is generally in the range of 88% to 98%.
20That is not quite true: it can be necessary to break tasks into two and/or fiddle with priorities in

order to minimize jitter (only the highest-priority tasks execute without jitter under priority-based
scheduling) or to avoid producing results too soon.
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exceed the limit for the task set concerned, all other tasks will continue to meet their
deadlines. Furthermore, schedulability analyses allow prediction of which tasks will
miss their deadlines under overload scenarios, allowing preplanned responses to be
developed.21

It is a topic of much debate whether schedules for critical systems should be
static, based on the cyclic executive model, or dynamic and based on a priority-
driven executive with rate monotonic scheduling. Proponents of static schedules
point to Richards’ anomalies [Man67, Ric60] (in which the early completion of
one task can cause another to be late), priority inversions, and other difficulties
in dynamic scheduling as indications that the predictability required for hard real-
time systems is best achieved by static scheduling. The contrary point of view
argues that the external environment does not always behave predictably, and that
a real-time system must adjust its behavior in order to adapt to changed circum-
stances [BW91,Loc92,SR90]. The two poles of this debate reflect different kinds of
concerns and systems: static scheduling has traditionally been used for predictable
environments, such as flight control, where there is a fixed schedule of activities to
be performed; dynamic scheduling is more natural for unpredictable environments,
such as target engagement, where it must be possible to accommodate the number
of threats actually present. Even so, there are those who advocate static allocation
even for the latter kind of systems [XP91].

Beyond the dynamic scheduling of priority-driven executives lies an even more
adaptive approach exemplified by the Alpha system [Jen92]. The model here as-
sumes a very uncertain and dynamic environment, and correspondingly many and
changing goals that the system must strive to achieve. Scheduling of tasks in Alpha
is not performed according to deadlines or priorities, but according to a model of
“benefit accrual.” Alpha tasks have a benefit function associated with them, that
indicates the overall benefit b(t) of completing the task at time t. In the case of a
point-defense system, for example, there is a period following sighting of an incom-
ing missile when “later is better” for firing the point-defense system’s own missile
(firing later allows more accurate targeting and more fuel for maneuver). Thus
the benefit function will show a curve rising with time (see Figure 2.1). At some
point, however, the incoming missile will be too close for a successful intercept to
be likely, so the benefit function shows a steep decline, becoming negative if the
defensive missile is fired when it has no chance of intercepting the attacker. Alpha
attempts to schedule activities in such a way that maximum overall benefit accrues.
Its scheduling is “best-effort,” in that it seeks to do the best it can, given the re-
sources available, and the demands placed upon it. This approach is advocated for

21Basically, it is the lowest-priority (i.e., lowest-frequency) tasks that will miss their deadlines; it
is possible to adjust priorities in certain circumstances so that important, but low-frequency, tasks
can be given higher priorities [SLR86]. Similar adjustments to priorities can be made in order to
improve jitter [LSD89].
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Figure 2.1: A Benefit Function

use in “soft” real-time environments, rather than in those “hard” environments that
demand absolute predictability.

In part, the concern for absolute predictability (and hence the preference for
cyclic executives) in certain real-time systems seems to stem from the conviction
that any missed deadline is potentially catastrophic. Yet deadlines are generally
derived requirements, and there is often some flexibility in the values chosen. It
seems that a closer integration between the derivation of timing constraints and
the properties of execution mechanisms could allow better informed engineering
decisions. In particular, use of formal methods in the derivation of timing constraints
might allow more relaxed deadline and jitter requirements: the greater precision
of formal methods would allow these requirements to be calculated more exactly,
whereas current informal methods tend to err on the conservative side, and thereby
impose more stringent deadlines than may really be necessary. Such formally derived
deadlines would also allow more reliable design changes in response to scheduling
conflicts or changed requirements, since the rationale for the existing design would
be explicitly recorded.

Real-time systems are often required to be fault tolerant, and this is generally
organized as fault masking based on modular redundancy (although, see [AK83] for
a method based on backwards recovery) in which all calculations are performed by N

identical computer systems and the results are submitted to some form of averaging
or voting. The delays due to voting and distributed agreement algorithms do not
unduly complicate the scheduling of cyclic executives, but can lead to anomalies
in priority-driven schemes, since the delays and task timings may not be the same
in all channels, possibly causing their schedules to diverge. McElvany Hugue and
Stotts consider scheduling problems in fault-tolerant systems [HS91].
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Another topic of debate is whether the redundant channels of fault-tolerant real-
time systems should operate synchronously or asynchronously. Numerous practical
difficulties attend the asynchronous approach [IRM84,Mac88] (see [Rus91, Chapter
1] for a summary), but it is often used in practice because the synchronous approach
(which is overwhelmingly preferred by researchers) requires rather sophisticated
Byzantine-resilient algorithms for clock synchronization [LMS85], distribution of
sensor samples [LSP82], fault diagnosis [Wal90], group membership [Cri88,KGR89],
and other basic tasks [Cri91].

An important error-recovery mechanism for real-time systems is the watchdog
timer. In its simplest application, the timer is set on entry to the main loop,
timed to go off slightly after control should have returned to the same point. If
control does indeed return, the timer is reset and the process repeats. If control
does not return for any reason, the watchdog timer will generate an unmaskable
interrupt that can force control to an error handler, or even trigger a system re-
set. More sophisticated fault-tolerance mechanisms have been proposed for circum-
stances where task timings can be very variable, yet guaranteed deadlines must be
met. These techniques trade time against quality or accuracy of results. In Camp-
bell’s scheme [CHB79,WHCC80,LC86], a task is allowed to run until some fixed time
before its deadline. If it has not produced a result by then, it is aborted and some
(presumably) less-desirable task is run that is guaranteed to produce an acceptable
result in the remaining time. An alternative scheme first computes the acceptable
result in guaranteed time, then uses any remaining time to improve it in some way
(e.g., accuracy) [CLL90].



Chapter 3

Formal Models and Assurance

We have so far mainly considered critical system properties in terms of the mecha-
nisms used to achieve them. Additional perspectives on critical system properties
can be obtained by considering techniques used in their formal specification, and
the different methods of assurance employed.

3.1 Formal Specification Techniques

In attempting to understand system properties and their relation to each other and
to mechanisms for satisfying them, it can be valuable to consider formal character-
izations that have been proposed. Dependability, safety, and real-time properties
tend to be application specific, and so there have been relatively few attempts to
provide generalized formulations of these properties. Certain security properties,
however, have been formalized in rather general ways.

The first security models assumed a system composed of active subjects (pro-
grams operating on behalf of users) and passive objects (repositories of information);
subjects can read or write objects according to restrictions imposed by an access
control mechanism that indicates whether a particular subject is allowed to reference
a particular object in a particular manner. The Bell and La Padula model [BL76]
considered the situation in which subjects and objects are given clearances and clas-
sifications, respectively, drawn from some partially ordered set of security classes.
Security is then identified with the requirements that the access control mechanism:
(a) allow a subject read access to an object only if the clearance of the subject is
greater than or equal to (in the partial order) the classification of the object (this
is called the simple security property), and (b) allow write access only if the classi-
fication of the object is greater than or equal to the clearance of the subject (this is
called the *-property).

The Bell and La Padula model suffers from several deficiencies. In the first place,
it allows “covert channels” in which information is conveyed from a highly classified

26
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object to a more lowly cleared subject (contrary to any reasonable interpretation
of security) without violating the requirements of the model. Covert channels are
present in the “Multics Interpretation” that Bell and La Padula used to demonstrate
the application of their model.1 The second class of problems in the Bell and La
Padula model follows from the fact that it imposes no semantic characterizations
on the interpretations of “read” and “write.” It is easy to violate the intent of the
model by interpreting these perversely [McL85].

These weaknesses of the Bell and La Padula model are overcome in the nonin-
terference formulation of mandatory security for sequential systems [GM82]. The
idea underlying noninterference is that the behavior perceived by a lowly cleared
user should be independent of the actions of highly cleared users. The model is
formalized in terms of a state machine: inputs from lowly and highly cleared users
are interleaved arbitrarily; lowly classified users can observe the outputs produced
in response to their inputs and must observe the same input/output behavior no
matter what inputs are present from highly cleared users.

A useful class of security policies that are distinct from the multilevel policies
(i.e., those based on a partially ordered set of security classes) comprises those that
describe the “wiring diagrams” of systems composed of otherwise isolated subsys-
tems. For example, the “red/black” separation required in end-to-end cryptographic
devices can be described in this way.2 Rushby [Rus81] called these channel-control
policies. Boebert and Kain have argued persuasively [BK85] that a variation on
channel control called “type enforcement” can be used to solve many vexing secu-
rity problems. The first satisfactory formal treatment of these polices was given by
Haigh and Young [HY87].

Important components of noninterference formulations of security are the “un-
winding” theorems that establish conditions on the behavior of individual actions
sufficient to ensure security of the system [GM84]. These unwinding theorems pro-
vide the basis of practical methods for formally verifying that an implementation
satisfies a noninterference security policy. Rushby [Rus92b] argues that Haigh and
Young’s unwinding theorem for channel control policies is incorrect; he proposes a
slightly different treatment called “intransitive noninterference” for which he derives
and formally verifies a modified unwinding theorem.

1Examples of such channels are described by Taylor [Tay84] and by Millen and Cerniglia [MC83];
they exploit operations that allow the classifications of objects and clearances of subjects to be
reassigned.

2Plaintext messages and headers arrive at the “red side”; messages are sent through an en-
cryption device and headers are sent through a “bypass” to a “black side,” where the two parts
are reassembled for transmission over unsecured communications links. An important security re-
quirement here is that the only “wires” connecting the red and black sides should be those via the
encryption device and the bypass: there must be no way for plaintext messages to go directly from
the red to black sides.
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Extension of noninterference to the distributed or parallel case has proved tricky
because the nondeterminism of a parallel system means that the lowly cleared user
may see different behavior on different “runs” independently of the behavior of the
highly cleared user. We have to say that the total variety of possible behaviors
perceived by the lowly cleared user is unchanged by actions of the highly cleared
user. There have been many attempts to formulate this notion in an effective way
(in particular, in a way that is preserved under composition) [JT88,McC87,McC88,
Mil90,WJ90], and the large number of different formulations indicates that this goal
is proving elusive.3

Most of these security models for distributed systems describe the behavior of
such systems in terms of their traces. Several variations on the precise definition
are possible, but a trace is essentially a time-ordered sequence giving the history of
values passed over the communications channels of the system.4 The behavior of a
system is then the set of traces that it can generate; a specification is likewise a set
of traces. A property is a predicate on traces.5

Since every predicate defines a set (at least in typed logics), and vice versa,
specifications and properties are formally equivalent. However, there seems to be a
useful distinction between properties, which we think of as being defined for traces
considered in isolation, and other kinds of specifications that require consideration of
the whole set of traces concerned. Consider, for example, the specification “average
response time shall be less than one minute.” If we interpret this as meaning the
average over each individual run6 of the system, then it is a property: given the
trace for any run, we will be able to tell whether or not it satisfies the response
rate requirement. But if the average is interpreted over all runs, then we cannot tell
whether a given trace satisfies the requirement without knowing something more
about the complete set of traces satisfying the specification: a given trace may have
an average response time (within the trace) of ten minutes, but may still satisfy the
specification if the specification admits other traces with very fast responses, so that
the overall average is under one minute.

The distinction we are seeking between properties and other kinds of specifica-
tions seems difficult to capture precisely. It may be that “nonproperty” specifications
are related to the logician’s notion of an impredicative definition, or it may simply

3None of these definitions consider the probability distribution over the variety of possible be-
haviors and therefore admit covert timing channels. Probabilistic models are needed to rule these
out [Gra91,McL90].

4An event (c, v) corresponds to the value v being sent over channel c; a trace is then a sequence
of such events recorded in their order of occurrence. Simultaneous events are recorded in some
arbitrary order.

5Behaviors, specifications, and properties should be prefix closed : if a given trace satisfies a
specification, for example, so should all its prefixes.

6Or rather, each run longer than some minimum duration (to avoid special start-up cases).
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be that they are higher-order properties.7) One reason this distinction seems im-
portant is that security appears to be a “nonproperty” specification in the sense
used here, and this may help explain the apparent difficulty in finding an attractive,
composable, definition of security for distributed systems.

A classical distinction in system modeling is that between safety and liveness
properties.8 A safety property stipulates that specific “bad things” do not happen
during execution, while a liveness property stipulates that certain “good things” do
happen (eventually). Formally, a safety property S is one such that for all traces
τ 6∈ S, there is a prefix α of τ such that ∀β : α◦β 6∈ S (where ◦ denotes concatenation
of sequences). In other words, a safety property is one such that if a trace “goes
bad,” there is an identifiable point at which it happens [AS85]. A liveness property
L is one such that ∀α∃β : α ◦ β ∈ L. In other words, a liveness property is one such
that every trace can be extended to satisfy the property. Distinguishing between
safety and liveness properties is useful because they require different mechanisms
and assurance techniques. It has been shown that any system property can be
expressed as the conjunction of a safety property and a liveness property [AS85]
(incidentally, we have formally verified Schneider’s proof of this theorem [Sch87]).

Results of Abadi and Lamport [AL93] show that “well-behaved” properties are
preserved under composition (that is to say, if you have two systems possessing
the property concerned, connecting them together will yield a larger system satisfy-
ing the property). “Well-behaved” in this context means satisfying the premises of
Abadi and Lamport’s Theorem 2. These premises are deeply technical; the devel-
opment leading up to the statement of the theorem is 40 pages long, and involves
introduction of concepts such as “stuttering-equivalence,” “µ-abstractness,” “real-
izability,” “µ-strategy,” “µ-realizability,” “µ-receptivity,” and “constrains-at-most
µ.” However, a rough idea of what is going on can be conveyed without too much
technicality. The basic goal is to compose systems satisfying properties of the form
Ei ⊃ Mi where the Ei’s are assumptions about the behavior of the environment,
the Mi’s are the behaviors of the components, and ⊃ denotes implication. One of
the conditions necessary for systems and properties to compose nicely is that the
Ei’s should be safety properties.

Thus, one approach to finding attractive, composable specifications of security
(or else explaining why such specifications cannot be found) might be to seek for-
mulations of security as a property (recall the standard definitions of security for

7Recent work by John McLean [McL94] resolves this issue: he shows that concepts such as
“average response time” and security are properties of sets of traces (i.e., they are second-order
properties).

8Note that here “safety” is a technical term, having no special connection to the concerns of
systems safety engineering.
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distributed systems seem to be “nonproperty” specifications) that, additionally, sat-
isfy Lamport and Abadi’s general conditions for composability.9

There have been some attempts to specify fault tolerance in a general manner.
These specifications also use a trace model and can be divided into two classes.
The calculational class treats the activation of a fault as the result of an operation
performed (or input provided) by the environment. A trace of the form α◦β will be
transformed into one of the form α ◦ e◦β ′, where e is the fault-activation event that
causes the subsequent behavior of the system to change from β to β ′. The system
can be considered fault tolerant with respect to the class of faults represented by e,
if the trace α ◦ e ◦ β′ satisfies the specification for the system (or some acceptably
degraded version of the specification). This approach is called calculational because
it can require the value β ′ to be calculated by considering the effects of e.

The alternative approach, which we will call the (failure) specification approach,
regards a system as the composition of several subsystems, each of which has a
standard specification and one or more failure specifications. The requirement is
for the system to deliver its standard specification if all its components do, and to
satisfy one of its failure specifications if some of its components depart from their
standard specifications. Whereas in the calculational approach we must calculate
the behavior of the system subsequent to the activation of a fault in order to see
whether the system specification is satisfied, in the specification approach we simply
compose standard and failure specifications for the system components.

The specification approach is closest in spirit to Cristian’s exposition of the
principles of fault-tolerant design [Cri91]. It is articulated by Nordahl [Nor92], who
states that it can also be seen in the work of Mancini and Pappalardo [MP88]. Schep-
ers’ [Sch92] approach is also in this vein. Nordahl cites the work of Peleska [Pel91]
and the state-machine technique [Sch90] as examples of the calculational approach.
Formal techniques for specifying graceful degradation [HW91] are essentially the
same as the specification approach to specifying fault tolerance.

A connection can be seen between a strong form of the calculational approach
(strong in that all faults must be masked) and the noninterference formulations of
security. In the case of security, the arrival of “high” inputs must produce no effect
on the behavior seen by “low” users; for fault tolerance, it is the arrival of inputs
corresponding to the activation of a fault that should have no effect on the behavior
seen by users. Weber [Web89] was the first to recognize this similarity.

Unfortunately, the parallel noted by Weber is neither as close nor as useful as
might be hoped: if it were, we could use the techniques of security to build fault-

9Again, the recent work of McLean [McL94] goes a long way to resolving and explaining this
issue. He shows that security is a property of sets of traces that is not closed, in general, under
subsetting. Composition (and, especially, feedback) usually reduces the set of traces that a system
may exhibit, and the reduced subset may fail to satisfy a security property that was satisifed by
the original set.
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tolerant systems. The reason the parallel breaks down is that operations invoked by
“high” users in the security context are assumed to satisfy the standard specification
of the system, whereas those corresponding to a fault activation may be much less
constrained.10

Although it does not seem that noninterference specifications extend usefully
from security to general fault tolerance, it may be that they do extend to the im-
portant property of fault containment : for example, once a fault-activation oper-
ation has flipped a bit in the address space of some process, we want to be sure
that this cannot cause the CPU (which might, perhaps, interpret the damaged word
as an address) to corrupt the state of some other process. The requirement for
such fault containment can be discerned in certain formal specifications of fault
masking [Rus92a], and further exploration of these connections would be useful.

Self-stabilizing formulations of fault tolerance can be described by a variation
on the calculational approach. For example, Arora and Gouda [AG93] use states
and state predicates, rather than traces, to characterize system behavior. A state
predicate is said to be closed with respect to a set of operations ops if execution of
any operation in ops in a state where the predicate holds results in a state where
it also holds. A predicate T converges to the predicate S under the operations ops
if every computation involving only operations from the set ops starting in a state
where T holds eventually reaches a state where S holds. A system is said to be
self-stabilizing for a set of “standard” operations std , fault-activation operations F ,
and specification S, if there exists a state predicate T such that:

1. S is closed with respect to the operations std ,

2. Execution of an operation from F in a state satisfying S results in a state
satisfying T ,

3. T is closed with respect to the set std∪F of both standard and fault-activation
operations, and

4. T converges to S under the operations in std .

In other words, the system normally satisfies the invariant S; a fault activation
can knock it into a state satisfying T , but further fault activations will leave T

invariant; and if no fault activations arrive for some time, the system will eventually
return to a state satisfying S.

An interesting feature of this definition is that it is essentially identical to a for-
mulation of safety proposed by Leveson [Lev84]. In her formulation, S corresponds

10For example, a “high” operation—such as one that flips a bit in a word of memory—is con-
strained by the memory-management and protection features of the hardware (setting these fea-
tures up appropriately is most of what secure system design is all about), whereas a similar fault-
activation operation may flip a bit anywhere in memory (or even in the memory-management unit).
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to “safe” states, and T to “unsafe” states.11 There is, however, a difference in
the interpretation intended for Arora and Gouda’s self-stabilizing model, and that
intended for Leveson’s safety model, in that Leveson’s notion of “state” definitely
comprehends the entire system (i.e., including the physical plant), whereas Arora
and Gouda seem to include just the state variables of the computer system.

We have seen that there are some connections between the standard formal
treatments of security and some specialized interpretations of safety, between se-
curity and fault tolerance, and also between the self-stabilization formulation of
fault tolerance and safety. Another attempt to establish formal connections and
distinctions between security and safety has been proposed by Burns, Dobson, and
McDermid [BMD92]. Their model uses somewhat different characterizations of the
terms “security” and “safety” than those considered before, and it is not clear in
what sense their model is formal (i.e., it does not appear to provide any deductive
apparatus). Basically, their idea is that a safety violation is something that does
immediate harm, whereas a security violation is one that creates conditions that
allow harm to be done later.

Although fault tolerance, safety, and security must often be considered in
application-specific terms, we have described some formal specifications for these
concepts that do seem to have broad application. This does not seem to be possi-
ble with real-time properties: whereas one can give a general specification of what
it means to be, say, a secure computer system, real-time properties are essentially
application-specific and generalized specifications make little sense. For this reason,
formal treatments of real-time properties have focused on concepts and notations
for expressing a wide range of such properties.

Time can be used to express notions of simultaneity, mutual exclusion, and se-
quencing as well as the durations of, and between, events. Those properties that
concern temporal ordering rather than duration are conveniently specified using
temporal logics [Eme90]. These are modal logics (usually specializations of a stan-
dard one called S4) where the modalities, 2 and 3, range over a temporal order. 2A

(“henceforth” A) says that the temporal assertion A is forever true, and 3A (“even-
tually” A) asserts that A eventually becomes true. Pnueli [Pnu77] was the first to
recognize that these logics could be used to reason about distributed computations
and, in particular, about liveness properties. These techniques were developed and
popularized by Lamport [Lam83b,Lam89] and others.

There are two families of temporal logics: linear time and branching
time [Lam83a]. Both families have their adherents, and both have led to effec-
tive specification techniques. It is usually necessary to embellish the basic logics of
either family with additional operators in order to achieve a comfortable degree of

11Leveson’s model ranks the unsafe states according to “risk” and allows states from which no
totally safe recovery is possible, but these details can easily be incorporated into the self-stabilizing
model.
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expressiveness; examples include “next state,” “until,” and backwards-time opera-
tors. Interval logics are temporal logics specialized for reasoning over intervals of
activity [SMSV83]. The Temporal Logic of Actions (TLA) [Lam91] is a temporal
logic in which the modal operators are generalized from states to pairs of states
(actions); it achieves considerable expressiveness with very little mechanism.

Many modal logics have what is called the “finite model property,” which renders
them decidable. The models of temporal logic are essentially finite-state machines;
conversely a finite-state machine is a potential model for a temporal logic formula.
This observation gives rise to “model checking”: the goal is to check whether a
finite-state machine describing a system implementation satisfies a desired property
specified as a temporal logic formula. This process is equivalent to testing whether
the specified machine is a model for the specified formula. Because temporal logic
can be quite expressive, and because model checking is decidable, this technique
offers a completely automatic means for verifying certain properties of certain sys-
tems [CES86]. Very clever model-checking algorithms allow finite-state machines
with large numbers of states to be checked in reasonable time [BCM+90]. Model
checking is not a replacement for conventional theorem proving in support of verifi-
cation (it is applicable to only certain properties and implementations), but it can
be a very valuable adjunct.

Despite their name, temporal logics do not provide ways to reason about “time”
in a direct or quantitative (i.e., “real-time”) sense. Several extensions to temporal
logic have been proposed for reasoning about real-time properties. The simplest
extension is Metric Temporal Logic (MTL) [Koy90] where bounded versions of the
temporal operators are introduced. Thus 2>3A asserts that A is true in every state
that is more than 3 time units in the future, and 3≤3A asserts that A will eventually
hold within 3 time units. The constraint that an acknowledgment should be sent
within 6 units of receiving a message can be expressed in MTL as

2(Rcv ⊃ 3≤6Ack),

where Rcv indicates “message received” and Ack “acknowledgment sent” (and ⊃ is
the symbol for “implies”).

The explicit-clock temporal logics such as Real-Time Temporal Logic
(RTTL) [Ost90] use a special variable T to indicate the value of time at any state
and use first-order quantification over that variable to make real-time assertions.
The previous example could be expressed in an explicit clock logic as

∀x2((Rcv ∧ x = T ) ⊃ 3(Ack ∧ T ≤ x + 6))

(where ∀ means “for all,” and ∧ means “and”). The idea here is that x takes a
“snapshot” of the clock in a state at which Rcv is true, so that the right hand side
of the implication can say that there must eventually be a state in which Ack is true
and the clock has advanced at most 6 units.
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Mixing first-order quantification (i.e., ∀ and ∃) with the temporal modalities can
lead to complexity. Timed Propositional Temporal Logic (TPTL) [AH89] is an ex-
tension to temporal logic that provides just enough mechanism to take “snapshots”
of the (implicit) clock, without adding the full power of first-order quantification.
In TPTL, the temporal modalities bind a variable that “freezes” the current value
of time, which can then appear in inequalities—so that our example then appears
as:

2x.Rcv ⊃ 3y.Ack ∧ y ≤ x + 6.

Alur and Henzinger [AH91] survey these and many other real-time variants of
temporal logic; they identify six dimensions of choice that must be made in creating
such a logic, and describe current knowledge concerning expressiveness and decid-
ability for various choices. It seems that no single logic is uniformly superior to
the others (for example, there are properties that are much more difficult to specify
in MTL than TPTL, and also vice-versa). Their survey does not include interval
temporal logics, which have also been extended to real-time systems [CHR92,MS87].

Classical logics can also be used to reason about time. Jahanian and Mok’s Real-
Time Logic (RTL) [JM86] was one of the earliest attempts; it uses an occurrence
operator @(i, e) to denote the time of the i’th occurrence of event e, so that our
example would appear as

∀i : @(i, Rcv) + 6 ≥ @(i, Ack).

A graphical framework for state machine specifications called “modecharts” has
been based on RTL [HLCM92], and a verifier allows certain real-time properties to
be proved of such specifications [Stu90]. However, the examples that have been sub-
jected to mechanically-supported analysis in this way are relatively straightforward.
Most of the really hard examples of real-time reasoning (for example, those con-
cerning clock-synchronization algorithms [LMS85,RvH93,Sha92]) have used “brute-
force” encodings of time within classical first- or higher-order logic.

3.2 Assurance Methods

An important attribute of critical systems is that they must not only satisfy their
critical properties, they must be seen to do so. Thus, extremely rigorous methods
of assurance are typically employed for such systems. The different traditions that
have considered critical system properties differ in the extent to which quantifiable
measures are employed in the statement of assurance requirements. Some under-
standing of quantitative—that is, probabilistic—assessment of system properties
is helpful, even when considering traditions (such as security) that have generally
shunned such approaches: appreciation of the numbers reinforces awareness of the
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responsibility carried by the assurance methods used. For this reason, we treat
probabilistic assessment at some length (the discussion is derived from [Rus93]).

System failures can be random or systematic; the former are due to latent man-
ufacturing defects, wear-out and other effects of aging, environmental stress (e.g.,
single-event upsets caused by cosmic rays), and other degradation mechanisms that
afflict hardware components, while the latter (which are sometimes called generic
faults) are due to faults in the specification, design, or construction of the system.
Random failures are naturally measured in probabilistic terms; the probability of
random failure in a system can be estimated by sufficiently extensive and realistic
testing, or (for suitably simple systems) it can be calculated from historical reliabil-
ity data for its component devices and other known factors, such as environmental
conditions.

Systematic failures are not random: faults in specification, design, or construc-
tion will cause the system to fail under specific combinations of system state and
input values, and the failure is certain whenever those combinations arise. But
although systematic failures occur in specific circumstances, occurrences of those
circumstances are associated with a random process, namely, the sequence over
time of inputs to the system. Thus, the manifestations of systematic failures behave
as stochastic processes and can be treated probabilistically: to talk about a piece
of software having a failure rate of less than, say, 10−9 per hour, is to say that
the probability of encountering a sequence of inputs that will cause it to exhibit a
systematic failure is less than 10−9 per hour. Note that this probabilistic measure
applies whether we are talking about system reliability or a system property such as
safety; what changes is the definition of failure. For reliability, a failure is a depar-
ture from required or expected behavior—whereas for safety, failure is any behavior
that constitutes a hazard to continued safe operation. By similar interpretations,
security, and departure from required real-time behavior, can also be measured in
probabilistic terms.

Where critical system properties differ from ordinary reliability requirements is
in the extremely small probabilities of failure that can be tolerated. Highly reliable
systems may be required to achieve failure rates in the range of 10−3 to 10−6 per
hour, whereas requirements for critical system properties often stipulate failure rates
in the range of 10−7 to 10−12 per hour. We will speak of required failure rates of
10−7 to 10−12 per hour as the “ultra-critical” range, and will talk of such systems
as “ultra-critical.” Bear in mind that these probabilities generally refer only to
the incidence of critical failures, and not to the general reliability of the systems
concerned.

The change in acceptable failure rates between reliable and ultra-critical systems
has such a profound impact that it goes beyond a difference of degree and becomes
a difference in kind—the reason being that it is generally impossible to directly
validate failure rates as low as those stipulated for critical system properties.
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There are two ways to estimate the failure rate of a system: one is to measure
it directly in a test environment, and the other is to calculate it from the known or
measured failure rates of its components plus knowledge of its design or structure
(the second method is often accomplished using Markov models).

The direct measurement approach faces two difficulties: first is the question
of how accurately the test environment reproduces the circumstances that will be
encountered in operation; second is the large number of tests required. If we are
looking for very rare failures, it will be necessary to subject the system to “all up”
tests in a highly realistic test environment. Furthermore, it will clearly be necessary
to subject the system to very large numbers of tests (just how large a number is a
topic we will come to shortly)—and if we are dealing with a reactive system, then
a test input is not a single event, but a whole trajectory of inputs that drives the
system through many states.12 Furthermore, if we are dealing with a component of
a larger system, then it will also be necessary to conduct tests under conditions of
single and multiple failures of components that interact with the system under test.
Obviously, it is very expensive to set up and run such a test environment, and very
time consuming to generate the large and complex sets of test inputs required.

So how many tests will be required? Using both classical and Bayesian proba-
bilistic approaches, it can be shown that if we want a median time to failure of n

hours, then we need to see approximately n hours of failure-free operation under
test [LS93].13 So if we are concerned with a critical property with a required failure
rate of 10−9 per hour, we will need to see 109 failure-free hours of operation under
test. And 109 hours is a little over 114,000 years! 14

Since empirical quantification of software failure rates is infeasible in the ultra-
critical region, we might consider calculating the overall failure rate from those of
smaller components of the software. To be feasible, this approach must require rel-
atively modest reliabilities of the components (otherwise we cannot measure them);
the components must fail independently, or nearly so (otherwise we do not achieve
the multiplicative effect required to deliver ultra-critical quality from components
of lesser dependability); and the interrelationships among the components must be
simple (otherwise we cannot use reliability of the components to calculate that of

12The key issue here is the extent to which the system accumulates state; systems that reinitialize
themselves periodically can be tested using shorter trajectories than those that must run for long
periods. For example, the clock-drift error that led to failure of Patriot missiles [GAO92] required
many hours of continuous operation to manifest itself in a way that was externally detectable.

13The Bayesian analysis shows that if we bring no prior belief to the problem, then following n

hours of failure-free operation, there is a 50:50 chance that a further n hours will elapse before the
first failure.

14Butler and Finelli [BF93] present a similar analysis and conclusion (see also Hamlet [Ham92]).
Parnas, van Schouwen, and Kwan [PvSK90] use a slightly different model. They are concerned
with estimating trustworthiness—the probability that software contains no potentially catastrophic
flaws—but again the broad conclusion is the same.
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the whole). Ordinary software structures do not have this last property: the compo-
nents communicate freely and share state, so one failure can corrupt the operation of
other components [PvSK90]. However, specialized fault-tolerant system structures
have been proposed that seek to avoid these difficulties.

One such approach is N -Version programming, which was mentioned in Sec-
tion 2.1. The idea here is to use two or more independently developed software
versions in conjunction with comparison or voting to avoid system failures due to
systematic failures in individual software versions. For this technique to be effec-
tive, failures of the separate software versions must be independent, or very nearly
so. The difficulty is that since independence cannot be assumed (experiments indi-
cate that coincident failures of different versions are not negligible [ECK+91,KL86],
and theoretical studies suggest that independent faults can produce correlated fail-
ures [EL85, LM89]), the probability of coincident failures must be measured. But
for this design approach to be effective, the incidence of coincident failures must
be in the ultra-critical region—and then we are again faced with the infeasibility of
experimental quantification of extremely rare events [BF93]. For these reasons, the
degree of protection provided by software diversity “is generally not measurable”
and N -Version software does not provide a means for achieving safety-critical re-
quirements, but “is generally applied as a means of providing additional protection
after verification objectives. . . have been met” [RTCA92, Subsection 2.3.2].

If we cannot validate ultra-critical software by direct measurement of its fail-
ure rate, and we cannot make substantiated predictions about N -version or other
combinations of less-dependable software components, there seems no alternative
but to base certification of critical systems at least partly on other factors, such as
analysis of the design and construction of the software, examination of the lifecy-
cle processes used in its development, operational experience gained with similar
systems, and perhaps the qualifications of its developers.

We might hope that if these “subjective” factors gave us a reasonable prior ex-
pectation of high quality, then a comparatively modest run of failure-free tests would
be sufficient to confirm its suitability for ultra-critical applications. Unfortunately,
a Bayesian analysis shows that feasible time on test cannot confirm failure rates in
the ultra-critical region, unless our prior belief is already that the system is in the
ultra-critical region [LS93]. In other words, the requirement for ultra-criticality is
so many orders of magnitude removed from the failure rates that can be determined
empirically in feasible time on test, that essentially all our assurance of has to come
from subjective factors such as examination of the lifecycle processes of its devel-
opment, and review and analysis of the software itself. Of course, extensive testing
is still required, but it is perhaps best seen as serving to validate the assumptions
that underpin the software design, and to corroborate the broad argument for its
correctness, rather than as a validation of claims for ultra-critical reliability.
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The goals of the very disciplined lifecycle processes required by almost all stan-
dards and guidelines for critical software are to minimize the opportunities for in-
troduction of faults into a design, and to maximize the likelihood and timeliness of
detection and removal of those faults that do creep in. The means for achieving
these goals are structured development methods, extensive documentation tracing
all requirements and design decisions, and careful reviews, analyses, and tests. The
more critical a piece of software, the more stringent will be the application of these
means of control and assurance.

So now we need to ask what methods are effective for quality control and assur-
ance in critical software development, and what part formal methods should play. It
is a rather startling fact that very little documented evidence attests to the efficacy
of the various methods for software quality control and assurance when applied
to critical software. Several studies indicate significant reductions in “errors per
KSLOC” (i.e., programming faults per thousand lines of source code), compared
with industry averages, when certain software engineering methods or techniques
are employed. For example, the Cleanroom approach has been shown to reduce the
density of faults discovered in operation from an industry average of about 3 per
KSLOC to fractions of one. However, it is not easy to relate the density of faults
in code to the incidence of critical failures in operation, and it could be that some
techniques are good at reducing the total number of faults, but are not specially
effective on those that cause critical failures. Thus, although there is evidence that
various methods are effective in quality control (i.e., in preventing, detecting, and
eliminating faults during the development process), there seems little objective ev-
idence to correlate these successes with any quantifiable level of quality assurance,
especially for failure densities at the critical level.

Formal methods are advocated by all the traditions concerned with critical sys-
tems, and are explicitly allowed as “alternative means of compliance” for safety-
critical aircraft systems [RTCA92], and are required for certain hazardous military
systems [MOD91a], and for some secure systems [DoD85]. But it is important to
recognize that although formal methods (and some other systematic development
and verification methodologies) have a rational basis and offer solid evidence for
“correctness” of some aspects of a system’s design and implementation, there is no
evidence that systems built using these techniques will achieve failure rates in the
ultra-critical range, and no basis whatever for attaching a reliability number (espe-
cially 1) to software on the basis of its development processes. Assurance derived
from control and evaluation of development processes is necessarily subjective.

This rather chastening conclusion is, essentially, the burden of most standards,
guidelines, and criteria for critical systems, for example:

“. . . it is not feasible to assess the number or kinds of software errors,
if any, that may remain after the completion of system design, develop-
ment, and test” [FAA88, paragraph 7.i].



3.2. Assurance Methods 39

“Development of software to a given level does not imply the assignment
of a reliability level for that software” [RTCA92, Subsection 2.2.3].

See also [MOD91b, paragraph 6.6 and Annex F].
These conclusions do not vitiate the value of formal methods: rigorously exe-

cuted, they can guarantee with mathematical certainty that a model of some aspect
of the system possesses certain modeled properties. The focus of subjective assur-
ance can therefore shift to other issues (e.g., the fidelity of the modeling employed,
the relevance of the verified properties), and to those aspects of the system that
have not been formally modeled. These may still present formidable challenges, but
should be less than those with which we began.

The available evidence indicates that very few serious faults are introduced (or
remain undetected) in the later stages of the development lifecycle under the very
disciplined processes used for critical systems; instead, it points to the early lifecycle
and to faults in requirements specification as the primary source of catastrophic
failures. For example, Lutz [Lut93] reports faults detected during integration and
system testing of the Voyager and Galileo spacecraft. Of these faults, 197, were
characterized as having potentially significant or catastrophic effects (with respect
to the spacecraft’s missions). Only 3 of the faults found were coding errors; the other
194 were due to problems in the specifications of functions and interfaces and many
of them concerned areas of intrinsic technical difficulty, rather than simply failing
to follow requirements to the letter. If formal methods or any other techniques are
to make major contributions to critical systems, then it seems that they should
concentrate on the early lifecycle and on the hardest aspects of a design.

Unfortunately, standards and guidelines for critical systems do not always leave
sufficient freedom to determine where techniques such as formal methods might be
most effectively applied. In secure systems, for example, there are clearly vulnerabil-
ities at several levels in the implementation hierarchy that supports a secure system.
The lowest level of the kernel might manage the underlying hardware protection fa-
cilities incorrectly, so that certain interrupts, say, leave the system inadequately
protected; or the higher levels of the kernel might manage the access controls in-
correctly, allowing a secret process, say, access to top secret information. The
criteria that govern the evaluation of secure systems [DoD85] are very specific about
the assurance techniques that must be used to demonstrate the absence of vulnera-
bilities at various levels. At the A1 level of assurance, for example, formal methods
are required to demonstrate the absence of covert channels, and “specification to
code correspondence” must be demonstrated at the TCB interface, but there are
no specific assurance requirements levied on the lowest level of the kernel where the
critical hardware protection features are manipulated.

One could speculate that hazard analysis would reveal that a different allocation
of priorities could be more effective. But as far as I know, hazard analysis and the
techniques of system safety engineering are not employed in the design of secure
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systems. Similarly, with few exceptions, the dependability approach is not applied
to secure systems either. Again, one can speculate that some of the techniques of
fault tolerance (for example, FMEA or built-in self-test) are highly appropriate to
secure systems and should be required.15

A serious difficulty arises when the conventional approach to hierarchical verifica-
tion in formal methods [Hoa72] is applied to properties such as security, where faults
of commission must be excluded. The difficulty is that verification typically estab-
lishes only that each layer in the hierarchy is sufficient to implement the layer above
it; it does not establish necessity (technically, an implication—not an equivalence—
is established). Thus, there is nothing to stop a lower level from doing more than
is desired (e.g., copying files to undesired locations) and thereby compromising the
desired policy. It seems that security properties and others that share this charac-
teristic must be verified directly at the implementation level. Leveson [Lev91] makes
the same point about safety, and it is possible that Jacob’s observation [Jac89] that
certain refinement techniques do not work for security properties has similar origins.

A notion, which derives from certain nonmonotonic logics used in AI, called
the closed-world assumption seems relevant here. Under a closed-world assumption,
properties not explicitly stated to be true are assumed to be false. Moriconi and
Qian [MQ92] apply this idea to the refinement of what they call “software architec-
tures.” Whereas conventional software specification techniques are concerned with
function and behavior, architectural specifications are concerned with the structure
of software—that is, with the components from which it is to be constructed, and
the relationships among them. Among the relationships considered by Moriconi and
Qian are control and data flow; the latter can be refined into various forms of mes-
sage passing, or use of shared variables. The closed-world assumption means that if
a relationship is not specified between certain components, then it should not exist,
and may not be created in subsequent refinements of the architecture. Moriconi and
Qian prove that a number of standard refinements preserve an appropriate notion
of correctness under this closed-world assumption. Thus, it seems that properties
such as security and safety, which are sensitive to “doing more” than is required,
and which can be subverted by unexpected interactions and communications, may
best be served by Moriconi and Qian’s notion of architectural refinement rather
than (or in addition to) traditional notions of hierarchical refinement of function
and behavior.

15An example concerning the release authorization for certain weapons is instructive. The autho-
rization required many independent cryptographic code sequences, leading to the conclusion that
the probability of inadvertent authorization was less than 2−429. However, the comparisons on the
received code sequences were programmed in such a way that all would succeed independently of
the data if the accumulator flag bit had a stuck-at-0 fault [Unk90].
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Discussion and Taxonomy

We have considered critical systems from a number of perspectives and have ex-
amined representative properties that such systems may be required to maintain
or enforce, together with techniques for specifying those properties, mechanisms for
enforcing them, and methods for providing assurance that critical system goals have
been met. In this section, we attempt to bring these threads together and suggest
a tentative basis for a taxonomy that may help organize thinking on these topics.
The motivation for proposing a taxonomy is that modern systems are often required
to satisfy two or more critical system properties simultaneously: for example, com-
mand and control systems may be required to be secure, fault tolerant, and real
time. Accordingly, the main attribute we desire of our taxonomy is that it should
help identify those combinations of critical system properties that are “compatible”
with each other, and also those that are “incompatible.”

There are many criteria on which such a taxonomy might be founded: for exam-
ple, we could consider the system structures employed, or the formal specification
techniques, or validation methods used. However, classifications based on such at-
tributes tend to reflect and reinforce traditional divisions based on the separate
evolutions of techniques in the dependability, safety, security, and real-time fields.

A rather more productive approach seems to be one that focuses on very general
attributes of the different critical system properties: for example, are some proper-
ties more easily realized on a single, centralized system than on a decentralized one,
and are some properties best served by rich possibilities for interaction while others
favor limited interaction? Consideration of classifications along these lines reveals
that degree of “coordination” and related attributes seem the most significant. In
fixing on particular attributes, I have chosen to follow the lead of Charles Perrow,
who, in his book “Normal Accidents,” based his analysis on two attributes that he
named “interaction” and “coupling” [Per84, chapter 3]. Perrow’s work was focused
on safety, and on the structure of the human organization and physical plant found
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in large systems (such as an oil refinery), but the attributes that he identified seem
significant for other critical properties, and for computer systems, too.

Interaction, which can range from “linear” to “complex,” refers to the extent to
which the behavior of one component in a system can affect the behavior of other
components. In a simple, linear system, components affect only those others that
are functionally “downstream” of them; in a more complex system, a single compo-
nent may participate in many different sequences of interactions with many other
components. For example, the fuel on board an airplane is functionally upstream of
the engines, but its distribution among the various tanks also affects (i.e., has an in-
teraction with) the airplane’s weight and balance.1 In computer systems, the notion
of “component” must include both physical and abstract entities; for example, the
abstract entity “database” is a component, as are its processes and data, and also
the devices that provide execution and storage. Computer systems that maintain
global notions of coordination and consistency (e.g., distributed databases) are con-
sidered to have complex interactions, since activities in different locations interact
with each other.

Coupling , which can range from “loose” to “tight,” refers to the extent to which
there is metaphorical “slack” or “flexibility” in the system. Coupling is not an in-
dependent notion; we really have to ask “coupling of what?” For the preliminary
analysis being undertaken here, however, we can tolerate the imprecision of the un-
qualified term, and supply more specificity when needed. Loosely coupled systems
are usually less time constrained than tightly coupled ones, can tolerate things being
done in different sequences than those expected, and may be adaptable to different
purposes or to operate under different assumptions than those originally consid-
ered. For example, craft industries are usually loosely coupled, whereas production
lines with just-in-time inventory control are tightly coupled. Viewed as a computer
system, the telephone switching network may be considered loosely coupled, since
there are usually multiple ways to route calls, whereas most hard-real-time control
systems are tightly coupled, since they depend on everything behaving as expected.

In Perrow’s analysis, systems with complex interactions (intended or unintended)
can promote accidents because interactions (and therefore possible behaviors) are
hard to understand, predict, or even enumerate. An important element in some
accidents is that component faults can open up unexpected paths for interaction,
leading to unforeseen consequences. For example, shrapnel from a disintegrating
airplane engine may sever hydraulic lines in the wing, possibly causing the slats
to retract, and thereby generating an unexpected interaction between engine and
wing. Tight coupling is also considered to contribute to accidents because it leaves
less room for maneuver when things start to depart from their planned course. On

1When a component that participates in multiple interactions fails, it may produce consequences
in several subsystems; this is an example of a “common mode” failure.
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the other hand, complex interactions and tight coupling are generally introduced to
promote efficiency, and contribute positive value when things are going well.

Returning to computer systems, it is my contention that some critical system
properties demand limited interaction and/or loose coupling, while others are asso-
ciated with the opposite requirements. Critical system properties are compatible if
they are associated with similar requirements for interaction and coupling; other-
wise, they are incompatible and can only be combined with difficulty and compro-
mise.

The most fundamental security concern—that of nondisclosure—is a property
that demands few interactions. In its strictest form, security is best achieved by
independent systems, each allocated to a particular security classification, so that
there can be no interactions among the different classifications. In its less strict
(and more useful) forms, security allows interaction among different security clas-
sifications, but only in specified and strictly controlled ways. Security, more than
any other property, extends its concern to tenuous and subtle forms of interaction:
specifically, those that provide covert channels for information flow. Elimination or
control of such interactions is usually best achieved by “virtualizing” the resources of
the system: dividing them into independent virtual resources that can be allocated
to separate security classifications. These allocations are usually based on fixed
quotas, since otherwise one classification can signal to another by manipulating its
own resource consumption. Fixed quotas reduce or eliminate interaction among pro-
cesses at different security classifications, but produce a tightly coupled, inflexible,
system: a surge of activity at one security classification cannot be accommodated
by borrowing resources from other classifications, since this would provide a covert
channel.

In summary, security requires an environment with few and controlled interac-
tions, and leads to tightly coupled systems. We can expect the mechanisms devel-
oped for security to be of value for other system properties that require few interac-
tions; conversely we can expect security to be incompatible with system properties
that require complex interactions, or flexible resource allocations.2

Real time provides an example of a system property that, in at least some of
its manifestations, exactly fulfills these requirements for being incompatible with
the strictest interpretations of security. Because they usually arise in control ap-
plications, real-time systems generally participate in complex interactions with the
controlled plant and its environment. Thus, the controlled plant could possibly be
used as a channel for covert information flow between processes of different secu-

2Observe that inflexible resource allocations are a consequence of considering the subtle in-
teractions that constitute covert channels; if these channels are considered unimportant in some
applications, then their parent interactions can be ignored. In this case, security techniques that
control just the direct interactions can be used, and these do not incur the full penalty of inflexible
resource allocation.
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rity classifications [DRC86, page 6-9]. Less arcane opportunities for covert channels
arise in the more dynamic kinds of real-time system through the complex interac-
tions created by dynamic scheduling and preemption.

Conversely, the inflexible resource allocations required for strict security conflict
with the needs of real-time systems—especially those of the more dynamic kind,
which seek to optimize allocation of system resources at a global level. To take an
extreme case, a highly urgent process that accesses highly classified data might be
denied maximum use of the processor because such preemption could be used as a
signaling channel to a more lowly classified process.

Notice that the spectrum of approaches to real-time systems represents an ex-
plicit trading of complexity of interactions against tightness of coupling. Cyclic
executives maintain very linear interactions among tasks, so that overall behavior
and timing is very predictable. These systems are very tightly coupled, however; we
saw earlier that they are inflexible with regard to iteration rate, can accommodate
new tasks or changed task durations only with difficulty, and that the consequences
of a missed deadline can propagate to all subsequent tasks in the frame. Priority-
driven executives increase the complexity of interactions among the tasks (in that
their order of execution is no longer fixed) and (their detractors claim) lessen pre-
dictability of overall behavior in order to reduce coupling: these systems are much
more flexible in their response to transient overload and occasional missed deadlines
than cyclic executives. Fully dynamic systems such as Alpha optimize flexibility of
response at the expense of essentially unpredictable task execution sequences and
consequently greater possibilities for interaction.

The conflicts between security and real time are most sharp when the most
flexible and dynamic forms of real-time resource allocation and the strictest notions
of security (no covert channels), are considered. If we are prepared to ease one
or both of these requirements, then compatible compromises can be found. For
example, a study on security for the Alpha real-time system [CG93] considers an
approach in which “timeliness” is incorporated into the security policy, where it can
be explicitly traded against covert channel requirements. On the other hand, if we
consider less dynamic types of real-time system, such as the cyclic executives and
priority-driven schemes, then resource requirements can be predicted in advance and
accommodated within the fixed resource allocations of a strict secure system.3

3For efficiency, the simple kinds of real-time system usually execute tasks within a single address
space and manipulate data in shared buffers. These techniques are inimical to security, which
requires separate, protected address spaces for tasks of different security classifications, and explicit
copying of data. However, there is nothing intrinsically incompatible between these approaches:
the unsecure techniques used in cyclic executives are expedient, not essential. Security mechanisms
(particularly expensive task-switching and interrupt handling) contribute to overhead, and may
therefore reduce performance, but they are not in fundamental conflict with the linear interactions
of cyclic executives.
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Since Perrow’s analysis was focused on accidents, classification of safety-critical
systems with respect to interaction and coupling is quite straightforward: in gen-
eral, safety-critical systems benefit by having few, linear, and known interactions,
and from loose coupling. Linear interactions facilitate comprehension of the behav-
ior of the system, and thereby contribute to its predictability. A chief concern in
safety-critical systems is the possibility of unexpected interactions arising as a result
of component failures. Hazard analysis and related techniques can be seen as sys-
tematic methods for anticipating these (and other) interactions, and one of the goals
of safe system design is to minimize possibilities for unwanted interaction (notably
what are called “unintended effects”). Since security is also closely associated with
simple and strictly controlled interactions, it follows that security should be largely
compatible with safety, and that techniques from security should find application in
safety-critical systems (and vice-versa).

Perrow favors loose coupling for safety because it provides scope for human
operators to intervene and rescue a system that is malfunctioning; loose coupling
allows the possibility of intervention at several points, and allows time for a response
to be developed. There is a tendency, deplored by many observers, for modern
computer systems to exclude such opportunities for intervention (e.g., the lack of
manual overrides and of direct modes of control in some fly-by-wire systems4). In
the case of computer control systems, the usual goal is to prevent the system getting
into a hazardous state in the first place; should it do so, however, then Leveson’s
model of a safe system as one that will eventually return to a safe state (which, as we
have seen, is essentially the self-stabilization model of fault tolerance), depends on
there being sufficiently loose coupling between the hazardous state and catastrophe
that there is time to perform the correction.

As we saw in the case of real-time systems, simplicity of internal interactions
must often be traded against looseness of coupling. When this is so, simplicity of
interaction seems likely to have the greater benefit for safety in most cases. This
argues for using the simpler types of real-time control system in safety-critical appli-
cations, but the specific circumstances of each application must obviously be taken
into account.

Mechanisms for dependability and fault tolerance often add new interactions.
For example, reliable distributed processing and communication usually requires
end-to-end acknowledgments—so that what might have been considered a one-way
interaction (from sender to recipient), becomes two-way. Because security necessi-
tates limited interactions, even such simple fault-tolerant mechanisms as acknowl-
edgments can cause difficulties: in particular, they provide a covert channel if the
recipient is more highly classified than the sender. If fault tolerance is required as
well as security, the usual solution is to interpose trusted components to shield the

4An unstable fighter airplane is too tightly coupled to be flown without computer control, but
this is less obviously true of passenger airplanes.
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untrusted ones from direct exposure to acknowledgments and error handling. Un-
fortunately, since the appropriate response to errors and negative acknowledgments
is specific to the application, this approach leads to some of the applications code
migrating into the trusted components.

Difficulties of this kind are seen very clearly in distributed applications that
must maintain global consistency across replicated and distributed data. Even in
the absence of fault tolerance, the usual consistency requirement of single-copy se-
rializability is very hard to maintain in the presence of security constraints. The
reason is that locking of file or database records creates complex interactions among
clients of the database system. If covert channels are to be avoided, it seems nec-
essary either to relinquish strong notions of consistency, or to accept that some
subjects may be denied service for arbitrary periods, or that they may be denied ac-
cess to the most current data [MG90]. Alternatively, we can revisit the assumption
that security can be achieved by breaking operations into separate transactions that
each operate at a single security level, and can extend the notion of serializability
to multilevel transactions [CM92].

Fault tolerance can compound these difficulties and can require further tradeoffs,
since backward recovery of one process can trigger a domino effect, causing other
processes to roll back also. Spurious activation of such fault-tolerant mechanisms
provides a clear possibility for denial of service, as well as opportunities for covert
channels. Integrity constraints lead to further difficulties: if we know that an air-
plane can hold 20 tons of cargo and that only 15 tons of unclassified material are
on board, then a rejected request to add another ton of unclassified cargo suggests
there must be some classified material aboard. Inference and covert channel possi-
bilities such as these indicate that mechanisms intended to promote dependability
can create complex interactions that are inimical to security.

We have just seen that mechanisms for dependability and fault tolerance may
increase the complexity of interactions within a system, and can therefore be incom-
patible with security and other properties that favor simple interactions. Since we
know that safety is such a property, this seems to suggest the disturbing conclusion
that dependability and fault-tolerant mechanisms are inimical to safety. This need
not be so, however: security is sensitive to interactions of a very subtle kind (those
that can be exploited by conniving agents to yield covert channels), whereas safety
is affected by rather more substantial interactions. The subtle interactions created
by consistency and integrity mechanisms may be of little negative consequence to
safety, and the conceptual simplification provided by the assurance of consistency
and integrity is likely to be a positive safety benefit—as long as the mechanisms
continue to work. However, global consistency and integrity mechanisms tightly
couple the components of a system, so that if they fail—perhaps because some fun-
damental assumption (such as absence of network partitioning) is violated—then
safe operation or recovery may be difficult or impossible. It seems that if depend-
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ability mechanisms that tighten coupling are used in safety-critical systems, then
strong assurances must be provided for the assumptions on which correct operation
of the mechanisms depend. On the other hand, a loosely-coupled system is not
automatically safe: there must be some mechanism that, with high assurance, will
restore the system to a safe state if it errs (loose coupling may just provide the time
to do this).

Another example of the interactions introduced by dependability mechanisms,
and of the need for care when fault tolerance is used in the service of safety, is found
in deep-space probes.5 Safe operation of the instruments and spacecraft resources
depends on satisfaction of numerous sequencing constraints, such as “the time sep-
aration between powering on the S-band transmitter and powering on the X-band
transmitter shall be either less than 30 seconds or greater than 6 minutes” [LW92].
The command schedules that operate the spacecraft are scrutinized to ensure that
they satisfy these constraints. However, there are also fault-protection schedules
that are activated when certain anomalies are detected. These place the spacecraft
instruments and resources in “safe modes,” and configure the antennas and radios to
receive commands from earth. If the fault-protection schedule is designed to use the
X-band system, unfortunate timing could lead to it powering on the X-band system
inside the forbidden 30 second to 6 minute window after the S-band system was
powered on. For safe operation, it is necessary to consider all possible interactions
between the regular and fault-protection schedules [LW92].

The recognition that mechanisms for dependability and fault tolerance can in-
crease complexity of interactions does not render all of dependability incompatible
with those properties, such as security, safety, and hard real time, that generally
require limited interactions. Dependability and fault tolerance comprise a wide
range of techniques and mechanisms; the analysis suggested here can help identify
those that are most compatible with the other properties considered. Among fault-
tolerant mechanisms, fault masking seems the one most compatible with limited
interactions.

Rather than looking only at how different techniques can coexist, we can also
consider whether they can be positively reinforcing. One possibility along these lines
concerns fault tolerance and security. Secure systems are usually tightly coupled in
the sense that any failures of the mechanisms for protection are assumed to lead
directly to compromise of sensitive information. To loosen this coupling, we can look
to methods from fault tolerance, which suggest using monitoring techniques to detect
potential or actual intrusions (i.e., error detection) and forward recovery techniques
(e.g., apprehending the intruder, or changing plans based on compromised material)
to minimize damage following an intrusion.6

5For such missions, safety is equated with preservation of the spacecraft.
6Notice also, that as well as applying ideas from fault tolerance, what we are also doing here is

widening our conception of the system to encompass the human organization in which it operates.
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Interactions Coupling
Loose Tight

Linear Weak† security Strict† security
Safety Fault masking

Static real time

Complex Dynamic real time Global coordination
Fault tolerance

† Strict security requires absence of covert channels.

Table 4.1: Critical System Properties versus Interactions and Coupling

In summary, dependability and fault tolerance encompass a wide range of mech-
anisms. None seem likely to reduce complexity of interactions; some may loosen
coupling, others may tighten it. As with real-time systems, selection of dependabil-
ity and fault-tolerant mechanisms needs to be performed with care if they are to
be combined with security or safety requirements. Combining them with real-time
mechanisms should generally be more straightforward, though there is a possibil-
ity that the complexity of interactions produced by the combination could lead to
ill-understood behavior.

Collecting all these points of discussion together, we can crudely classify various
critical system properties and techniques according to their associated degrees of
interaction and coupling; a tabular taxonomy constructed in this way is shown in
Table 4.1.

Our classification is clearly not founded on strictly scientific principles (e.g., the
assertion that safety is associated with linear interactions and loose coupling is not
falsifiable in the sense required by Karl Popper’s interpretations of the scientific
method). Nonetheless, we find that it has some explanatory and predictive value.
We have already described how it can help anticipate those attributes of the depend-
ability, safety, security, and real-time approaches that are potentially incompatible
with each other, as well as those that are compatible. In this respect, it seems more
widely applicable than other classifications, such as our earlier one based on “posi-
tive” and “negative” properties [Rus89]: that classification could identify candidates
for kernelization, but shed no other light on potentially compatible or incompatible
properties.

4.1 Conclusion

In my opinion, the best notion of “critical system” is the one that derives from the
system safety engineering tradition: a critical (computer) system is one whose mal-
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function could lead to unacceptable consequences. The “unacceptable consequences”
depend on context and could include loss of life, damage to the environment, or
disclosure of sensitive information. The determination whether a system is critical
should be made by hazard analysis. In many contexts, it will be appropriate to
assign degrees or levels of criticality. For example, the guidelines for computers on
board aircraft, DO-178B [RTCA92], consider five levels from A (most critical) to
E.7

The development of critical systems should draw on all the intellectual and tech-
nical innovations that can contribute to their quality. Many of the fields that give
rise to critical systems have developed their own individual approaches, seemingly in
isolation; it is hoped that this report has highlighted some of the main contributions
of the different fields and approaches and may contribute to some cross fertilization.

However, we do not expect, and do not advocate, wholesale adoption by one
field of techniques from another. The approaches we identified have been durable
precisely because they have captured and investigated important classes of systems,
problems, and techniques. It is when a system must satisfy simultaneously prop-
erties that have traditionally been considered separately that awareness of all the
available techniques becomes vital. We have proposed a taxonomy, based on Per-
row’s analysis [Per84], that considers the complexity of component interactions and
tightness of coupling as primary factors in determining the extent to which different
properties and mechanisms may be expected to be compatible with each other or
not.

In future work, we hope to explore the possibility of placing some of this analysis
on a more formal foundation, and to work out some representative examples in
concrete detail.
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