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Abstract

We consider noninterference formulations of security policies [10] in

which the \interferes" relation is intransitive. Such policies provide a

formal basis for several real security concerns, such as channel con-

trol [22, 23], and assured pipelines [4]. We show that the appropriate

formulation of noninterference for the intransitive case is that developed

by Haigh and Young for \multidomain security" (MDS) [12, 13]. We

construct an \unwinding theorem" [11] for intransitive polices and show

that it di�ers signi�cantly from that of Haigh and Young. We argue that

their theorem is incorrect. An appendix presents a mechanically-checked

formal speci�cation and veri�cation of our unwinding theorem.

We also consider the relationship between transitive and intransi-

tive formulations of security. We show that the standard formulations

of noninterference and unwinding [10, 11] correspond exactly to our in-

transitive formulations, specialized to the transitive case. We show that

transitive polices are precisely the \multilevel security" (MLS) polices,

and that any MLS secure system satis�es the conditions of the unwinding

theorem.

In addition, we consider the relationship between noninterference for-

mulations of security and access control formulations, and we identify the

\reference monitor assumptions" that play a crucial role in establishing

the soundness of access control implementations.
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Chapter 1

Introduction

The concept of noninterference was introduced by Goguen and Meseguer [10] in

order to provide a formal foundation for the speci�cation and analysis of security

policies and the mechanisms that enforce them. Apart from the work of Feiertag,

Levitt, and Robinson [9]|which can be seen as a precursor to that of Goguen and

Meseguer|previous e�orts, among which those of Bell and La Padula [3] were the

most inuential, formulated security in terms of access control. Access control for-

mulations su�er from a number of di�culties. First, because they are described in

terms of a mechanism for enforcing security, they provide no guidance in circum-

stances where those mechanisms prove inadequate. Second, it is easy to construct

perverse interpretations of access control policies that satisfy the letter, but not the

intent of the policy, to the point of being obviously unsecure [17,18]. The proponents

of access control formulations counter that interpretations or implementations must

be \faithful representations" of the model, but they provide no formal de�nition of

that term.

In contrast, noninterference formulations are pure statements of policy, with no

commitment to a speci�c mechanism for enforcing them|although techniques have

been developed for demonstrating that speci�c mechanisms enforce given noninter-

ference policies. Secondly, noninterference policies have the form of a logical theory;

any implementation that is a model for the theory (i.e., validates its axioms) will

be secure.

The idea of noninterference is really rather simple: a security domain u is nonin-

terfering with domain v if no action performed by u can inuence subsequent outputs

seen by v. Noninterference has been quite successful in providing formal underpin-

nings for military multilevel security policies and for the methods of verifying their

implementations [11,25].

There are, however, a number of practical security problems that seem beyond

the scope of noninterference formulations. One of these is \channel-control," �rst

formulated by Rushby [22, 23]. Channel control security policies can be repre-

1



2 Chapter 1. Introduction

sented by directed graphs, where nodes represent security domains and edges in-

dicate the direct information ows that are allowed. The paradigmatic example of

a channel-control problem is a controller for end-to-end encryption, as portrayed in

Figure 1.1 [1, 22].

Bypass

Crypto

Red Black

6

-

?

-

- -

Figure 1.1: End-to-end encryption controller

Plaintext messages arrive at the Red side of the controller; their bodies are

sent through the encryption device (Crypto); their headers, which must remain in

plaintext so that network switches can interpret them, are sent through the Bypass.

Headers and encrypted bodies are reassembled in the Black side and sent out onto

the network. The security policy we would like to specify here is the requirement that

the only channels for information ow from Red to Black must be those through the

Crypto and the Bypass.

1

Thus, an important characteristic of many channel control

policies is that the edges indicating allowed information ows are not transitive:

information is allowed to ow from Red to Black via the Crypto and Bypass, but

cannot do so directly.

Another example is shown in Figure 1.2, where transitive and intransitive ele-

ments are combined. The edges to the left represent the conventional transitive ow

relations between the classi�cation levels used in the USA. On the right are edges to

and from a special Downgrader domain that are intransitive. The ows represented

by these edges are intransitive because, although information can ow, for example,

from the Top Secret to the Con�dential domain via the Downgrader, it cannot ow

directly from Top Secret to Con�dential. Thus, information can ow \upward" in

1

It is a separate problem to specify what those components must do.
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Unclassi�ed

Downgrader

Con�dential

Secret

Top Secret

Figure 1.2: Controlled downgrading

security level without restriction, but only ow \downward" through the mediation

of the presumably trusted Downgrader domain.

Channel control policies such as those just described seem able to specify a

number of security concerns that are beyond the reach of standard security modeling

techniques. Boebert and Kain have argued persuasively [4] that a variation on

channel-control called \type enforcement" can be used to solve many vexing security

problems. A worthwhile challenge, then, is to �nd an adequate formal foundation

for channel-control policies and their ilk.

An early attempt to provide a formal method for verifying, though not specify-

ing, channel-control policies was based on a technique for verifying complete sepa-

ration [22,24]. The idea was to remove the mechanisms that provided the intended

channels, and then prove that the components of the resulting system were isolated.

This approach has recently been shown to be subtly awed [14], although the method

for establishing complete separation has survived fairly intensive scrutiny [15, 28]

with only minor emendations.

The success of noninterference formulations in explicating multilevel security

policies naturally invites consideration of a noninterference foundation for channel-

control. This presents quite a challenge, however. For example, it is clear the Red
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side of the encryption controller of Figure 1.1 necessarily interferes with the Black;

we need to �nd a way of saying that this interference must only occur through the

mediation of the Crypto or the Bypass. Goguen and Meseguer proposed a way of

doing this in their original paper on noninterference [10], but the method was incor-

rect. Goguen and Meseguer recognized this in their second paper on the subject [11]

and they introduced several extensions to the basic formulation of noninterference.

However, the �rst really satisfactory treatment of intransitive noninterference poli-

cies was given by Haigh and Young [12], with a more polished version the following

year [13]. They showed that it was necessary to consider the complete sequence

of actions performed subsequent to a given action in order to determine whether

that action is allowed to interfere with another domain. For example, an action by

the Red domain is allowed to interfere with the Black domain only if there is some

intervening action from either the Crypto or the Bypass.

The main purpose of this report is to show that channel-control security policies

can be modeled by noninterference policies in which the \interferes" relation is

intransitive and in which the de�nition used for \interference" is that of Haigh

and Young. We also show that conventional multilevel policies are a special case

of channel-control policies, corresponding to those whose \interferes" relation is

transitive. We show that our results collapse to the familiar ones in this special

case, thereby providing some additional evidence for their veracity.

An important component of noninterference formulations of security are the \un-

winding" theorems [11, 13] that establish conditions on the behavior of individual

actions su�cient to ensure security of the system. These unwinding theorems pro-

vide the basis of practical methods for formally verifying that an implementation

satis�es a noninterference security policy. The main result of this report is the

derivation of an unwinding theorem for the channel-control case. We show that this

theorem di�ers signi�cantly from that of Haigh and Young and we argue that their

result is incorrect.

The development of noninterference and unwinding for the channel-control case

is surprisingly intricate, and in view of the previous history of failed attempts, we

present our development rather formally and describe the proofs in detail. An

appendix describes the formal veri�cation of our main theorem using the Ehdm

formal speci�cation and veri�cation system [27].

This report is organized as follows. In the next chapter we present a develop-

ment of the standard noninterference formulation of security, and then consider the

relationship between noninterference security policies and access control policies.

This development is structured to provide a model and a basis for comparison with

the generalization given later. Chapter 3 examines the case of intransitive non-

interference policies and argues that these have no useful interpretation within the

standard formulation of noninterference. The second part of Chapter 3 examines the

special properties of transitive policies and shows that they are identical to classical
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multilevel security. Chapter 4 presents a modi�ed formulation of noninterference

that does provide a meaningful interpretation to intransitive policies and derives

an unwinding theorem for that interpretation. Chapter 5 compares the transitive

and intransitive noninterference formulations, and compares our unwinding theorem

with that of Haigh and Young. Chapter 6 presents our conclusions. The appendix

presents a formal speci�cation and veri�cation of our Intransitive Unwinding The-

orem that has been mechanically checked using the Ehdm Veri�cation System [27].



Chapter 2

Basic Noninterference

In this chapter we present the core of Goguen and Meseguer's formulation of security

in terms of noninterference assertions [10], and the unwinding theorem [11] that

underlies the associated veri�cation techniques. Our notation di�ers considerably

from that of Goguen and Meseguer and is more similar to that of later authors, such

as Haigh and Young [13].

We model a computer system by a conventional �nite-state automaton.

De�nition 1 A system (or machine) M is composed of

� a set S of states, with an initial state s

0

2 S,

� a set A of actions, and

� a set O of outputs,

together with the functions step and output :

� step:S � A! S,

� output :S � A! O.

We generally use the letters : : : s; t; : : : to denote states, letters a; b; : : : from the front

of the alphabet to denote actions, and Greek letters �; �; : : : to denote sequences of

actions.

Actions can be thought of as \inputs," or \commands," or \instructions" to be

performed by the machine; step(s; a) denotes the next state of the system when

action a is applied in state s, while output (s; a) denotes the result returned by the

action.

6
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We derive a function run

� run:S �A

�

! S,

the natural extension of step to sequences of actions, by the equations

run(s;�) = s; and

run(s; a � �) = run(step(s; a); �);

where � denotes the empty sequence and � denotes concatenation.

1

In order to discuss security, we must assume some set of security \domains"

and a policy that restricts the allowable ow of information among those domains.

The agents or subjects of a particular security domain interact with the system by

presenting it with actions, and observing the results obtained. Thus we assume

� a set D of security domains, and

� a function dom :A! D that associates a security domain with each action.

We use letters : : : u; v; w; : : : to denote domains.

A security policy is speci�ed by a reexive relation; on D. We use 6; to denote

the complement relation, that is

6;= (D �D)n;

where n denotes set di�erence. We speak of; and 6; as the interference and nonin-

terference relations, respectively. A policy is said to be transitive if its interference

relation has that property. 2

We wish to de�ne security in terms of information ow, so the next step is to

capture the idea of the \ow of information" formally. The key observation is that

information can be said to ow from a domain u to a domain v exactly when actions

submitted by domain u cause the behavior of the system perceived by domain v to

be di�erent from that perceived when those actions are not present. We therefore

de�ne a function that removes, or \purges," from an action sequence all those actions

submitted by domains that are required to be noninterfering with a given domain.

The machine is secure if a given domain v is unable to distinguish between the state

of the machine after it has processed a given action sequence, and the state after

processing the same sequence purged of actions required to be noninterfering with

v.

1

Observe that we de�ne run using right recursion: that is, we specify run(s; a � �) =

run(step(s; a); �), rather than the more common left recursive form run(s; ��a) = step(run(s;�); a).

The choice of right recursion slightly complicates the proof of the basic unwinding theorem (The-

orem 1); we employ it here for consistency with the later, more complex development in which its

use is essential.
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De�nition 2 For v 2 D and � an action sequence in A

�

, we de�ne purge(�; v) to

be the subsequence of � formed by deleting all actions associated with domains u

such that u 6; v, that is:

purge(�; v) = �

purge(a � �; v) =

(

a � purge(�; v) if dom(a); v

purge(�; v) otherwise:

We identify security with the requirement that

output(run(s

0

; �); a) = output (run(s

0

; purge(�; dom(a))); a):

Because we frequently use expressions of the form output (run(s

0

; �); a), it is conve-

nient to �rst introduce the functions do and test to abbreviate these forms:

� do:A

�

! S

� test :A

�

�A! O

where

do(�) = run(s

0

; �); and

test(�; a) = output(do(�); a):

Then we say a system is secure for the policy ; if

test(�; a) = test(purge(�; dom(a)); a):

2

2

The intuition here is that the machine starts o� in the initial state s

0

and is

presented with a sequence � 2 A

�

of actions. This causes the machine to produce

a series of outputs and to progress through a series of states, eventually reaching

the state do(�). At that point the action a is performed, and the corresponding

output test(�; a) is observed. We can think of presentation of the action a and

observation of its output as an experiment performed by dom(a) in order to learn

something about the action sequence �. If dom(a) can distinguish between the

action sequences � and purge(�; dom(a)) by such experiments, then an action by

some domain u 6; dom(a) has \interfered" with dom(a) and the system is not secure

with respect to policies that specify u 6; dom(a).

There are several plausible variations on this notion of security. For example,

rather than restricting dom(a) to observe only the individual outputs test(�; a), and

2

Formulas such as these are to be read as universally quanti�ed over their free variables (here a

and �).
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test(purge(�; dom(a)); a) in its attempt to distinguish � from purge(�; dom(a)), we

could allow the whole sequence of outputs produced by actions b in � satisfying

dom(b) ; dom(a) (i.e., the outputs of the actions in � which dom(a) can legit-

imately observe) to be considered. It is fairly straightforward to prove that such

variations are equivalent to the de�nition used here.

The noninterference de�nition of security is expressed in terms of sequences

of actions and state transitions; in order to obtain straightforward techniques for

verifying the security of systems, we would like to derive conditions on individual

state transitions. The �rst step in this development is to partition the states of the

system into equivalence classes that all \appear identical" to a given domain. The

veri�cation technique will then be to prove that each domain's view of the system

is una�ected by the actions of domains that are required to be noninterfering with

it.

De�nition 3 A system M is view-partitioned if, for each domain u 2 D, there is

an equivalence relation

u

� on S. These equivalence relations are said to be output

consistent if

s

dom(a)

� t � output (s; a) = output(t; a):

3

2

Output consistency is required in order to ensure that two states s and t that

appear identical to domain u really are indistinguishable in terms of the outputs

they produce in response to actions from u.

The de�nition of security requires that the outputs seen by one domain are

una�ected by the actions of other domains that are required to be noninterfering

with the �rst. The next result shows that, for an output consistent system, security

is achieved if \views" are similarly una�ected.

Lemma 1 Let ; be a policy and M a view-partitioned, output consistent system

such that,

do(�)

u

� do(purge(�; u)):

Then M is secure for ;.

Proof: Setting u = dom(a) in the statement of the lemma gives

do(�)

dom(a)

� do(purge(�; dom(a)));

and output consistency then provides

output (do(�); a) = output (do(purge(�; dom(a))); a):

3

We use � to denote implication.
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But this is simply

test(�; a) = test(purge(�; dom(a)); a);

which is the de�nition of security for ; given by De�nition 2. 2

Next, we de�ne constraints on individual state transitions.

De�nition 4 Let M be a view-partitioned system and ; a policy. We say thatM

locally respects ; if

dom(a) 6; u � s

u

� step(s; a)

and that M is step consistent if

s

u

� t � step(s; a)

u

� step(t; a):

2

We now have the local conditions on individual state transitions that are suf-

�cient to guarantee security. This result is a version of the unwinding theorem of

Goguen and Meseguer [11].

Theorem 1 (Unwinding Theorem) Let ; be a policy and M a view-partitioned

system that is

1. output consistent,

2. step consistent, and

3. locally respects ;.

Then M is secure for ;.

Proof: We use proof by induction on the length of � to establish

s

u

� t � run(s; �)

u

� run(t; purge(�; u)): (2:1)

The basis is the case � = � and is elementary. For the inductive step, we assume

the inductive hypothesis for � of length n and consider a � �. By de�nition,

run(s; a � �) = run(step(s; a); �): (2:2)

For run(t; purge(a � �; u)), there are two cases to consider.
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Case 1: dom(a); u. In this case, the de�nition of purge provides

run(t; purge(a � �; u)) = run(t; a � purge(�; u));

and the right hand side expands to give

run(t; purge(a � �; u)) = run(step(t; a); purge(�; u)): (2:3)

Since s

u

� t and the system is step consistent, it follows that

step(s; a)

u

� step(t; a)

and the inductive hypothesis then gives

run(step(s; a); �)

u

� run(step(t; a); purge(�; u))

which, by virtue of (2.2) and (2.3), completes the inductive step in this case.

Case 2: dom(a) 6; u. In this case, the de�nition of purge provides

run(t; purge(a � �; u)) = run(t; purge(�; u)) (2:4)

and the facts that dom(a) 6; u and that M locally respects ; ensure

s

u

� step(s; a):

Since s

u

� t and

u

� is an equivalence relation, the latter provides

step(s; a)

u

� t

and the inductive hypothesis then gives

run(step(s; a); �)

v

� run(t; purge(�; u));

which, by virtue of (2.2) and (2.4), completes the inductive step.

In order to complete the proof, we take s = t = s

0

in 2.1 to obtain

do(�)

u

� do(purge(�; u))

and then, since M is output consistent, invoke Lemma 1 to complete the proof. 2

The unwinding theorem is important because it provides a basis for practical

methods for verifying systems that enforce noninterference policies, and also serves

to relate noninterference policies to access control mechanisms. We illustrate the

latter point by using the unwinding theorem to establish the security of a simple

access control mechanism.
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2.1 Access Control Interpretations

In order to consider access control mechanisms formally, we need a more elaborate

system model. First of all, we need to impose some internal structure on the system

state, supposing it to be composed of individual storage locations, or \objects,"

each of which has a name and a value. The name of each location is �xed, but

its value may change from one state to another. Access control functions determine

whether a given security domain may \observe" or \alter" the values in given storage

locations. We collect these ideas together and introduce convenient notation in the

following de�nition.

De�nition 5 A machine has a structured state if there exist

� a set N of names ,

� a set V of values , and a function

� contents:S �N ! V

with the interpretation that contents(s; n) is the value of the object named n in

state s. In addition, we require functions

� observe:D! P(N), where P denotes powerset, and

� alter:D! P(N)

with the interpretation that observe(u) is the set of locations whose values can be

observed by domain u, while alter(u) is the set of locations whose values can be

changed by u. These functions encode the \access control matrix" that represents

the access control policy of the system. An access control policy is enforced when

the behavior of the system matches the intended interpretation of the observe and

alter functions. This requires the following three conditions to be satis�ed:

Reference Monitor Assumptions

1. First, for u 2 D de�ne the relation

u

� on states by

s

u

� t i� (8n 2 observe(u): contents(s; n) = contents(t; n)):

Then, in order for the output of an action a to depend only on the values of

objects to which dom(a) has observe access, we require:

s

dom(a)

� t � output (s; a) = output (t; a):



2.1. Access Control Interpretations 13

2. Next, when an action a transforms the system from one state to another, the

new values of all changed objects must depend only on the values of objects

to which dom(a) has observe access. That is:

s

dom(a)

� t ^ (contents(step(s; a); n) 6= contents(s; n) (2.5)

_contents(step(t; a); n) 6= contents(t; n))

� contents(step(s; a); n) = contents(step(t; a); n):

This condition is rather di�cult; we discuss it following the complete de�ni-

tion.

3. Finally, if an action a changes the value of object n, then dom(a) must have

alter access to n:

contents(step(s; a); n) 6= contents(s; n) � n 2 alter(dom(a)):

These three conditions are called the \Reference Monitor Assumptions" since

they capture the assumptions on the \reference monitor" that performs the access

control function in any concrete instantiation of the theory. 2

The second of the Reference Monitor Assumptions is somewhat tricky, so we

will now explain it in more detail. The goal is to specify that if action a changes

the value of location n, then the only information that may be used in creating the

new value should be that provided in variables to which dom(a) has observe access.

Thus, if two states s and t have the same values in all the locations to which dom(a)

has observe access (i.e., if s

dom(a)

� t), then it seems we should specify

contents(step(s; a); n) = contents(step(t; a); n) (2:6)

for all locations n. The aw in this speci�cation is that if dom(a) does not have

observe access to n, then s

dom(a)

� t does not prevent contents(s; n) 6= contents(t; n).

If a does not change the value of location n we will then legitimately have

contents(step(s; a); n) 6= contents(step(t; a); n):

The repair to the de�nition is to require (2.6) to hold only if a does change the value

of location n. This is accomplished in (2.5), the second of the Reference Monitor

Assumptions speci�ed in De�nition 5 above.

This problem of specifying what it means for an operation to \reference" a

location has been studied before; Popek and Farber [21], for example, construct the

dual notion \NoRef " as follows. First, for n 2 N , de�ne the equivalence relation

n

�

=

by

s

n

�

=

t

def

= (8m 2 N : contents(s;m) = contents(t;m) _m = n):
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That is, s

n

�

=

t if the values of all locations, except possibly that of n, are the same

in both of states s and t. Then the predicate NoRef (a; n), which is to be true when

action a does not reference location n, is de�ned by

NoRef (a; n)

def

= s

n

�

=

t � step(s; a)

n

�

=

step(t; a):

The motivation for this de�nition is the idea that if a does not reference the value

of location n, then changing the value of that location should have no e�ect on

the values assigned to other locations by action a. It is easy to prove that our

notion of reference, as embodied in (2.5), implies the notion embodied in Popek

and Farber's de�nition. The converse is not true. This is due to a weakness in

Popek and Farber's de�nition which they discuss in [21, page 742 (footnote 5)];

they suggest a stronger de�nition whose motivation is identical to that given in

our discussion of the formulation of (2.5). Unfortunately, the formal statement of

Popek and Farber's stronger de�nition contains serious typographical errors and it

is impossible to tell what was intended. Nonetheless, we consider the relationship

between the description of their de�nition and ours to be su�ciently close that they

provide additional con�dence in the correctness of our formulation of the second

Reference Monitor Assumption.

Given these de�nitions, we can now state a theorem that relates noninterference

to access control mechanisms.

Theorem 2 Let M be a system with structured state that satis�es the Reference

Monitor Assumptions and the following two conditions.

1. u; v � observe(u) � observe(v), and

2. n 2 alter(u) ^ n 2 observe(v) � u; v.

Then M is secure for ;.

Proof: We show that the conditions of the theorem satisfy those of the unwinding

theorem. We identify the view-partitioning relations

u

� of the Unwinding Theorem

with the corresponding relations de�ned in the statement of the Reference Monitor

Assumptions. Output consistency is then satis�ed immediately by the �rst of the

Reference Monitor Assumptions.

To establish step consistency, we must prove

s

u

� t � step(s; a)

u

� step(t; a):

This can be rewritten as

s

u

� t � contents(step(s; a); n) = contents(step(t; a); n)

where n 2 observe(u). There are three cases to consider
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Case 1: contents(step(s; a); n) 6= contents(s; n). The third of the Reference Moni-

tor Assumptions gives n 2 alter(dom(a)); since n 2 observe(u), the second of

the conditions in the statement of the theorem then gives dom(a) ; u. The

�rst of the conditions in the statement of the theorem then gives

observe(dom(a)) � observe(u);

and s

u

� t then implies s

dom(a)

� t. The second of the Reference Monitor

Assumptions then provides the conclusion we require.

Case 2: contents(step(t; a); n) 6= contents(t; n). This case is symmetrical with the

�rst.

Case 3: contents(step(t; a); n) = contents(t; n) ^ contents(step(t; a); n) = contents(t; n).

Since s

u

� t and n 2 observe(u), we have contents(s; n) = contents(t; n) and

the conclusion follows immediately.

It remains to show that the construction locally respects ;. That is, we need

to show

dom(a) 6; u � s

u

� step(s; a):

Taking the contrapositive and expanding the de�nition of

u

�, this becomes

(9n 2 observe(u): contents(s; n) 6= contents(step(s; a); n))� dom(a); u:

Now if contents(s; n) 6= contents(step(s; a); n), the third condition of the Reference

Monitor Assumptions gives n 2 alter(dom(a)). Hence, we have

n 2 alter(dom(a))^ n 2 observe(u)

and so the second condition to the theorem requires dom(a) ; u and the proof is

complete. 2

In the following chapter, we will show that transitive noninterference policies

satisfy the conditions of Theorem 2 and thereby relate noninterference to the familiar

Bell and La Padula [3] formulation of security.



Chapter 3

Noninterference and

Transitivity

The only restriction we placed on the relation ; de�ning a security policy was that

it should be reexive. However, we will show that, within the formulation presented

so far, only relations that are also transitive have a useful interpretation.

In their original paper on the subject, Goguen and Meseguer [10] suggested that

intransitive policies could be used to specify channel control policies. For example,

the policy of the encryption controller shown in Figure 1.1 could be speci�ed by the

four assertions

Red ; Bypass

Red ; Crypto

Bypass ; Black

Crypto ; Black

with the understanding that all other combinations, except the reexive ones, should

be noninterfering. In particular, Red 6; Black, even though Red ; Bypass and

Bypass; Black, so that the policy ; is intransitive. This is certainly an intuitively

attractive speci�cation of the desired policy; unfortunately, it does not accurately

capture the desired properties. The problem is that noninterference is a very strong

property: the assertion Red 6; Black means that there must be no way for Black

to observe activity by Red. This is not what is required here; Black must certainly

be able to observe activity by Red (after all, it is the source of all incoming data),

but we want all such observations to be mediated by the Bypass or the Crypto.

If the requirement Red 6; Black is too strong, it is obvious that the complemen-

tary requirement Red ; Black is too weak: it would allow unrestricted communi-

cation from Red to Black.

16
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We conclude that noninterference, as formulated so far, cannot specify channel-

control policies exempli�ed by Figure 1.1. The question, then, is what interpretation

is to be placed on intransitive policies within the current formulation? In its simplest

form, we ask how we are to interpret assertions such as

A 6; C

A ; B

B ; C:

The hope is that this policy describes the \assured pipeline" [4] suggested by

A B C

- -

Figure 3.1: Desired interpretation of an intransitive policy

Figure 3.1. But as we have already seen, this hope is not ful�lled: the requirement

A 6; C precludes all interference by domain A on domain C, including that which

would use domain B as an intermediary. The only satisfactory interpretation seems

to be one in which the intermediate domain B is internally composed of two isolated

parts, B1 and B2 as suggested in Figure 3.2. A can interfere with the B1 part of

A C

- -

B1 B2

Figure 3.2: Plausible interpretation of an intransitive policy

B (hence A ; B) and the B2 part of B can interfere with C (hence B ; C), but

the internal dichotomy of B allows A 6; C. Under this interpretation, however, it

is surely more natural to recognize B as two domains and to formulate the policy

accordingly:

A 6; C

A ; B1

B1 6; B2

B2 ; C

But this is (trivially) a transitive policy. We conclude that intransitive policies seem

to have no useful interpretation under the present formulation of noninterference.
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In the following section, we will develop a formulation of noninterference that

does provide a useful interpretation to intransitive policies, and in fact it is an

interpretation satisfying the original goal of using noninterference to provide a formal

foundation for the speci�cation and veri�cation of channel-control policies. Before

we proceed to an examination of intransitive policies, however, we pause to examine

the properties of transitive policies.

3.1 Properties of Transitive Policies

To begin, we de�ne the class of multilevel security policies that model the systems

of clearances and classi�cations used in the pen-and-paper world.

De�nition 6 Let L be a set of security labels (comprising \levels," possibly aug-

mented by \compartments") with a partial ordering� (usually read as \is dominated

by"). The interpretation of l

1

� l

2

is that l

2

is more highly classi�ed (in the case of

data), or more highly trusted (in the case of individuals), and that information is

permitted to ow from l

1

to l

2

, but not vice-versa (unless l

1

= l

2

).

Let clearance : D ! L be a function that assigns a �xed security label to each

domain in D. Then the multilevel security (MLS) policy is:

u; v i� clearance(u) � clearance(v): (3:1)

That is, u may interfere with v if the clearance of v dominates that of u.

An arbitrary security policy given by a relation; onD is said to be anMLS-type

policy if a label set L with a partial ordering � and a function clearance : D ! L

can be found such that (3.1) holds. 2

Clearly we have:

Theorem 3 All MLS-type policies are transitive.

Proof: This follows directly from the transitivity of the partial order �. 2

The converse is also true. An essentially similar result (using a slightly di�erent

construction) was discovered by Dorothy Denning in 1976 [8].

Theorem 4 All transitive policies are MLS-type policies.

Proof: Let ; be a transitive security policy. De�ne a further relation $ on D by:

u$ v

def

= u; v ^ v ; u:

The construction ensures that $ is symmetric. Reexivity and transitivity of $

follow from that of; (recall that all policies are reexive). Thus$ is an equivalence
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relation. We identify a label set L with the equivalence classes of $ and use [u] to

denote the equivalence class of domain u under $. We de�ne a relation � on L as

follows:

[u] � [v]

def

= 9 domains x 2 [u] and y 2 [v] such that x; y:

It is easy to see that � is a partial order on L (i.e., it is reexive, transitive, and

antisymmetric). Finally, we de�ne the function clearance : U ! L by

clearance(u)

def

= [u]:

It is then easy to verify that

u; v i� clearance(u) � clearance(v);

and so it follows that ; is an MLS-type policy. 2

The access control conditions of Theorem 2 reveal a familiar appearance when

they are recast into the notation natural for MLS-type policies. To show this, we

must �rst assign a classi�cation label to each storage object by means of a function

� classi�cation:N ! D.

Then we have:

Corollary 1 (Bell and La Padula Interpretation) Let; be an MLS-type policy, and

M a system with structured state that satis�es the Reference Monitor Assumptions

and the following two properties.

ss-property: n 2 observe(u) � classi�cation(n) � clearance(u),

�-property: n 2 alter(u) � clearance(u) � classi�cation(n).

Then M is secure for ;.

Proof: Using Theorem 2, we need to prove

u; v � observe(u) � observe(v);

and

n 2 alter(u) ^ n 2 observe(v) � u; v:

The �rst of these can be restated as

u; v ^ n 2 observe(u) � n 2 observe(v):

Using the notation of MLS-type policies and the ss-property, this becomes

clearance(u) � clearance(v) ^ classi�cation(n) � clearance(u)

� classi�cation(n) � clearance(v)
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and is satis�ed immediately by the transitivity of the partial order �.

Using the notation of MLS-type policies, the second of the conditions in Theo-

rem 2 becomes

n 2 alter(u) ^ n 2 observe(v) � clearance(u) � clearance(v):

Using the ss- and �-properties, the antecedent to this implication becomes

clearance(u) � classi�cation(n) ^ classi�cation(n) � clearance(v)

and the conclusion then follows from the transitivity of the partial order �. 2

The ss- and �-properties named in this result correspond to the \simple-security"

and \star" properties of the Bell and La Padula security model [2, 3]. The simple-

security condition asserts that a subject must only be able to observe objects whose

classi�cation is dominated by its own clearance, while the star-property asserts

the dual condition that it must only be able to alter objects whose classi�cation

dominates its own clearance. Since the corollary establishes that these conditions

are adequate to ensure the security of a system that enforces an MLS-type policy, it

may seem puzzling that the Bell and La Padula formulation is known to have severe

weaknesses [17, 18]. In fact, there are two sources for these weaknesses and it may

be useful to briey indicate what they are, and why Corollary 1 is not vulnerable

to them.

� One source of weaknesses derives from the lack of a semantic characterization

of what is meant by \observe" and \alter" in the Bell and La Padula model.

It is possible to subvert the model by inverting the intended interpretations of

these terms. (So that the simple-security property says the subjects may alter

only objects of lower classi�cation.) Corollary 1 does not share this weakness

because the Reference Monitor Assumptions provide an adequate semantic

characterization of the intended interpretation of observe and alter access.

� The other source of weakness concerns the behavior of actions that modify the

access control functions. Our notion of a system with structured state is very

limited; more realistic models include more implementation detail and also

extend the set of access control functions and provide actions for manipulating

them. Such actions are called \rules" by Bell and La Padula, who gave a

representative set in their Multics interpretation [3]. Two of these rules are

known to permit unsecure information ow [19,30]. The reason for this is that

the access control \table" and other implementation-level state data of the

reference monitor are not treated as objects in the Bell and La Padula model;

although the model prevents unsecure information ow through the objects
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that it explicitly recognizes, it places no constraints on the ow of information

through the mechanisms of its own realization.

Corollary 1 does not share this weakness because its system model is very

limited and does permit the access control tables to change; thus, it admits no

\rules." In more complex models, that do permit modi�cation to the access

control and other internal tables, the \rules" should be individually veri�ed

by direct reference to the appropriate unwinding theorem.

The veri�cation of individual \rules" using the unwinding theorem requires iden-

ti�cation of the \views" of the machine state held by di�erent security domains. The

next result provides some guidance in the identi�cation of such views, by showing

that, for a transitive ; relation, they are \nested" within each other. This is ob-

vious in the Bell and La Padula model (i.e., everything observable by a subject at

level l

1

is also observable to a subject of level l

2

where l

1

� l

2

). What is interesting

here is that Theorem 5 shows that this nesting property is inherent, not accidental.

De�nition 7 A view-partitioned machine is said to have the nesting property if

u; v ^ s

v

� t � s

u

� t:

That is, if states s and t appear identical to domain v, then they also appear identical

to those domains u that may interfere with v. 2

Theorem 5 Let ; be a transitive policy and M a view-partitioned machine which

satis�es the conditions of the unwinding theorem. Then there is a nested view-

partitioning of M that also satis�es the conditions of the unwinding theorem.

Proof: De�ne a new view-partitioning relation

u

' on D by

s

u

' t

def

= (8v: v; u � s

v

� t):

That

u

' is an equivalence relation follows straightforwardly from the fact that

u

� is.

Output consistency and step consistency of

u

' likewise follow from those properties

of the

u

� relation. For

u

' to locally respect ;, we require

8v ; u : dom(a) 6; u � s

v

� step(s; a): (3:2)

The transitivity of ; ensures dom(a) 6; v (since otherwise we could combine

dom(a) ; v with v ; u and contradict dom(a) 6; u), and (3.2) then follows

from the fact that

v

� locally respects ;.

For the nesting property, we need to demonstrate x ; u � s

x

� t given u ; v

and s

v

' t. Transitivity provides x; v, and the result then follows from the de�ni-

tion of s

v

' t. 2
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Finally, we prove that unwinding is, in a certain sense, complete: for any secure

system, we can �nd a view-partitioning that satis�es the conditions of the unwinding

theorem. Note that this result does not depend on the transitivity of;, but it does

depend on the present interpretation of noninterference which, as we have seen,

makes sense only for transitive policies.

Theorem 6 If M is a secure system, then for each domain u 2 D an equivalence

relation

u

� on the set of states can be found that satis�es the conditions of the

unwinding theorem.

Proof: We use the following construction: for u 2 D and reachable states s and t,

de�ne

s

u

� t

def

= (8� 2 A

�

; b 2 A : dom(b) = u

� output (run(s; �); b) = output (run(t; �); b)): (3.3)

Clearly,

u

� is an equivalence relation. Output consistency follows by taking � = �

in (3.3). For step consistency, we need

s

u

� t � step(s; a)

u

� step(t; a):

The conclusion to this implication expands to

output (run(step(s; a); �); b) = output (run(step(t; a); �); b)

and this is equivalent to

output (run(s; a � �); b) = output (run(t; a � �); b);

which follows directly from the de�nition of s

u

� t.

To show that the construction locally respects ;, we need to demonstrate

dom(a) 6; u � s

u

� step(s; a):

The conclusion expands to

output (run(s; �); b) = output (run(step(s; a); �); b) (3:4)

where dom(b) = u. If s is a reachable state, there exists  such that s = do() and

so (3.4) can be written as

test( � �; b) = test( � a � �; b):

Since the machine is secure, the de�nition of noninterference gives

test( � �; b) = test(purge( � �; dom(b)); b)
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and

test( � a � �; b) = test(purge( � a � �; dom(b)); b):

But, clearly, since dom(a) 6; u and u = dom(b),

purge( � �; dom(b)) = purge( � a � �; dom(b))

and the result follows. 2



Chapter 4

Intransitive Noninterference

Goguen and Meseguer recognized the inability of standard noninterference to model

channel-control policies and they introduced several extensions to the basic formula-

tion in their second paper on the subject [11]. However, the �rst really satisfactory

treatment of intransitive noninterference policies was given by Haigh and Young [13],

with an earlier version the previous year [12].

Both Goguen and Meseguer, and Haigh and Young, recognized that the standard

de�nition of noninterference is too draconian. If u 6; v, the requirement is that

deleting all actions performed by u should produce no change in the behavior of

the system as perceived by v. This is too strong if we also have the assertions

u ; w and w ; v. Surely we should only delete those actions of u that are not

followed by actions of w: this is the essence of Haigh and Young's reformulation

of noninterference. In order to give a formal de�nition, we need to identify those

actions in an action sequence that should not be deleted. This is the purpose of the

function sources .

De�nition 8 We de�ne the function

� sources:A

�

�D ! P(D)

by the equations

sources(�; u) = fug

sources(a � �; u)

1

=

8

>

<

>

:

sources(�; u) [ fdom(a)g if 9v : v 2 sources(�; u)

^ dom(a); v

sources(�; u) otherwise:

Our function sources corresponds to the function purgeable of Haigh and

Young [13], although Haigh and Young gave only an informal characterization of

1

This is the de�nition in which right-recursion is essential.

24
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their function. In essence v 2 sources(�; u) means either that v = u or that there is

a subsequence of � consisting of actions performed by domains w

1

; w

2

; : : : ; w

n

such

that w

1

; w

2

; � � �; w

n

, v = w

1

, and u = w

n

. In considering whether an action

a performed prior to the action sequence � should be allowed to inuence u, we ask

whether there is any v 2 sources(�; u) such that dom(a); v. Notice that always

sources(�; u) � sources(a � �; u); and

u 2 sources(�; u):

We can now de�ne the function ipurge (for intransitive-purge):

� ipurge:A

�

�D! A

�

by the equations

ipurge(�; u) = �

ipurge(a � �; u) =

(

a � ipurge(�; u) if dom(a) 2 sources(a � �; u)

ipurge(�; u) otherwise:

Informally, ipurge(�; u) consists of the subsequence of � with all those actions

that should not be able to interfere with u removed. Thus, security is now de�ned

in terms of the ipurge function:

A machine is secure for the policy ; if

test(�; a) = test(ipurge(�; dom(a)); a):

2

From this point on, our treatment diverges from that of Haigh and Young. We

will argue later that their treatment is incorrect. The �rst step is to establish the

revised form of Lemma 1.

Lemma 2 Let ; be a policy and M a view-partitioned, output consistent system

such that,

do(�)

u

� do(ipurge(�; u)):

Then M is secure for ;.

Proof: The proof is essentially identical to that of Lemma 1.

Setting u = dom(a) in the statement of the lemma gives

do(�)

dom(a)

� do(ipurge(�; dom(a)));
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and output consistency then provides

output (do(�); a) = output (do(ipurge(�; dom(a))); a):

But this is simply

test(�; a) = test(ipurge(�; dom(a)); a);

which is the de�nition of security for ; given by De�nition 8. 2

Next, we present a series of de�nitions and lemmas that culminate in the revised

form of the unwinding theorem.

De�nition 9 Let M be a view-partitioned system and C � D a set of domains.

We de�ne the equivalence relation

C

� on the states of M as follows:

s

C

� t

def

= (8u 2 C : s

u

� t):

Thus s

C

� t exactly when the states s and t appear identical to all the members of

C. 2

De�nition 10 Let M be a view-partitioned system and ; a policy. We say that

M is weakly step consistent if

s

u

� t ^ s

dom(a)

� t � step(s; a)

u

� step(t; a):

2

Lemma 3 Let ; be a policy and M a view-partitioned system which is weakly step

consistent, and locally respects ;. Then

s

sources(a��;u)

� t � step(s; a)

sources(�;u)

� step(t; a):

Proof: Suppose v 2 sources(�; u). We need to show that

step(s; a)

v

� step(t; a): (4:1)

Note that v 2 sources(�; u) implies v 2 sources(a � �; u), and so the hypothesis to

the lemma provides

s

v

� t: (4:2)

We now consider two cases.
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Case 1: dom(a); v. Then, by the de�nition of the sources function, we have

dom(a) 2 sources(a � �; u) and the hypothesis to the lemma provides

s

dom(a)

� t: (4:3)

(4.1) then follows from (4.2) and (4.3) by weak step consistency.

Case 2: dom(a) 6; v. Then by local respect for 6;,

step(s; a)

v

� s;

step(t; a)

v

� t

and (4.1) follows from (4.2).

2

Lemma 4 Let ; be a policy and M a view-partitioned system that locally respects

;. Then

dom(a) 62 sources(a � �; u) � s

sources(�;u)

� step(s; a):

Proof: We assume the hypothesis and let v 2 sources(�; u). It must be that

dom(a) 6; v, since otherwise dom(a) 2 sources(a ��; u). Hence, by local respect for

6;,

s

v

� step(s; a)

and the conclusion follows. 2

Lemma 5 Let ; be a policy and M a view-partitioned system which is weakly step

consistent, and locally respects ;. Then

s

sources(�;u)

� t � run(s; �)

u

� run(t; ipurge(�; u)):

Proof: The proof proceeds by induction on the length of �. The basis is the case

� = � and follows straightforwardly by application of de�nitions. For the inductive

step, we assume the result for � of length n, and consider a � �. We then need to

show

s

sources(a��;u)

� t � run(s; a � �)

u

� run(t; ipurge(a � �; u)):

We now consider two cases.
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Case 1: dom(a) 2 sources(a � �; u). Then ipurge(a � �; u) = a � ipurge(�; u) and

we need to show

s

sources(a��;u)

� t � run(step(s; a); �)

u

� run(step(t; a); ipurge(�; u)):

Lemma 3 gives

s

sources(a��;u)

� t � step(s; a)

sources(�;u)

� step(t; a)

and the result then follows from the inductive hypothesis.

Case 2: dom(a) 62 sources(a � �; u). Then ipurge(a � �; u) = ipurge(�; u) and we

need to show

s

sources(a��;u)

� t � run(step(s; a); �)

u

� run(t; ipurge(�; u)):

Now Lemma 4 gives

dom(a) 62 sources(a � �; u) � s

sources(�;u)

� step(s; a)

and, since sources(�; u) � sources(a � �; u), s

sources(a��;u)

� t implies

s

sources(�;u)

� t:

Because

sources(�;u)

� is an equivalence relation, it follows that

step(s; a)

sources(�;u)

� t

and the result then follows from the inductive hypothesis.

2

Finally, we can present the unwinding theorem for intransitive noninterference

policies.

Theorem 7 (Unwinding Theorem for Intransitive Policies) Let ; be a policy and

M a view-partitioned system that is

1. is output consistent,

2. weakly step consistent, and

3. locally respects ;.



29

Then M is secure for ;.

Proof: Taking s = t = s

0

in Lemma 5 gives

run(s

0

; �)

u

� run(s

0

; ipurge(�; u));

which can be rewritten in the form

do(�)

u

� do(ipurge(�; u));

so that the conclusion follows from Lemma 2. 2

A formal veri�cation of this theorem has been performed using the Ehdm speci�ca-

tion and veri�cation system and is described in in the Appendix to this report. The

mechanically checked proof follows the argument of Lemmas 3 to 5 very closely.

In the following chapter, we consider the di�erences and similarities between this

unwinding theorem and both the ordinary unwinding theorem and that of Haigh

and Young. Before doing so, however, we note that the access control mechanism de-

scribed in De�nition 5 on page 12 of Chapter 2 works for intransitive noninterference

policies as well as for transitive ones.

Theorem 8 Let M be a system with structured state that satis�es the Reference

Monitor Assumptions and the condition

n 2 alter(u) ^ n 2 observe(v) � u; v:

Then M is secure for ;.

Proof: The proof is similar to that of Theorem 2. We show that the conditions

of the theorem satisfy those of the intransitive unwinding theorem. We identify

the view-partitioning relations

u

� of the Intransitive Unwinding Theorem with the

corresponding relations de�ned in the statement of the Reference Monitor Assump-

tions. Output consistency is then satis�ed immediately by the �rst of the Reference

Monitor Assumptions.

To establish weak step consistency, we must prove

s

u

� t ^ s

dom(a)

� t � step(s; a)

u

� step(t; a):

This can be rewritten as

s

u

� t ^ s

dom(a)

� t � contents(step(s; a); n) = contents(step(t; a); n)

where n 2 observe(u). There are three cases to consider
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Case 1: contents(step(s; a); n) 6= contents(s; n). The second of the Reference Mon-

itor Assumptions provides the desired conclusion directly (from the hypothesis

s

dom(a)

� t).

Case 2: contents(step(t; a); n) 6= contents(t; n). This case is symmetrical with the

�rst.

Case 3: contents(step(t; a); n) = contents(t; n) ^ contents(step(t; a); n) = contents(t; n).

Since s

u

� t, we have contents(s; n) = contents(t; n) and the conclusion is im-

mediate.

It remains to show that the construction locally respects ;. This follows by

exactly the same argument as that used in the proof of Theorem 2. 2

It is illuminating to examine the similarity between this access control theorem

and the ordinary one (Theorem 2). The only di�erence between the two theorems

is that the ordinary one requires the additional condition

u; v � observe(u) � observe(v):

Theorem 8 is able to dispense with this condition because the intransitive unwinding

theorem, from which it is derived, requires only weak step consistency.

To see how this apparently small di�erence in formulation allows Theorem 8,

but not Theorem 2, to provide an access control interpretation for an intransitive

policy, consider the system sketched in Figure 3.1. Theorem 8, allows domain A to

have alter access to locations to which domain B has observe access. Similarly, it

permits domain B to have alter access to locations to which domain C has observe

access. In this way, information can ow from A to B and from B to C. However,

A may not have alter access to any locations to which C has observe access; in this

way, direct ow of information from A to C is prevented.

The conditions of Theorem 2 also allow domain A to have alter access to lo-

cations to which domain B has observe access, but they also require that B have

observe access to every location to which A has observe access. Similarly, consid-

ering domains B and C, the conditions of Theorem 2 require that C have observe

access to every location to which B has observe access. Transitively, therefore, C

has observe access to every location to which A has observe access and so A can

have \no secrets" from C. Thus, the additional condition of Theorem 2 forces the

transitive completion of the policy, and so allows the direct ow of information from

A to C.



Chapter 5

Comparisons among the

Formulations

In this chapter we compare our treatment of intransitive noninterference policies

with the standard treatment of noninterference and with that of Haigh and Young.

5.1 Intransitive vs. Standard Noninterference

We �rst compare our treatment of intransitive noninterference policies (Chapter 4)

with the standard treatment of noninterference policies (Chapter 2) and the special

properties of transitive policies (Chapter 3). We will show that, when restricted to

transitive policies, our formulation of noninterference corresponds exactly with the

standard treatment. This provides some assurance that our treatment is a natural

extension of the standard one. To begin, we establish that the de�nitions of security

coincide in the case of transitive polices.

Lemma 6 If ; is transitive, then

v 2 sources(�; u) � v ; u:

Proof: The proof is by induction on the length of �. The basis is the case � = �,

and reference to De�nition 8 shows that

sources(�; u) = fug

and the lemma is satis�ed in this case by the reexivity of ;.

For the inductive step, De�nition 8 gives v 2 sources(a � �; u) if either v 2

sources(�; u) or

v = dom(a) ^ (9w 2 sources(�; u) ^ dom(a); w):

31
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In the �rst case, the inductive hypothesis provides v ; u directly; in the second, the

inductive hypothesis provides w ; u, we also have v = dom(a) and dom(a) ; w,

and so transitivity provides v ; u as required. 2

Lemma 7 If ; is transitive, then ipurge(�; u) = purge(�; u).

Proof: Comparison of De�nitions 2 and 8 reveals that we only need to demonstrate

dom(a); u i� dom(a) 2 sources(a � �; u):

The \if" direction was established by the previous lemma. For the \only if"

direction, note that u 2 sources(�; u), so that dom(a) 2 sources(a � �; u) follows

immediately from De�nition 8 and dom(a); u. 2

Theorem 9 De�nitions 2 and 8 of security agree when the relation; is transitive.

Proof: Since the two de�nitions di�er only in their \purge" functions, this result

is an immediate consequence of the previous lemma. 2

We now know that the two de�nitions of security coincide in the case of transitive

policies; next, we show that the unwinding theorems do so as well.

Theorem 10 The Unwinding Theorems 1 and 7 agree when the relation ; is tran-

sitive.

Proof: The unwinding theorems di�er only in that the intransitive version uses

weak step consistency where the regular one uses (ordinary) step consistency. Weak

step consistency is the condition

s

u

� t ^ s

dom(a)

� t � step(s; a)

u

� step(t; a);

while ordinary step consistency is the condition

s

u

� t � step(s; a)

u

� step(t; a):

Ordinary step consistency obviously implies weak step consistency; thus, we only

need to show that weak step consistency implies ordinary step consistency when ;

is transitive. However, it is not necessarily the case that a given view partitioning

that satis�es weak step consistency also satis�es ordinary step consistency; thus

we must prove that a view partitioning satisfying the intransitive unwinding the-

orem implies the existence of (another) view partitioning satisfying the ordinary

unwinding theorem.
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The construction we use is the same as that for the nesting theorem (Theorem 5):

we de�ne a new view-partitioning relation

u

' on D by

s

u

' t

def

= (8v: v; u � s

v

� t):

The output consistency and local respect for ; of

u

' follow by the same arguments

used in Theorem 5, as does the fact that

u

' is an equivalence relation. For (ordinary)

step consistency, we must show that

s

u

' t � step(s; a)

u

' step(t; a);

or, equivalently,

s

u

' t ^ v ; u � step(s; a)

v

� step(t; a):

Note that s

u

' t ^ v ; u � s

v

� t. There are now two cases to consider.

Case 1: dom(a); u. In this case, s

u

' t implies s

dom(a)

� t, and since we already

have s

v

� t, weak step consistency then supplies step(s; a)

v

� step(t; a) as

required.

Case 2: dom(a) 6; u. In this case, since we have v ; u, transitivity of ; requires

dom(a) 6; v. But then, local respect of ; by

v

� requires step(s; a)

v

� s and

step(t; a)

v

� t, and so step(s; a)

v

� step(t; a) follows directly from s

v

� t.

2

5.2 Comparison with Haigh and Young's Formulation

The system model used by Haigh and Young [13] di�ers slightly from that used here.

Their output function has signature

� output :S �D! O

whereas we use

� output :S � A! O.

Thus, their output function allows a domain u to inspect the system state s directly

as output(s; u), whereas ours requires the mediation of an action a with dom(a) = u

to form output (s; a). Converting our formulation to theirs requires a corresponding

change in the de�nition of the function test to signature

� test :A

�

�D ! O
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with de�nition

test(�; u) = output (do(�); u):

The de�nition of security becomes

test(�; u) = test(ipurge(�; u); u);

and that of output consistency changes to

s

u

� t � output(s; u) = output (t; u):

Some small changes are then needed in the proof of Lemma 2 in order to take

account of the modi�ed function signatures. No other changes are needed in the

development. We have checked this by modifying the formal veri�cation of the

Appendix in the manner described above and then re-running all the proofs. The

ability to readily check the e�ect of changed assumptions in this way is one of the

great bene�ts of formal veri�cation: assumptions are recorded with great precision

and the \ripple" e�ect of perturbations can be evaluated mechanically.

Since the slight di�erences between the system model used here and that used

by Haigh and Young have only a trivial impact on the de�nition of intransitive non-

interference, and none at all on our intransitive unwinding theorem, it is reasonable

to compare our de�nitions and theorems with those of Haigh and Young.

Under the proviso that our function sources is the same as their informally

de�ned function purgeable, our de�nition for intransitive noninterference is the same

as that given by Haigh and Young for \MDS Security." However, the corresponding

unwinding theorems di�er and in this section we compare our unwinding theorem

for intransitive policies with the \SAT MDS Unwinding Theorem" of Haigh and

Young.

In our terminology and notation, the SAT MDS Unwinding Theorem of Haigh

and Young is the following.

Proposition 1 (SAT MDS Unwinding Theorem) Let ; be a policy and M a view-

partitioned system that is

1. is output consistent,

2. step consistent, and

3. MDS-respects ;.

Then M is secure for ;.

That is, Haigh and Young require step consistency where we require weak step

consistency, and they require a condition we call \MDS-respect" for ; where we

require local respect. The condition MDS-respect is de�ned as follows by Haigh and

Young [13, p. 147, formula (10)].
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De�nition 11 Let M be a view-partitioned system and ; a policy. We say that

M MDS-respects ; if, for any choice of action a and state s, if a is purgeable with

respect to domain u, then

s

u

� step(s; a):

2

This de�nition presents a considerable challenge to interpretation. The function

purgeable is not de�ned formally by Haigh and Young, but in its informal de�nition,

and in all previous uses within their paper, it is used in contexts such as \a is purge-

able with respect to u in �." That is, the purgeability of an action is de�ned relative

to a domain and an action sequence. In the de�nition of MDS-respects, however,

there is no reference to an action sequence. Examination of Haigh and Young's

proof of their SAT MDS Unwinding Theorem sheds no light on the interpretation

of the crucial notion MDS-respects: the proof is only a sketch and does not employ

formal use of de�nitions.

Any interpretation of MDS-respects that di�ers from locally respects must be

either weaker or stronger than that alternative notion. A stronger notion would

require s

u

� step(s; a) even in some circumstances where dom(a) ; u. This does

not seem very plausible, since the other conditions of the SAT MDS Unwinding

Theorem are the same as for the ordinary unwinding theorem, and strengthening

one of them must restrict, rather than enlarge, the class of policies admitted. We

conclude that MDS-respects must allow s 6

u

� step(s; a) in some circumstances where

dom(a) 6; u. The constraint on the possible values of step(s; a) in this case must be

provided by the other conditions of the theorem, namely output consistency, and step

consistency. However, as these are both the same as in the ordinary noninterference

case, it is di�cult to see how adequate constraints on the e�ect of a state transition

step(s; a) with dom(a) 6; u and s 6

u

� step(s; a) can be achieved by these constraints.

In contrast, our formulation of the unwinding theorem for intransitive policies

leaves the locally respects constraint unchanged from the ordinary case, but changes

the step consistency constraint to weak step consistency. That is, the condition:

s

u

� t � step(s; a)

u

� step(t; a)

of the ordinary case is changed to

s

u

� t ^ s

dom(a)

� t � step(s; a)

u

� step(t; a)

for the intransitive case.

The second of these conditions is very natural: its intuitive interpretation is

that when an action a is performed, those elements of the system state visible to u

change in a way that depends only on those same elements, plus those visible to the

domain that performed the action.
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The ordinary step consistency condition requires that when an action a is per-

formed, those elements of the system state visible to u change in a way that depends

on those elements alone. This seems more, not less, restrictive than the previous

case, until we recall that for transitive policies there is always a view-partitioning

that satis�es

u; v ^ s

v

� t � s

u

� t:

In other words, those elements of the state space visible to u include all the elements

of the state space visible to domains that may interfere with u.

We should now ask whether a similar explanation can provide a sound inter-

pretation to Haigh and Young's SAT MDS Unwinding Theorem. We believe not,

and we use the following example to make our case. Consider a system with four

domains U; V;W , and X ; U and V may interfere with W , and W may interfere with

X , but U and V must not directly interfere with X . The system state is composed

of three internal registers, u, v, and x, all initially zero. Each domain has a single

action associated with it: U 's action sets the register u to 1, V 's action sets the

register v to 2, W 's action sets the register x to the sum of the contents of u and

v, and X 's action outputs the contents of the register x. It should be clear that

this system satis�es the stated policy. We need to be able to distinguish it from

the insecure variant in which X 's action outputs the sum of the registers u and

v directly. In our formulation of intransitive noninterference, U , V and X 's view

of the system state is restricted to the registers u, v and x respectively, while W

can view both registers u and v. It is easy to see that our unwinding theorem for

intransitive policies is satis�ed by this assignment.

Haigh and Young's unwinding theorem is not satis�ed, however, since the e�ect

of W 's action on the register x cannot be explained in terms of the objects visible

to X . It seems that the set of objects visible to X must be enlarged to include the

registers u and v. But how, then, are we to distinguish the system from its unsecure

variant?

We conclude that all possible interpretations of Haigh and Young's SAT MDS

Unwinding Theorem are unsatisfactory. Because there is no precise de�nition of

the crucial requirement that we call \MDS-respects," it is impossible to assign a

de�nitive status to the theorem, and its utility becomes questionable.

We have, we believe, presented adequate evidence that our unwinding theorem

for intransitive policies is both true and useful; indeed, we believe it is the strongest

theorem possible. We have also presented evidence that Haigh and Young's theorem

is essentially di�erent than ours|di�ering in the crucial step consistency condition,

not just the uncertain MDS-respects condition. We therefore believe it unlikely that

their theorem, if true, is as generally applicable as ours. Consequently, we consider

it likely that their theorem is either false, or true but applicable to a very small class

of systems and/or policies.
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Summary and Conclusions

We have examined the issue of transitivity in noninterference security policies. In-

transitive noninterference policies would seem, intuitively, to be exactly what is

required for the formal speci�cation of channel control and type enforcement poli-

cies. We have shown, however, that the standard interpretation of noninterference

does not ful�ll this expectation. Fortunately, the interpretation of noninterference

introduced by Haigh and Young for multidomain security (MDS) does have the

properties we require. Our contribution has been the identi�cation of intransitivity

of the ; relation as the key distinction between channel control, type enforcement,

and MDS policies on the one hand, and MLS policies on the other.

It can be considered a historical accident that the theory for the transitive case

was invented and developed before the intransitive one, and has therefore become

regarded as the standard case. We submit that it is now more helpful to regard the

intransitive case as the basis for noninterference formulations of security, with the

formerly standard treatment regarded as a specialization for the case of transitive

policies. The advantage of regarding the development in this light is that one does

not have to trouble with the rather di�cult and informal argument that the standard

treatment makes little sense for intransitive policies; one can simply present the

general theory and then show that there is a simpler treatment available in the

special case of transitive policies. The attempt to use the standard treatment in the

case of intransitive policies simply does not arise with this approach.

Our main technical contributions have been the formulation, rigorous proof, and

mechanically-checked formal veri�cation of an unwinding theorem for intransitive

polices, a demonstration that the de�nitions and theorems of the intransitive theory

collapse to the standard ones in the case of transitive policies, and an exploration of

the properties of transitive policies. Our demonstrations of the equivalence of MLS

and transitive noninterference policies, of the nesting property, and of the result

that all MLS secure systems satisfy the conditions of the unwinding theorem, shed

some new light on the properties of transitive noninterference security policies.

37
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However, the novel and more interesting case, and the one that prompted this

investigation in the �rst place, is that of intransitive noninterference policies. In

future work we hope to explore the practical application of intransitive noninterfer-

ence formulations to problems of channel control, and to develop e�ective methods

for verifying mechanisms that enforce such policies. We also plan to explore the

connection between intransitive noninterference policies and the class of properties,

discussed in [26], that can be enforced by kernelization.
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Appendix: Formal Veri�cation

Formulation of noninterference and derivation of the corresponding unwinding the-

orem is surprisingly intricate for the case of intransitive security policies. We have

shown that our treatment di�ers somewhat from that of Haigh and Young, and have

argued that their unwinding theorem is incorrect. Because of its intricacy, we pre-

sented our development in detail and described the proofs fully in the main body of

this report. We also presented collateral evidence for the correctness of our results,

by showing that they collapse to the familiar ones in the case of transitive policies.

In this Appendix, we present additional evidence for the correctness of our devel-

opment in the form of a mechanically checked proof for the intransitive unwinding

theorem.

1

The proof was performed using the Ehdm formal speci�cation and veri-

�cation system developed by the Computer Science Laboratory of SRI [5,6,27,31].

2

Although we do not claim that veri�cation in Ehdm is a certi�cation of \correct-

ness," the successful outcome of the formal veri�cation increases our con�dence that

the theorem is correct. This con�dence derives from the greater understanding that

a truly formal development requires as much as it does from mechanized checking

of the proofs.

A secondary bene�t of formal veri�cation in Ehdm is the enumeration, by its

\Proof Chain Checker," of all the de�nitions and axioms on which a proof depends.

In this way, we are able to identify the logical foundation of a veri�cation; those

de�nitions and axioms comprising the foundation can then be subjected to careful

scrutiny and peer review. The logical foundation of the Intransitive Unwinding

Theorem is listed in Section C.1 and can be seen to comprise 14 de�nitions needed

to develop the noninterference model, plus one de�nition and six axioms required

for the supporting theories such as lists and sets.

Another bene�t of a formal veri�cation is that it can assist in the exploration of

alternative formulations and speci�cations. For example, we noted in Chapter 5.2

1

We have also developed a mechanically-checked formal veri�cation of the unwinding theorem

for classical (i.e., transitive) noninterference. This veri�cation, which is much simpler than the one

described here, is available from the author on request.

2

This formal speci�cation and veri�cation was performed in early 1991 using the then-current

Version 5.2 of Ehdm. The now-current Version 6.1 of Ehdm is a completely new implementation

that di�ers in some signi�cant details from 5.2.
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that our basic system model di�ers slightly from that of Haigh and Young [13].

When this was drawn to our attention, we were able to incorporate the changes in

our formal speci�cation and explore its consequences very quickly. In this case, we

found that the proof to one theorem needed slight adjustment, but everything else

could be left unchanged. In our experience, manual checking of the consequences of

revised de�nitions and axioms is very error-prone, since proofs are seldom checked

for the second time (to see if they need adjusting) with the same care that they are

constructed in the �rst place. In contrast, a veri�cation system explores the \ripple"

e�ect of changes with mechanical precision and speed.

We consider that the bene�ts of the formal speci�cation and veri�cation of the

intransitive noninterference model and its unwinding theorem amply repay the mod-

est cost required. It really does not take much longer to develop a fully formal,

mechanically checked speci�cation in Ehdm than it does to construct a compa-

rably detailed model in conventional mathematical notation. Simple parsing and

typechecking of the speci�cation is su�cient to identify mismatches between the

de�nition and use of terms, such as those in Haigh and Young's MDS Unwinding

Theorem [13]. Furthermore, in an expressive speci�cation language such as that of

Ehdm, the speci�cations are perfectly readable and compare well with those devel-

oped in conventional, informal, mathematical notation. The additional discipline

of a formal speci�cation also encourages simplicity and consistency of notation and

presentation.



Appendix A

Description of the Formal

Speci�cation and Veri�cation

The formal veri�cation described here was performed using the Ehdm system; as we

do not describe Ehdm in any detail here, readers unfamiliar with its speci�cation

language and veri�cation environment are referred to [27]. The formal speci�ca-

tion and veri�cation follows closely the conventional mathematical presentation in

Chapter 4, using the same notation and names wherever possible.

The formal speci�cation and veri�cation in Ehdm is shown in full in Appendix D,

and a cross-reference in Appendix B. Notice that Ehdm proof declarations appear

as part the speci�cation: they provide a list of premises and ground substitutions

for variables, and constitute the only information provided to the theorem prover.

A \proof-chain" analysis of the veri�cation appears in Appendix C. This analysis

checks that the premises to each theorem are either axioms or proved theorems.

Type-correctness of certain Ehdm constructions (for example, recursive function

de�nitions) requires that certain system-generated formulas called Type Consistency

Conditions (TCCs) are proved; in addition, some modules (such as those de�ning

induction) declare assumptions that must be proved in any instantiation of the

module. The proof-chain analyzer checks that both these kinds of proof obligations

are discharged.

The generation of all the tables in the appendices was performed automati-

cally by Ehdm. In addition, the speci�cations that appear in Appendix D were

prettyprinted into conventional mathematical notation using the Ehdm L

a

T

E

X-

translator [7, 27].
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A.1 Lists

Inspection of the development in Chapter 4 shows that several functions range over

sequences, but that recursions and inductions over these sequences always occur

right-recursively. Thus we do not require a general theory of sequences, only a

theory of sequences constructed right-recursively; such a theory is the theory of

lists with constructor cons (which we generally write as in�x �), base element nil

(which we generally write as �), and selectors car and cdr .

1

A length function is

also de�ned on lists.

This theory is presented in the module lists shown on page 62. Observe that

the module is parameterized by the type over which the lists are constructed. It is

worth noting that a rather large number of axioms (six) are required in this module.

Axioms must always be scrutinized with great care since they can introduce incon-

sistencies. In fact, the module lists can be systematically generated from a simple

de�nitional facility for abstract data types (this is done automatically in PVS [20],

our other veri�cation system) and the soundness of the construction can be proved

once and for all. For illustrative purposes, however, we speci�cally demonstrate

the consistency of the lists theory by exhibiting a model. In Ehdm, this is done

via theory interpretation [29, Section 4.7] using the MAPPING mechanism [27]. The

construction of such an interpretation is described in the following section.

A.1.1 The Consistency of the Lists Speci�cation

The topic discussed in this section is somewhat technical and may be skipped with-

out loss to the main theme.

We demonstrate the consistency of the lists module, and also con�rm our

understanding of what it speci�es, by mapping it to a constructively de�ned module

called lists model shown on page 63. The latter module interprets lists as records

consisting of a natural number (intuitively, this can be regarded as a pointer) and an

array. The list is \stored" in consecutive locations of the array, starting at 0. The

pointer points one location past the end of the list. The cons function simply stores

a new element in the array and advances the pointer; conversely, cdr simply reduces

the pointer. The car function returns the value of the location in the list immediately

prior to the pointer. Arrays and records in Ehdm are simply functions; \storing"

a value in an array or record is performed using function modi�cation, indicated

by the with keyword: f with [(x) := y] is the function that has the same value

everywhere as f, except that it has the value y at x.

1

Although adequate for our purposes, this really is a very limited theory of lists; in fact, it is

rather closer to a theory of stacks.
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The speci�cation of these functions in the module lists model shown on page 63

is straightforward.

2

The module lists model generates a TCC module shown on

page 64; an adequate proof of its single TCC formula is given in the module top

shown on page 81.

It is also necessary to de�ne a concrete-equality predicate on the lists representa-

tion type; this predicate must be true when two representations both represent the

same abstract list. This will be so if their pointers are the same and the contents of

their arrays are equal at all locations between 0 and one less than the pointer. The

predicate is speci�ed as ce in the module lists model. It is a matter of pragmatic

convenience that ce and cons are speci�ed by ordinary de�nitions (using a single

=), while the other functions are speci�ed by literal de�nitions (using double ==):

the literally-de�ned functions will be expanded automatically in proofs, whereas the

more complex ce and cons must be cited explicitly.

The mapping module that links lists to lists model is the module lists map

shown on page 65. This module explicitly indicates that equality on lists is to be

mapped to the ce predicate in the interpretation; all other types and constants

are to be mapped using name-identity. The system-generated mapped module

lists map map is shown on page 66. The axioms of lists, interpreted in the the-

ory of lists model as indicated by lists map, become formulas to be proven in

lists map map. Notice that we are required to prove that ce is an equivalence

relation. We should also be required to prove that it satis�es the property of substi-

tutivity and hence is a congruence relation, but this check was missing from Ehdm

Version 5.2 (however, it is enforced in Version 6).

Ehdm automatically generates trivial proof declarations for the formulas in

mapped and TCC modules. Often, these su�ce, but in the present case the triv-

ial system-generated proofs in lists map map are inadequate; e�ective proofs are

provided in the module lists map proofs shown on page 67.

A.1.2 List Inductions

The module list inductions on page 68 states the higher-order formula

list induction that speci�es an induction scheme used to prove properties of lists:

list induction: Theorem p(�) ^ ( 8 �; x: p(�) � p(x � �)) � p()

where p is an arbitrary predicate over lists. This formula is given as a theorem and

proven from the formula general induction, which states the general scheme for

N�otherian induction and is given in the module noetherian on page 69. The module

2

This entire construction is very similar to that described for stacks in the Ehdm tuto-

rial [27, Chapter 5]; readers seeking further explanation of mappings in Ehdm should consult that

description.
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noetherian is a library module of Ehdm and is described in detail in the Ehdm tu-

torial [27, Chapter 6]. Interested readers should refer to the discussion in the tutorial

for an explanation of the well founded assumption in the module noetherian, and

the manner in which it is discharged by the module list inductions. The formula

general induction is stated as an axiom and justi�ed by reference to standard

texts (for example [16, page 6]).

A.2 Sets

The module sets (page 70) introduces sets and the basic set operations of union,

intersection, subset, and the like. Sets are modeled by their characteristic predi-

cates and the set operations are de�ned as higher-order functions. Those unfamiliar

with the use of higher-order logic in speci�cations may �nd these de�nitions partic-

ularly interesting. Notice that the type of (the predicate representing) a given set

is dependent on the type supplied as the actual parameter to the sets module.

A.3 Noninterference

The speci�cation of intransitive noninterference and the proof of its unwinding the-

orem are presented in the module intrans nonint starting on page 71. The speci-

�cation begins by introducing the basic types and functions used to state the non-

interference notion of security. The names of the types and functions used are the

same as those in the conventional mathematical development given in the main body

of this report, and the de�nitions are likewise fairly straightforward transliterations.

The main di�erences occur in the speci�cations of the functions run, sources, and

ipurge: whereas these are de�ned by (pattern matching) cases over the list construc-

tors � and � in the conventional mathematical presentation, the Ehdm speci�cation

de�nes these functions recursively. Recursive de�nitions in Ehdm require measure

functions to be supplied in order to ensure that the recursion is well-founded. The

measure functions used here, step count and step count2, employ the length of

the list as the measure. The TCCs generated from these recursive de�nitions ap-

pear in the system-generated module intrans nonint tcc on page 78, and e�ec-

tive proofs (the system-generated proofs are inadequate) are given in the module

intrans nonint tcc proofs on page 80.

The equivalence relation that induces view-partitioning is written in in�x nota-

tion in the form s

u

� t in the conventional mathematical presentation. In the Ehdm

speci�cation it is written as view id(u, ss, tt) and is speci�ed as

view id: function[D;S;S ! bool] � (� u; st; tt: view(u; st) = view(u; tt))
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where view is an uninterpreted function. The pragmatic advantage of this method

of speci�cation is that view id expands to an equation; thus we do not need to cite

the properties of reexivity, symmetry, and transitivity in proofs that use view id.

The predicates secure, output consistent, and local respect are the formal

counterparts of the properties of similar names given in the conventional mathe-

matical presentation. The predicate view consistent is introduced to name the

main condition in the statement of Lemma 2. In specifying these four predicates,

there is a choice as to which of the variables should be locally quanti�ed and which

should be speci�ed as parameters in the predicate de�nition and quanti�ed at a

higher level. We chose to locally quantify all variables in these predicates, except

the list variables in view consistent and secure. This is really a matter of taste

and other choices would work equally well.

Lemmas 2 to 5 in the conventional mathematical development are mirrored by

the formulas with similar names in the formal development. The proofs of Lemmas 2

to 4 in the formal veri�cation correspond almost directly to those in the conventional

mathematical development. However, the formal veri�cation interposes between the

proofs of Lemmas 2 and 3 the statements and proofs of a number of minor technical

results that are taken as obvious in the conventional mathematical presentation.

The �rst six of these:

single step lemma: Lemma run(st; a � �) = run(step(st; a); �)

purge lemma: Lemma

ipurge(a � �; u)

= if dom(a) 2 sources(a � �; u)

then a � ipurge(�; u)

else ipurge(�; u)

end if

sources subset: Lemma sources(�; u) � sources(a � �; u)

sources grows: Lemma v 2 sources(�; u) � v 2 sources(a � �; u)

sources defn base case: Lemma sources(�; u) = fug

sources defn inductive case: Lemma

( 9 v: v 2 sources(�; u) ^ dom(a); v)

� sources(a � �; u) = fdom(a)g [ sources(�; u)

are obvious and have straightforward proofs. However, the next one

in own sources: Lemma u 2 sources(�; u)
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requires a proof by induction and uses several intermediate lemmas. When per-

forming a proof by induction in Ehdm, it is usually convenient to de�ne a predicate

equivalent to all, or part of, the formula to be proven. The predicate should be pa-

rameterized by the induction variable in order to allow inductive instances to be writ-

ten conveniently. In the present speci�cation, the predicate in own sources pred

ful�lls this role with respect to the formula in own sources.

The predicate strong view id stands in the same relationship to the equivalence

relation

C

� in the conventional mathematical presentation as the predicate view id

does to

u

�. However, because strong view id does not reduce to an equation, the

properties of reexivity, symmetry, and transitivity have to proven, and later cited,

explicitly. The technical lemma

strong view id sources prop: Lemma

strong view id(sources(a � �; u); st; tt)

� strong view id(sources(�; u); st; tt)

is also proven at this point. Following the proofs of Lemmas 3 and 4, come the

de�nitions and lemmas that establish Lemma 5. The proof is by induction, and we

introduce a predicate lemma5 pred to simplify its expression and proof. The module

ends with the proof of the unwinding theorem. As in the conventional mathematical

presentation, this is a straightforward consequence of Lemmas 2 and 5.

A.4 Top

This module serves to tie the main modules of the speci�cation together. It also

contains a proof for the TCC formula car TCC1 from the module lists model tcc

shown on page 64. The proof cites the formula nat invariant, which is the subtype

invariant for natural numbers|i.e., (�n : n � 0)|from the standard prelude.
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Cross-Reference Listing

This Appendix provides two cross-reference tables to assist in reading and navigat-

ing the Ehdm speci�cations that follow. The �rst provides a cross-reference listing

to the identi�ers declared in the Ehdm speci�cation; the second provides the trans-

lations from raw Ehdm identi�ers appearing in the �rst table and in Appendix B

to the symbols appearing in the L

a

T

E

X-printed version of the speci�cations given

in Appendix C. All the material appearing in these Appendices was generated

mechanically by Ehdm.
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Identi�er Declaration Module

A type intrans_nonint

add literal-fn sets

arbitrary const lists_model

Astar type intrans_nonint

car function lists

car literal-fn lists_model

car_ax axiom lists

car_ax formula lists_map_map

car_ax_PROOF prove lists_map_map

car_ax_PROOF prove lists_map_proofs

car_TCC1 formula lists_model_tcc

car_TCC1_PROOF prove lists_model_tcc

cdr function lists

cdr literal-fn lists_model

cdr_ax axiom lists

cdr_ax formula lists_map_map

cdr_ax_PROOF prove lists_map_map

cdr_ax_PROOF prove lists_map_proofs

cdr_cons_lemma1 formula lists_map_proofs

cdr_cons_lemma1_proof prove lists_map_proofs

cdr_cons_lemma2 formula lists_map_proofs

cdr_cons_lemma2_proof prove lists_map_proofs

ce de�ned-fn lists_model

ce_isreflexive formula lists_map_map

ce_isreflexive_PROOF prove lists_map_map

ce_isreflexive_PROOF prove lists_map_proofs

ce_issymmetric formula lists_map_map

ce_issymmetric_PROOF prove lists_map_map

ce_issymmetric_PROOF prove lists_map_proofs

ce_istransitive formula lists_map_map

ce_istransitive_PROOF prove lists_map_map

ce_istransitive_PROOF prove lists_map_proofs

connects de�ned-fn intrans_nonint

cons de�ned-fn lists_model

cons function lists

cons_ax axiom lists

cons_ax formula lists_map_map

cons_ax_PROOF prove lists_map_map

cons_ax_PROOF prove lists_map_proofs

cons_induction_proof prove list_inductions

D type intrans_nonint

difference literal-fn sets

discharge_well_founded prove list_inductions

dof de�ned-fn intrans_nonint

Table B.1: Ehdm Identifers used in the Speci�cation (continues)
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Identi�er Declaration Module

dom function intrans_nonint

empty de�ned-fn sets

emptyset literal-const sets

extends literal-fn list_inductions

extensionality axiom sets

fullset literal-const sets

general_induction axiom noetherian

in_own_sources formula intrans_nonint

in_own_sources_basis formula intrans_nonint

in_own_sources_basis_proof prove intrans_nonint

in_own_sources_form formula intrans_nonint

in_own_sources_form_proof prove intrans_nonint

in_own_sources_induct formula intrans_nonint

in_own_sources_induct_proof prove intrans_nonint

in_own_sources_pred de�ned-fn intrans_nonint

in_own_sources_proof prove intrans_nonint

interfere function intrans_nonint

intersection literal-fn sets

intrans_nonint module intrans_nonint

intrans_nonint_tcc module intrans_nonint_tcc

intrans_nonint_tcc_proofs module intrans_nonint_tcc_proofs

ipurge recursive-fn intrans_nonint

ipurge_TCC1 formula intrans_nonint_tcc

ipurge_TCC1_PROOF prove intrans_nonint_tcc

ipurge_TCC2 formula intrans_nonint_tcc

ipurge_TCC2_PROOF prove intrans_nonint_tcc

lemma2 formula intrans_nonint

lemma2_proof prove intrans_nonint

lemma3 formula intrans_nonint

lemma3_proof prove intrans_nonint

lemma4 formula intrans_nonint

lemma4_proof prove intrans_nonint

lemma5 formula intrans_nonint

lemma5_basis formula intrans_nonint

lemma5_basis_proof prove intrans_nonint

lemma5_induct formula intrans_nonint

lemma5_induct_proof prove intrans_nonint

lemma5_pred de�ned-fn intrans_nonint

lemma5_proof prove intrans_nonint

length function lists

length literal-fn lists_model

length_cdr formula lists

length_cdr_proof prove lists

length_cons axiom lists

Table B.1: Ehdm Identifers used in the Speci�cation (continues)
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Identi�er Declaration Module

length_cons formula lists_map_map

length_cons_PROOF prove lists_map_map

length_cons_PROOF prove lists_map_proofs

length_nil axiom lists

length_nil formula lists_map_map

length_nil_PROOF prove lists_map_map

length_nil_PROOF prove lists_map_proofs

list type lists_model

list type lists

listarray type lists_model

list_induction formula list_inductions

list_inductions module list_inductions

lists module lists

lists_map module lists_map

lists_map_map module lists_map_map

lists_map_proofs module lists_map_proofs

lists_model module lists_model

lists_model_tcc module lists_model_tcc

local_respect de�ned-const intrans_nonint

member literal-fn sets

nil const lists_model

nil const lists

nilax axiom lists_model

nilorcons_ax axiom lists

nilorcons_ax formula lists_map_map

nilorcons_ax_PROOF prove lists_map_map

nilorcons_ax_PROOF prove lists_map_proofs

noetherian module noetherian

noninterfere literal-fn intrans_nonint

null literal-fn lists

O type intrans_nonint

output function intrans_nonint

output_consistent de�ned-const intrans_nonint

purge_lemma formula intrans_nonint

purge_lemma_proof prove intrans_nonint

purge_TCC1_PROOF prove intrans_nonint_tcc_proofs

purge_TCC2_PROOF prove intrans_nonint_tcc_proofs

run recursive-fn intrans_nonint

run_TCC1 formula intrans_nonint_tcc

run_TCC1_PROOF prove intrans_nonint_tcc

run_TCC1_PROOF prove intrans_nonint_tcc_proofs

S type intrans_nonint

secure de�ned-fn intrans_nonint

set type sets

Table B.1: Ehdm Identifers used in the Speci�cation (continues)
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Identi�er Declaration Module

sets module sets

single_step_lemma formula intrans_nonint

single_step_lemma_proof prove intrans_nonint

singleton literal-fn sets

sources recursive-fn intrans_nonint

sources_defn_base_case formula intrans_nonint

sources_defn_base_case_proof prove intrans_nonint

sources_defn_inductive_case formula intrans_nonint

sources_defn_inductive_case_proof prove intrans_nonint

sources_grows formula intrans_nonint

sources_grows_proof prove intrans_nonint

sources_subset formula intrans_nonint

sources_subset_proof prove intrans_nonint

sources_TCC1 formula intrans_nonint_tcc

sources_TCC1_PROOF prove intrans_nonint_tcc

sources_TCC1_PROOF prove intrans_nonint_tcc_proofs

sources_TCC2 formula intrans_nonint_tcc

sources_TCC2_PROOF prove intrans_nonint_tcc

sources_TCC2_PROOF prove intrans_nonint_tcc_proofs

sources_TCC3 formula intrans_nonint_tcc

sources_TCC3_PROOF prove intrans_nonint_tcc

sources_TCC3_PROOF prove intrans_nonint_tcc_proofs

st0 const intrans_nonint

step function intrans_nonint

step_count literal-fn intrans_nonint

step_count2 literal-fn intrans_nonint

strong_view_id de�ned-fn intrans_nonint

strong_view_id_reflexive formula intrans_nonint

strong_view_id_reflexive_proof prove intrans_nonint

strong_view_id_sources_prop formula intrans_nonint

strong_view_id_sources_prop_proof prove intrans_nonint

strong_view_id_symmetric formula intrans_nonint

strong_view_id_symmetric_proof prove intrans_nonint

strong_view_id_transitive formula intrans_nonint

strong_view_id_transitive_proof prove intrans_nonint

subset de�ned-fn sets

subset_add formula sets

subset_add_proof prove sets

subset_self formula sets

subset_self_proof prove sets

TCC_proof prove top

test de�ned-fn intrans_nonint

top module top

union literal-fn sets

Table B.1: Ehdm Identifers used in the Speci�cation (continues)
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Identi�er Declaration Module

unwinding formula intrans_nonint

unwinding_proof prove intrans_nonint

V type intrans_nonint

value const lists_model

view function intrans_nonint

view_consistent de�ned-fn intrans_nonint

view_id literal-fn intrans_nonint

weak_step_consistent de�ned-const intrans_nonint

well_founded formula noetherian

Table B.1: Ehdm Identifers used in the Speci�cation

Identi�er Translation

A A

add fxg [ a

alist �

Astar A

?

cons s � �

D D

difference a� b

dof do

emptyset ;

I I

interfere u; v

intersection a

T

b

member x 2 b

nil �

noninterfere u 6; v

O O

singleton fxg

S S

st0 st

0

subset a � b

union a

S

b

Table B.2: Translations for Identi�ers Used in the Speci�cation
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Proof-Chain Analysis

The following pages reproduce the output from the Ehdm proof-chain analyzer in

terse mode applied �rst to the formula unwinding in module intrans nonint and

then to all the formulas in the mapped module lists map map. The Ehdm proof-

chain analyzer examines the macroscopic structure of a veri�cation by checking that

all the premises used in a proof are either axioms, de�nitions, or formulas which

are, themselves, the target of a successful proof elsewhere in the veri�cation. If any

formulas are used from a module with an assuming clause, then the proof-chain ana-

lyzer checks that those assumptions are discharged by successful proofs; similarly, if

formulas are used from a module with a TCC module, then the proof-chain analyzer

checks that all the TCCs in that module are discharged by successful proofs. The

trivial system-generated proof declarations in the TCC module itself are often un-

successful, so the user must supply more adequate proofs in another module (TCC

modules cannot be altered). The proof-chain analyzer ignores unsuccessful proofs,

such as system-generated TCC proofs, when a successful proof for the same formula

can be found. The terse mode output reproduced here provides a commentary on

only the \interesting" cases, namely proof obligations involving assuming clauses

and TCCs, and a summary. A shortcoming of the analysis is that literal constants

(i.e., those de�ned with a double ==) are not reported. All the proofs listed in the

summary were performed by the Ehdm theorem prover in checking mode.

C.1 Proof-Chain for the Unwinding Theorem

The following pages reproduce the output from the Ehdm proof-chain analyzer

applied to the formula unwinding in module intrans nonint. It can be seen that

the proof chain is complete.

Terse proof chain for formula unwinding in module intrans_nonint

Use of the formula

intrans_nonint.unwinding

requires the following TCCs to be proven

56
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intrans_nonint_tcc.run_TCC1

intrans_nonint_tcc.sources_TCC1

intrans_nonint_tcc.sources_TCC2

intrans_nonint_tcc.sources_TCC3

intrans_nonint_tcc.ipurge_TCC1

intrans_nonint_tcc.ipurge_TCC2

Formula intrans_nonint_tcc.run_TCC1 is a termination TCC for intrans_nonint.run

Proof of

intrans_nonint_tcc.run_TCC1

must not use

intrans_nonint.run

Formula intrans_nonint_tcc.sources_TCC1 is a termination TCC for

intrans_nonint.sources

Proof of

intrans_nonint_tcc.sources_TCC1

must not use

intrans_nonint.sources

Formula intrans_nonint_tcc.sources_TCC2 is a termination TCC for

intrans_nonint.sources

Proof of

intrans_nonint_tcc.sources_TCC2

must not use

intrans_nonint.sources

Formula intrans_nonint_tcc.sources_TCC3 is a termination TCC for

intrans_nonint.sources

Proof of

intrans_nonint_tcc.sources_TCC3

must not use

intrans_nonint.sources

Formula intrans_nonint_tcc.ipurge_TCC1 is a termination TCC for

intrans_nonint.ipurge

Proof of

intrans_nonint_tcc.ipurge_TCC1

must not use

intrans_nonint.ipurge

Formula intrans_nonint_tcc.ipurge_TCC2 is a termination TCC for

intrans_nonint.ipurge

Proof of

intrans_nonint_tcc.ipurge_TCC2

must not use

intrans_nonint.ipurge
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Use of the formula

noetherian[lists[...].list, list_inductions[...].extends].general_induction

requires the following assumptions to be discharged

noetherian[lists[...].list, list_inductions[...].extends].well_founded

================== SUMMARY ==================

The proof chain is complete

The axioms and assumptions at the base are:

lists[EXPR].car_ax

lists[EXPR].cdr_ax

lists[EXPR].cons_ax

lists[EXPR].length_cons

lists[EXPR].nilorcons_ax

noetherian[EXPR, EXPR].general_induction

Total: 6

The definitions and type-constraints are:

intrans_nonint.connects

intrans_nonint.dof

intrans_nonint.in_own_sources_pred

intrans_nonint.ipurge

intrans_nonint.lemma5_pred

intrans_nonint.local_respect

intrans_nonint.output_consistent

intrans_nonint.run

intrans_nonint.secure

intrans_nonint.sources

intrans_nonint.strong_view_id

intrans_nonint.test

intrans_nonint.view_consistent

intrans_nonint.weak_step_consistent

sets[EXPR].subset

Total: 15

The formulae used are:

intrans_nonint.in_own_sources

intrans_nonint.in_own_sources_basis

intrans_nonint.in_own_sources_form

intrans_nonint.in_own_sources_induct

intrans_nonint.lemma2

intrans_nonint.lemma3

intrans_nonint.lemma4

intrans_nonint.lemma5

intrans_nonint.lemma5_basis

intrans_nonint.lemma5_induct

intrans_nonint.purge_lemma
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intrans_nonint.single_step_lemma

intrans_nonint.sources_defn_base_case

intrans_nonint.sources_defn_inductive_case

intrans_nonint.sources_grows

intrans_nonint.sources_subset

intrans_nonint.strong_view_id_reflexive

intrans_nonint.strong_view_id_sources_prop

intrans_nonint.strong_view_id_symmetric

intrans_nonint.strong_view_id_transitive

intrans_nonint.unwinding

intrans_nonint_tcc.ipurge_TCC1

intrans_nonint_tcc.ipurge_TCC2

intrans_nonint_tcc.run_TCC1

intrans_nonint_tcc.sources_TCC1

intrans_nonint_tcc.sources_TCC2

intrans_nonint_tcc.sources_TCC3

list_inductions[EXPR].list_induction

lists[EXPR].length_cdr

noetherian[lists[...].list, list_inductions[...].extends].well_founded

sets[EXPR].subset_add

sets[EXPR].subset_self

Total: 32

The completed proofs are:

intrans_nonint.in_own_sources_basis_proof

intrans_nonint.in_own_sources_form_proof

intrans_nonint.in_own_sources_induct_proof

intrans_nonint.in_own_sources_proof

intrans_nonint.lemma2_proof

intrans_nonint.lemma3_proof

intrans_nonint.lemma4_proof

intrans_nonint.lemma5_basis_proof

intrans_nonint.lemma5_induct_proof

intrans_nonint.lemma5_proof

intrans_nonint.purge_lemma_proof

intrans_nonint.single_step_lemma_proof

intrans_nonint.sources_defn_base_case_proof

intrans_nonint.sources_defn_inductive_case_proof

intrans_nonint.sources_grows_proof

intrans_nonint.sources_subset_proof

intrans_nonint.strong_view_id_reflexive_proof

intrans_nonint.strong_view_id_sources_prop_proof

intrans_nonint.strong_view_id_symmetric_proof

intrans_nonint.strong_view_id_transitive_proof

intrans_nonint.unwinding_proof

intrans_nonint_tcc_proofs.purge_TCC1_PROOF

intrans_nonint_tcc_proofs.purge_TCC2_PROOF

intrans_nonint_tcc_proofs.run_TCC1_PROOF
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intrans_nonint_tcc_proofs.sources_TCC1_PROOF

intrans_nonint_tcc_proofs.sources_TCC2_PROOF

intrans_nonint_tcc_proofs.sources_TCC3_PROOF

list_inductions[EXPR].cons_induction_proof

list_inductions[EXPR].discharge_well_founded

lists[EXPR].length_cdr_proof

sets[EXPR].subset_add_proof

sets[EXPR].subset_self_proof

Total: 32

C.2 Proof-Chain for the Mapping of the Lists Module

The following pages reproduce the output from the Ehdm proof-chain analyzer

applied to all the formulas in the mapped module lists map map. It can be seen that

the proof chain is complete, thereby demonstrating the soundness of the mapping.

Terse proof chains of all formulas in module lists_map_map

Use of the formula

lists_model[EXPR].ce

requires the following TCCs to be proven

lists_model_tcc[EXPR].car_TCC1

SUMMARY

The proof chain is complete

The axioms and assumptions at the base are:

lists_model[EXPR].nilax

Total: 1

The definitions and type-constraints are:

lists_model[EXPR].ce

lists_model[EXPR].cons

naturalnumbers.nat_invariant

Total: 3

The formulae used are:

lists_map_map[EXPR].car_ax

lists_map_map[EXPR].cdr_ax

lists_map_map[EXPR].ce_isreflexive

lists_map_map[EXPR].ce_issymmetric

lists_map_map[EXPR].ce_istransitive

lists_map_map[EXPR].cons_ax

lists_map_map[EXPR].length_cons
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lists_map_map[EXPR].length_nil

lists_map_map[EXPR].nilorcons_ax

lists_map_proofs[EXPR].cdr_cons_lemma1

lists_map_proofs[EXPR].cdr_cons_lemma2

lists_model_tcc[EXPR].car_TCC1

Total: 12

The completed proofs are:

lists_map_proofs[EXPR].car_ax_PROOF

lists_map_proofs[EXPR].cdr_ax_PROOF

lists_map_proofs[EXPR].cdr_cons_lemma1_proof

lists_map_proofs[EXPR].cdr_cons_lemma2_proof

lists_map_proofs[EXPR].ce_isreflexive_PROOF

lists_map_proofs[EXPR].ce_issymmetric_PROOF

lists_map_proofs[EXPR].ce_istransitive_PROOF

lists_map_proofs[EXPR].cons_ax_PROOF

lists_map_proofs[EXPR].length_cons_PROOF

lists_map_proofs[EXPR].length_nil_PROOF

lists_map_proofs[EXPR].nilorcons_ax_PROOF

top[EXPR].TCC_proof

Total: 12
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Speci�cations

lists: Module [T : Type]

Exporting all

Theory

list: Type

�: list

s; t: Var T

�: Var list

null: function[list! bool] == (� � : � = �)

s � �: function[T ; list! list]

car: function[list! T ]

cdr: function[list! list]

cons ax: Axiom :(s � � = �)

car ax: Axiom car(s � �) = s

cdr ax: Axiom cdr(s � �) = �

nilorcons ax: Axiom � = � _ � = car(�) � cdr(�)

length: function[list! nat]

length nil: Axiom length(�) = 0

length cons: Axiom length(s � �) = length(�) + 1

length cdr: Lemma :(null(�)) � length(�) > length(cdr(�))

Proof

length cdr proof: Prove length cdr from

nilorcons ax, length cons f� cdr(�@p1), s car(�@p1)g

End lists

62
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lists model: Module [T : Type]

Exporting all

Theory

listarray: Type = array[nat]of T

list: Type = Record nextpos : nat;

value : listarray

end record

arbitrary: T

�: list

nilax: Axiom �:nextpos = 0

s; t: Var T

�; �: Var list

n: Var nat

ce: function[list; list! bool] =

(� �; � :

�:nextpos = �:nextpos

^ ( 8 n : n < �:nextpos � �:value(n) = �:value(n)))

s � �: function[T ; list! list] =

(� s; � : �

with [(value) := �:value with [(�:nextpos) := s];

(nextpos) := �:nextpos + 1])

car: function[list! T ] ==

(� � : if �:nextpos = 0

then arbitrary

else �:value(�:nextpos � 1)

end if)

cdr: function[list! list] ==

(� � : if �:nextpos = 0

then �

else �

with [(nextpos) := �:nextpos � 1]

end if)

length: function[list! nat] == (� � : �:nextpos)

End lists model
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lists model tcc: Module [T : Type]

Using lists model[T ]

Exporting all with lists model

Theory

�: Var list

(* Subtype TCC generated for the first argument to rho in car AND

Subtype TCC generated for cdr *)

car TCC1: Formula (:(�:nextpos = 0)) � (�:nextpos � 1 � 0)

Proof

car TCC1 PROOF: Prove car TCC1

End lists model tcc
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lists map: Module [T : Type]

Mapping lists[T ] onto lists model[T ]

=[list[T ]] ! ce

End lists map
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lists map map: Module [T : Type]

Using lists model[T ]

Exporting all with lists model[T ]

Theory

�: Var lists model[T ]:list

s: Var T

x

1

: Var lists model[T ]:list

x

2

: Var lists model[T ]:list

x

3

: Var lists model[T ]:list

ce isreexive: Formula ce(x

1

; x

1

)

ce issymmetric: Formula ce(x

1

; x

2

) � ce(x

2

; x

1

)

ce istransitive: Formula ce(x

1

; x

2

) ^ ce(x

2

; x

3

) � ce(x

1

; x

3

)

cons ax: Formula :(ce(s � �;�))

car ax: Formula car(s � �) = s

cdr ax: Formula ce(cdr(s � �); �)

nilorcons ax: Formula ce(�;�) _ ce(�; car(�) � cdr(�))

length nil: Formula length(�) = 0

length cons: Formula length(s � �) = length(�) + 1

Proof

ce isreexive PROOF: Prove ce isreexive

ce issymmetric PROOF: Prove ce issymmetric

ce istransitive PROOF: Prove ce istransitive

cons ax PROOF: Prove cons ax

car ax PROOF: Prove car ax

cdr ax PROOF: Prove cdr ax

nilorcons ax PROOF: Prove nilorcons ax

length nil PROOF: Prove length nil

length cons PROOF: Prove length cons

End lists map map
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lists map proofs: Module [T : Type]

Using lists map map[T ]

Proof

ce isreexive PROOF: Prove ce isreexive from

ce f� x

1

, �  x

1

g

ce issymmetric PROOF: Prove ce issymmetric from

ce f� x

2

, �  x

1

g,

ce f� x

1

, �  x

2

, n n@p1g

ce istransitive PROOF: Prove ce istransitive from

ce f� x

1

, �  x

3

g,

ce f� x

2

, �  x

3

, n n@p1g,

ce f� x

1

, �  x

2

, n n@p1g

cons ax PROOF: Prove cons ax from

ce f� s � �, �  �g, nilax, s � �,

nat invariant fnat var (�@c):nextposg

car ax PROOF: Prove car ax from

s � �, nat invariant fnat var (�@c):nextposg

�; �: Var lists model[T ]:list

s: Var T

n: Var nat

cdr cons lemma1: Lemma length(cdr(s � �)) = length(�)

cdr cons lemma1 proof: Prove cdr cons lemma1 from

s � �, nat invariant fnat var (�@c):nextposg

cdr cons lemma2: Lemma n < length(�) � (cdr(s � �)):value(n) = �:value(n)

cdr cons lemma2 proof: Prove cdr cons lemma2 from

s � �, nat invariant fnat var (�@c):nextposg

cdr ax PROOF: Prove cdr ax from

ce f� �, � cdr(s � �)g,

cdr cons lemma1,

cdr cons lemma2 fn n@p1g

nilorcons ax PROOF: Prove nilorcons ax from

ce f� �, � �@cg, ce f�  car(�) � cdr(�)g,

s � � fs car(�), � cdr(�)g, nilax,

nat invariant fnat var (�@c):nextposg

length nil PROOF: Prove length nil from nilax

length cons PROOF: Prove length cons from s � �

End lists map proofs
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list inductions: Module [t: Type]

Using lists[t]

Theory

x: Var t

�; �; � : Var list

p: Var function[list! bool]

extends: function[list; list! bool] == (� �; � : � 6= � ^ � = cdr(�))

list induction: Theorem p(�) ^ ( 8 �; x : p(�) � p(x � �)) � p(� )

Proof

Using noetherian[list; extends]

cons induction proof: Prove

list induction f� cdr(d

1

@p1), x car(d

1

@p1)g from

general induction fd � , d

2

 �g, nilorcons ax f� d

1

@p1g

discharge well founded: Prove well founded fmeasure lengthg from

length cdr f� bg

End list inductions
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noetherian: Module [dom: Type, <: function[dom, dom! bool]]

Assuming

measure: Var function[dom! nat]

a; b: Var dom

well founded: Formula ( 9measure : a < b � measure(a) < measure(b))

Theory

p: Var function[dom! bool]

d; d

1

; d

2

: Var dom

general induction: Axiom

( 8 d

1

: ( 8 d

2

: d

2

< d

1

� p(d

2

)) � p(d

1

)) � ( 8 d : p(d))

End noetherian
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sets: Module [T : Type]

Exporting all

Theory

set: Type is function[T ! bool]

x; y; z: Var T

a; b: Var set

x 2 b: function[T ; set! bool] == (� x; b : b(x))

a [ b: function[set; set! set] == (� a; b : (� x : x 2 a _ x 2 b))

a \ b: function[set; set! set] == (� a; b : (� x : x 2 a ^ x 2 b))

a� b: function[set; set! set] == (� a; b : (� x : x 2 a ^ :x 2 b))

fxg [ a: function[T ; set! set] == (� x; a : (� y : x = y _ a(y)))

fxg: function[T ! set] == (� x : (� y : y = x))

a � b: function[set; set! bool] = (� a; b : ( 8 z : z 2 a � z 2 b))

empty: function[set! bool] = (� a : ( 8 x : :x 2 a))

;: set == (� x : false)

fullset: set == (� x : true)

extensionality: Axiom ( 8 x : x 2 a = x 2 b) � (a = b)

subset self: Lemma a � a

subset add: Lemma a � fxg [ a

Proof

subset self proof: Prove subset self from a � b fb ag

subset add proof: Prove subset add from a � b fb fxg [ ag

End sets
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intrans nonint: Module

Using lists; sets

Exporting all with lists; sets

Theory

S : Type(* States *)

st

0

: S(* Initial State *)

st; tt;wt: Var S

D : Type(* security domains *)

A : Type

dom: function[A! D]

a; b: Var A

A

?

: Type is list[A]

�: Var A

?

step: function[S;A! S]

step count: function[S;A

?

! nat] == (� st; � : length(�))

run: Recursive function[S;A

?

! S] =

(� st; � : if null(�) then st else run(step(st; car(�)); cdr(�)) end if)

by step count

u; v: Var D

u; v: function[D;D ! bool]

u 6; v: function[D;D ! bool] == (� u; v : :u; v)

step count2: function[A

?

;D ! nat] == (� �; u : length(�))

src: Var set[D]

connects: function[set;D ! bool] =

(� src; u : ( 9 v : v 2 src ^ u; v))

sources: Recursive function[A

?

;D ! function[D ! bool]] =

(� �; u :

if null(�)

then fug

elsif connects(sources(cdr(�); u); (dom(car(�))))

then f(dom(car(�)))g [ sources(cdr(�); u)

else sources(cdr(�); u)

end if)

by step count2



72 Appendix D. Speci�cations

ipurge: Recursive function[A

?

;D ! A

?

] =

(� �; u :

if null(�)

then �

elsif (dom(car(�))) 2 sources(�; u)

then car(�) � ipurge(cdr(�); u)

else ipurge(cdr(�); u)

end if)

by step count2

O : Type (* outputs *)

output: function[S;A! O]

do: function[A

?

! S] = (� � : run(st

0

; �))

test: function[A

?

;A! O] = (� �; a : output(do(�); a))

secure: function[A

?

! bool] =

(� � : ( 8 a : test(�; a) = test(ipurge(�; dom(a)); a)))

V: Type

view: function[D;S ! V ]

view id: function[D;S;S ! bool] ==

(� u; st; tt : view(u; st) = view(u; tt))

output consistent: bool =

( 8 a; st; tt :

view id(dom(a); st; tt) � output(st; a) = output(tt; a))

view consistent: function[A

?

! bool] =

(� � : ( 8 u : view id(u; do(�); do(ipurge(�; u)))))

local respect: bool =

( 8 v; st; a : dom(a) 6; v � view id(v; st; step(st; a)))

weak step consistent: bool =

( 8 u; st; tt; a :

view id(u; st; tt) ^ view id(dom(a); st; tt)

� view id(u; step(st; a); step(tt; a)))

lemma2: Lemma view consistent(�) ^ output consistent � secure(�)

unwinding: Theorem

local respect ^ weak step consistent ^ output consistent � secure(�)

Proof

Using list inductions
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lemma2 proof: Prove lemma2 from

secure,

view consistent fu dom(a@p1)g,

output consistent

fa a@p1,

st do(�),

tt do(ipurge(�; u@p2f))g,

test fa a@p1g,

test fa a@p1, � ipurge(�; u@p2f)g

single step lemma: Lemma run(st; a � �) = run(step(st; a); �)

single step lemma proof: Prove single step lemma from

run f� a � �g,

cons ax[A ] f� �, s ag,

car ax[A ] f� �, s ag,

cdr ax[A ] f� �, s ag

purge lemma: Lemma

ipurge(a � �; u)

= if dom(a) 2 sources(a � �; u)

then a � ipurge(�; u)

else ipurge(�; u)

end if

purge lemma proof: Prove purge lemma from

ipurge f� a � �g,

cons ax[A ] f� �, s ag,

car ax[A ] f� �, s ag,

cdr ax[A ] f� �, s ag

sources subset: Lemma sources(�; u) � sources(a � �; u)

sources subset proof: Prove sources subset from

sources f� a � �g,

cons ax[A ] fs a, � �g,

cdr ax[A ] fs a, � �g,

car ax[A ] fs a, � �g,

subset self[D ] fa sources(�; u)g,

subset add[D ] fa sources(�; u), x dom(a)g

sources grows: Lemma v 2 sources(�; u) � v 2 sources(a � �; u)

sources grows proof: Prove sources grows from

sources subset,

a � b [D ] fa sources(�; u), b sources(a � �; u), z  vg

sources defn base case: Lemma sources(�; u) = fug

sources defn base case proof: Prove sources defn base case from

sources f� �g
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sources defn inductive case: Lemma

( 9 v : v 2 sources(�; u)^ dom(a); v)

� sources(a � �; u) = fdom(a)g [ sources(�; u)

sources defn inductive case proof: Prove sources defn inductive case

from sources f� a ��g,

connects fsrc sources(�; u), u dom(a)g,

cons ax[A ] fs a, � �g,

cdr ax[A ] fs a, � �g,

car ax[A ] fs a, � �g

in own sources: Lemma u 2 sources(�; u)

in own sources pred: function[A

?

! bool] =

(� � : ( 8 u : u 2 sources(�; u)))

in own sources form: Lemma in own sources pred(�)

in own sources basis: Lemma in own sources pred(�)

in own sources basis proof: Prove in own sources basis from

in own sources pred f� �g, sources defn base case fu u@p1g

in own sources induct: Lemma

in own sources pred(�) � in own sources pred(a � �)

in own sources induct proof: Prove in own sources induct from

in own sources pred fu u@p2g,

in own sources pred f� a � �g,

sources grows fu u@p2, v  u@p2g

in own sources form proof: Prove in own sources form from

list induction f�  �, p in own sources predg,

in own sources basis,

in own sources induct fa x@p1, � �@p1g

in own sources proof: Prove in own sources from

in own sources form, in own sources pred

C: Var set[D]

strong view id: function[set;S;S ! bool] =

(� C; st; tt : ( 8 v : v 2 C � view(v; st) = view(v; tt)))

strong view id reexive: Lemma strong view id(C; st; st)

strong view id reexive proof: Prove strong view id reexive from

strong view id ftt stg

strong view id symmetric: Lemma

strong view id(C; st; tt) � strong view id(C; tt; st)

strong view id symmetric proof: Prove strong view id symmetric from

strong view id fv v@p2g, strong view id fst tt, tt stg
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strong view id transitive: Lemma

strong view id(C; st; tt) ^ strong view id(C; tt;wt)

� strong view id(C; st;wt)

strong view id transitive proof: Prove strong view id transitive from

strong view id fv v@p3g,

strong view id fv v@p3, st tt, tt wtg,

strong view id ftt wtg

strong view id sources prop: Lemma

strong view id(sources(a � �; u); st; tt)

� strong view id(sources(�; u); st; tt)

strong view id sources prop proof: Prove strong view id sources prop

from strong view id fC  sources(�; u)g,

strong view id fC  sources(a � �; u), v  v@p1g,

sources grows fv  v@p1g

lemma3: Lemma

weak step consistent

^ local respect ^ strong view id(sources(a � �; u); st; tt)

� strong view id(sources(�; u); step(st; a); step(tt; a))

lemma3 proof: Prove lemma3 from

strong view id fv v@p2, C  sources(a � �; u)g,

strong view id

fC  sources(�; u),

st step(st; a),

tt step(tt; a)g,

sources grows fv  v@p2g,

local respect fv  v@p2g,

local respect fv  v@p2, st ttg,

weak step consistent fu v@p2g,

strong view id fv dom(a), C  sources(a � �; u)g,

sources defn inductive case fv  v@p2g

lemma4: Lemma

local respect ^ :dom(a) 2 sources(a � �; u)

� strong view id(sources(�; u); st; step(st; a))

lemma4 proof: Prove lemma4 from

local respect fv  v@p2g,

strong view id fC  sources(�; u), tt step(st; a)g,

sources defn inductive case fv  v@p2g

lemma5: Lemma

weak step consistent

^ local respect ^ strong view id(sources(�; u); st; tt)

� view id(u; run(st; �); run(tt; ipurge(�; u)))
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lemma5 pred: function[A

?

! bool] =

(� � : ( 8 u; st; tt :

weak step consistent

^ local respect ^ strong view id(sources(�; u); st; tt)

� view id(u; run(st; �); run(tt; ipurge(�; u)))))

lemma5 basis: Lemma lemma5 pred(�)

lemma5 basis proof: Prove lemma5 basis from

lemma5 pred f� �g,

strong view id

fv u@p1,

C  sources(�; u@p1),

st st@p1,

tt tt@p1g,

ipurge f� �, u u@p1g,

run f� �, st st@p1g,

run f� �, st tt@p1g,

in own sources f� �, u u@p1g

lemma5 induct: Lemma lemma5 pred(�) � lemma5 pred(a � �)

lemma5 induct proof: Prove lemma5 induct from

lemma5 pred f� a ��g,

lemma5 pred

fu u@p1,

st step(st@p1; a),

tt step(tt@p1; a)g,

lemma5 pred fu u@p1, st step(st@p1; a), tt tt@p1g,

lemma3 fu u@p1, st st@p1, tt tt@p1g,

single step lemma fst st@p1g,

single step lemma f� ipurge(�; u@p1), st tt@p1g,

purge lemma fu u@p1g,

lemma4 fu u@p1, st st@p1g,

strong view id sources prop

fu u@p1,

st st@p1,

tt tt@p1g,

strong view id symmetric

fC  sources(�; u@p1),

st st@p1,

tt step(st@p1; a)g,

strong view id transitive

fC  sources(�; u@p1),

st step(st@p1; a),

tt st@p1,

wt tt@p1g
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lemma5 proof: Prove lemma5 from

list induction f�  �, p lemma5 predg,

lemma5 basis,

lemma5 induct fa x@p1, � �@p1g,

lemma5 pred

unwinding proof: Prove unwinding from

view consistent,

lemma2,

lemma5 fu u@p1, st st

0

, tt st

0

g,

do,

do f� ipurge(�; u@p1)g,

strong view id reexive fC  sources(�; u@p1), st  st

0

g

End intrans nonint
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intrans nonint tcc: Module

Using intrans nonint

Exporting all with intrans nonint

Theory

�: Var lists[A]:list

tt: Var S

st: Var S

v: Var D

�: Var lists[A]:list

x: Var A

u: Var D

a: Var A

(* Termination TCC generated for run *)

run TCC1: Formula

(:(null(�))) � step count(st; �) > step count(step(st; car(�)); cdr(�))

(* Termination TCC generated for sources *)

sources TCC1: Formula

(:(null(�))) � step count2(�; u) > step count2(cdr(�); u)

(* Termination TCC generated for sources *)

sources TCC2: Formula

(connects(sources(cdr(�); u); (dom(car(�))))) ^ (:(null(�)))

� step count2(�; u) > step count2(cdr(�); u)

(* Termination TCC generated for sources *)

sources TCC3: Formula

(:(connects(sources(cdr(�); u); (dom(car(�)))))) ^ (:(null(�)))

� step count2(�; u) > step count2(cdr(�); u)

(* Termination TCC generated for ipurge *)

ipurge TCC1: Formula

((dom(car(�))) 2 sources(�; u)) ^ (:(null(�)))

� step count2(�; u) > step count2(cdr(�); u)

(* Termination TCC generated for ipurge *)

ipurge TCC2: Formula

(:((dom(car(�))) 2 sources(�; u))) ^ (:(null(�)))

� step count2(�; u) > step count2(cdr(�); u)
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Proof

run TCC1 PROOF: Prove run TCC1

sources TCC1 PROOF: Prove sources TCC1

sources TCC2 PROOF: Prove sources TCC2

sources TCC3 PROOF: Prove sources TCC3

ipurge TCC1 PROOF: Prove ipurge TCC1

ipurge TCC2 PROOF: Prove ipurge TCC2

End intrans nonint tcc
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intrans nonint tcc proofs: Module

Using intrans nonint; intrans nonint tcc

Proof

run TCC1 PROOF: Prove run TCC1 from length cdr[A ] f� �g

sources TCC1 PROOF: Prove sources TCC1 from length cdr[A ] f� �g

sources TCC2 PROOF: Prove sources TCC2 from length cdr[A ] f� �g

sources TCC3 PROOF: Prove sources TCC3 from length cdr[A ] f� �g

purge TCC1 PROOF: Prove ipurge TCC1 from length cdr[A ] f� �g

purge TCC2 PROOF: Prove ipurge TCC2 from length cdr[A ] f� �g

End intrans nonint tcc proofs
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top: Module [T : Type]

Using lists model[T ]; lists model tcc[T ]; lists map[T ];

lists map proofs[T ]; intrans nonint tcc proofs

Proof

TCC proof: Prove car TCC1 from

nat invariant fnat var (�@c):nextposg

End top


