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Abstract

This report refines and extends an earlier paper by the first author [25]. It considers
the problem of reasoning about the reliability of fault-tolerant systems with two “channels”
(i.e., components) of which one, A, because it is conventionally engineered and presumed to
contain faults, supports only a claim of reliability, while the other, B, by virtue of extreme
simplicity and extensive analysis, supports a plausible claim of “perfection.”

We begin with the case where either channel can bring the system to a safe state. The
reasoning about system probability of failure on demand (pfd) is divided into two steps.
The first concerns aleatory uncertainty about (i) whether channel A will fail on a randomly
selected demand and (ii) whether channel B is imperfect. It is shown that, conditional
upon knowing pA (the probability that A fails on a randomly selected demand) and pB

(the probability that channel B is imperfect), a conservative bound on the probability
that the system fails on a randomly selected demand is simply pA × pB. That is, there is
conditional independence between the events “A fails” and “B is imperfect.” The second
step of the reasoning involves epistemic uncertainty represented by an assessor’s beliefs
about the distribution of (pA, pB) and it is here that dependence may arise. However, we
show that under quite plausible assumptions, a conservative bound on system pfd can be
constructed from point estimates for just three parameters. We discuss the feasibility of
establishing credible estimates for these parameters.

We extend our analysis from faults of omission to those of commission, and then combine
these to yield an analysis for monitored architectures of a kind proposed for aircraft.
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Chapter 1

Background

This report is about the assessment of dependability for two-channel design-diverse fault
tolerant software-based systems. This type of system architecture is mainly used to provide
protection against design faults in safety-critical applications. The report clarifies and
greatly extends a note by one of the authors from a few years ago on a specific instance of
the topic [25].

The use of intellectual diversity to improve the dependability of processes is ubiquitous
in human activity: witness the old saws “Two heads are better than one” and “Belt and
braces1.” We all believe that having a colleague review our work—“two heads”—is better
than conducting the review ourselves, and we generally consider it prudent to have a backup
for complicated machines or plans.

The use of diversity to build reliable systems is widespread in non-software based engi-
neering. For example, in the nuclear industry it is common to have multi-channel protection
systems that are based on physically different process variables (e.g., temperature, pressure,
flow-rates). The simple idea underlying these applications of diversity is that, whilst it is
inevitable that humans make mistakes in designing and building systems, and that these
mistakes can cause failures during operation, forcing the systems to be built differently
might make the failure processes of different versions be diverse also. In other words, you
might expect that if channel A fails on a particular demand, there is a good chance that
channel B will not fail.

These ideas have been applied to software systems for nearly thirty years, but there has
been some controversy about the benefits that the approach brings. On the one hand, there
are reports of successful industrial applications of software design diversity: for example,
the safety-critical flight control systems of the Airbus fleets [45] have now experienced
massive operational exposure [7] with apparently no critical failure. On the other hand,
successive carefully conducted experiments—see e.g., [13, 23]—have shown that multiple
diverse channels cannot be assumed to fail independently. Thus, if the two channels of a
system each have a probability of failure on demand (pfd) of 10−3, it would be wrong to
claim a pfd of 10−6 for the system. In fact, there will generally be positive dependence of
failures between the two channels, and so the pfd will be greater than 10−6.

1Or suspenders for North American readers.
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Some insight into these experimental results came from probabilistic models of diversity,
[14, 24]. This work gave careful attention to the different notions of “independence” that
had hitherto been treated somewhat informally, and showed why versions that had been
developed “independently” could not be expected to fail “independently.” The key idea
in this work is a notion of “difficulty” variation over the demand space—informally, some
demands are intrinsically more difficult to handle correctly than others. So even if you knew
the marginal probabilities of failure, pA and pB, of the two channels (e.g., from extensive
operational testing), you could not claim that the probability of failure of both channels on
a randomly selected demand was pA × pB. Instead, when you observe channel A failing
on the randomly selected demand, this strengthens your belief that this demand is one of
the “difficult” ones, and thus you believe that it is more likely that B will fail: that is, the
chance of failure is greater than the marginal probability, pB.

The picture that emerged from this evidence—industrial experience, experiments, and
theoretical modeling—has sometimes been taken to undermine claims for the efficacy of
software diversity. Whilst the industrial evidence is positive, it inevitably emerges only
after years of operating experience, and even then does not easily allow quantitative claims
for achieved reliability. The experimental and modeling evidence, on the other hand, has
been taken to be negative.

In fact, this negative view seems somewhat unfair. Although the experiments and mod-
els show that assumptions of independence of failures cannot be trusted, this does not mean
that there cannot be useful benefits to be gained from design diversity. Ruling out inde-
pendence means that we cannot simply multiply the pfds of the separate channels to obtain
the system pfd, but there might still be considerable reliability benefits. The modeling
results of Littlewood and Miller [24] actually show that there will be benefits under quite
plausible assumptions, but they do not help quantify these benefits for particular instances;
the experiments of Knight and Leveson [22] show that the benefits can be considerable on
average, but again their results do not help to assess a particular system’s reliability.

The position for several years, then, has been this: there is ample evidence that design
diversity can “work,” in some average sense, in delivering improved reliability, but there
is very little evidence as to how much improvement it delivers even on average,2 and the
important problem of how to estimate the reliability of a particular design-diverse system
remains very difficult.

This report concerns this last problem, and it begins with a rather special class of ar-
chitectures that appear to bring a simplification to the assessment problem. This work
was prompted by one author’s involvement in the early 1990s with the difficulties of as-
sessing the reliability of the protection system of the UK’s Sizewell B nuclear plant. This
system comprises the Primary Protection System (PPS), which is software-based, and the

2This notion of “on average” efficacy is similar to that used to support claims for other software engineer-
ing processes. We know that certain software engineering processes—e.g., different kinds of testing or static
analysis [26]—are effective in improving the resulting reliability of the systems to which they are applied.
But we usually know very little about how much they deliver even on average, and generally nothing at all
about what contribution they make to a particular system’s development (because the particular can be
very different from the average). This means that knowledge about the software engineering processes used
to build a system is of limited use in estimating its operational reliability.
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Secondary Protection System (SPS), which is hard-wired, in a “one-out-of-two” (sometimes
written 1oo2) configuration—that is, if either of the systems requests it, the reactor “trips”
and enters a safe state.

The PPS provides quite extensive and desirable functionality, over and above that re-
quired for a simple reactor trip; for example, it has extensive built-in hardware self-testing
and redundancy management features to maximize its availability. The result is that, for a
safety-critical system, it is quite complex with about 100,000 lines of code. For this reason it
was not thought plausible to make claims for perfection of the software in the PPS; instead,
it was required to have a pfd no worse than 10−3.

The SPS, on the other hand, has much more restricted functionality, and as a con-
sequence is much simpler (and does not depend upon software for its correct operation).
Because of this simplicity of design, it might have been possible to claim that the SPS is free
of design faults, and thus could be deemed free of failures in operation from such causes.3

Of course, a regulator might have justifiable skepticism when faced with such a claim of
“perfection”: he might be prepared to accept a high confidence in perfection, given exten-
sive suitable supporting evidence, but not accept certainty. It might therefore be plausible
to contemplate attaching a probability to the claim of perfection for the SPS and then to
combine this in some way with the reliability claimed for the PPS to yield a quantifiable
claim for the overall system.

Asymmetric fault tolerant architectures (i.e., those in which one channel is claimed
to be reliable and the other is possibly perfect) are intuitively plausible for other safety
critical systems in addition to nuclear shutdown. For example, in some military aircraft, an
extensively functional primary system is used for normal operation, backed up by a “get you
home” system of much more restricted functionality; similarly, some heart pacemakers and
defibrillators have a purely hardware “safety core” that provides backup to a more complex
firmware-driven primary system. Whilst these approaches are recognized as attractive ways
for achieving reliability and safety, it is less widely appreciated that the asymmetry of the
architecture can also aid in assuring that the system is sufficiently reliable (or safe), if we
can exploit the possibility of perfection for the second channel.

In Chapter 2 of the report this idea will be examined in some detail. For clarity, the
account will be conducted in terms of a 1oo2 demand-based system, such as the Sizewell
protection system, but (as seems likely now, even for these nuclear systems) both channels
will be assumed to be software-based. In Chapter 3 we discuss the application of the ideas
in system safety assessment—in particular how the probabilities in the model might be ob-
tained for real systems. Chapter 4 considers Type 2 failures (or uncommanded activations),
and Chapter 5 combines the previous results and applies them to “monitored architectures”
in which the behavior of a complex operational channel is monitored by a simpler channel
that can trigger higher-level fault recovery when safety properties are violated. Architec-
tures of this kind are advocated for “Integrated Vehicle Health Monitoring” (IVHM) in
airplanes, and specifically for “Software IVHM.” Chapter 6 presents our conclusions.

3Of course, the SPS could fail as a result of hardware component failures—as could the PPS. But there
are good reasons to believe that such contributions to unreliability are better understood and are small
compared to those arising from design faults. For simplicity here and later in this report we shall ignore
hardware failures, but it is easy to extend the modeling to include them.
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Chapter 2

Reasoning About a
One-Out-Of-Two System with a
Possibly-Perfect Channel

The first part of the reasoning here is similar to that used in the earlier paper [25]. The
main novelty is that the present report establishes conditional independence of failure of one
channel and imperfection of the other1 and, in the second part of the chapter, introduces a
proper modeling of the epistemic uncertainty about the parameters of the original work. In
giving presentations of this work, we have found that some are surprised by, and others are
skeptical of our results; we attempt to allay concern by presenting our arguments in some
detail.

Our object of study is a 1oo2 demand-based system comprising two channels, A and
B. Channel A is assumed to have sufficient functionality, and thus complexity, for it to
be infeasible to claim it to be fault-free. We thus have to assume that in operation it
will eventually fail, and the criterion of its acceptability (when judged alone) will be that it
fails infrequently—that is, its probability of failure on a randomly selected demand, pfdA, is
acceptably small. The kinds of evidence that could be used by an assessor to gain confidence
that pfdA is small include: seeing lots of operational testing without failure, high quality of
developers and development process, no faults found in extensive static analysis, etc.

Channel B, on the other hand, has been kept very simple (its functionality is limited and
its implementation straightforward) and thus is open to a claim of “perfection.”2 There is
a probability, pnpB, that this channel is not perfect. Evidence allowing an assessor to have
confidence this probability is small could include: a formal specification and high confidence

1Two events X and Y are conditionally independent given some third event Z when P (X and Y |Z) =
P (X |Z) × P (Y |Z); we say the independence of X and Y is conditional on Z. Z may be the event that
some parameter takes a known value. Unconditional independence is P (X and Y ) = P (X) × P (Y ) and is
not, in general, implied by conditional independence.

2This word has been chosen deliberately for its convenience, but in the knowledge that it comes with
extensive baggage. In this context it means just that this channel of software will not fail however much
operational exposure it receives; it is “fault-free” if we assume that failures can and will occur if and only if
faults are present.
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that this really does accurately capture the engineering requirements, formal proof that the
software is a correct implementation of this specification, absence of failures in test, etc.

There are two kinds of uncertainty involved in reasoning about the reliability of the
overall system. The first is aleatory uncertainty, or “uncertainty in the world,” the second
is epistemic uncertainty, or “uncertainty about the world” [35]. Aleatory uncertainty can
be thought of as “natural” uncertainty that is irreducible. For example, if you were to toss
a coin you would not be able to predict with certainty whether it would fall as “heads” or
as “tails.” This uncertainty cannot be eliminated, and any predictions about future tosses
of the coin can only be expressed as probabilities. This is true even when we know the
probability of heads, which we denote pH , on a single toss of the coin, such as when the
coin is “fair” and pH = 0.5. Real coins, of course, are not fair, so there will be uncertainty
about the value of the parameter pH . This is epistemic uncertainty. This uncertainty is
reducible: in the case of the coin, we could toss it very many times and observe the frequency
of heads in this sequence of tosses. This frequency is an estimate of pH and the estimate
gets closer to the true value of pH as the number of observed tosses increases (there are
limit theorems in probability that detail the nature of this convergence), so the uncertainty
reduces.

In much scientific modeling, the aleatory uncertainty is captured conditionally in a
model with unknown parameters, and the epistemic uncertainty centers upon the values of
these parameters—as in the simple example of coin tossing.3 For our 1oo2 system the two
probabilities, pfdA and pnpB, are parameters that capture two types of aleatory uncertainty.
For a randomly selected demand, Channel A either does, or does not, fail; pfdA is just the
chance that it does fail. As in the case of a coin toss, this chance can be given a classical
frequentist interpretation, as the proportion of failures in a hypothetical infinitely large
sequence of independently selected demands.

Similarly, Channel B either is, or is not, perfect; pnpB is just the chance that it is not
perfect. The way to interpret this is to think of all the programs that might have been
developed, by comparable engineering processes, to solve the problem of Channel B, in the
spirit of [14,24], and interpret pnpB as the probability of a randomly selected program not
being perfect. This probability will be partly dependent on the nature of the problem being
solved—for a “hard” problem it might be expected that the probability is greater than for
an “easier” problem—and partly on the quality of the software engineering and assurance
methods employed.

A result that we shall prove in Section 2.1 is that these two parameters are sufficient to
describe the uncertainty about the system probability of failure. Specifically, conditional on
knowing the actual values pA and pB of pfdA and pnpB, respectively, the system probability
of failure is no worse than pA×pB. The epistemic uncertainty here solely concerns the values
of pA and pB: an assessor will not know these values with certainty. His beliefs about these
values—and here we adopt a Bayesian subjective interpretation of probabilities—will be
represented by a joint distribution

F (pA, pB) = P (pfdA < pA, pnpB < pB) (2.1)
3The situation can be more complicated than this, of course. There may be uncertainty about which of

several models is “correct,” and this uncertainty may not be captured by a parametric model.
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and his probability for system failure will then be∫
0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB). (2.2)

Generally, the assessor’s beliefs about (pA, pB) will not be independent: that is, the
bivariate distribution (2.1) does not factorize into a product of the marginal distributions
of the random variables pfdA and pnpB and so it is not straightforward to derive a numerical
value for (2.2). This is an important issue which is examined in Section 2.2

Our reasoning about the reliability of the system now proceeds in two stages, the first
involving the aleatory uncertainty, the second the epistemic uncertainty.

2.1 Aleatory Uncertainty

We shall assume in what follows that our interest centers upon the system reliability ex-
pressed as the probability of its failure upon a (operationally) randomly selected demand.
Note that other things might be of interest, for instance the probability of surviving a spec-
ified number of demands (e.g., the number expected to be encountered during a specific
mission, or during the lifetime of the system), but we shall not consider these here.

For aleatory uncertainty we have, by the formula for total probability, the following
conditional pfd.

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB) (2.3)
= P (system fails |A fails, B imperfect, pfdA = pA, pnpB = pB)

× P (A fails, B imperfect | pfdA = pA, pnpB = pB)
+ P (system fails |A succeeds, B imperfect, pfdA = pA, pnpB = pB)
× P (A succeeds, B imperfect | pfdA = pA, pnpB = pB)

+ P (system fails |A fails, B perfect, pfdA = pA, pnpB = pB)
× P (A fails, B perfect | pfdA = pA, pnpB = pB)

+ P (system fails |A succeeds, B perfect, pfdA = pA, pnpB = pB)
× P (A succeeds, B perfect | pfdA = pA, pnpB = pB).

The last three terms of the right hand side of (2.3) are zero: the system does not fail if
either A succeeds or B is perfect. We shall assume conservatively that if B is not perfect,
then it will fail with certainty whenever A fails, as in the original version of this work [25]:
B brings no benefit if it is not perfect. This (very) conservative assumption is important
in the following reasoning where, in the first term on the right hand side of (2.3), the first
factor in the product is replaced by 1, to yield:
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P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (A fails, B imperfect | pfdA = pA, pnpB = pB)
= P (A fails |B imperfect, pfdA = pA, pnpB = pB) (2.4)

× P (B imperfect | pfdA = pA, pnpB = pB).

Now, the fact that B is imperfect tells us nothing about whether or not A will fail on
this demand. So we have

P (A fails |B imperfect, pfdA = pA, pnpB = pB) (2.5)
= P (A fails | pfdA = pA, pnpB = pB)
= P (A fails | pfdA = pA)

and so, substituting (2.5) in (2.4),

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (A fails |B imperfect, pfdA = pA, pnpB = pB)

× P (B imperfect | pfdA = pA, pnpB = pB)
= P (A fails | pfdA = pA)× P (B imperfect | pnpB = pB)
= pA × pB. (2.6)

This argument follows that in [25] quite closely; the difference is that here we show that
there is conditional independence between the events “A fails” and “B imperfect” when
pfdA and pnpB are known.

The importance of this independence result can be seen by contrasting the situation
here with the more usual 1oo2 system, where both channels are sufficiently complex that
neither is open to a believable claim of perfection. In the latter case, we cannot apply the
reasoning in step (2.5) and so it is not possible to claim independence of failures in the
two channels, even conditionally given pfdA and pfdB (in an obvious notation). Instead,
even at this stage of reasoning where we are concerned only with aleatory uncertainty, we
need to deal with dependence of failures. Thus, it is shown in [24], for example, that the
conditional probability of such a system failing on a randomly selected demand is

pfdA × pfdB + Cov(θA, θB)

where θA, θB are the difficulty function random variables for the two channels. So an
assessor’s beliefs about pfdA and pfdB are not alone sufficient for him to reason about the
reliability of the system: he also needs to know the covariance of the difficulty functions.
And this is before we consider the problem of epistemic uncertainty concerning parameters
such as pfdA, pfdB, and Cov(θA, θB), which would involve further dependencies.

In contrast, (2.4–2.6) above show that knowledge of the values of pfdA and pnpB are suf-
ficient for a complete description of aleatory uncertainty via the (conservative) conditional
independence expression for the system pfd, (2.6).
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Lest it seem that a particular choice was needed at equation (2.4), it is worth observing
that this could equally have been written as

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (A fails, B imperfect | pfdA = pA, pnpB = pB)
= P (B imperfect |A fails, pfdA = pA, pnpB = pB) (2.7)

× P (A fails | pfdA = pA, pnpB = pB),

where the conditioning is reversed in (2.7).
Here, the failure of A on this demand tells us nothing about the imperfection of B, since

this is a global property with known probability pB, and so we have

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB)
≤ P (B imperfect |A fails, pfdA = pA, pnpB = pB)

× P (A fails | pfdA = pA, pnpB = pB)
= P (B imperfect | pnpB = pB)× P (A fails | pfdA = pA)
= pB × pA

as before.
The attributes of “perfection” that enable the reasoning employed at (2.4) and (2.7)

are: first, that its satisfaction guarantees its channel does not fail on a given demand (this
is needed to eliminate the last two terms in (2.3)); second, that it is a global property
(i.e., independent of this demand, which is needed in (2.4) and (2.7)); and third, that it is
aleatory (i.e., its uncertainty is irreducible).

Other global properties, such as “has a valid proof of correctness” (whose negation
would be “has a flawed proof of correctness”), appear plausible but are not aleatory. Proof
of correctness is relative to a specification, and it is possible this specification is flawed.
Thus, absence of failure on a given demand (needed for the first point above) is contingent
on correctness of the specification, which is an additional parameter and a reducible source
of uncertainty.

Hence “perfection” as we have defined it is precisely the property required for this
derivation. Properties such as “has a valid proof of correctness” are important in assigning
an epistemic value to the probability of perfection and are discussed in Chapter 3. First,
though, we examine the basic problem of epistemic uncertainty about the model parameters.

2.2 Epistemic Uncertainty and the Structure of F (pA, pB)

The previous section has derived a conservative bound for the probability of failure on
demand for a 1oo2 system, conditional on knowledge of the values of the random variables
pfdA and pnpB. In practice, of course, pfdA and pnpB will not be known with certainty,
and this is where the epistemic uncertainty comes in, via the assessor’s posterior beliefs
represented by the distribution, (2.1). “Posterior” here means that this distribution takes
account of all evidence the assessor has acquired about the unknown parameters.
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Practical interest centers upon the unconditional probability of system failure on a
randomly selected demand. By the formula for total probability, and using the Riemann-
Stieltjes integral, this is

P (system fails on randomly selected demand)

=
∫

0≤pA≤1
0≤pB≤1

P (system fails on randomly selected demand | pfdA = pA, pnpB = pB) dF (pA, pB)

so, substituting (2.6),

≤
∫

0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB), (2.8)

which provides the formal derivation for (2.1).
This two-stage reasoning—aleatory uncertainty followed by epistemic uncertainty—

makes clear the source of any dependence here: it can arise only from the epistemic uncer-
tainty, via the posterior distribution F (pA, pB). Even though the events “A fails” and “B
is imperfect” are conditionally independent at the aleatory level, an assessor’s beliefs about
the probabilities of these events may not be independent. If they are independent, so that
F (pA, pB) factorizes as F (pA)× F (pB), then

P (system fails on randomly selected demand)

≤
∫

0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB) (2.9)

=
∫

0≤pA≤1

pA dF (pA)×
∫

0≤pB≤1

pB dF (pB) (2.10)

= P (A fails)× P (B imperfect)
= PA × PB.

That is, if the assessor’s beliefs about pfdA and pnpB are independent, then the bound on
the probability of system failure is just the product of the assessor’s posterior probabilities
of the events “A fails” and “B imperfect” (i.e., the means of the distributions for pfdA and
pnpB, respectively, taking account of any experimental and analytical evidence that may
be available). In this case the reliability assessment is particularly simple—it involves only
the assessment of two parameters.

If, on the other hand, there is positive association between an assessor’s beliefs about
pfdA and pnpB, (2.9) will be larger than (2.10). Readers may think that this is the situation
that will apply in most real-life cases. An assessor then is faced with expressing his beliefs
as a complete bivariate distribution. Elicitation of experts’ subjective probabilities is an
active research area in Bayesian statistics, and there have been considerable advances in
recent years in techniques and tools: see [36] for a good introduction to this work. We
shall not consider this general elicitation problem further here, since for a particular system
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the elicitation process will depend upon the exact details of the application. Instead, we
consider a simplification that will ease this elicitation task in general. Our approach is for
the assessor to capture the dependency in his beliefs about the parameters in a conservative
way, by lumping all the dependency into a third parameter.

Consider the ways in which dependency might arise. There seem to be only two possi-
bilities: one is intrinsic difficulty of some demands, the other is common cause errors. We
consider these in turn.

The assessor might observe that some parts of the assurance case for the possibly perfect
channel B are harder than others. But should this affect his confidence in corresponding
parts of the reliable channel A and his beliefs about its probability of failure? We argue
not: it is accepted that the reliable channel fails with some probability, and we have an
assessment of that probability (e.g., by statistically valid random testing).

Dually, the assessor might observe in testing that the A channel fails more often on some
classes of demands than others. But should this affect his beliefs about the probability of
perfection of the B channel? We discuss how probability of perfection can be estimated in
Chapter 3, but note here that assurance techniques that can support claims of perfection,
such as mechanically checked proofs of correctness, are “uniformly credible” across all cases.
By this we mean that the case analysis induced by the structure of the software and by the
formal specification against which it is proven correct may yield some cases that are harder
to prove (i.e., require more work) than others, but this will not affect our confidence in the
correctness (i.e., the credibility) of those cases: a (mechanically checked) proof is a proof.

This claim notwithstanding, our focus is possibly perfect systems and we do accept that
proofs can be flawed. However, for the reasons just described, we think that failures of
Channel A and flaws in the proof of B are unlikely to concern the same demands unless the
root cause is in a higher level that is common to both channels, such as the interpretation
of requirements.

Thus, faults common to both channels, such as high level misunderstanding of the system
requirements, seem the only way in which dependency might arise between the assessor’s
beliefs about pA and pB. One way forward, therefore, is for the assessor to place some
probability mass, say C, at the point (1, 1) in the (pA, pB)-plane to represent his subjective
probability that there are such common faults. The effect of this is that the assessor believes
that if there are such faults, then A will fail with certainty (pA = 1), B will be imperfect
with certainty (pB = 1), and hence pA × pB = 1. In other words, there is a probability C
that the system is certain to fail on a randomly selected demand (since we assume that if
B is imperfect, it always fails when A does). This is clearly conservative, and may be very
much so.

The assessor then has the following conservative unconditional probability of failure of
the system on a randomly selected demand (again by a version of the formula for total
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probability).

P (system fails on randomly selected demand)

≤
∫

0≤pA≤1
0≤pB≤1

pA × pB dF (pA, pB)

= C ×
∫

pA × pB dF (pA, pB | pA = pB = 1)

+ (1− C)×
∫

0≤pA<1
0≤pB<1

pA × pB dF (pA, pB | pA 6= 1, pB 6= 1)

= C + (1− C)×
∫

0≤pA<1
0≤pB<1

pA × pB dF (pA, pB). (2.11)

If the assessor believes that all dependence between his beliefs about the model parame-
ters has been captured conservatively in C, the conditional distribution in the second term
of (2.11) now factorizes, and we have:

P (system fails on randomly selected demand)

≤ C + (1− C)×
∫

0≤pA<1

pA dF (pA)×
∫

0≤pB<1

pB dF (pB)

= C + (1− C)× P ∗
A × P ∗

B (2.12)

where P ∗
A and P ∗

B are the means of the posterior distributions representing the assessor’s
beliefs about the two parameters, each conditional on the parameter not being equal to 1
(i.e., A not certain to fail, B not certain to be imperfect).

If C is small (as will be likely in the contexts in which such reasoning takes place in
real life), we can replace the factor (1 − C) in (2.12) by 1, and we can substitute PA,
the unconditional probability of failure of the A channel, for P ∗

A, and PB, the unconditional
probability of imperfection of the B channel, for P ∗

B, to yield the conservative approximation

C + PA × PB. (2.13)

Assessors may find it easier to formulate their beliefs about these unconditional probabilities.
The same simplification can be applied to similar formulas developed in later chapters and
the resulting approximations will all be conservative.
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Chapter 3

Estimation of Model Parameters

In this chapter, we expand the discussion of epistemic estimation and describe in more detail
the surrounding context of system safety assessment and the development of evidence and
probabilities for possible perfection. We use the word “estimation” in this chapter for the
process by which an assessor expresses his “expert beliefs” in terms of numeric values for
the parameters that appear in Formula (2.12) or its simplification (2.13). We do not mean
to imply that these numbers have aleatoric, in-the-world meaning, of course. Rather, they
are representations of the assessor’s beliefs about the world.

The decision to deploy a safety-critical or other kind of critical system is based on careful
assessment of risks, estimating both the likelihood of undesired events, and their potential
costs and consequences in terms of environmental harm, loss of life, erosion of national
security, loss of commercial confidence or reputation, and so on. The assessment is highly
specific to the system concerned and its context, and nowadays is generally grounded in an
argument-based safety or assurance case (see, for example [3, 41, 51, 57, 59]). Such a case
begins with claims that enumerate the undesired loss events and the tolerable failure rate
or risk associated with them (e.g., “as low as reasonably practicable” (ALARP) [58], or
“so unlikely that they are not anticipated to occur during the entire operational life of all
airplanes of one type” [15, paragraph 9.e(3)]). Evidence about the system and its processes
of construction are developed, and an argument is constructed to justify satisfaction of
the claims, based on the evidence. This process may recurse through subsystems, with
substantiated claims about a subsystem being used as evidence in a parent case.

The upper levels of an assurance case will often decompose into subcases based on
enumeration of hazards, or failure modes, or architectural components. In the case of
multi-channel systems, there will be upper-level analysis of the mechanism (if any) that
coordinates them (e.g., a voter or arbiter), and of causes or modes of failure that may
be common to all channels. Common causes may include misunderstanding of the overall
system requirements, shared assumptions, and shared or common mechanisms. Much engi-
neering expertise and many associated analysis tools are available for identifying shared or
common mechanisms: for example, common cause analysis, common mode analysis, zonal
safety analysis, etc. There is rather less expertise in identifying shared assumptions: for
example, it is often implicitly assumed that if a single source fans out to provide inputs
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to several channels, then all channels that obtain valid inputs will agree on the values of
those inputs. This assumption is not only implicit, but it is generally unjustified, and often
wrong: “Slightly Out of Specification” (SOS) faults are one mechanism that can lead to
“Byzantine” violations of source congruence [5, 12].

One way to identify assumptions is through mechanically assisted formal verification:
this is the process of proving that a formal model of a component or mechanism, in the
context of a modeled environment, correctly delivers specified properties. Assumptions are
generally represented in the model of the environment (e.g., as axioms), and the proof will
not succeed until these are identified and formulated adequately. The benefit of formal
verification in this context is that it forces consideration of all possible cases induced by the
specification and models, something that is seldom achieved by unassisted human review, or
by testing, thereby facilitating discovery of assumptions. Furthermore, formal verification
provides mechanized assistance in the consideration of all possible cases through use of
symbolic analysis (e.g., by considering the behavior of a program on symbolic inputs such
as x and y, rather than concrete values such as 23.46 and 17.3 [48]), further facilitating
the efficient and reliable discovery and formulation of assumptions. Once assumptions have
been identified, through these or other means, human expertise can be used to assess their
plausibility, significance, and commonality across different channels.

A related source of shared errors is a lack of common assumptions and expectations
across subsystems: this is a leading cause of the “integration explosion” that often occurs
when subsystems are assembled for the first time. In these cases, subsystems seem correct
in isolation, but fail in combination. One way to alleviate this problem is, again, through
formal verification: given formal models of subsystem and component requirements and
properties, mechanically assisted verification can explore their behavior in composition,
forcing consideration of all possible interactions and often revealing overlooked cases, mis-
matched assumptions, and undesired emergent behavior.

This approach also can be used to analyze correctness of the top-level requirements: we
use formal verification to show that these requirements, in the context of a model of the
system environment, deliver desired properties (see [49] for an elementary example).

By these and other means, the arguments and supporting evidence for the correctness of
top-level requirements and for the absence of common-cause errors in assumptions, mech-
anisms, and failure modes across separate channels can be developed in great detail and
subjected to substantial analysis and empirical investigation. This is necessary because any
flaws in these elements will dominate overall system reliability and also its assessment, no
matter how this is performed. We can then propose that an assessor’s subjective probability
for system failure on a randomly selected demand will take the form C +(1−C)×D, where
C is due to residual doubts about the top-level issues of system requirements and hazards
common to all channels, and D is due to the specific architecture of the system and its
constituent channels.

The probability C must be small if the system is to be fit for a critical purpose, but
it may not be realistic or useful to strive to make it arbitrarily small. In the UK, for
example, it is common for assessors to impose a claim limit of around 10−4 or 10−5 for the
probabilistic assessment of any system [56]; this can be interpreted as a judgement that
they will always retain residual doubts about the top-level issues and that claims for these,
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expressed here as C, should be taken only so far, and no further. In UK civil nuclear systems,
there is a specific recommended limit of 10−5 for probabilistic assessment of common-cause
faults [57, paragraph 172].

Thus, in any multi-channel system the assessor must, on the one hand, be provided
with sufficiently strong evidence and credible arguments for correctness of the top level
requirements and absence of hazards common to all channels that the quantity represented
by C is small enough to be useful. But on the other hand, claim limits or other expressions
of caution ensure that this quantity is sufficiently conservative that it really can absorb the
hazards common to all channels and thus the assessor’s beliefs about the probabilities for
the separate channels can be treated as independent. In other words, claim limits prevent
the value of C being pared away to the point where it threatens this independence.

Thus, we argue, an assessor’s conservative probability of failure of the form C + (1 −
C)×D, with C around 10−5 is entirely reasonable. For a 1oo2 architecture with a possibly
perfect channel, D will be P ∗

A × P ∗
B (from (2.12)), and it remains to consider the processes

for obtaining, or eliciting, P ∗
A and P ∗

B.
The first of these is the assessor’s probability of failure on demand for the reliable

channel. For values down to about 10−4, it is feasible to provide strong and credible evidence
by statistically valid random testing [8, 27]. By statistically valid here we mean that the
test case selection probabilities are exactly the same as those that are encountered in real
operation, and that the oracle (used to determine whether a demand has been executed
correctly or not) operates correctly. See [30] for an example of such testing used to assess
the reliability of a reactor protection system. In the event that there is doubt about the
representativeness of the test case selection, or of the correctness of the oracle, then this
epistemic uncertainty must be incorporated into the assessor’s probability P ∗

A. An expert
assessor might take account of other kinds of evidence as well as that obtained from testing
in arriving at his P ∗

A. We shall not discuss this issue in detail here, but note that Bayesian
Belief Nets (BBNs) are one formalism for handling such disparate sources of evidence and
uncertainty (see, for example, [28]).

For the possibly perfect channel, the assessor must express his subjective probability of
its imperfection: that is, his degree of belief that there is at least one demand on which it
fails. A rational process for developing this probability uses Bayesian methods to modify a
prior belief through the acquisition of evidence to yield a refined posterior belief (see [27,
sidebar] for a brief description of this process). The strongest evidence will come from
scrutiny and analysis of the design and implementation of the channel concerned. As the
claim is “perfection,” the analysis will likely include extensive testing and formal verification.
Notice that if testing reveals a failure, or if formal verification or other analysis reveals a
fault, then the claim of perfection is destroyed and the channel must be replaced in its
entirety.1 In the following, therefore, we consider only the case in which testing reveals no
failures.

Formal verification may consider the abstract design of the software and its algorithms,
or detailed models developed in a model-based design framework, or the executable code, or

1We are speaking here of the testing and verification performed for assurance and evaluation; discovery
and repair of failures and faults in earlier stages of development may be acceptable in some lifecycle processes.
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all of these. In addition, there may be formalizations of the non-software elements that are
part of the channel—for example, its sensors and actuators and the physical processes that
they monitor and control, the external environment that may interact with the system (e.g.,
by injecting faults), and any human operators and their mental models [46] and cognitive
states. The properties verified may range from simple absence of runtime anomalies, such as
those guaranteed by static analysis, to full functional correctness with respect to a detailed
requirements specification. The subjective probability of imperfection will obviously be
influenced by consideration of how comprehensive is the formal verification and the extent
of what has not been formally verified or otherwise examined in comparable detail; it will
also be tempered by consideration of the complexity of the design and its implementation.
For those elements that are formally verified, it is instructive to consider the main hazards
to the soundness of this process.

1. The basic requirements or assumptions for the system may have been misunderstood
or established incorrectly. This hazard lies outside those addressed by formal verifi-
cation: it is included in the common-cause probability C.

However, it does seem that incorrect requirements are the primary source of failure
in many safety-critical systems (see, e.g., recent aircraft incident and accident reports
[1,2,33,34,55]), so we need to be sure that a credible value for C is not so large as to
dominate all other considerations.

We anticipate that software that is subjected to formal verification, and which is
used in a context for which a probability of perfection is required, will be relatively
small and simple and will be for safety backup and monitoring purposes (essentially, to
guard against failures of this very type in the primary safety channel or the operational
software). The requirements for software such as this are taken directly from the safety
case, so any errors here reflect flaws in the safety case and invalidate far more than
the software: they call the entire system and its certification into question. Hence, we
believe that errors in requirements and assumptions will not dominate assessments of
a probability of perfection.

2. The requirements, assumptions, or design may be formalized incorrectly or incom-
pletely. There are three subcases to this concern.

(a) Elements of the specification may be inconsistent: this renders the specification
meaningless and it becomes possible to prove anything.

Constructive specifications in a suitable specification framework (e.g., one
that requires, among other things, demonstration that all recursive functions are
well-founded) are conservative extensions of their logic and are therefore always
consistent (if the base logic is) [53]. ACL2 [21], Coq [10], HOL [17], and Isabelle
[39] are examples of verification systems (i.e., theorem provers for logics that are
suitable for system specification and verification tasks) that favor constructive
specifications. However, constructive specifications are not always appropriate;
for example, when specifying assumptions, it is generally more appropriate to
express them as axioms (we wish to state the assumptions, not implement them).
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In this case, consistency of the axioms may be ensured by showing that they have
a model that is conservative (e.g., defined constructively). The PVS verification
system [37], for example, supports this kind of demonstration through theory
interpretations [38].

(b) Elements of the specification may be just plain wrong: although logically consis-
tent, they do not correctly formalize the requirements, design, or assumptions.
This is generally the dominant hazard in formal specification and analysis. For-
mal specifications that have not been subject to some form of mechanized analysis
are no more likely to be correct than programs that have never been run (in fact,
less so, since nonspecialists generally have better intuition about programs than
they do about formal specifications). When a number of unmechanized specifica-
tions in the Z language (including some of industrial significance) were subjected
to mechanized analysis, most were found to contain flaws [50].

The most effective ways to ensure that formal specifications capture their
intent are to “challenge” them by attempting to prove putative theorems (i.e., “if
I’ve got it right, this ought to follow, but that ought to yield a counterexample”),
or to explore the behavior of executable interpretations of the specification: some
constructive logics are directly executable, and a large fragment even of PVS’s
higher order logic with quantifiers can be evaluated efficiently (i.e., at speeds
comparable to those of a functional programming language) [11].

Some verification systems, such as PVS, identify all the axioms and definitions
on which a formally verified conclusion depends: if these are correct, then logical
validity of the verified conclusion follows by soundness of the verification system.
Such identification allows particular scrutiny to be applied to these elements.
The axioms and definitions that underpin a verification are generally of two
kinds: those that are directly concerned with the subject matter of the system
(its requirements, design, assumptions, and so on), and those used in developing
the various theories that are required to express this subject matter (e.g., the
theories of clocks, synchronous systems, ordinal numbers, and so on). Many of
the latter theories will be widely used in other formal developments, so the burden
of ensuring their correctness is supported by a broadly shared social process.

Even if a theory or specification is formalized incorrectly, it does not neces-
sarily invalidate all theorems that use it: only if the verification actually exploits
the incorrectness or inconsistency will the validity of the theorem be in doubt
(and even then, it could still be true, but unproven). The second author has per-
formed many formal verifications and flaws in some of his specifications have been
identified by others [40], but in no case did these flaws invalidate the theorems
claimed.

(c) The formal specification and verification may be discontinuous or incomplete:
discontinuities can arise when several analysis tools are applied in the same soft-
ware development (e.g., a theorem prover, a model checker, a source code static
analyzer, and formally-based security and timing analyzers). Concerns are that
different tools may ascribe different semantics to the same specification, transla-
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tions between notations may introduce flaws, and there may be unintended gaps
that allow some aspect to escape analysis. There is no simple resolution to these
concerns: combinations of specialized analysis tools are outstripping the capa-
bilities and performance of monolithic tools and seem to represent the future of
the field. Integrating frameworks such as an “Evidential Tool Bus” [47] suggest
one way forward.

The most significant incompleteness is generally the gap between the most de-
tailed level of specification that is formally analyzed (e.g., algorithms expressed
in a functional programming notation, or a model-based design using state ma-
chines) and the input (e.g., C code and “make” files) to the software development
environment that generates executable code. Manual translation between these
notations may introduce faults, and assumptions in the formal development (e.g.,
interpretation of mathematical functions such as sqrt) may be violated by the
execution environment (e.g., due to finite precision).

In an ideal world, the execution environment would itself be provided with a
formal specification and strong evidence for correctness, such as that delivered
by formal verification. Research projects have accomplished impressive feats in
formally verifying such “stacks” of software and hardware [31], but most applica-
tions today must rely on informal evidence from extensive and widespread use of
their execution platforms, buttressed by testing of their specific configurations.

A plausible compromise would make formal analysis as comprehensive as rea-
sonably practicable, but also employ comprehensive testing on the execution
platform. Automated generation of test cases is a popular application of formal
methods [18, 60] and tests generated from the lowest level formal specification
(which also serves as the test oracle) can provide evidence that the execution
behavior matches this specification.

Even when formal verification is employed comprehensively, safety-critical
software should be thoroughly tested, as this provides an independent “leg” to
the assurance case [6] and also probes the assumptions under which the verifi-
cation was performed. (The “penetration testing” performed on secure systems
explicitly targets assumptions used in formal verification, as these are considered
the most attractive points of attack.) Automatically-generated tests, derived
from a formal specification, can target specific coverage criteria such as MC/DC
(Modified Condition/Decision Coverage) [42], which is required for safety crit-
ical software in commercial aircraft (i.e., DO-178B Level A [43]). Any failure
discovered in final testing (as opposed to exploratory testing undertaken earlier
in development) calls the whole system assurance into question.

We note that if the reliable channel A and the possibly perfect channel B
both use identical execution environments, then residual concerns about faults
in this environment need to be included in the common cause probability C.

3. The theorem prover, model checker, or other mechanized analysis tool may be un-
sound.
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The concern here is that it may prove a false theorem, not that it may fail to prove
a true one (that is completeness). Theorem provers are complex programs (generally
far more complex and sophisticated than the specifications and programs that they
verify), and concern about their soundness is generally the dominant concern for
nonspecialists (“who will guard the guardians”?).

There are several ways to mechanize theorem proving in support of verification. In
one way, a search is performed to find a rule of inference that will move things forward
from the current proof state. The search may be massive, but soundness depends only
on correct application of the selected inference rule (which includes checking that it
is applicable). Some theorem provers (generally referred to as “LCF-style” [16]) are
deliberately designed to have a very small core set of fairly primitive rules; larger sets
of more powerful rules can be defined in terms of these, but soundness depends only
on the kernel code that implements the core rules. The hope is that a small kernel has
a high probability of attaining perfection, and may even be proved correct. Indeed,
the kernel of HOL Light, which is about 400 lines of OCAML, has been proven sound
by a stronger version of itself [19] (by Gödel’s second incompleteness theorem, a sound
theorem prover cannot prove its own soundness, so strengthening is needed).

An objection to the LCF-style approach is that it is inefficient: the overhead (which
can be exponential) of reducing a big proof step down to invocations of many core
rules is always present, even when the prover is being used for the purpose of “ex-
ploration” in the early stages of proof development, rather than for final assurance.
An alternative approach is for an untrusted theorem prover to generate “proof logs”
that can be certified by an independent trusted checker (observe that this is a two-
channel architecture similar to the one whose reliability is under consideration); the
overhead of log generation and checking can be turned off when not required. There is
a tension between the size of the proof log and the complexity of the trusted checker:
traditionally, the checker has been very simple, and the log correspondingly huge and
expensive to generate. Recent work suggests the feasibility of more powerful checkers
(in effect, small theorem provers), which are themselves formally verified [52]. These
checkers can use much more succinct logs (little more than hints), and confidence in
their own verification can be based on one-time use of more primitive checkers or on
a diversity of checkers or verifiers. Diverse verifiers are available for certain standard
classes of verification problems such as those that can be reduced to SAT and SMT
solving [47].

If the assessor can substantiate a claim of 10−3 or 10−4 for probability of failure of the
reliable channel, then a balanced case would require similar probability of imperfection for
the possibly perfect channel. If we take 10−3 as an example, then we suggest that the bulk
of this “budget” should be divided between items 2b and 2c, with a small fraction, say
10−4, allocated to item 3; as explained in the text above, item 1 is included in C, and item
2a can be eliminated.

We believe that through sufficiently careful and comprehensive formal challenges, it is
indeed feasible and plausible that an assessor can assign a subjective posterior probability
of imperfection on the order of 10−3 or 10−4 to the formal statements on which a formal ver-
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ification depends (item 2b). Through testing and other scrutiny, we believe a similar figure
can be assigned to the probability of imperfection due to discontinuities and incompleteness
in the formal analysis (item 2c). And, by use of a verification system with a trusted or
verified kernel, or trusted, verified, or diverse checkers, we believe an assessor can assign a
posterior probability of 10−4 or smaller to the concern that the theorem prover and other
components of the mechanized formal verification system may have incorrectly verified the
theorems that attest to perfection (item 3).

Thus, in summary, we argue that it is plausible for well-designed and highly assured
1oo2 systems to support claims on the order of 10−5 for C, the probability of failure due
to causes common to both channels, 10−3 for P ∗

A, the probability of failure by the reliable
channel, and 10−3 for P ∗

B, the probability of imperfection of the possibly perfect channel.
Substituting these values in (2.12) we obtain 10−5 + (1− 10−5)× 10−3 × 10−3 and thereby
substantiate a conservative assessment of about 1.1× 10−5 for the probability of failure on
demand by the overall system. This overall assessment and its constituent quantities are
comparable to those that have been employed for real systems, but we believe this is the
first account that provides an argument by which they can be rigorously defended.

The relative sizes of the quantities appearing in this assessment are worth some com-
ment. It is feasible that an assessor could assign a value as small as 10−4 to P ∗

A, and a
similar value seems plausible for P ∗

B; their product is then 10−8, which is within range of
the ultra-high dependability requirements for transportation systems such as trains and air-
craft. The fly in the ointment is common-cause failure, where it may be difficult to assess a
probability smaller than 10−5 to C, and this therefore sets the overall limit on claimed relia-
bility. There are two ways to interpret this observation: one is to conclude that asymmetric
architectures and their analysis—or at least our approach to simplifying their problem of
epistemic estimation—are inadequate to those applications requiring ultra-high dependabil-
ity because C is a limiting factor; the other is to conclude that our analysis is cautionary
and that requirements and claims for ultra-high dependability should be viewed skeptically,
especially if they depend on assigning very low probabilities to common cause events. We
note that the Airbus A340 fuel emergency to be discussed in Chapter 5 on Page 26 was
essentially a common-cause failure.

We return to this topic in Chapter 5, where we develop an analysis for the kind of
monitored architectures proposed for aircraft, but first we need to examine failures of com-
mission.
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Chapter 4

Failures of Commission

In this chapter, we turn from failures of omission to those of commission: those that perform
an action (such as shutting down a reactor) when it is not required. In some system contexts,
this kind of failure can have serious safety consequences, while in others it may be a costly
nuisance, and in yet others merely an annoying “false alarm.” We study failures of this kind
because they are of some importance in themselves, and because they lay the groundwork
for our analysis of monitored architectures in Chapter 5.

In a 1oo2 system, either channel can put the system into a safe state. Hence, the failure
of one channel to bring the system to a safe state when this should be done (i.e., on a
“demand”) can be compensated by the other channel working perfectly. But, dually, the
1oo2 arrangement means that a single channel can force the system to a safe state when
it is not necessary to do so (i.e., when there is no demand or, as we shall sometimes say,
on a “nondemand”). We can call the failure to bring the system to a safe state when it is
necessary to do so a “Type 1” failure (a failure of omission), and the dual failure that does
this unnecessarily a “Type 2” failure (a failure of commission).

Although we refer to Type 1 and Type 2 failures as duals, their treatment requires careful
consideration because the demands and nondemands that underlie them are somewhat
different in character. Intuitively, a demand is an event at some point in time, whereas a
nondemand is the absence of a demand over a period of time. We unify the two by adjusting
our treatment to consider the rate at which demands occur.

The channels of the systems we are interested in typically operate as cyclic processes
executing at some fixed rate, such as so many times a second; on each execution, they
sample sensors, perform some computation, possibly update their internal state, and decide
whether to act (e.g., to shut down the reactor) or not. As time passes, there will be very
many executions, only a few of which might be demands—i.e., represent states in which the
channels are required to act. We suppose that whether any particular execution is a demand
or not is independent of any other execution, so the numbers of demands in disjoint time
intervals are independent of each other (i.e., “independent increments” in the terminology
of statistics) and the probability distribution of the number of demands in a time interval
depends only on the length of the interval (i.e., “stationary increments”). Under these
conditions, the occurrence of demands will be approximately a Poisson process with rate
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d, say. For the applications we have in mind, there will be very great disparity between
the durations of the cycles and the expected times between successive demands, so this
approximation will be very close. In what follows, therefore, we shall use the continuous
time formalism of the Poisson process. So

d = lim
δt→0

P (1 demand in (t, t + δt))
δt

. (4.1)

We define failure rates in a similar way. Then, for Type 1 failures we have

1oo2 system Type 1 failure rate

= lim
δt→0

P (1 demand and system fails in (t, t + δt))
δt

= lim
δt→0

P (system fails | 1 demand in (t, t + δt))× P (1 demand in (t, t + δt))
δt

= lim
δt→0

P (system fails | 1 demand in (t, t + δt))× P (1 demand in (t, t + δt))
δt

≤
(
C + (1− C)× P ∗

A × P ∗
B

)
× d

where the first term comes from the epistemic formula (2.12) and the second from (4.1).
Using (2.13) and rearranging terms we also have the conservative simplification

1oo2 system Type 1 failure rate ≤ d× (C + PA × PB). (4.2)

For Type 2 failures due to the A channel, we have

1oo2 system Type 2 failure rate due to A

= lim
δt→0

P (no demand and A activates in (t, t + δt))
δt

= lim
δt→0

P (A activates |no demand in (t, t + δt))× P (no demand in (t, t + δt))
δt

= lim
δt→0

P (A activates |no demand in (t, t + δt))
δt

× P (no demand in (t, t + δt)).

The second term here is conservatively approximated by 1. Then, taking limits, the first
term is the failure rate of Channel A with respect to Type 2 failures, whose epistemic value
(i.e., mean of the assessor’s posterior distribution) we will denote by FA2. Thus, we have

1oo2 system Type 2 failure rate due to A ≤ FA2. (4.3)

We could perform an exactly similar calculation for Type 2 failures due to the B channel,
but this would not exploit the possible perfection of that channel. Accordingly, we suppose
that the possible perfection of B extends to Type 2 failures and that pB2 is its aleatory
probability of imperfection with respect to those failures. We then have

P (B activates |no demand in (t, t + δt))
= P (B activates |B imperfect, no demand in (t, t + δt))× P (B imperfect)

+ P (B activates |B perfect, no demand in (t, t + δt))× P (B perfect).
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The second term in this sum is zero (B does not activate on a nondemand if it is perfect
with respect to Type 2 failures), so the right hand side reduces to

P (B activates |B imperfect, no demand in (t, t + δt))× pB2.

The calculation given earlier for the A channel can now be reproduced for the B channel,
but working at the aleatory level and substituting the expression above in the final line.
This gives

1oo2 system Type 2 aleatory failure rate due to B

≤ lim
δt→0

P (B activates |B imperfect, no demand in (t, t + δt))
δt

× P (no demand in (t, t + δt))× pB2.

Here, the second term is conservatively approximated by 1. Then, taking limits, the first
term is the aleatory failure rate of B with respect to Type 2 failures, conditional on B being
imperfect with respect to these failures, which we will denote by fB2|np.

1oo2 system Type 2 aleatory failure rate due to B ≤ fB2|np × pB2. (4.4)

The right hand side is the product of two parameters describing aleatory uncertainty. We
now have to consider the assessor’s epistemic uncertainty about these parameters to derive
a posterior expression for the failure rate. A fully accurate treatment requires integrating
with respect to a joint probability function G(fB2|np, pB2) just as we did with the function
F (pA, pB) in Section 2.2. However, it seems plausible that an assessor’s beliefs about these
parameters will be independent (why should the rate of failure, if imperfect, be dependent
on the probability of imperfection?) so that the distribution G can be factorized and the
failure rate due to Type 2 errors in B is then given by

1oo2 system Type 2 failure rate due to B ≤ FB2|np × PB2 (4.5)

where FB2|np is the assessor’s posterior failure rate of B with respect to Type 2 failures,
assuming B is imperfect with respect to these failures, and PB2 is the posterior probability
of B being imperfect with respect to Type 2 failures. Each of these is the mean of the
posterior distribution of its random variable considered alone.

We can now assess the overall merit of a 1oo2 system in terms of its risk per unit time,
taking account of both Type 1 and Type 2 failures, as follows. Denote the consequence
(cost) of a Type 1 failure by c1, and the consequences of Type 2 failures by the A and B
channels by cA2 and cB2, respectively.1 In some cases, a Type 2 failure may have no safety
consequences, so cA2 and cB2 can be assessed as zero. But even in these cases there are
likely to be economic losses associated with a Type 2 failure and these could be included in
a broader calculation of risk, resulting in nonzero assessments for cA2 and cB2.

The rates for the three kinds of system failure are given by (4.2), (4.3), and (4.5),
respectively. Adding the products of these and their costs yields the total risk:

1oo2 risk per unit time ≤ c1×d×(C +PA1×PB1)+cA2×FA2+cB2×FB2|np×PB2. (4.6)

1Since the A and B channels may bring the system to a safe state in different ways (e.g., by dropping
the control rods or by poisoning the moderator, respectively), it is reasonable to assess different costs or
severity of consequences to their Type 2 failures.
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We may assume that the cost c1 of a Type 1 failure is large, and hence that extensive
design and engineering effort is focused on ensuring that both the demand rate d and the
failure rate (C + PA1 × PB1) are small, so that the contribution to overall risk by the first
term in this sum is acceptable.

The second and third terms in the sum (4.6) are not reduced by a demand rate so, when
cA2 and cB2 are nonzero, their contribution to overall risk will be small only if all their other
components are small. The risk from a Type 2 failure of the main A channel is inherent in
any safety system, so we may assume that the failure rate FA2 is acceptable, relative to the
cost of this type of failure; the risk due to a Type 2 failure of the B channel, however, is an
additional factor introduced by the decision to employ a 1oo2 architecture. Hence, we will
need to be sure that the contribution from the product cB2×FB2|np×PB2 is an acceptable
price to pay for the reduction in risk that the architecture brings to Type 1 failures.

In the above analysis we have assumed that d, c1, cA2 and cB2 are known. If they are
not, then they need to be treated as a part of a more general epistemic analysis. This is
simple if it can be assumed, as may be reasonable in some cases, that the assessor’s beliefs
about these parameters are independent of his beliefs about the parameters representing
different probabilities and rates of failure and imperfection. We shall not pursue this further
here.
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Chapter 5

Monitored Architectures

In this chapter we examine a different class of architectures from the 1oo2 case considered
so far. These architectures employ an operational channel that is completely responsible for
the functions of the system concerned, and a monitor channel that can signal an “alarm” if it
deems the operational channel to have failed or to be causing unsafe behavior. Other systems
will ignore the outputs of a system whose monitor is signaling an alarm, so the monitor
transforms potential “malfunction” or “unintended function” into “loss of function,” which
is generally a less serious failure condition. Loss of function may still be a dangerous
condition, so there must generally be some larger system that responds to the alarm signal
and compensates in some way for the lost function. This is really, therefore, an architecture
for subsystems; we refer to it as a monitored architecture.

Monitored architectures are attractive for subsystems of highly redundant systems where
occasional loss of function is anticipated and it is likely that some other subsystem can take
over the functions of the one whose monitor has signaled the alarm, and the latter subsystem
can be shut down or otherwise isolated.

Aircraft systems have this characteristic: the redundancy (e.g., multiple engines, mul-
tiple sources of air data, and internal redundancy in systems such as autopilot, flight man-
agement, autoland, autothrottle, FADEC, etc.) is primarily present to cope with physical
failures (of a mechanical element or of a computer),1 but there is increasing interest in using
it to handle software faults. The software in flight-critical functions is supposed to be almost
certainly fault-free and guidelines such as ARP4754 [54], DO-178B [43], and DO-297 [44]
are intended to ensure that it is so. However, the reliability requirements for flight critical
functions (those that could cause catastrophic failure conditions) are so high (e.g., 1− 10−9

per hour, sustained for the duration of the flight [15, paragraph 10.b])2 that there is some
concern that no amount of development assurance can deliver sufficient confidence that its
embedded software is free of faults.

1There is a requirement that no single failure can cause a “catastrophic failure condition.”
2An explanation for this figure can be derived [29, page 37] by considering a fleet of 100 aircraft, each

flying 3,000 hours per year over a lifetime of 33 years (thereby accumulating about 107 flight-hours). If hazard
analysis reveals ten potentially catastrophic failure conditions in each of ten systems, then the “budget” for
each is about 10−9 if such a condition is not expected to occur in the lifetime of the fleet.
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A position paper by a team of experts representing certification authorities of North and
South America, and Europe [9] expresses this concern,3 and suggests that “fault-tolerance
techniques should be applied (such as, diverse and redundant implementations or simple
design). . . ” Monitored architectures are an approach for achieving this and our proposal
is that the monitor channel should be supported by a credible claim of possible perfection.
One way to do this would be to develop the monitor channel as a very simple piece of
software and to formally verify it against its requirements, in much the same way as we
described for the possibly perfect channel in the 1oo2 architecture.

Alternatively, rather than formally analyzing the monitor channel, we could formally
synthesize it from its requirements. There is a topic in formal methods known as Runtime
Verification, whose technology provides methods for automated synthesis of monitors for
formally specified properties [20]. Given requirements specified in a language such as Eagle
or RuleR [4], the methods of runtime verification can automatically generate an efficient
(and provably correct) monitor that will raise an alarm as soon as a requirement is violated.

We refer to monitors developed using either formal analysis or synthesis as formal mon-
itors, and now turn to consideration of the requirements that they monitor.

One obvious source of requirements is the documentation for the operational channel
being monitored. The problem with this choice is that these requirements are generally
at the unit level and the operational software is often robustly correct at this level (due
to the effectiveness of practices such as those recommended by DO-178B). That is to say,
the (sub)system may have failed or be operating in an unsafe manner, but each individual
software unit is operating correctly according to its unit-level requirements.

A recent in-flight incident illustrates this topic. It concerns an Airbus A340-642, regis-
tration G-VATL, which suffered a fuel emergency on 8 February 2005 [55]. The plane was
over Europe on a flight from Hong Kong to London when two engines flamed out. The crew
found that the fuel tanks supplying those engines were empty and those for the other two
engines were very low. They declared an emergency and landed at Amsterdam. The sub-
sequent investigation reported that two Fuel Control Monitoring Computers (FCMCs) are
responsible for pumping fuel between the tanks on this type of airplane. The two FCMCs
cross-compare and the “healthiest” one drives the outputs to the data bus. In this case,
both FCMCs had known faults (but complied with the minimum capabilities required for
flight); unfortunately, one of the faults in the one judged healthiest was the inability to drive
the data bus. Thus, although it gave correct commands to the fuel pumps (there was plenty
of fuel distributed in other tanks), these were never received. A low fuel warning should
have been generated by a backup system, but this warning is disregarded by the display
system unless both FCMCs have failed.4 Monitoring low-level requirements for the FCMCs
would not detect this problem, since faulty requirements were the root of the problem (i.e.,
they precipitated a common-cause failure).

3Notice that this can be interpreted as “claim limit,” though of a different kind from that used in nuclear
systems.

4The reason for this is not explained, but a plausible explanation is that it is to avoid Type 2 failures.
One of the recommendations of the Incident Report [55, Safety Recommendation 2005-37] is to change this
so that the backup can always trigger a low fuel level warning.
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This example illustrates that there is unlikely to be much benefit in monitoring require-
ments at or below the unit level: not only is critical software generally correct with respect
to this level of specification, but larger problems may not be manifested at this level (i.e.,
they are emergent to the unit level). Instead, we need to monitor properties that more
directly relate to the safe functioning of the system, and that are more likely to be violated
when problems are present.

The claims and assumptions of an argument-based assurance case can provide exactly
these properties. An assurance case for the FCMCs would surely include statements about
the acceptable distribution of fuel among the different tanks, and minimum levels in the
tanks feeding the engines. These properties are different in kind (i.e., “diverse”) from those
that would appear in software requirements, which typically focus on tasks to be performed,
rather than properties to be maintained.

A monitored architecture therefore has a highly reliable operational channel, whose
behavior is derived from its software requirements specification, and a simple formal monitor
that has a high probability of perfection with respect to properties from the system assurance
case.5 Analysis of the reliability of such architectures can build on our previous analysis of
1oo2 architectures, with the operational channel taking the part of A and the monitor the
part of B, but with some changes that reflect differences in the architectures.

One significant change is that there is no notion of “demand” for the operational channel
in the monitored architecture; instead, it continuously performs its assigned operational role,
but may occasionally suffer failures that violate a safety requirement. Thus, a monitored
architecture has a Type 1 failure if its operational channel violates a safety requirement and
its monitor fails to detect that fact. The operational channel will have some failure rate,
denoted frA, the monitor will have some probability of imperfection with respect to Type
1 failures (i.e., failures of omission), denoted pnpB1, and we seek a rate for Type 1 system
failure based on these parameters. The other significant change is that there is no notion of
Type 2 failure (i.e., of commission) for the operational channel: only the monitor channel
can raise an alarm, and thereby cause a Type 2 system failure by doing so unnecessarily.
We suppose that the monitor will have some probability of imperfection with respect to
Type 2 failures, denoted pnpB2 and we seek a rate for Type 2 system failure based on this
parameter.

5Of course, the assurance case should provide evidence and argument that the operational channel does
satisfy those properties. Thus, the monitor is redundant if the assurance case is sound; its justification is
diversity.
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We begin with the aleatory analysis for Type 1 system failure; we assume that frA has
known value fA and that pnpB1 has known value pB1. Then

P (monitored architecture has Type 1 failure in (t, t + δt) | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t + δt), B does not detect failure | frA = fA, pnpB1 = pB1)
≤ P (A fails in (t, t + δt), B imperfect | frA = fA, pnpB1 = pB1) (5.1)
= P (A fails in (t, t + δt) |B imperfect, frA = fA, pnpB1 = pB1)

× P (B imperfect | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t + δt) | frA = fA, pnpB1 = pB1) (5.2)

× P (B imperfect | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t + δt) | frA = fA, pnpB1 = pB1)× pB1. (5.3)

Line (5.2) follows from the one above it because the fact that B is imperfect tells us nothing
about the failure of A in this interval. Line (5.1) follows from the one above it by the
following reasoning:

P (A fails in (t, t + δt), B imperfect | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t + δt), B imperfect and does not detect failure | frA = fA, pnpB1 = pB1)

+ P (A fails in (t, t + δt), B imperfect and detects failure | frA = fA, pnpB1 = pB1)
> P (A fails in (t, t + δt), B imperfect and does not detect failure | frA = fA, pnpB1 = pB1)
= P (A fails in (t, t + δt), B does not detect failure | frA = fA, pnpB1 = pB1).

The last line above follows from its predecessor because B must be imperfect if it does not
detect failure (of A).

From (5.3), dividing by δt and taking limits, we obtain

Monitored architecture Type 1 aleatory failure rate ≤ fA × pB1. (5.4)

The Type 2 failure rate for the monitored architecture is just that for the monitor
channel. We can directly apply the analysis from the 1oo2 case so that (4.4) becomes

Monitored architecture Type 2 aleatory failure rate ≤ fB2|np × pB2 (5.5)

where fB2|np is the Type 2 failure rate for the monitor channel, conditional on its imper-
fection with respect to that class of failures.

As with the cases examined earlier, we now need to consider epistemic uncertainty in
the two formulas above. For the Type 1 failure rate (5.4), we will need to consider a joint
distribution function H(fA, pB1) representing the assessor’s beliefs about these variables.
The first of these is the failure rate of the operational channel, while the second is the
probability of imperfection of the monitor. We argue that these are different measures about
very different channels: one a fairly complex system designed to meet its requirements, the
other a very simple check of properties taken directly from the safety case. Thus, it is
very plausible that the assessor’s beliefs about these channels will be independent, and so
the function H(fA, pB1) can be factorized into distributions for the individual variables.
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However, although the channels are diverse in purpose and design, it is quite likely they
will share some implementation mechanisms. For example, a monitor for the A340 fuel
system might rely on the same sensors as those used by the operational channel.

One approach would be to explicitly factor the system into three components—shared
mechanism (e.g., sensors), operational channel, and monitor—and to calculate probabilities
over this more complex model. However, we propose a simpler treatment that is similar to
that employed to yield (2.13) in Section 2.2. There, we introduced an element C to absorb
failures due to faults in requirements and interpretation that are common to both channels;
here, we introduce an element M1 to absorb failures due to mechanisms that are common
to both channels. Thus,

Monitored architecture Type 1 failure rate ≤ M1 + FA × PB1, (5.6)

where M1 is the assessed Type 1 failure rate due to mechanisms shared between the op-
erational and monitor channels, FA is the posterior failure rate of the operational channel
(excluding items in M1), and PB1 is the posterior probability of imperfection (with respect
to Type 1 failures) of the monitor channel (again, excluding items in M1).

The Type 2 failure rate (5.5) was derived directly from the B channel case in a 1oo2
architecture (4.4). We argue that the epistemic valuation can similarly be derived from
(4.5) in the 1oo2 case to yield

Monitored architecture Type 2 failure rate ≤ M2 + FB2|np × PB2, (5.7)

where M2 is the assessed Type 2 failure rate due to mechanisms shared between the oper-
ational and monitor channels, FB2|np is the posterior Type 2 failure rate for the monitor
channel, assuming it is imperfect with respect to that class of failures, and PB2 is the pos-
terior probability of imperfection of the monitor channel with respect to Type 2 failures.
(Although Type 2 failures are due to the monitor channel alone, we must still include the
contributions of the mechanisms that it shares with the operational channel.)

Putting these together, we obtain the risk of a monitored architecture:

Monitored architecture risk per unit time ≤ c1×(M1+FA×PB1)+c2×(M2+FB2|np×PB2),
(5.8)

where c1 is the cost of a Type 1 failure and c2 the cost of a Type 2 failure.
Assuming, as seems likely, that M1 is much smaller than FA, a relatively modest claim

for perfection of the monitor with respect to Type 1 failures (e.g., PB1 = 10−3) provides
significant reduction in the overall risk due to Type 1 failures.

Employing a monitor brings with it the new risk of a Type 2 failure, and responsibility
for this is borne by the monitor alone. For this new risk to be acceptable, assuming M2

is small, we need either a strong claim for perfection of the monitor with respect to Type
2 failures (e.g., PB2 = 10−6), or the consequence of a Type 2 failure must be modest.
Some relief from these demanding requirements is possible if the assessor is able to assign
a small value to FB2|np, the failure rate of the monitor channel on the assumption that it is
imperfect. Statistically valid testing of the monitor channel provides a basis for assessing
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FB2|np and could yield values on the order of 10−3. Obviously, the tests must reveal no
failures, since then the channel would definitely be imperfect.

Whatever the contribution of FB2|np, there should be an inverse relationship between
the product FB2|np × PB2 and the cost c2. For the case of the A340 FCMC failure, it is
likely that the response to an alarm raised by a monitor would be a warning to the pilots,
who would then follow the standard troubleshooting and emergency procedures established
for possible faults in the fuel system. Thus, the consequences of a false alarm are modest
and commensurate with a correspondingly modest claim for perfection of the monitor.

On the other hand, monitoring mechanisms on American Airlines Flight 903 of 12 May
1997 (an Airbus A300) inappropriately raised an alarm indicating failure of one of the
avionics buses. This caused an automated bus reset, which in turn caused the Electronic
Flight Instrumentation System (EFIS, which is responsible for displaying instruments on
the cockpit monitors) to go blank for a while. At that time, the pilots were attempting
to recover from a major upset (the plane was in a succession of stalls) and the loss of
all primary instruments at this critical time jeopardized the recovery [32]. Here, the cost
of a Type 2 error was very high and it would seem that an extremely low probability of
imperfection should have been required of the monitor.

In fact, the monitor did not fail (which is why we called its action “inappropriate” rather
than “incorrect”): the problem was in the properties that it was required to monitor. Until
now, we have implicitly considered demands to be events in the physical world—but such
events do not always announce themselves unambiguously: their detection may require
delicate interpretation of sensors or indirect inference from other available data. In this
case, the physical event to be monitored is failure of an avionics bus, and one way to detect
this event is reception of faulty data delivered by the bus. And one way to judge whether
data is faulty is by considering its physical plausibility. Here, roll angle rates of change
greater than 40 degrees/second were considered implausible, and reception of sensor values
in excess of this limit were what triggered the monitor. But, as noted, the airplane was
stalled, the roll rates were real, and the inference of a bus fault was incorrect.

Designers choose the requirements for properties to be monitored; these properties, not
the physical events they are intended to detect, are the demands that a monitor responds to
and for which its probability of perfection is assessed. Through consideration of the possible
costs of appropriate and inappropriate actions and inactions, designers may choose to fine-
tune detection thresholds and adjust other elements in the specifications of properties to
be monitored. They can also adjust the actions taken in response to violation of these
properties. The consequences of these choices can far outweigh the perfection or otherwise
of the monitor—hence, there is little point in requiring high probability of perfection in a
monitor, when the properties that it monitors are imperfect indicators of the physical event
that it should respond to. Notice that this concern is not unique to monitors: it applies
just the same to 1oo2 architectures.

It might seem reasonable to extend the probability of perfection for a monitor to include
“perfection” of the monitored properties (relative the physical events they are intended to
identify). The aleatory analysis would be unchanged, but now provides a more compre-
hensive and holistic bound on overall system reliability and risk. The difficulty arises at
the epistemic stage, for there is no credible way to estimate a probability of perfection for
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the properties being monitored. In fact, perfection is an inappropriate notion to apply to
these properties: they are internal models of an external reality and the appropriate notion
is one of “fidelity,” which is measured as reliability. Observe that the failure rate of the
full system is then approximately the sum of the failure rates (i.e., unreliabilities) of the
implementation of the monitor and of the properties that it monitors.

For this reason, monitors and their required probabilities of perfection, the reliability of
the properties that they monitor, and the costs of the responses that they trigger and of
the failures that they avert, should be developed in the context of a safety case, where the
necessary tradeoffs can be made in an integrated manner. In the case of Flight 903, the
specification for a demand should probably have been made more stringent, and the response
should probably have been less Draconian. Then, a modest and achievable probability of
perfection for the monitor could have delivered a useful and credible claim to the safety
case.
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Chapter 6

Conclusion

We have considered systems in which a highly reliable software component or “channel” A
operates in combination with a channel B that supports a credible claim of “perfection,”
meaning that it will never fail. The claim of perfection may be wrong, so we speak of a
“possibly perfect” channel characterized by a probability of imperfection. Our results for
this model clarify, generalize, and extend an earlier result in [25].

The clarification lies in showing that there is conditional independence between the
events “channel A fails on a randomly selected demand” and “channel B is imperfect.”
This means that the description of the aleatoric uncertainty is particularly simple: under
conservative assumptions, the conditional system pfd is bounded by pA × pB, where pA is
the probability that A fails on a randomly selected demand, and pB is the probability that
B is imperfect.

This contrasts with the usual approach involving channels for which claims of perfection
cannot be made and only reliability is claimed; here, independence of channel failures cannot
be asserted, and thus the two channel pfds are not sufficient to characterize the model.
Instead, consideration needs to be given to the “degree” of dependence of the failures of the
two channels, and this is extremely difficult to incorporate into the model: in the Eckhardt
and Lee [14] and Littlewood and Miller [24] models, for example, it involves knowing the
covariance of the “difficulty functions” over the demand space. Typically, these are not
known, and cannot easily be estimated.

The generalization lies in the treatment of epistemic uncertainty, which is shown to
be the sole source of dependence in this model. An assessor has to describe his beliefs
about the two parameters of the model via the “belief” distribution F (pA, pB) in order
to obtain his unconditional probability of failure of the system on a randomly selected
demand. Representing beliefs as a bivariate distribution may not be easy, but supposing
that the distribution can be factored will usually not accurately represent the assessor’s
beliefs. We therefore proposed a conservative approach that is similar to that underpinning
some “claim limit” approaches in assurance cases, and that can be seen as one way of
formalizing such arguments. It requires the assessor to represent his beliefs in terms of
just three quantities: the probability C of common faults that afflict both channels, the
probability P ∗

A of failure for the reliable channel A in the absence of such common faults,
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and the probability P ∗
B of imperfection for the possibly perfect channel, again assuming the

absence of common faults. The probability that the system fails on a randomly selected
demand is then conservatively bounded by

C + (1− C)× P ∗
A × P ∗

B.

The model described here seems much simpler than the classical one (with two reliable
channels) in the treatment of both aleatory and epistemic uncertainty. We described the
context of argument-based assurance cases in which the epistemic probabilities C, P ∗

A, and
P ∗

B must be formulated, and argued that credible and useful values can be constructed with
modest enhancements to current development and assurance practices. Development of a
channel that may claim perfection is most plausible when the channel is very simple, or is
subjected to mechanically checked formal verification or, preferably, both. We considered
fallibilities in formal verification and argued that these can be accommodated within useful
and credible values for P ∗

B.
The earlier result has been extended by considering failures of commission (e.g., tripping

a reactor when this is not needed), and then further extended by combining these results
with a modification of the 1oo2 analysis to yield an analysis for monitored architectures:
those, such as are proposed for aircraft, in which a reliable operational channel is monitored
by a possibly perfect channel that can trigger higher-level fault recovery. These cases require
extension of the statistical model from one based on probability of failure on demand to
one based on rates of failure.

Like our first result, these extended results are relatively simple and require estimation of
only a few parameters. The simplicity is achieved through conservative assumptions; hence
our results are conservative also, possibly very much so. Nonetheless, plausible values for
the parameters yield attractive conclusions.

The thrust of this report has been about assessment of reliability of fault tolerant
diverse software-based systems. The problem of assessing the reliability of such a system
is often more difficult than the problem of achieving that reliability, particularly when the
reliability requirements are very stringent. It is worth saying, then, that the asymmetric
1oo2 architecture considered here is one that has long been regarded as an attractive one for
achieving reliability in certain applications (e.g., nuclear reactor protection systems), not
least because it forces the reduction of excessive functionality, with its ensuing complexity,
which are known enemies of dependability. That this architecture brings greater simplicity
to the assessment process is an added bonus.

1oo2 architectures are most appropriate for systems that have a safe state; monitored
architectures are one attempt to extend these benefits to systems that must continue oper-
ation in the presence of faults.

Monitored architectures are recommended in the relevant aircraft guidelines [54, Table 5–
2] as one way to achieve the high levels of dependability required for flight critical software.
For example, it is suggested that a Level A system (one requiring the highest level of
assurance) can be achieved by a Level C operational channel and a Level A monitor. Current
revisions to these guidelines are augmenting its Table 5–2 with rules that allow calculation of
acceptable alternatives. Our results can be seen as a way to provide formal underpinnings to
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those rules. We showed that risk due to failure of the operational channel can be significantly
reduced by a monitor, but that the probability of imperfection in the monitor with respect to
faults of commission must be carefully weighed against the danger and cost of unnecessary
fault recovery. Furthermore, a perfect monitor is only as good as the properties that it
monitors, so a large part of the challenge in developing effective monitors is to ensure that
the properties chosen for monitoring are good ones.

For the future, it will be interesting to extend the analysis of monitored architectures to
include recovery mechanisms, and possibly to consider a basis for certification of systems
that employ adaptive control or other techniques that are currently beyond the pale.
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