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I. I NTRODUCTION

Formal methodsare approaches to the design and analysis of
computer-based systems and software that employ mathemat-
ical techniques. They directly correspond to the mathematical
techniques used in other fields of engineering, such as finite-
element analysis for bridges and other structures, or computa-
tional fluid dynamics for airplane wings and streamlined cars.

Each field of engineering develops ways to model its designs
and the phenomena of concern in some branch of mathematics
so that calculation can be used to predict and explore the
properties and behaviors of designs prior to construction. Most
traditional engineering fields deal with physical systems, so
the appropriate branches of mathematics are typically based
on differential equations. Computers, on the other hand, deal
with symbols: their hardware and software set up patterns of 0s
and 1s that represent some state of affairs (e.g., the numbers
20 and 100), and perform operations on these symbols that
yield a representation of some new state of affairs (e.g., a
list of the prime numbers between 20 and 100, or the control
signals to be sent to an actuator that will slew a telescope
from its current bearing of20◦ to a desired bearing of100◦).
The branch of mathematics that deals with symbols and their
manipulation and their relation to the world is formal logic,
and this is the origin of the “formal” in formal methods.

Automated calculation in formal logic—that is to say,
automated deduction, or theorem proving—developed more
slowly than calculation in traditional engineering mathematics.
In part this was because many researchers in the field had
different agendas than raw calculational efficiency—they were
interested, for example, in using theorem proving in the
teaching of logic, or in reproducing mathematical proofs, or in
modeling cognition for Artificial Intelligence—and in part it
was because calculation in formal logic is intrinsically harder
than most numerical mathematics: almost all computational
problems in formal logic are at least NP-hard, many are su-
perexponential, and some are undecidable. An intuitive reason
why many of these problems are so hard is that they deal with
discrete choices—corresponding to theif-then-else and
iterative control structures that give computers their power—
and the total number of possible combinations that has to be
considered is exponential in the number of choices. But this
exponential is also the reason why software is so hard to get
right, and why testing is not very effective: a feasible number
of tests examines only a tiny fraction of the possible number
of different behaviors and, because behavior involving discrete
choices is discontinuous, there is no basis for extrapolating

from examined to unexamined cases. The attraction of modern
formal methods is that, despite the intrinsic computational
complexity, they often can perform effective calculations and
thereby examineall possiblebehaviors.

Effective formal calculation was not available when formal
methods began their evolution. Early formal methods focused
on mathematical approaches to programming, on proving
small programs correct by hand, and on formal specification
languages. These early methods stimulated much research and
produced many fundamental insights, but they did not attract
enthusiasm from practicing software engineers and program-
mers. They were included, nonetheless, in some university
courses and were advocated or required for certain kinds of
critical systems—and this led to a widespread perception that
formal methods are an esoteric activity of little practical utility
that should be undertaken only if insisted upon by a professor
or regulator.

Recently, however, a number of developments have com-
bined to make formal methods an attractive technology for
many areas of software engineering. First, steady progress
in the automation that can be applied to formal calculations,
coupled with the raw power of modern processors, has allowed
construction of tools that deliver practical benefits in return for
a modest investment in formal methods. Second, developers of
formal methods and tools learned that outcomes that fall short
of full functional correctness can be valuable nonetheless;
examples include extended static checking, debugging and
exploration, test case generation, and verification of limited
properties. Third, the emergence of model-based development
caused formally analyzable artifacts to become available early
in the development lifecycle.

The remainder of this paper introduces some of the ways
in which formal methods can be applied in software and
systems engineering, outlines the technology that underlies
these applications, reports on some industrial experience, and
sketches some prospects for the future.

II. A PPLICATIONS OFFORMAL METHODS

Extended typecheckingis probably the most straightforwardly
effective application of automated formal methods. Program-
mers are familiar with the typechecking performed by a Java
or Ada compiler, and the rather weaker checking performed in
C; the Java and Ada typecheckers catch errors such as adding
a number to a Boolean, and even C will protest if an array
is added to a number. Typechecking by a compiler is actually
a simple kind of formal analysis but, because it is expected
to operate in linear time, and to deliver no false alarms, its
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power is quite limited. If we are prepared to use methods of
formal calculation that are potentially more expensive, then we
can extend the range of properties that can be checked. For
example, an extended typechecker can warn about programs
that might generate runtime exceptions due to division by zero,
array bounds violation, or dereferencing a null pointer.

It is difficult to make such analyses precise, so we generally
tolerate some false alarms, and may also allow some errors to
go undetected. The balance between these kinds of impreci-
sions can be adjusted according to the needs of the application:
for debugging, we may allow some real errors to go undetected
in return for few false alarms, while for certification we
tolerate more false alarms in return for guaranteed detection
of all real errors in the analyzed class.

False alarms and undetected errors can arise for several rea-
sons. One is related to the power of the automated deduction
involved. Suppose for example, that an extended typechecker
looking for possible divide by zero exceptions encounters the
expressionq/(z+2) in a context wherez = 3×x+6×y−1,
and x and y are arbitrary integers. A theorem prover that is
competent for integer linear arithmetic will easily establish
that z + 2 is nonzero under these constraints, whereas one
that lacks special knowledge about integers will be unable
to do so and will generate a false alarm. A different source
of difficulty lies in programming constructs such as heap
structures and pointers; formal analyzers may maintain only
abstract properties of heap objects (e.g., their “shape,” such as
whether they are a list or a tree) and will raise a warning
for any division operation whose denominator comes from
the heap. Much of the research and recent progress in formal
methods addresses these difficulties, but there are limits to
what can be achieved without additional information from the
programmer.

There are two kinds of information that a programmer can
supply to a formal analyzer: information that tells it what to
check for, and information that helps it do its analysis. One
fairly unobtrusive way to accomplish both of these is through
extended type annotations: instead of declaring a variable to
be simply an integer, we could specify that it is anonzero
integer, and we could further specify that an array contains
nonzero integers, or that it issorted . The analyzer must
check that the extended type annotations are never violated,
and it can then use them as assumptions in checking other
properties. For example, if the type annotation forw declares
it to be aneven integer, then it becomes trivial to verify that
p/(w + 1) will not raise a division by zero exception.

Properties specified by types areinvariants: they are re-
quired to hold throughout execution; simple assertions can be
used to specify properties that must hold whenever execution
reaches a given location, and technically these are also invari-
ants (of the form “control at given location implies property”).
Properties that are not invariants can be specified by alternative
techniques that include those based on state machines, regular
expressions, typestate annotations (in which allowed types can
depend on the state), and temporal logic. These permit, for
example, specification of the requirement that the lock on

a resource should be alternatelyclaim ed andrelease d:
two claim s in succession is an error. Formal analysis for
invariants and these other kinds of properties often reveals
bugs in otherwise well-tested programs. This is becausestatic
analysis, as this general class of automated formal methods
is known, considers all possible executions, whereas dynamic
analysis (i.e., testing) considers only the executions actually
performed.

Formal methods and testing are not antithetic, however. For-
mal methods may assume properties of the environment (e.g.,
that the compiler for the programming language is correct, just
as structural mechanics assumes properties of steel beams) that
might be violated in particular cases—and testing in the real
environment may reveal those violations. The specifications
and methods of formal calculation that underlie static analysis
also can be used in support of testing, thereby extending the
range of benefits of formal methods. For example, specifica-
tions can be compiled into runtime monitors that check for
violations and invoke exception handling [1]. The benefits
over conventional testing are that the monitored properties
are synthesized from specifications rather than programmed
by hand (e.g., asassert and print statements), which
is particularly advantageous where properties of concurrent
programs are concerned. Another example is in the generation
of test cases themselves: some methods of static analysis
can construct acounterexamplewhen a specification violation
is detected, and this capability can be inverted to provide
automated test case generation. The task of the test engineer
then becomes that of specifying interesting properties to test,
rather than constructing the test cases themselves.

To move beyond static analysis of local properties and
toward full program verification—that is, toward analysis of
properties that get to the essential purpose of the program,
or to critical attributes of its operation, such as security or
safety—requires specification methods capable of describ-
ing system requirements, designs, and implementation issues,
together with methods and tools for verifying correctness
across several levels of hierarchical development. Suitable
specification languages and associated methods and tools for
formal verification do exist (mostly associated with interactive
theorem provers such as ACL2, COQ, HOL, Isabelle, and
PVS [2]) but they require an investment of skill and time
that currently limits their use to research environments and
certain regulated classes of applications, such as the highest
“Evaluation Assurance Levels” (EALs) for secure systems.
Instead, approaches that seem most promising for wide deploy-
ment are those attached to model-based design environments
such as Esterel/SCADE, Matlab/Simulink/Stateflow, or UML.
These environments provide graphical specification notations
based on concepts familiar or acceptable to engineers (e.g.,
control diagrams, state machines, sequence charts), methods
for simulating or otherwise exercising specifications, and some
means to generate or construct executable programs from the
models. Until the advent of model-based methods, artifacts
produced in the early stages of system development were
generally descriptions in natural language, possibly augmented
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by tables and sketches. While they could be voluminous and
precise, these documents were not amenable to any kind of
formal analysis. Model-based methods have changed that: for
the first time, early-lifecycle artifacts such as requirements,
specifications, and outline designs have become available in
forms that are useful for mechanized formal analysis.

Some of the notations used in model-based design envi-
ronments have quite awkward semantics, but they present no
insuperable difficulties and formal methods have been applied
successfully to most model-based notations. Formal analysis
can be used for model-based designs in similar ways to
programs—for example, through extended typechecking and
other methods of static analysis—but, because model-based
descriptions can be higher-level and more abstract than pro-
grams, it is often possible to explore properties that are closer
to the real intent or requirements for the design. Furthermore,
because model-based designs are explored through simulation,
they generally include a model of the environment (e.g., the
controlled plant, in the case of embedded systems) and thereby
provide a more complete foundation for formal analysis than
an isolated program. In many cases, the environment model
is a hybrid system(i.e., a state machine with real-valued
variables and differential equations) and the properties of
interest involve real time. Formal analysis of hybrid and timed
systems is challenging, but is becoming effective.

Intermediate-level requirements are often stated informally
as “shalls” and “shall nots” (e.g., “the microwave shall not
be on when the door is open”), sometimes with temporal
constraints added (e.g., “the windshield wipers shall turn off if
no rain is detected for 10 seconds”). These can be formalized
as invariants—and given a sufficiently rich extended type
system (e.g., one that has predicate subtypes) they can even be
stated as types—but these approaches require extensions to the
modeling notation. Engineers may prefer to stay within their
familiar framework, so an alternative approach is to specify
requirements assynchronous observers: that is, as separate
models that observe the state of the system and raise an error
flag when a requirement is violated (rather like anassert
statement in a program). Formal analysis then searches for
circumstances that can raise the error flag, or verifies their
absence. Counterexamples generated by formal analysis can
be used to drive the simulator of the modeling environment,
or they can be presented to the user in one of its modeling
notations (e.g., as message sequence charts). By modifying
the observer to recognize interesting, rather than undesired,
circumstances, we can use formal analysis to help explore
models (e.g., “show me an execution in which both these
states are active and this value is zero”), and a variant of this
approach can be used to generate test cases at the integration
and system levels.

As these examples illustrate, the applications of formal
methods in software engineering are becoming increasingly
diverse and powerful. I now provide a brief survey of the
technology that has enabled these advances.

III. T HE TECHNOLOGY OFFORMAL METHODS

The applications of formal methods outlined in the previous
section are made possible by remarkable recent progress in the
automation of formal calculations. This progress is not the re-
sult of any single breakthrough: it comes from steady progress
in a number of basic technologies and from new methods for
using these technologies in synergistic combination.

I gave an example earlier where it was necessary to decide
if z + 2 could be zero whenz = 3 × x + 6 × y − 1,
and x, y, and z are integers. A program that can solve
this kind of problem is called adecision procedure; in this
particular case it is a decision procedure for the theory of
integer linear arithmetic. Efficient decision procedures are
known for many theories that are useful in computer science
and software engineering, including the unquantified forms
of uninterpreted function symbols with equality, linear real
and integer arithmetic, scalar types, recursive datatypes, tuples,
records, and arrays; furthermore, these decision procedures can
work together to solve problems in their combined theory.

A decision procedure reports whether a set of constraints
is satisfiable or not; the example above is unsatisfiable on
the integers but satisfiable on the reals—a satisfying instance
is x = − 1

3 , y = 0, and z = −2. A decision procedure
that can provide instances for satisfiable problems is called
a satisfiability solver. Propositional calculus (the theory of
“Boolean” variables and their connectives) is a particularly
useful theory: it can be used to describe hardware circuits and
many finite-state problems (these are encoded in propositional
calculus through what amounts to circuit synthesis). A satis-
fiability solver for propositional calculus is known as a SAT
solver, and modern SAT solvers can deal with problems having
millions of variables and constraints. A satisfiability solver for
the combination of propositional calculus with other theories is
called an SMT solver (for Satisfiability Modulo Theories), and
a recent surge of progress (spurred, like that of SAT solvers,
by an annual competition) has led to SMT solvers that can
handle large problems in a rich combination of theories [3].

Many formal calculation tasks can be formulated in terms
of SAT or SMT solving. For example, to discover if a certain
program or executable model can violate a given assertion ink
or fewer steps (wherek is a specific number, like 20), we trans-
late the program or model into a state machine represented as a
transition relation over the decided theories, conjoin thek-fold
iteration of this relation with the negation of the assertion after
each step, and submit the resulting formula to an SMT solver.
A satisfying instance provides a counterexample that drives
the program to a violation of the assertion. This approach is
calledbounded model checkingand a modification (essentially,
where the assertion is not negated) can be used for the
generation of test cases or exploration instances. Invariants can
be verified using a different modification calledk-induction
[3]. Unfortunately,k-induction is not a complete procedure
and its complexity is exponential ink, so there are many true
invariants that cannot be verified in this way. One way to
strengthen it is to supply additional invariants. These could
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be suggested by the user but often a large number of rather
trivial auxiliary invariants are needed and it is unreasonable
to expect the user to suggest them all: instead, they must be
discovered automatically.

One way to do this is bydynamic analysis[4]: a large
number of putative invariants are generated systematically
(e.g., for two variablesx and y, we could generatex = y,
x < y, x ≤ y, x ≥ y and so on); then the program is run
for a short period and monitored to see which of the putative
invariants are violated during the execution. Those that survive
are considered candidate invariants whose verification is worth
attempting byk induction or other means.

Some other ways to generate or prove invariants use abstrac-
tion: that is, aspects of the program or model are approximated
or simplified in some way in the hope that analysis will
thereby become more tractable without losing so much detail
that the desired property is no longer true. For example, we
could replace an integer variable by one that records only its
sign (i.e., negative , zero , or positive ) and likewise
abstract the operations on the variable so that, for example,
negative + negative yieldsnegative but negative
+ positive nondeterministically yields any of the three
sign values. Then we simulate execution of the program to
see if any of the abstracted variables converges to a fixed
point, thereby yielding an invariant. This method ofabstract
interpretation[5] is sensitive to the abstraction chosen, to the
way in which abstracted values are combined when different
execution paths join, and to the “widening” method used to
accelerate or force convergence to fixed points.

In addition to generating invariants, abstractions are also
used in verifying them: because the abstracted system should
be simpler, or have fewer states, than the original, a verifi-
cation method that is defeated by the scale of the original
may succeed on the abstraction.Predicate abstraction[6] is
often used for this purpose; whereas abstract interpretation
approximates the values of variables, predicate abstraction
approximates relationships between variables; for example, we
may eliminate two integer variablesx andy and replace them
by a trio of Boolean variables that keep track of whether or
not x < y, x = y, or x > y. Decision procedures or SMT
solvers are used in construction of the abstracted system cor-
responding to a given set of predicates. The resulting system
will have a finite number of states so it becomes feasible to
compute those that are reachable—perhaps byexplicit state
model checking, which is essentially exhaustive simulation, or
by symbolic model checking, which usually employs a potent
data structure called reduced ordered binary decision diagrams,
or BDDs. Invariants are easily checked once the reachable
states are known, and more general properties can be checked
through translation to B̈uchi automata. Methods for abstraction
and reachability analysis in timed and hybrid systems can be
developed along similar lines to those for state machines.

The selection of predicates on which to abstract is a
crucial choice; there are several good heuristics (e.g., start
with the predicates appearing in guards or conditional expres-
sions, or symbolically propagate desired invariants through

the program) [7], but an initial selection may lose too much
information, so that instead of verifying a desired invariant,
analysis of the abstraction yields a counterexample. If the
abstract counterexample yields a corresponding “concrete”
one in the original system, then we have refuted the desired
invariant; but if not, differences in the way the counterexample
plays out in the abstracted and the original systems can
suggest ways to refine the abstraction (e.g., by suggesting addi-
tional predicates). This technique is known ascounterexample-
guided abstraction refinement(CEGAR) [8]. Related methods
alternate abstraction and test generation in the attempt to find
just the right abstraction to make analysis tractable [9].

Several of these technologies can be used in interleaved
combinations to yield highly automated tools (often referred
to assoftware model checkers) that are able to analyze fairly
intricate properties of source code with little guidance [10].

IV. I NDUSTRIAL ADOPTION

Formal methods have long occupied a niche in the devel-
opment and assurance of safety-critical and secure systems.
Recently, their appeal has expanded into more mainstream
areas, aided by great increases in the power of the supporting
technology, and by a pragmatic adjustment of goals. The first
applications of formal methods to see industrial adoption are
highly automated static analyzers that shield the user from
direct contact with the underlying formal method.

For example, Coverity and several other companies provide
static analyzers for C and some other programming languages,
and Microsoft uses similar tools internally. These analyzers are
mostly used for bug finding (i.e., they are tuned to minimize
false alarms and cannot verify the absence of bugs) but still
find many errors in widely used and well-tested software: for
example, Coverity found an average of 0.434 bugs per 1,000
lines of code in 17.5 million lines of C code from open source
projects [11]. The Spark Examiner from Praxis is tuned the
other way: it may generate false alarms but does not miss any
real errors within its scope—in particular, it can verify the
absence of runtime exceptions in Ada programs. It has found
errors in avionics code that had already been subjected to the
testing and other assurance methods for the highest level of
FAA certification (DO-178B Level A) [12]. T-Vec provides
tools that can generate the tests required by the FAA [13],
while Leirios focuses on model-based test generation [14].

The static driver verifier (SDV) of Microsoft uses many of
the advanced techniques described earlier to verify absence of
certain “blue screen” bugs in device drivers for Windows [15];
a related tool called Terminator can verify that drivers will
not “hang” forever. The Astŕee static analyzer uses abstract
interpretation to guarantee absence of floating point errors
(underflow, overflow etc) in flight control software for the
Airbus A380 [16], while AbsInt uses abstract interpretation to
calculate accurate estimates for worst-case execution time and
stack usage [17]. The SCADE toolset from Esterel, also used
by Airbus and for other embedded applications, has plugins
for analysis and verification by bounded model checking and
k-induction [18]. Rockwell-Collins has developed a prototype
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toolchain with similar capabilities for the Simulink/Stateflow
model-based development environment from Mathworks and
reports substantial improvements in effectiveness and reduc-
tions in cost in its process for reviewing requirements [19].

V. FUTURE PROSPECTS

Most of the applications of formal methods adopted in industry
are fully automatic, highly specialized to the analysis of
specific built-in properties, and focus on individual program
units. I believe that high degrees of automation and spe-
cialization are essential for industrial use, but that future
opportunities lie with user-specified properties and analysis of
the interfaces between program units and between programs
and their environments. The main impediment to this, and
to analysis of more revealing and significant properties, is
persuading programmers to specify them—and historically,
they have been reluctant to do so because they saw little reward
for their effort. I believe that as more programmers and more
industries see benefits from tools of the kind mentioned in
the previous section, so they may become willing to make
the investment to annotate their programs and model-based
designs with specifications and guidance for formal analysis.

System faults often arise at the interfaces between compo-
nents. Extended type annotations for interfaces would allow
formal analysis of limited—but better than current—checks
that components respect their interfaces. Stronger checks
require specification of how the interface is to be used (e.g., a
protocol for interaction);typestate[20] andinterface automata
[21] provide ways to do this. Formal methods can then attempt
to verify correct interface interactions, or can generate moni-
tors to check them at runtime or test benches to explore them
during development (rather like the bus functional models
used in hardware). Analysis that is fully compositional is an
important challenge for the future.

There is general consensus that the most significant prob-
lems in software development are due to inadequate require-
ments, especially where these concern what one component
or subsystem may expect of another. Formal methods can
help by calculating the properties that a component assumes
of its environment. People are good at describing how things
work but not so good at imagining how they can go wrong;
using models to describe components and formal analysis to
explore and calculate properties of their interaction combines
the strengths of man and machine. Exploration of reachable
states in the composition of a component with a model of
its environment provides a way to generate information for
requirements analysis, and exploration of the consequences of
modeled faults or of scenarios leading to hazards can provide
insights for safety analysis.

These more ambitious applications of formal methods re-
quire some advances in the supporting technology. Chief
among these are improvements in quantifier elimination and
nonlinear arithmetic in SMT solvers, and more powerful meth-
ods for automated generation of invariants. Large and novel
problems will require cooperation among multiple specialized

tools and a suitably open and loosely-coupled “tool bus” would
provide a way to organize these federations [3].

In closing, I hope this brief survey encourages you to
join me in looking forward to a not-too-distant future where
automated formal methods are standard in every software
development environment and their benefits are widely rec-
ognized and valued.
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