
In E. A. Emerson and A. P. Sistla, editors, Computer-Aided Verification,CAV ’2000, volume
1855 of Lecture Notes in Computer Science, pages 508-520, Chicago,IL, July 2000.
c©Springer-Verlag

Verification Diagrams Revisited:
Disjunctive Invariants for Easy Verification ⋆

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, USA
rushby@csl.sri.com

Abstract. I describe a systematic method for deductive verification of safety
properties of concurrent programs. The method has much in commonwith the
“verification diagrams” of Manna and Pnueli [17], but derives fromdifferent in-
tuitions. It is based on the idea of strengthening a putative safety propertyinto a
disjunction of “configurations” that can easily be proved to be inductive.Transi-
tions among the configurations have a natural diagrammatic representation that
conveys insight into the operation of the program. The method lends itself to
mechanization and is illustrated using a simplified version of an example that had
defeated previous attempts at deductive verification.

1 Introduction

In 1997, Shmuel Katz, Patrick Lincoln and I presented an algorithm for Group Mem-
bership together with a detailed, but informal proof of its correctness [14]. Shortly
thereafter, our colleague Shankar and, independently, Sadie Creese and Bill Roscoe
of Oxford University, noted that the algorithm is flawed whenthe number of nonfaulty
processors is three. Model checking a downscaled instance can be effective in finding
bugs (that is how Creese and Roscoe found the problem in our algorithm [8]), but true
assurance for a potentially infinite-staten-process algorithm such as this seems to re-
quire (mechanically checked) deductive methods—either direct proof or justification
of an abstraction that can be verified by algorithmic means. Over the next year or so,
Katz, Lincoln and I each made several attempts to formalize and mechanically verify
a corrected version of the algorithm using the PVS verification system [19]. On each
occasion, we were defeated by the number and complexity of the auxiliary invariants
needed, and by the “case explosion” that bedevils deductiveapproaches to formal veri-
fication.

Eventually, I stumbled upon the method presented in this paper and completed the
verification in April 1999 [23]. This new method made the verification not merely pos-
sible, but easy, and it provides a visual representation that conveys considerable insight

⋆ This research was supported by DARPA through USAF Rome Laboratory Contract F30602-
96-C-0204 and USAF Electronic Systems Center Contract F19628-96-C-0006, and by the
National Science Foundation contract CCR-9509931.

1



into the operation of the algorithm. Holger Pfeifer of the University of Ulm was sub-
sequently able to use the method to verify a related but much more complicated group
membership algorithm [21] used in the Time Triggered Architecture for critical real-
time control [15]

I later discovered that my method has much in common with the “verification dia-
grams” introduced by Manna and Pnueli [17], and subsequently generalized by Manna
and several colleagues [5, 7, 10, 16]. However, the intuition that led to my method is
rather different than that for verification diagrams, as is the way I approach its mecha-
nization. I hope that by revisiting these methods from a slightly different perspective, I
will help others to see their value and to investigate their application to new problems.

I describe my method in the next section and present an example of its application
in the one after that. The final section compares the method with verification diagrams
and with other techniques and provides conclusions and suggestions for further work.

2 The Method

Concurrent systems are modeled as nondeterministic automata over possibly infinite
sets of states. Given set of statesS, initiality predicateI onS, and transition relationT
onS, a predicateP onS is inductivefor S = (S, I, T ) if

I(s) ⊃ P (s)1 (1)

and
P (s) ∧ T (s, t) ⊃ P (t). (2)

The reachable statesare those characterized by the smallest (ordered by implication)
inductive predicateR onS. A predicateG is aninvariantor safety propertyif it is larger
thanR (i.e., includes all reachable states). The focus here is on safety (as opposed to
liveness) properties, so we do not need to be concerned with the acceptance criterion on
the automatonS.

The deductive method for verifying safety properties attempts to establish that a
predicateG is invariant by showing that it is inductive—i.e., we attemptto prove the
verification conditions (1) and (2) withG substituted forP . The problem, of course, is
that many safety properties are not inductive, and must be strengthened (i.e., replaced
by a smaller property) to make them so. Typically, this is done by conjoining additional
predicates in an incremental fashion, so thatG is replaced by

Gi
∧

= G ∧ G1 ∧ · · · ∧ Gi (3)

until an inductiveGm
∧

is found. This process can be made systematic, but is always
tedious. In one well-known example, 57 such strengtheningswere required to verify a
communications protocol [12]; eachGi+1 was discovered by inspecting a failed proof
for inductiveness ofGi

∧
, and the process consumed several weeks.

1 Formulas are implicitly universally quantified in their free variables; the horseshoe symbol⊃
denotes logical implication.

2



Some improvements can be made in this process: static analysis [4] and automated
calculations of (approximations to) fixpoints of weakest preconditions or strongest post-
conditions [5] can discover many useful invariants that canbe used to seed the process
asG1, . . . , Gi. Nonetheless, the transformation of a desired safety property into a prov-
ably inductive invariant remains the most difficult and costly element in deductive ver-
ification, and systematic methods are sorely needed.

The method proposed here is based on strengthening a desiredsafety property with
adisjunctionof additional predicates, rather than theconjunctionappearing in (3). That
is, we construct

Gm
∨

= G ∧ (G1 ∨ · · · ∨ Gm)

instead ofGm
∧

. Obviously, this can be rewritten as follows

Gm
∨

= (G ∧ G1) ∨ · · · ∨ (G ∧ Gm).

Rather than form each disjunct as a conjunction(G ∧ Gi), it is generally preferable to
use

Gm
∨

= G′

1 ∨ · · · ∨ G′

m (4)

and then proveG′

i ⊃ G for eachG′

i. The subexpressionsG′

i are referred to asconfigu-
rations, and the indicesi asconfiguration indices.

Observe that in the construction ofGm
∧

, eachGi must be an invariant (the very prop-
erty we are trying to establish), and that the inadequacy ofGi

∧
only becomes apparent

through failure of the attempted proof of its inductiveness—and proof of the putative
inductiveness ofGi+1

∧ must then start over.2 In contrast, the configurations used in con-
struction ofGm

∨
need not themselves be invariants, and can be discovered in arather

systematic manner. To see this, first suppose thatGm
∨

is inductive, and consider the
proof obligations needed to establish this fact. Instantiating (2) with Gm

∨
of (4) and

case-splitting across the configurations, we will need to prove a verification condition
of the following form for each configuration indexi:

G′

i(s) ∧ T (s, t) ⊃ G′

1(t) ∨ · · · ∨ G′

m(t).

We can further case-split on the right of the implication by introducing predicates
Ci,j(s) calledtransition conditionssuch that, for each configuration indexi

∀s ∈ S :
∨

j

Ci,j(s) (5)

(herej ranges over the indices of the transition conditions for configurationG′

i) and

G′

i(s) ∧ T (s, t) ∧ Ci,j(s) ⊃ G′

j(t) (6)

for each transition conditionCi,j of each configurationG′

i. Note that some of theCi,j

may be identicallyfalse(so that the proof obligation (6) is vacuously true for this case)
and that it is not necessary that theCi,j for differentj be disjoint.

2 PVS attempts to lessen the amount of rework that must be performed in thissituation by
allowing conjectures to be modified during the course of a proof; such proofs are marked
provisional until a final “clean” verification is completed.

3



This construction can be represented in a diagrammatic formcalled aconfiguration
diagramsuch as that shown several pages ahead in Figure 1. Here, eachvertex repre-
sents a configuration and is labeled with the name of the corresponding formulaG′

i and
each arc represents a non-false transition condition and is labeled with a phrase that
suggests the corresponding predicate. To verify the diagram, we need to show that the
initiality predicate implies some disjunction of configurations

I(s) ⊃ G′

1(s) ∨ · · · ∨ G′

m(s) (7)

(typically there is just a singlestarting configuration), that each configuration implies
the desired safety property

G′

1(s) ∨ · · · ∨ G′

m(s) ⊃ G(s), (8)

that the disjunction of the transition conditions leaving each configuration istrue (i.e.,
(5)), and that the transition relation indeed relates the configurations in the manner
shown in the diagram (i.e., the verification conditions (6)). Notice that this is just a
new way of organizing a traditional deductive invariance proof (i.e., the proof obliga-
tions (5)–(8) imply (1) and (2) withG substituted forP ). And although a configuration
diagram has some of the character of an abstraction, its verification involves only the
original model, and no new verification principles are involved.

The previous discussion assumed we already had a configuration diagram; in prac-
tice, the diagram is constructed incrementally in the course of the proof. To construct a
configuration diagram, we start by inventing a starting configuration and checking that
it is implied by the initiality predicate and implies the safety property (i.e., proof obli-
gations (7) and (8)). Then, by contemplation of the algorithm (the guard predicates and
other case-splits in the specification are good guides here), we invent some transition
conditions for the starting configuration and check that their disjunction is true (i.e.,
proof obligation (5)). For each transition condition, we symbolically simulate a step of
the algorithm from the starting configuration, under that condition. The result of sym-
bolic simulation becomes a new configuration (and implicitly discharges proof obliga-
tion (6) for that case)—unless we recognize it as a variant of an existing configuration,
in which case we must explicitly discharge proof obligation(6) by proving that the re-
sult of symbolic simulation implies the existing configuration concerned (sometimes it
may be necessary to generalize an existing configuration, inwhich case we will need to
revisit previously-proved proof obligations involving this configuration to ensure that
they are preserved by the generalization). We also check that each new or generalized
configuration implies the safety property (i.e., proof obligation (8)). This process is re-
peated for each transition condition and each new configuration until the diagram is
closed. The creative steps are the selection of transition conditions, and recognition of
new configurations as variants of existing ones. Neither of these is hard, given an infor-
mal understanding of the algorithm being verified, and the resulting diagram not only
verifies the desired safety property (once all its proof obligations are discharged), but it
also serves to explain the operation of the algorithm in a very effective way. Bugs in the
algorithm, or unfortunate choices of configurations or of transition conditions, will be
manifested as difficulty in closing the diagram (typically,the result of a symbolic simu-
lation step will not imply the expected configuration). As with most deductive methods,
it can be tricky to distinguish between these causes of failure.

4



3 An Example: Group Membership

A simplified version of the group membership algorithm mentioned earlier [14] will
serve as an example. There aren processors numbered0, 1, . . . , n − 1 connected to a
broadcast bus; a distributed clock synchronization algorithm (not discussed here) pro-
vides a global clock that ticks off “slots”0, 1, 2, . . . In slot i it is the turn of processor
i mod n to broadcast. The broadcast contains a message, not considered here, and the
ack bit of the broadcasting processor, which is described below. Processors may be
faulty or nonfaulty; those that are faulty may besend-faulty, receive-faulty, or both. A
processor that is send-faulty will fail to send its broadcast message in its first slot after
it becomes faulty; thereafter it may or may not broadcast in its slots. A processor that
is receive-faulty will fail to receive the first broadcast from a nonfaulty processor after
it becomes faulty; thereafter it may or may not receive broadcasts. Notice that faults
affect only communications: a faulty processor still executes the algorithm correctly;
additional elements in the full protocol suite ensure that other kinds of faults are man-
ifested as “fail silence,” which appears to the algorithm described here as a combined
send- and receive-fault in the processor concerned.

Each processor maintains amembership setwhich contains all and only the proces-
sors that it believes to be nonfaulty. Processors broadcastin their slots only if they are
in their own membership sets. The goal of the algorithm is to maintain accurate mem-
bership sets: all nonfaulty processors should have the samemembership sets (this is the
agreementproperty) and those membership sets should contain all the nonfaulty pro-
cessors and at most one faulty one (this is thevalidity property; it is necessary to allow
one faulty processor in the membership because it takes timeto diagnose a fault). These
safety properties must be ensured subject to thefault arrival hypothesisthat faults do
not arrive closer thann slots apart. Initially all processors are nonfaulty, theirmember-
ship sets contain all processors, and theirack bits aretrue.

The algorithm is a synchronous one: in each slot one processor broadcasts and all
the other processors expect to receive its message, provided the broadcaster is in their
membership sets. Receivers set theirack bits totrue in each slot iff they receive an ex-
pected message. In addition, they remove the broadcaster from their membership sets if
they fail to receive an expected message (on the interim assumption that the broadcaster
must have been send-faulty). A receiver that subsequently receives a message carrying
ack falsewhen its ownack is alsofalseknows that it made the correct decision in
this case (since the current broadcaster also missed the previous expected message), but
one that receivesack true realizes that it must have been receive-faulty (since the cur-
rent broadcaster did receive the message) and removes itself from its own membership;
a receiver that fails to receive an expected message when itsack bit is falsealso re-
moves itself from its own membership (because it has missed two expected messages in
a row, which is consistent with the fault arrival hypothesisonly if that processor is itself
receive-faulty); a receiver that receives a message withack falsewhen its ownack
bit is true removes the broadcaster from its membership (since the broadcaster must
have been receive-faulty on the previous broadcast). Processors that remove themselves
from their own membership remain silent when it is their turnto broadcast—thereby
communicating their self-diagnosed receive-faultiness to the other processors.

5



Formally, we letmem(p) and ack(p) denote the membership set andack bit of
processorp. Note that processorp has access to its ownmemandack , and can also
read the value ofack(b), whereb = i mod n andi is the current slot number, because
this is sent in the message broadcast in that slot.

Initiality predicate: mem(p) = {0, 1, . . . , n − 1}, ack(p) = true.3

The algorithm is specified by two lists of guarded commands: one for the broad-
caster and one for the receivers. Primes denote the updated values of the state variables.
The current slot isi and the current broadcaster isb, whereb = i mod n.

Broadcaster: Processorb executes the appropriate guarded command from the follow-
ing list.

(a) b ∈ mem(b) → mem(b)′ = mem(b), ack(b)′ = true

otherwise → no change.

Receiver: Each processorp 6= b executes the appropriate guarded command from the
following list:

The guards (b)–(g) apply whenb ∈ mem(p) ∧ p ∈ mem(p)

(b) ack(p) ∧ no msg rcvd → mem(p)′ = mem(p) − {b}, ack(p)′ = false

(c) ack(p) ∧ ack(b) → mem(p)′ = mem(p), ack(p)′ = true4

(d) ack(p) ∧ ¬ack(b) → mem(p)′ = mem(p) − {b}, ack(p)′ = true

(e) ¬ack(p) ∧ no msg rcvd → mem(p)′ = mem(p) − {p}
(f) ¬ack(p) ∧ ¬ack(b) → mem(p)′ = mem(p), ack(p)′ = true

(g) ¬ack(p) ∧ ack(b) → mem(p)′ = mem(p) − {p}
otherwise → no change.

The environment can perform only a single action: it can cause a new fault to
arrive—provided no other fault has arrived “recently.” Characterization of “recently”
is considered below. We letthe memdenote the current set of nonfaulty processors, so
that the following specifies arrival of a fault in a previously nonfaulty processorx.

Fault Arrival: ∃x ∈ the mem : the mem
′ = the mem− {x}

The desired safety properties are specified as follows.

Agreement: p ∈ the mem ∧ q ∈ the mem ⊃ mem(p) = mem(q)

Validity: p ∈ the mem ⊃ mem(p) = the mem ∨ ∃x : mem(p) = the mem ∪ {x}

The first says that all nonfaulty processorsp andq have the same membership sets; the
second says that the membership set of a nonfaulty processorp contains all nonfaulty
processors, and possibly one faulty one.

The starting configuration is the following: all nonfaulty processors have theirack
bits trueand their membership sets contain just the nonfaulty processors.

3 I use the redundant= true because some find that form easier to read.
4 This case could be absorbed into the “otherwise” clause with no change to the algorithm;

however, the structure of the algorithm seems clearer written this way.

6



Stable: p ∈ the mem ⊃ mem(p) = the mem ∧ ack(p) = true

It is natural to consider two transition conditions from this configuration: one where
a new fault arrives, and one where it does not. In the latter case, the broadcaster will
leave its state unchanged (no matter whether its executes command (a) or its “other-
wise” case), and the receivers will execute either their command (c) or their “otherwise”
case, and leave their states unchanged. The overall effect is to remain in thestablecon-
figuration. In the case that a new fault arrives, the same transitions as above will be
executed but some previously nonfaulty processorx will become faulty, leading to the
following configuration.

Latent(x): x 6∈ the mem

∧ p ∈ the mem ∪ {x} ⊃ mem(p) = the mem ∪ {x} ∧ ack(p) = true

There are two transition conditions fromlatent(x): one wherex is the broadcaster
in the next slot, and one where it is a receiver.

In the former case,x will execute its command (a) while all nonfaulty receivers will
note the absence of an expected message and execute their commands (b), leading to
the following configuration.

Excluded1(x): x 6∈ the mem ∧ mem(x) = the mem ∪ {x} ∧ ack(x) = true

∧ p ∈ the mem ⊃ mem(p) = the mem ∧ ack(p) = false

In the latter case, a nonfaulty broadcaster will transmit5 and its message will be
received by all nonfaulty receivers, but missed byx, leading to the following configu-
ration.

Missed rcv(x): x 6∈ the mem ∧ mem(x) = the mem ∪ {x} − {b} ∧ ack(x) = false

∧ p ∈ the mem ⊃ mem(p) = the mem ∪ {x} ∧ ack(p) = true

There are four transition conditions frommissedrcv(x): one where the next broad-
caster isx and it fails to broadcast; one wherex does broadcast; one where the next
broadcaster is already faulty; and an “otherwise” case. Thefirst of these is similar to the
transition fromlatent(x) to excluded1(x) and leads to the following configuration.

Excluded2(x): x 6∈ the mem ∧ mem(x) = the mem ∪ {x} − {b} ∧ ack(x) = true

∧ p ∈ the mem ⊃ mem(p) = the mem ∧ ack(p) = false

We recognize thatexcluded1(x) and excluded2(x) should each be generalized to
yield the following common configuration.

Excluded(x): p ∈ the mem ⊃ mem(p) = the mem ∧ ack(p) = false

5 Treatment of the case that the next broadcaster is an already-faulty one depends on how fault
“arrivals” are axiomatized: in one treatment, a fault is not considered toarrive until it can
be manifested (thereby excluding this case); the other treatment will produce a self-loop on
latent(x) in this case. These details are a standard complication in verification of fault-tolerant
algorithms and are not significant here.

7



missed_rcv(x)

fault arrival
x broadcasts

nonfaulty broadcaster

broadcaster

x fails to receive

receive

any

latent(x)

self_diag(x)
x not

already-faulty
broadcaster

x fails to broadcast

x fails to broadcast

x fails to broadcast

excluded(x)

stable

already-faulty
broadcaster

Fig. 1. Configuration Diagram for the Group Membership Example

In the case wherex does broadcast, it will do so withack false, causing nonfaulty
processors to execute their commands (d) and leading directly to thestableconfigura-
tion. The case where the next broadcaster is already faulty causes all nonfaulty proces-
sors and processorx to leave their states unchanged (since that broadcaster will not be
in their membership sets), thereby producing a loop onmissedrcv(x). The remaining
case (a broadcast by a nonfaulty processor, executing its command (a)) will cause non-
faulty receivers to execute their commands (c), whilex will either miss the broadcast
(executing its command (e)), or will discover thetrue ack bit on the received mes-
sage and recognize its previous error (executing its command (g)); in either case,x will
exclude itself from its own membership, leading to the following configuration.

Self diag(x): x 6∈ the mem ∧ x 6∈ mem(x)
∧ p ∈ the mem ⊃ mem(p) = the mem ∪ {x} ∧ ack(p) = true

The transition conditions from this new configuration are those wherex is the broad-
caster, and those where it is not. In the former case,x will fail to broadcast (since it is
not in its own membership), causing nonfaulty processors toexecute their commands
(b) and leading to the configurationexcluded(x). The other case will cause them to
execute their commands (c), or their “otherwise” cases, producing a self-loop on the
configurationself diag(x).

The only transitions that remain to be considered are those from configurationex-
cluded(x). The transition conditions here are the case where the nextbroadcaster is
already faulty, and that where it is not. The former producesa self-loop on this con-
figuration, while the latter causes all nonfaulty receiversto execute their commands (f)

8



while the broadcaster executes its command (a), leading to atransition to configuration
stable.

It is easy to see that the initiality predicate implies thestableconfiguration and that
all configurations imply the desired safety properties, andso we have now completed
construction and verification of the diagram shown in Figure1. The labels in the ver-
tices of this diagram indicate the corresponding configuration, while the labels on the
arcs are intended to suggest the corresponding transition condition. One detail has been
glossed over in this construction, however: what about the cases where a new fault ar-
rives while we are still dealing with a previous fault? In fact, this possibility is excluded
in the full axiomatization of the fault arrival hypothesis,which states that faults may
only arrive when the configuration isstable(we then need to discharge trivial proof
obligations that all the other configurations are disjoint from this one). We connect this
axiomatization of the fault arrival hypothesis with the “real” one that faults must arrive
more thann slots apart by proving a bounded liveness property that establishes that the
system always returns to astableconfiguration withinn slots of leaving it. This proof
requires that configurations are embellished with additional parameters and clauses that
remember the slots on which certain events occurred and count the numbers of self-loop
iterations. The details are glossed because they are peripheral to the main concern of
this paper; they are present in the mechanized verification of this example using PVS,
which is available athttp://www.csl.sri.com/˜rushby/cav00.html and
in a paper that describes verification of the full membershipprotocol [23]. (The full
algorithm differs from the simplified version given here in that all faulty processors
eventually diagnose their faults and exclude themselves from their own membership;
its proof is about four times as long as that presented here).6

4 Discussion, Comparison, and Conclusion

The flawed verification of the full membership algorithm in [14] strengthens the desired
safety properties,agreementandvalidity, with six additional invariants in an attempt
to obtain a conjunction that is inductive. Five of these additional invariants are quite
complicated, such as the following.

“If a receive fault occurred to processorp less thann steps ago, then eitherp
is not the broadcaster orack(p) is false while all nonfaultyq haveack(q) =
true, or p is not in its own membership set.”

The informal proof of inductiveness of the conjoined invariants is long and arduous,
and it must be flawed because the algorithm has a bug in then = 3 case. This proof
resisted several determined attempts to correct and formalize it in PVS. In contrast, the
approach presented here led to a straightforward mechanized verification of a corrected
version of the algorithm.7 Furthermore, as I hope the example has demonstrated, this

6 The algorithm presented here is fairly obvious; there is a similarly obvious solution to the full
problem (with self-diagnosis) that uses twoack bits per message; this clarifies the contribution
of [14], which is to achieve full self-diagnosis with only oneack bit per message.

7 The verification was completed on a Toshiba Libretto palmtop computer of decidedly modest
performance (75 MHz Pentium with 32 MB of memory).

9



approach is naturally incremental, develops understanding of the target algorithm, and
yields a diagram that helps convey that understanding to others. In fact, the diagram
(or at least its outline) can usually be constructed quite easily using informal reasoning,
and then serves as a guide for the mechanized proof.

This approach is strongly related to the verification diagrams and their associated
methods introduced by Manna and Pnueli [17]. These were subsequently extended and
generalized by Manna with Bjørner, Browne, de Alfaro, Sipma, and Uribe [5, 7, 10, 16].
However, these later methods mostly concern fairness and liveness properties, or exten-
sions for deductive model checking and hybrid systems, and so I prefer to compare
my approach with the original verification diagrams. These comprise a set of vertices
labeled with formulas and a set of arcs labeled with transitions that correspond to the
configurations and transition conditions, respectively, of my method. However, there
are small differences between the corresponding notions. First, it appears that verifica-
tion diagrams have a finite number of vertices, whereas configurations can be finite or
infinite in number. The example presented in the previous section is a parameterized
system with an unbounded parametern, and most of the configurations are parame-
terized by an individualx selected from the set{0, 1, . . . , n}, yielding an arbitrarily
large number of configurations; Skolemization (selection of an arbitrary representative)
reduces the number of proof obligations to a finite number. Second, the arcs in ver-
ification diagrams are associated with transitions, whereas those in my approach are
associated with predicates. It is quite possible that this difference is a natural manifes-
tation of the different examples we have undertaken: those performed with verification
diagrams have been asynchronous systems (where each systemtransition corresponds
to a transition bysomecomponent), whereas I have been concerned with synchronous
systems (where each system transition corresponds to simultaneous transitions byall
components). Thus, in asynchronous systems the transitions suggest a natural analysis
by cases, whereas in synchronous systems (especially those, as here, without explicit
control) the case analysis must be consciously imposed by selection of suitable transi-
tion conditions.

Mechanized support for verification diagrams is provided inSTeP [18]: the user
proposes a diagram and the system generates the necessary verification conditions. PVS
provides no special support for my approach, but its standard mechanisms are adequate
because the approach ultimately yields a conventional inductive invariance proof that
is checked by PVS in the usual way. As illustrated in the example, the configuration
diagram can be constructed incrementally: starting from anexisting configuration, the
user proposes a transition condition and then symbolicallysimulates a step of the algo-
rithm (mechanized in PVS by rewriting and simplification); the result either suggests a
new configuration or corresponds to (possibly a generalization of) an existing one. En-
hancements to PVS that would better support this activity are primarily improvements
in symbolic simulation (e.g., faster rewriting and better simplification).

The key to any inductive invariance proof is to find a partitioning of the state space
and a way to organize the case analysis so that the overall proof effort is manageable.
The method of disjunctive invariants is a systematic way to do this that seems effec-
tive for some problem domains. Other recent methods providecomparably systematic
constructions for verifications based on simulation arguments: theaggregation method

10



of Park and Dill [20] and thecompletion functionsof Hosabettu, Gopalakrishnan and
Srivas [13] greatly simplify construction of the abstraction functions used in verifying
cache protocols and processor pipelines, respectively.

Other methods with some similarity to the approach proposedhere are those based
on abstractions: typically the idea is to construct an abstraction of the original system
that preserves the properties of interest and that has some special form (e.g., finite state)
that allows very efficient analysis (e.g., model checking).Methods based onpredicate
abstraction[24] seem very promising [1, 3, 9, 25]. A configuration diagram can be con-
sidered an abstraction of the original state machine and it is plausible that it could be
generated automatically by predicate abstraction on the predicates that characterize its
configurations and transition conditions. However, it is difficult to see how the user
could obtain sufficient insight to propose these predicateswithout constructing most
of the configuration diagram beforehand, and it is also questionable whether fully au-
tomated theorem proving can construct sufficiently preciseabstractions of these fairly
difficult examples using current technology.

Such an abstracted system would still haven processes and further reduction would
be needed to obtain a finite-state system that could be model checked. Creese and
Roscoe [8] do exactly this for the algorithm of [14] using a technique based on a suit-
able notion of data independence [22]. They use a clever generalization to make the
processes of algorithm independent of how they are numberedand are thereby able to
establish the abstractedn-process case by an induction whose cases can be discharged
by model checking with FDR. This is an attractive approach with much promise, but
formal and mechanized justification for the abstraction of the original algorithm still
seems quite difficult (Creese and Roscoe provide a rigorous but informal argument).8

In summary, the approach presented here is one of a growing number of methods
for verifying properties of certain classes of algorithms in a systematic manner. Cir-
cumstances in which this approach seems most effective are those where the algorithm
concerned naturally progresses through different phases:these give rise to distinct dis-
junctsG′

i in a disjunctive invariantGm
∨

but are correspondingly hard to unify within a
conjunctive invariantGm

∧
. Besides those examples already mentioned, the approach has

been used successfully by Holger Pfeifer to verify another group membership algorithm
[21]: the very tricky and industrially significant algorithm used in the Time Triggered
Architecture for safety-critical distributed real-time control [15].

The most immediate targets for further research are empirical and, perhaps, the-
oretical investigations into the general utility of these approaches. The targets of my
approach have all been synchronous group membership algorithms, while the verifica-
tion diagrams of Manna et al. seem not to have been applied to any hard examples (the
verification in STeP of an interesting Leader Election algorithm [6] did not use diagram-
matic methods). If practical experience with a variety of different problem types shows
the approach to have sufficient utility, then it will be worthinvestigating provision of
direct mechanical support.

8 Verification by abstraction of the communications protocol example mentioned earlier required
45 of the 57 auxiliary invariants used in the direct proof [12].

11



Acknowledgments

I am grateful for useful criticisms and suggestions made by the anonymous referees
and by my colleagues Jean-Christophe Filliâtre, Patrick Lincoln, Ursula Martin, Holger
Pfeifer, N. Shankar, and M. Srivas, and also for feedback received from talks on this
material at NASA Langley, SRI, and Stanford.

References

Papers on formal methods and automated verification by SRI authors can generally be
found athttp://www.csl.sri.com/fm-papers.html .

[1] Parosh Aziz Abdulla, Aurore Annichini, Saddek Bensalem, Ahmed Bouajjani,
Peter Habermehl, and Yassine Lakhnech. Verification of infinite-state systems by
combining abstraction and reachability analysis. In Halbwachs and Peled [11],
pages 146–159.

[2] Rajeev Alur and Thomas A. Henzinger, editors.Computer-Aided Verification,
CAV ’96, Volume 1102 of Springer-VerlagLecture Notes in Computer Science,
New Brunswick, NJ, July/August 1996.

[3] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions
of infinite state systems compositionally and automatically. In Alan J. Hu and
Moshe Y. Vardi, editors,Computer-Aided Verification, CAV ’98, Volume 1427 of
Springer-VerlagLecture Notes in Computer Science, pages 319–331, Vancouver,
Canada, June 1998.

[4] Saddek Bensalem, Yassine Lakhnech, and Hassen Saı̈di. Powerful techniques for
the automatic generation of invariants. In Alur and Henzinger [2], pages 323–335.

[5] Nikolaj Bjørner, I. Anca Browne, and Zohar Manna. Automatic generation of
invariants and intermediate assertions.Theoretical Computer Science, 173(1):49–
87, 1997.

[6] Nikolaj Bjørner, Uri Lerner, and Zohar Manna. Deductiveverification of param-
eterized fault-tolerant systems: A case study. InSecond International Conference
on Temporal Logic, ICTL’97, Manchester, England, July 1997.

[7] I. Anca Browne, Zohar Manna, and Henny Sipma. Generalized temporal verifica-
tion diagrams. In15th Conference on the Foundations of Software Technology and
Theoretical Computer Science, Volume 1026 of Springer-VerlagLecture Notes in
Computer Science, pages 484–498, Bangalore, India, December 1995.

[8] S. J. Creese and A. W. Roscoe. TTP: A case study in combining induction and data
independence. Technical Report PRG-TR-1-99, Oxford University Computing
Laboratory, Oxford, England, 1999.

[9] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate ab-
straction. In Halbwachs and Peled [11], pages 160–171.

[10] Luca de Alfaro, Zohar Manna, Henny B. Sipma, and Tomás E. Uribe. Visual
verification of reactive systems. In Ed Brinksma, editor,Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’97), Volume 1217 of
Springer-VerlagLecture Notes in Computer Science, pages 334–350, Enschede,
The Netherlands, April 1997.

12



[11] Nicolas Halbwachs and Doron Peled, editors.Computer-Aided Verification, CAV
’99, Volume 1633 of Springer-VerlagLecture Notes in Computer Science, Trento,
Italy, July 1999.

[12] Klaus Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. InFormal Methods Europe FME ’96, Volume
1051 of Springer-VerlagLecture Notes in Computer Science, pages 662–681, Ox-
ford, UK, March 1996.

[13] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Proof of correct-
ness of a processor with reorder buffer using the completionfunctions approach.
In Halbwachs and Peled [11], pages 47–59.

[14] Shmuel Katz, Pat Lincoln, and John Rushby. Low-overhead time-triggered group
membership. In Marios Mavronicolas and Philippas Tsigas, editors, 11th In-
ternational Workshop on Distributed Algorithms (WDAG ’97), Volume 1320 of
Springer-VerlagLecture Notes in Computer Science, pages 155–169, Saarbrücken
Germany, September 1997.

[15] Hermann Kopetz and G̈unter Gr̈unsteidl. TTP—a protocol for fault-tolerant real-
time systems.IEEE Computer, 27(1):14–23, January 1994.

[16] Zohar Manna, Anca Browne, Henny B. Sipma, and Tomás E. Uribe. Visual ab-
stractions for temporal verification.Algebraic Methodology and Software Tech-
nology, AMAST’98, Volume 1548 of Springer-VerlagLecture Notes in Computer
Science, pages 28–41, Amazonia, Brazil, January 1999.

[17] Zohar Manna and Amir Pnueli. Temporal verification diagrams. In M. Hagiya
and J.C. Mitchell, editors,International Symposium on Theoretical Aspects of
Computer Software: TACS’94, Volume 789 of Springer-VerlagLecture Notes in
Computer Science, pages 726–765, Sendai, Japan, April 1994.

[18] Zohar Manna and The STeP Group. STeP: Deductive-algorithmic verification of
reactive and real-time systems. In Alur and Henzinger [2], pages 415–418.

[19] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.

[20] Seungjoon Park and David L. Dill. Verification of cache coherence protocols by
aggregation of distributed transactions.Theory of Computing Systems, 31(4):355–
376, 1998.

[21] Holger Pfeifer. Formal verification of the TTA group membership algorithm. In
Formal Description Techniques and Protocol Specification,Testing and Verifica-
tion FORTE XIII/PSTV XX 2000, Pisa, Italy, October 2000. To appear.

[22] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, Hemel Hempstead, UK, 1998.

[23] John Rushby. Formal verification of a low-overhead group membership algorithm,
2000. In preparation.

[24] Hassen Säıdi and Susanne Graf. Construction of abstract state graphswith PVS.
In Orna Grumberg, editor,Computer-Aided Verification, CAV ’97, Volume 1254 of
Springer-VerlagLecture Notes in Computer Science, pages 72–83, Haifa, Israel,
June 1997.

[25] Hassen Säıdi and N. Shankar. Abstract and model check while you prove.In
Halbwachs and Peled [11], pages 443–454.

13


