In E. A. Emerson and A. P. Sistla, editors, Computer-Aided Verifica@®/ '2000, volume
1855 of Lecture Notes in Computer Science, pages 508-520, Chitadaly 2000.
©Springer-Verlag

Verification Diagrams Revisited:
Disjunctive Invariants for Easy Verification*

John Rushby

Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025, USA
rushby@csl.sri.com

Abstract. | describe a systematic method for deductive verification of safety
properties of concurrent programs. The method has much in comwvitbrthe
“verification diagrams” of Manna and Pnueli [17], but derives frdifferent in-
tuitions. It is based on the idea of strengthening a putative safety prdptoty
disjunction of “configurations” that can easily be proved to be inducfivensi-
tions among the configurations have a natural diagrammatic represantsio
conveys insight into the operation of the program. The method lends itself to
mechanization and is illustrated using a simplified version of an exampleatiat h
defeated previous attempts at deductive verification.

1 Introduction

In 1997, Shmuel Katz, Patrick Lincoln and | presented anrétlyo for Group Mem-
bership together with a detailed, but informal proof of itarectness [14]. Shortly
thereafter, our colleague Shankar and, independentlye Saese and Bill Roscoe
of Oxford University, noted that the algorithm is flawed wtka number of nonfaulty
processors is three. Model checking a downscaled instaartbe effective in finding
bugs (that is how Creese and Roscoe found the problem in garithim [8]), but true
assurance for a potentially infinite-stateprocess algorithm such as this seems to re-
quire (mechanically checked) deductive methods—eitharctliproof or justification
of an abstraction that can be verified by algorithmic mean&r@he next year or so,
Katz, Lincoln and | each made several attempts to formalimeraechanically verify
a corrected version of the algorithm using the PVS verificaystem [19]. On each
occasion, we were defeated by the number and complexityeoatixiliary invariants
needed, and by the “case explosion” that bedevils deduafipeoaches to formal veri-
fication.

Eventually, | stumbled upon the method presented in thigpapd completed the
verification in April 1999 [23]. This new method made the fiedation not merely pos-
sible, but easy, and it provides a visual representatidrctivaveys considerable insight

* This research was supported by DARPA through USAF Rome Labgr@tontract F30602-
96-C-0204 and USAF Electronic Systems Center Contract F19628-9806, and by the
National Science Foundation contract CCR-9509931.

into the operation of the algorithm. Holger Pfeifer of theildmsity of UIm was sub-
sequently able to use the method to verify a related but mumie womplicated group
membership algorithm [21] used in the Time Triggered Arettitire for critical real-
time control [15]

| later discovered that my method has much in common with Heeification dia-
grams” introduced by Manna and Pnueli [17], and subsequegstieralized by Manna
and several colleagues [5, 7, 10, 16]. However, the intuitieat led to my method is
rather different than that for verification diagrams, ahesway | approach its mecha-
nization. | hope that by revisiting these methods from ahsljodifferent perspective, |
will help others to see their value and to investigate thepliaation to new problems.

| describe my method in the next section and present an exaofijils application
in the one after that. The final section compares the methtidwerification diagrams
and with other techniques and provides conclusions andestiggs for further work.

2 The Method

Concurrent systems are modeled as nondeterministic atdoowar possibly infinite
sets of states. Given set of statgsnitiality predicatel on .S, and transition relatiofi”
on S, a predicateP on S is inductivefor S = (S, I, T) if

I(s) D P(s)* 1)

and
P(s)ANT(s,t) D P(t). (2)

The reachable stateare those characterized by the smallest (ordered by intigiga
inductive predicaté? onS. A predicatg5 is aninvariantor safety propertyf it is larger
thanR (i.e., includes all reachable states). The focus here isafatys(as opposed to
liveness) properties, so we do not need to be concernedlvatadceptance criterion on
the automatoss.

The deductive method for verifying safety properties afitsrto establish that a
predicateG is invariant by showing that it is inductive—i.e., we attenipiprove the
verification conditions (1) and (2) wit' substituted forP. The problem, of course, is
that many safety properties are not inductive, and mustreagthened (i.e., replaced
by a smaller property) to make them so. Typically, this iselby conjoining additional
predicates in an incremental fashion, so tias replaced by

Gi=GANGL A NG, (3)

until an inductiveG)* is found. This process can be made systematic, but is always
tedious. In one well-known example, 57 such strengtheniveye required to verify a
communications protocol [12]; each;,; was discovered by inspecting a failed proof
for inductiveness of7?, and the process consumed several weeks.

! Formulas are implicitly universally quantified in their free variables; theséshoe symbab
denotes logical implication.

Some improvements can be made in this process: static &plyand automated
calculations of (approximations to) fixpoints of weakes&tqamditions or strongest post-
conditions [5] can discover many useful invariants thatloamsed to seed the process
as(,...,G;. Nonetheless, the transformation of a desired safety piyppgo a prov-
ably inductive invariant remains the most difficult and tpstement in deductive ver-
ification, and systematic methods are sorely needed.

The method proposed here is based on strengthening a deafetd property with
adisjunctionof additional predicates, rather than tenjunctionappearing in (3). That
is, we construct

Gl'=GAN(G1V---VGp)

instead ofG{*. Obviously, this can be rewritten as follows
GJ'=(GNG)V---V(GANGy).

Rather than form each disjunct as a conjunc{iéGh G,), it is generally preferable to
use

and then prove&r, O G for eachG). The subexpressiors, are referred to asonfigu-
rations, and the indices asconfiguration indices

Observe that in the construction@f”, each; must be an invariant (the very prop-
erty we are trying to establish), and that the inadequacy:obnly becomes apparent
through failure of the attempted proof of its inductiveressd proof of the putative
inductiveness of7. ! must then start ovérin contrast, the configurations used in con-
struction of GJ* need not themselves be invariants, and can be discoveredaihex
systematic manner. To see this, first suppose @jatis inductive, and consider the
proof obligations needed to establish this fact. Instéintia(2) with GJ* of (4) and
case-splitting across the configurations, we will need twgra verification condition
of the following form for each configuration indéx

Gi(s) NT(s,t) D GL({t) V-V Gy (1).

We can further case-split on the right of the implication biraducing predicates
C;,;(s) calledtransition conditionssuch that, for each configuration indéex

Vs e S: \/CZJ(S) (5)

(herej ranges over the indices of the transition conditions forfigomationG?) and
Gi(s) NT(s,t) NCy j(s) D G(t) (6)

for each transition conditio; ; of each configuratiols,. Note that some of th€; ;
may be identicallyfalse(so that the proof obligation (6) is vacuously true for thase)
and that it is not necessary that #ig; for different; be disjoint.

2 pVS attempts to lessen the amount of rework that must be performed isitinigion by
allowing conjectures to be modified during the course of a proof; suchfgprare marked
provisional until a final “clean” verification is completed.

This construction can be represented in a diagrammatic ¢athad aconfiguration
diagramsuch as that shown several pages ahead in Figure 1. Hereyeraek repre-
sents a configuration and is labeled with the name of the sporeding formulaz; and
each arc represents a nfaise transition condition and is labeled with a phrase that
suggests the corresponding predicate. To verify the diagnae need to show that the
initiality predicate implies some disjunction of configtioms

I(s) D Gi(s) V-~ VG () (7

(typically there is just a singlstarting configuratiol, that each configuration implies
the desired safety property

Gi(s) V-V G (s) D Gls), (8)

that the disjunction of the transition conditions leaviragle configuration isrue (i.e.,
(5)), and that the transition relation indeed relates thafigarations in the manner
shown in the diagram (i.e., the verification conditions (®ptice that this is just a
new way of organizing a traditional deductive invarianceqgsr(i.e., the proof obliga-
tions (5)—(8) imply (1) and (2) witlds substituted for). And although a configuration
diagram has some of the character of an abstraction, itBoaion involves only the
original model, and no new verification principles are iveal.

The previous discussion assumed we already had a configuditigram; in prac-
tice, the diagram is constructed incrementally in the c®oafghe proof. To construct a
configuration diagram, we start by inventing a starting gumftion and checking that
it is implied by the initiality predicate and implies the etf property (i.e., proof obli-
gations (7) and (8)). Then, by contemplation of the algamifthe guard predicates and
other case-splits in the specification are good guides here)nvent some transition
conditions for the starting configuration and check thatrttisjunction is true (i.e.,
proof obligation (5)). For each transition condition, wergyolically simulate a step of
the algorithm from the starting configuration, under thatditon. The result of sym-
bolic simulation becomes a new configuration (and implidiischarges proof obliga-
tion (6) for that case)—unless we recognize it as a varianh@bdsting configuration,
in which case we must explicitly discharge proof obligat{6h by proving that the re-
sult of symbolic simulation implies the existing configuoatconcerned (sometimes it
may be necessary to generalize an existing configuratiamhich case we will need to
revisit previously-proved proof obligations involvingishconfiguration to ensure that
they are preserved by the generalization). We also chetletith new or generalized
configuration implies the safety property (i.e., proof ghtion (8)). This process is re-
peated for each transition condition and each new configuraintil the diagram is
closed. The creative steps are the selection of transibaditions, and recognition of
new configurations as variants of existing ones. Neithehes¢ is hard, given an infor-
mal understanding of the algorithm being verified, and tiselteng diagram not only
verifies the desired safety property (once all its proofgdiions are discharged), but it
also serves to explain the operation of the algorithm in g géfiective way. Bugs in the
algorithm, or unfortunate choices of configurations or ahgsition conditions, will be
manifested as difficulty in closing the diagram (typicathg result of a symbolic simu-
lation step will not imply the expected configuration). Aghvinost deductive methods,
it can be tricky to distinguish between these causes ofr&ilu

3 An Example: Group Membership

A simplified version of the group membership algorithm mem¢id earlier [14] will
serve as an example. There ar@rocessors numberéd1,...,n — 1 connected to a
broadcast bus; a distributed clock synchronization allgari(not discussed here) pro-
vides a global clock that ticks off “slotg), 1,2, ... In sloti it is the turn of processor
i mod n to broadcast. The broadcast contains a message, not causltkre, and the
ack bit of the broadcasting processor, which is described heRwacessors may be
faulty or nonfaulty; those that are faulty may send-faultyreceive-faulty or both. A
processor that is send-faulty will fail to send its broadcasssage in its first slot after
it becomes faulty; thereafter it may or may not broadcastsirslots. A processor that
is receive-faulty will fail to receive the first broadcastifn a nonfaulty processor after
it becomes faulty; thereafter it may or may not receive beaats. Notice that faults
affect only communications: a faulty processor still exesuthe algorithm correctly;
additional elements in the full protocol suite ensure thhepkinds of faults are man-
ifested as “fail silence,” which appears to the algorithrsatdoed here as a combined
send- and receive-fault in the processor concerned.

Each processor maintainsye&mbership sathich contains all and only the proces-
sors that it believes to be nonfaulty. Processors broadtaiseir slots only if they are
in their own membership sets. The goal of the algorithm is &ntain accurate mem-
bership sets: all nonfaulty processors should have the ssngbership sets (this is the
agreemenproperty) and those membership sets should contain alldhé&ulty pro-
cessors and at most one faulty one (this isvlédity property; it is necessary to allow
one faulty processor in the membership because it takegddigiagnose a fault). These
safety properties must be ensured subject tdaé arrival hypothesighat faults do
not arrive closer than slots apart. Initially all processors are nonfaulty, thmeember-
ship sets contain all processors, and taek bits aretrue.

The algorithm is a synchronous one: in each slot one procéssadcasts and all
the other processors expect to receive its message, pdothidebroadcaster is in their
membership sets. Receivers set tlaek bits totrue in each slot iff they receive an ex-
pected message. In addition, they remove the broadcastettlfieir membership sets if
they fail to receive an expected message (on the interirnmgstsan that the broadcaster
must have been send-faulty). A receiver that subsequesttives a message carrying
ack falsewhen its ownack is alsofalseknows that it made the correct decision in
this case (since the current broadcaster also missed thieysexpected message), but
one that receiveack truerealizes that it must have been receive-faulty (since tie cu
rent broadcaster did receive the message) and removédribselits own membership;
a receiver that fails to receive an expected message wheaoktdit is falsealso re-
moves itself from its own membership (because it has misge@xpected messages in
a row, which is consistent with the fault arrival hypothesidy if that processor is itself
receive-faulty); a receiver that receives a message adgkh falsewhen its ownack
bit is true removes the broadcaster from its membership (since thedbaster must
have been receive-faulty on the previous broadcast). Bsocgthat remove themselves
from their own membership remain silent when it is their ttorbroadcast—thereby
communicating their self-diagnosed receive-faultineshié other processors.

Formally, we letmem(p) and ack(p) denote the membership set aadk bit of
processop. Note that processagr has access to its onmemandack , and can also
read the value o&ck(b), whereb = i mod n andi is the current slot number, because
this is sent in the message broadcast in that slot.

Initiality predicate: mem(p) = {0,1,...,n — 1}, ack(p) = true.®

The algorithm is specified by two lists of guarded commandsg for the broad-
caster and one for the receivers. Primes denote the updaltesb\of the state variables.
The current slot ig and the current broadcastemisvhereb = i mod n.

Broadcaster: Processob executes the appropriate guarded command from the follow-

ing list.
(a) b € mem(b) — mem(b)’ = mem(b), ack(b)' = true
otherwise — no change.

Receiver: Each processagr # b executes the appropriate guarded command from the
following list:

The guards (b)—(g) apply whénc mem(p) A p € mem(p)

(b) ack(p) Anomsgrevd — mem(p)’ = mem(p) — {b}, ack(p)’ = false
(c) ack(p) A ack(b) — men(p)’ = mem(p), ack(p)’ = true*
(d) ack(p) A —ack(b) — mem(p)’ = mem(p) — {b}, ack(p)’ = true

(e) —ack(p) A no msg rcvd — mem(p)’ = mem(p) — {p}

(f) —ack(p) A —ack(b) — mem(p)’ = mem(p), ack(p) = true

(9) —ack(p) Aack(h) — men(p)' = mem(p) — {p}

otherwise — 1no change.

The environment can perform only a single action: it can eaasew fault to
arrive—provided no other fault has arrived “recently.” Gieerization of “recently”
is considered below. We l¢te _memnmdenote the current set of nonfaulty processors, so
that the following specifies arrival of a fault in a previousbnfaulty processar.

Fault Arrival: 3z € the mem : the mem’ = the mem — {z}
The desired safety properties are specified as follows.
Agreement: p € themem A ¢ € themem D mem(p) = mem(q)
Validity: p € the_mem D mem(p) = the mem V 3z : mem(p) = the mem U {z}

The first says that all nonfaulty processprandq have the same membership sets; the
second says that the membership set of a nonfaulty processmtains all nonfaulty
processors, and possibly one faulty one.

The starting configuration is the following: all nonfaultyogessors have theick
bitstrue and their membership sets contain just the nonfaulty pemres

% | use the redundart true because some find that form easier to read.
4 This case could be absorbed into the “otherwise” clause with no change ®igbrithm;
however, the structure of the algorithm seems clearer written this way.

Stable: p € the mem D mem(p) = the mem A ack(p) = true

It is natural to consider two transition conditions fronsthbnfiguration: one where
a new fault arrives, and one where it does not. In the lattee ctihe broadcaster will
leave its state unchanged (no matter whether its executamaad (&) or its “other-
wise” case), and the receivers will execute either theiroamd (c) or their “otherwise”
case, and leave their states unchanged. The overall effectémain in thetablecon-
figuration. In the case that a new fault arrives, the samesitians as above will be
executed but some previously nonfaulty proceaswill become faulty, leading to the
following configuration.

Latent(x): = ¢ the mem
Ap € themenU {z} D mem(p) = themem U {z} A ack(p) = true

There are two transition conditions frolatentx): one wherex is the broadcaster
in the next slot, and one where it is a receiver.

In the former case; will execute its command (a) while all nonfaulty receiveii w
note the absence of an expected message and execute theiande(b), leading to
the following configuration.

Excluded; (z): = ¢ the mem Amem(z) = thememU {z} A ack(x) = true
Ap € themem D mem(p) = the_mem A ack(p) = false

In the latter case, a nonfaulty broadcaster will tran3raiid its message will be
received by all nonfaulty receivers, but missedahyeading to the following configu-
ration.

Missedrcv(z): x ¢ the mem A mem(z) = thememU {x} — {b} A ack(z) = false
A p € themem D mem(p) = themem U {z} A ack(p) = true

There are four transition conditions fromissedrcv(x): one where the next broad-
caster isz and it fails to broadcast; one wheredoes broadcast; one where the next
broadcaster is already faulty; and an “otherwise” case fifsiteof these is similar to the
transition fromlatent(x) to excluded(x) and leads to the following configuration.

Excludedy(z): = ¢ the mem Amem(z) = thememU {z} — {b} A ack(z) = true
Ap € themem D mem(p) = the_mem A ack(p) = false

We recognize thaéxcluded(xz) and excluded(x) should each be generalized to
yield the following common configuration.

Excluded(z): p € the mem D mem(p) = the mem A ack(p) = false

5 Treatment of the case that the next broadcaster is an already-faelepends on how fault
“arrivals” are axiomatized: in one treatment, a fault is not considereatrige until it can
be manifested (thereby excluding this case); the other treatment willpeoa self-loop on
latent(x) in this case. These details are a standard complication in verificationlbfdéarant
algorithms and are not significant here.

any

stable

fault arrival

X broadcasts

receive
latent(x)

x fails to receive

x fails to broadcast

already-faulty

missed_rcv(x) broadcaster

already-faulty
broadcaster

x fails to broadcast

nonfaulty broadcaster

excluded(x)

X not

self_diag(x) broadcaster

x fails to broadcas

Fig. 1. Configuration Diagram for the Group Membership Example

In the case where does broadcast, it will do so withick falsg causing nonfaulty
processors to execute their commands (d) and leading lgitedhe stableconfigura-
tion. The case where the next broadcaster is already faaltyes all nonfaulty proces-
sors and processarto leave their states unchanged (since that broadcasterotibe
in their membership sets), thereby producing a looprissedrcv(z). The remaining
case (a broadcast by a nonfaulty processor, executingriteemd (a)) will cause non-
faulty receivers to execute their commands (c), whileill either miss the broadcast
(executing its command (e)), or will discover ttreie ack bit on the received mes-
sage and recognize its previous error (executing its cordr(@i; in either casey will
exclude itself from its own membership, leading to the fwilog configuration.

Self diag(z): = ¢ themem A z ¢ mem(x)
Ap € themem D mem(p) = themem U {z} A ack(p) = true

The transition conditions from this new configuration aesgawhere: is the broad-
caster, and those where it is not. In the former casaill fail to broadcast (since it is
not in its own membership), causing nonfaulty processoexezute their commands
(b) and leading to the configuratiexcludedz). The other case will cause them to
execute their commands (c), or their “otherwise” casesdyeimg a self-loop on the
configurationself diag(z).

The only transitions that remain to be considered are thase €onfiguratiorex-
cludedz). The transition conditions here are the case where the brestdcaster is
already faulty, and that where it is not. The former produzelf-loop on this con-
figuration, while the latter causes all nonfaulty receitersxecute their commands (f)

while the broadcaster executes its command (a), leadindgrémsition to configuration
stable

It is easy to see that the initiality predicate implies sit@bleconfiguration and that
all configurations imply the desired safety properties, smave have now completed
construction and verification of the diagram shown in Figlwr&@he labels in the ver-
tices of this diagram indicate the corresponding configomatvhile the labels on the
arcs are intended to suggest the corresponding transitinditton. One detail has been
glossed over in this construction, however: what about #seg where a new fault ar-
rives while we are still dealing with a previous fault? Intfabis possibility is excluded
in the full axiomatization of the fault arrival hypothesighich states that faults may
only arrive when the configuration &able (we then need to discharge trivial proof
obligations that all the other configurations are disjoiohf this one). We connect this
axiomatization of the fault arrival hypothesis with thedfeone that faults must arrive
more tham slots apart by proving a bounded liveness property thabksites that the
system always returns tosableconfiguration withinn slots of leaving it. This proof
requires that configurations are embellished with additiparameters and clauses that
remember the slots on which certain events occurred and ttmeinumbers of self-loop
iterations. The details are glossed because they are pegiptio the main concern of
this paper; they are present in the mechanized verificafithi®example using PVS,
which is available ahttp://www.csl.sri.com/“rushby/cav00.html and
in a paper that describes verification of the full membershigtocol [23]. (The full
algorithm differs from the simplified version given here hat all faulty processors
eventually diagnose their faults and exclude themsehas their own membership;
its proof is about four times as long as that presented Kere).

4 Discussion, Comparison, and Conclusion

The flawed verification of the full membership algorithm id]strengthens the desired
safety propertiesagreemengandvalidity, with six additional invariants in an attempt
to obtain a conjunction that is inductive. Five of these #iddal invariants are quite
complicated, such as the following.

“If a receive fault occurred to processptess tham steps ago, then either
is not the broadcaster axk(p) is false while all nonfaultyg haveack(q) =
true, Or p is not in its own membership set.”

The informal proof of inductiveness of the conjoined inaats is long and arduous,
and it must be flawed because the algorithm has a bug in the3 case. This proof
resisted several determined attempts to correct and farenain PVS. In contrast, the
approach presented here led to a straightforward mectthwizéication of a corrected
version of the algorithni.Furthermore, as | hope the example has demonstrated, this

5 The algorithm presented here is fairly obvious; there is a similarly obvioluisn to the full
problem (with self-diagnosis) that uses tack bits per message; this clarifies the contribution
of [14], which is to achieve full self-diagnosis with only oaek bit per message.

7 The verification was completed on a Toshiba Libretto palmtop computercidetdly modest
performance (75 MHz Pentium with 32 MB of memory).

approach is naturally incremental, develops understgnafinhe target algorithm, and
yields a diagram that helps convey that understanding tersifin fact, the diagram
(or at least its outline) can usually be constructed quis#yasing informal reasoning,
and then serves as a guide for the mechanized proof.

This approach is strongly related to the verification diaggand their associated
methods introduced by Manna and Pnueli [17]. These wereesulesitly extended and
generalized by Manna with Bjarner, Browne, de Alfaro, Siparad Uribe [5, 7, 10, 16].
However, these later methods mostly concern fairness eewdss properties, or exten-
sions for deductive model checking and hybrid systems, andpsefer to compare
my approach with the original verification diagrams. Thesmprise a set of vertices
labeled with formulas and a set of arcs labeled with trams#tithat correspond to the
configurations and transition conditions, respectivefyny method. However, there
are small differences between the corresponding notidrst, E appears that verifica-
tion diagrams have a finite number of vertices, whereas aanafitpns can be finite or
infinite in number. The example presented in the previouigeds a parameterized
system with an unbounded parametgrand most of the configurations are parame-
terized by an individual: selected from the s€i0,1,...,n}, yielding an arbitrarily
large number of configurations; Skolemization (selectibaroarbitrary representative)
reduces the number of proof obligations to a finite numbecoBe, the arcs in ver-
ification diagrams are associated with transitions, whetkase in my approach are
associated with predicates. It is quite possible that tifisrdnce is a natural manifes-
tation of the different examples we have undertaken: thespned with verification
diagrams have been asynchronous systems (where each s$xatsition corresponds
to a transition bysomecomponent), whereas | have been concerned with synchronous
systems (where each system transition corresponds totaimeolus transitions ball
components). Thus, in asynchronous systems the trarsgioggest a natural analysis
by cases, whereas in synchronous systems (especially, t$&ere, without explicit
control) the case analysis must be consciously imposed|bgtem of suitable transi-
tion conditions.

Mechanized support for verification diagrams is providedsireP [18]: the user
proposes a diagram and the system generates the necesffagtian conditions. PVS
provides no special support for my approach, but its stahaechanisms are adequate
because the approach ultimately yields a conventionalciidiinvariance proof that
is checked by PVS in the usual way. As illustrated in the eXathe configuration
diagram can be constructed incrementally: starting fromexasting configuration, the
user proposes a transition condition and then symbolicaifylates a step of the algo-
rithm (mechanized in PVS by rewriting and simplificatiorfjetresult either suggests a
new configuration or corresponds to (possibly a gener@izatf) an existing one. En-
hancements to PVS that would better support this activigypgimarily improvements
in symbolic simulation (e.qg., faster rewriting and betten@ification).

The key to any inductive invariance proof is to find a partitig of the state space
and a way to organize the case analysis so that the overall effort is manageable.
The method of disjunctive invariants is a systematic wayddhis that seems effec-
tive for some problem domains. Other recent methods praxateparably systematic
constructions for verifications based on simulation arguisigeheaggregation method

10

of Park and Dill [20] and theompletion functionef Hosabettu, Gopalakrishnan and
Srivas [13] greatly simplify construction of the abstraatfunctions used in verifying
cache protocols and processor pipelines, respectively.

Other methods with some similarity to the approach propbsed are those based
on abstractions: typically the idea is to construct an absitin of the original system
that preserves the properties of interest and that has guecekform (e.g., finite state)
that allows very efficient analysis (e.g., model checkindggthods based opredicate
abstraction[24] seem very promising [1, 3, 9, 25]. A configuration diagrean be con-
sidered an abstraction of the original state machine arglgtausible that it could be
generated automatically by predicate abstraction on teeigates that characterize its
configurations and transition conditions. However, it ifficlilt to see how the user
could obtain sufficient insight to propose these predicatiéisout constructing most
of the configuration diagram beforehand, and it is also dquesble whether fully au-
tomated theorem proving can construct sufficiently preatsstractions of these fairly
difficult examples using current technology.

Such an abstracted system would still haygrocesses and further reduction would
be needed to obtain a finite-state system that could be médeked. Creese and
Roscoe [8] do exactly this for the algorithm of [14] using alteique based on a suit-
able notion of data independence [22]. They use a cleverrglkzeation to make the
processes of algorithm independent of how they are numlzrddire thereby able to
establish the abstractedprocess case by an induction whose cases can be discharged
by model checking with FDR. This is an attractive approactihwiuch promise, but
formal and mechanized justification for the abstractionhef original algorithm still
seems quite difficult (Creese and Roscoe provide a rigorotsformal argumenty.

In summary, the approach presented here is one of a growimperof methods
for verifying properties of certain classes of algorithmsai systematic manner. Cir-
cumstances in which this approach seems most effectivéhase tvhere the algorithm
concerned naturally progresses through different phéisese give rise to distinct dis-
junctsG’; in a disjunctive invarian&G* but are correspondingly hard to unify within a
conjunctive invariant*. Besides those examples already mentioned, the approach ha
been used successfully by Holger Pfeifer to verify anotiheag membership algorithm
[21]: the very tricky and industrially significant algornithused in the Time Triggered
Architecture for safety-critical distributed real-timerarol [15].

The most immediate targets for further research are emapiaied, perhaps, the-
oretical investigations into the general utility of thegwpmbaches. The targets of my
approach have all been synchronous group membership thigsriwhile the verifica-
tion diagrams of Manna et al. seem not to have been appliedytbad examples (the
verification in STeP of an interesting Leader Election alan [6] did not use diagram-
matic methods). If practical experience with a variety dfestent problem types shows
the approach to have sufficient utility, then it will be woitivestigating provision of
direct mechanical support.

8 Verification by abstraction of the communications protocol example mesdiearlier required
45 of the 57 auxiliary invariants used in the direct proof [12].

11

Acknowledgments

I am grateful for useful criticisms and suggestions madehgyanonymous referees
and by my colleagues Jean-Christophe &itte, Patrick Lincoln, Ursula Martin, Holger
Pfeifer, N. Shankar, and M. Srivas, and also for feedbackived from talks on this
material at NASA Langley, SRI, and Stanford.

References

Papers on formal methods and automated verification by SiRbesican generally be
found athttp://www.csl.sri.com/fm-papers.html

(1]

(2]

(3]

(4]
5]

(6]

(7]

(8]

9]

(10]

Parosh Aziz Abdulla, Aurore Annichini, Saddek Bensalehmmed Bouajjani,
Peter Habermehl, and Yassine Lakhnech. Verification ofitefistate systems by
combining abstraction and reachability analysis. In Halblas and Peled [11],
pages 146-159.

Rajeev Alur and Thomas A. Henzinger, editor€&omputer-Aided Verification,
CAV 96, Volume 1102 of Springer-Verlagecture Notes in Computer Science
New Brunswick, NJ, July/August 1996.

Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Camgpabstractions
of infinite state systems compositionally and automatycalh Alan J. Hu and
Moshe Y. Vardi, editorscomputer-Aided Verification, CAV '980olume 1427 of
Springer-Verlad_ecture Notes in Computer Sciengages 319-331, Vancouver,
Canada, June 1998.

Saddek Bensalem, Yassine Lakhnech, and Hassigh $owerful techniques for
the automatic generation of invariants. In Alur and Heneir{g], pages 323—-335.
Nikolaj Bjgrner, I. Anca Browne, and Zohar Manna. Autdimageneration of
invariants and intermediate assertiombeoretical Computer Scienckr3(1):49—
87, 1997.

Nikolaj Bjgrner, Uri Lerner, and Zohar Manna. Deductiwerification of param-
eterized fault-tolerant systems: A case studySétond International Conference
on Temporal Logic, ICTL'9/Manchester, England, July 1997.

I. Anca Browne, Zohar Manna, and Henny Sipma. Generdlizenporal verifica-
tion diagrams. Ir15th Conference on the Foundations of Software Technolody a
Theoretical Computer Sciencéolume 1026 of Springer-Verlalgecture Notes in
Computer Scienc@ages 484—-498, Bangalore, India, December 1995.

S. J. Creese and A. W. Roscoe. TTP: A case study in cormpingfuction and data
independence. Technical Report PRG-TR-1-99, Oxford Usitye Computing
Laboratory, Oxford, England, 1999.

Satyaki Das, David L. Dill, and Seungjoon Park. Expecenvith predicate ab-
straction. In Halbwachs and Peled [11], pages 160-171.

Luca de Alfaro, Zohar Manna, Henny B. Sipma, and &snk. Uribe. Visual
verification of reactive systems. In Ed Brinksma, ediffwpls and Algorithms
for the Construction and Analysis of Systems (TACAS, W@)Jume 1217 of
Springer-Verlag_ecture Notes in Computer Sciengages 334-350, Enschede,
The Netherlands, April 1997.

12

[11] Nicolas Halbwachs and Doron Peled, edita@amputer-Aided Verification, CAV
'99, Volume 1633 of Springer-Verlalgecture Notes in Computer Sciendeento,
Italy, July 1999.

[12] Klaus Havelund and N. Shankar. Experiments in theoreavipg and model
checking for protocol verification. IRormal Methods Europe FME '96/0lume
1051 of Springer-Verlaggecture Notes in Computer Scienpages 662—681, Ox-
ford, UK, March 1996.

[13] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalatan. Proof of correct-
ness of a processor with reorder buffer using the compldtinations approach.
In Halbwachs and Peled [11], pages 47-59.

[14] Shmuel Katz, Pat Lincoln, and John Rushby. Low-ovedh@ae-triggered group
membership. In Marios Mavronicolas and Philippas Tsigatoes, 11th In-
ternational Workshop on Distributed Algorithms (WDAG '9¥blume 1320 of
Springer-Verlad-ecture Notes in Computer Scienpages 155-169, Saatizken
Germany, September 1997.

[15] Hermann Kopetz and @ter Giinsteidl. TTP—a protocol for fault-tolerant real-
time systemslEEE Computer27(1):14—-23, January 1994.

[16] Zohar Manna, Anca Browne, Henny B. Sipma, and &srk. Uribe. Visual ab-
stractions for temporal verificationAlgebraic Methodology and Software Tech-
nology, AMAST’98Volume 1548 of Springer-Verlabecture Notes in Computer
Sciencepages 28-41, Amazonia, Brazil, January 1999.

[17] Zohar Manna and Amir Pnueli. Temporal verification d&gs. In M. Hagiya
and J.C. Mitchell, editorsinternational Symposium on Theoretical Aspects of
Computer Software: TACS'940lume 789 of Springer-Verlagecture Notes in
Computer Scieng@ages 726—765, Sendai, Japan, April 1994,

[18] Zohar Manna and The STeP Group. STeP: Deductive-dlgoit verification of
reactive and real-time systems. In Alur and Henzinger [@gs 415—418.

[19] Sam Owre, John Rushby, Natarajan Shankar, and Frieddn Henke. Formal
verification for fault-tolerant architectures: Prolegaraeto the design of PVS.
IEEE Transactions on Software Engineerii2d.(2):107-125, February 1995.

[20] Seungjoon Park and David L. Dill. Verification of cacheherence protocols by
aggregation of distributed transactiofifieory of Computing Systen®d(4):355—
376, 1998.

[21] Holger Pfeifer. Formal verification of the TTA group mbership algorithm. In
Formal Description Techniques and Protocol Specificatitesting and Verifica-
tion FORTE XIII/PSTV XX 20Q®isa, Italy, October 2000. To appear.

[22] A. W. Roscoe.The Theory and Practice of Concurrencirentice Hall Interna-
tional Series in Computer Science. Prentice Hall, Hemel ptaad, UK, 1998.

[23] John Rushby. Formal verification of a low-overhead grmembership algorithm,
2000. In preparation.

[24] Hassen Sdi and Susanne Graf. Construction of abstract state gnajth$VS.
In Orna Grumberg, edito€Gomputer-Aided Verification, CAV '9Yolume 1254 of
Springer-Verlag_ecture Notes in Computer Sciengages 72—-83, Haifa, Israel,
June 1997.

[25] Hassen Sdi and N. Shankar. Abstract and model check while you prove.
Halbwachs and Peled [11], pages 443-454.

13

