
Appears in Randells’s Tales: a Festschrift recognizing the contributions of
Brian Randell, C.B. Jones and J.L Lloyd (Eds.), Springer LNCS 6875, pp.
53–57, August 2011.

From DSS to MILS?

(Extended Abstract)

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. I outline the principal ideas of the Distributed Secure System
(DSS) on which Brian Randell and I collaborated in the early 1980s, its
modern manifestation as MILS, and continuing research challenges posed
by these architectures.

1 Introduction

I studied Computer Science at Newcastle, first as an undergraduate and then
for my PhD, from 1968 to 1974. That makes my 1971 Bachelors degree among
the earliest awarded in Computer Science (Newcastle first awarded the degree in
1969, and I believe Manchester was one year earlier). Brian Randell joined the
department in 1970 but, although I profited from the stimulating impact of his
presence, we did not work together until I returned to Newcastle as a Research
Associate in 1980, following some interesting and enjoyable years programming
at the Atlas Computer Laboratory and teaching at Manchester University.

The opportunity that motivated my return was a project in computer secu-
rity led by Peter Henderson and funded by (what was then) the Royal Signals
and Radar Establishment. Brian and I collaborated on a conceptual, and later
real, security architecture that became known as the Distributed Secure Sys-
tem (DSS). We were recently invited to revisit this work for a presentation as a
“Classic Paper” at ACSAC [1] and I will not repeat the historical recollections
presented there. Instead, I want to focus on the key ideas from that work that
seem to have some durability, and to point to their possible future evolution.

2 Policy and Sharing

The central idea underpinning our work was the observation that computer se-
curity is composed of two separate problems. One is the problem of enforcing

? This work was supported by National Science Foundation Grant CNS-0720908. The
content is solely the responsibility of the author and does not necessarily represent
the official views of NSF.

1



policy on the movement and processing of sensitive information (for example,
information from a classified environment may not be released to the network
without suitable review and authorization), and this problem is present no mat-
ter how the system is implemented. The second problem arises when entities
storing, communicating, or processing information of different sensitivities share
the same resources, and this problem is strictly a consequence of sharing: for
example, files of different sensitivities may reside in a shared file system and, by
error or malice, sensitive information may leak from the disk sectors of a highly
classified file to one of lower classification.

Most prior (and, indeed, much later) work on computer security conflates
these problems; the innovation of the DSS was to propose that they be han-
dled separately and that this separation of concerns can lead to a simpler sys-
tem design and implementation, and more convincing assurance that security
is achieved. This proposal was largely stimulated by the work Brian was then
leading on distributed systems [2], which made it feasible to contemplate imple-
mentations for simple secure systems in which there was no sharing of resources,
thereby directing attention to the problem of enforcing policy.

A modern formulation of this approach is the MILS architecture employed
in several US defense systems [3]. In its MILS formulation, secure system design
begins with development of a policy architecture; this is an abstract architec-
ture that can be represented as a “boxes and arrows” diagram whose focus, as
its name suggests, is the policy to be enforced. The boxes (representing com-
ponents such as processes or subsystems, depending on the granularity of the
representation) are divided into trusted and untrusted components; to the ex-
tent possible, the purpose of the system is accomplished by untrusted (possibly
legacy) components and policy is enforced by trusted components interposed in
some of the arrows, which represent communications paths such as networks or
interprocess communication.

repository

sensitive
release agent network

Fig. 1. A Simple Policy Architecture

Figure 1 displays a simple—in fact, just about the simplest—policy archi-
tecture: information may flow from an untrusted sensitive repository to an un-
trusted network only via a trusted release agent (we use a differently shaped
box to indicate it is trusted).

The job of the release agent is to enforce some policy on the release of sensitive
information (e.g., to redact certain items, or to reduce the accuracy of some
numerical fields). It must do its job correctly, and we will later consider the
difficulty of ensuring that it does so, but the point of the policy architecture is
to create an environment in which it can do its job, for the architecture provides

2



no path from the repository to the network save that through the release agent:
the absence of arrows (in this case, of one directly from sensitive repository to
network) is often the key decision in a policy architecture.

The boxes and arrows of a policy architecture are conceptually dedicated
individual components and communications paths, but their implementation
may share resources, provided this is done securely. For example, Figure 1 could
be implemented in a single computer as shown in Figure 2.

re
le

as
e 

ag
en

t

n
et

w
o
rk

separation kernel

re
p
o
si

to
ry

se
n
si

ti
v
e

Fig. 2. Policy Architecture of Figure 1 Implemented using a Separation Kernel

The task of resource sharing components or mechanisms such as the separa-
tion kernel shown in Figure 2 is to implement a policy architecture: the sharing
of resources must introduce no arrows or boxes other than those specified in the
policy architecture (despite possibly nefarious activity by untrusted occupants
of some boxes). The DSS identified four mechanisms for achieving this separa-
tion: logical (essentially separation kernels [4]), temporal (periods processing),
cryptographic, and physical (no sharing).

Untrusted components that manipulate information of different sensitivi-
ties are a large source of complexity in many policy architectures, necessitating
trusted “cross domain solutions” of the form illustrated in Figure 1 to mediate
outgoing information flows. Guards and filters and other kinds of release agent
are often needed only because the upstream information is a “blob” of differ-
ent sensitivities managed by an untrusted entity, and the task of these agents
is complex because essentially nothing can be assumed about the integrity of
information leaving the blob. A major simplification can often be achieved by
replicating the untrusted components and arranging matters so that each replica
operates on information of a single sensitivity, thereby avoiding creation of the

3



blob. This replication is feasible because technologies such as separation kernels
(in modern terminology, these are essentially minimal and secure hypervisors)
allow a single resource (such as a processor) to be virtualized and shared securely
(and at essentially no cost) among multiple instances of an untrusted entity.

3 Formal Models for Policy Architectures

DSS left assurance as an exercise for the reader. There has been much progress
since then, but some interesting research challenges remain. The top problem,
in my view, is to develop a formal model or, rather, as I will explain, a class of
formal models for policy architectures. These are needed to provide assurance
that a given policy architecture, plus the properties (“local policies”) assumed
of its trusted components, delivers the required overall security policy, and also
because the task of resource sharing components is to implement (parts of) a
policy architecture—so a formal model for the architecture is needed to provide
a requirements specification for the assurance of those resource sharing compo-
nents.

The important attribute of a formal model for the policy architecture of Fig-
ure 1, for example, is to specify that there can be flows of data and information
from the sensitive repository to the release agent and from there to the net-
work, but that there must be no direct flow from the sensitive repository to the
network. I tackled this problem of intransitive flows in [5], building on earlier
work of Haigh and Young [6]. There have been many subsequent developments,
reinterpretations, and misinterpretations of this work, but the most satisfactory
is by van der Meyden [7], who demonstrates an exact correspondence between a
revised formulation of “intransitive noninterference” and its natural “unwinding
conditions.” He and Chong [8] further show how properties of a policy architec-
ture can be derived in this framework, given those of its trusted components,
which are represented as functions.

The reason I believe there is still work to be done is that Figure 1 has a robust
intuitive interpretation: it does not depend on the precise models of computa-
tion or communication to see that this figure requires the absence of unmediated
flows from the sensitive repository to the network. The large body of work on
variants of intransitive noninterference for different commputational models sug-
gests it is not a simple task to formally model this apparently simple intuition.
Much recent work casts the problem in terms of programming languages, and in-
deed it is necessary for the more abstract treatments to connect to this work, so
that internal information flows in the program that implements a release agent,
say, can be used in verifying that it enforces its local policy. In addition, the
properties of the release agent can surely be relational, rather than purely func-
tional as in the treatment of van der Meyden and Chong. Hence, what I seek
is a “metaspecification” which, for any reasonable model of computation and
communication, delivers the aproppriate interpretation of intransitive noninter-
ference. And furthermore, given relational properties of the trusted components,

4



this notion should allow the properties of the overall policy architecture to be
calculated in a compositional way.

It is generally believed that system-level properties such as safety and security
are not compositional, but I believe that information flow security properties can
be developed compositionally using the approach that originated in DSS. So, in
conclusion, ideas on computer security that began with Brian Randell thirty
years ago (and not just those recounted here, but also those from his work with
John Dobson [9]) continue to be relevant today, and continue to pose intriguing
challenges for further research.

References

1. Randell, B., Rushby, J.: Distributed secure systems: Then and now. In: Proceed-
ings of the Twenty-Third Annual Computer Security Applications Conference, Mi-
ami Beach, FL, IEEE Computer Society (2007) 177–198. Invited “Classic Paper”
presentation. 1

2. Brownbridge, D.R., Marshall, L.F., Randell, B.: The Newcastle Connection, or
UNIXes of the world unite! Software—Practice and Experience 12 (1982) 1147–
1162 2

3. Boettcher, C., DeLong, R., Rushby, J., Sifre, W.: The MILS component integration
approach to secure information sharing. In: 27th AIAA/IEEE Digital Avionics Sys-
tems Conference, St. Paul, MN, The Institute of Electrical and Electronics Engineers
(2008) 2

4. Rushby, J.: The design and verification of secure systems. In: Eighth ACM Sympo-
sium on Operating System Principles, Asilomar, CA (1981) 12–21 (ACM Operating
Systems Review , Vol. 15, No. 5). 3

5. Rushby, J.: Noninterference, transitivity, and channel-control security policies. Tech-
nical Report SRI-CSL-92-2, Computer Science Laboratory, SRI International, Menlo
Park, CA (1992) 4

6. Haigh, J.T., Young, W.D.: Extending the noninterference version of MLS for SAT.
IEEE Transactions on Software Engineering SE-13 (1987) 141–150 4

7. van der Meyden, R.: What, indeed, is intransitive noninterference? (extended ab-
stract). In: 12th European Symposium on Research in Computer Security (ES-
ORICS). Volume 4734 of Lecture Notes in Computer Science., Dresden, Germany,
Springer-Verlag (2007) 235–250 4

8. Chong, S., van der Meyden, R.: Using architecture to reason about information
security. Technical report, University of New South Wales (2009) 4

9. Dobson, J., Randell, B.: Building reliable secure computing systems out of unreliable
insecure components. In: Proceedings of the Seventeenth Annual Computer Security
Applications Conference, New Orleans, LA, IEEE Computer Society (2001) 162–
173. Invited “Classic Paper” presentation. 5

5


	*1exFrom DSS to MILS(Extended Abstract) 

