
March 30, 2001

Evaluating, Testing, and Animating PVS
Specifications

Judy Crow, Sam Owre, John Rushby, N. Shankar, and Dave Stringer-Calvert
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

This research was supported by NASA Langley Research Center under contract
NAS1-20334.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

We explore ways to enhance the utility of PVS for evaluating, testing, and an-
imating PVS specifications. The PVS ground evaluator is the focus of the work.
We describe a mechanism to provide semantic attachments for PVS symbols while
preserving soundness, and discuss strategies to provide a generic framework for in-
tegrating independently developed applications with PVS. We explore these capa-
bilities in the current system, but conclude that more effective functionality requires
extensions to PVS. Recommendations for these extensions are outlined.

i

Contents

1 The PVS Ground Evaluator 1

2 Semantic Attachments 3
2.1 Semantic Attachments Used To Compute Values 4
2.2 Semantic Attachments Used for Side Effects 5
2.3 Programming an Attachment . 6
2.4 Applications . 7

2.4.1 Printing and Iteration . 8
2.4.2 Saving State . 12

3 Integrating Applications with PVS 17
3.1 Combining PVS with Other Components 18

3.1.1 Communication Models . 18
3.1.1.1 A General Model of PVS Process Communication . 19
3.1.1.2 The Current Model of PVS Process Communication 19

3.1.2 Context and Level of Interaction 24
3.2 Implementing a GUI for the Current PVS System 25

3.2.1 PVS Emacs . 27
3.2.2 PVS Lisp . 31
3.2.3 Tcl Phone Book GUI . 32

3.3 Discussion . 35

4 Summary and Future Work 39

Bibliography 42

A PVS System Buffers and Communication Functions 45
A.1 PVS System Buffers and Associated Functions 45
A.2 PVS Interprocess Communication Functions 46

i

ii

List of Figures

3.1 General Model of PVS Process Communication 18
3.2 Current Model of PVS Process Communication 19
3.3 Communication Model for Rockwell Collins FGS Visualization . . . 22
3.4 Communication Model for Pamela+PVS 23
3.5 Communication Model for Maple/PVS 24
3.6 print Command Dialogue Box . 33
3.7 add Command Dialogue Box . 34
3.8 Tcl Display Following PVS Evaluation of printb 35
3.9 Tcl Display Following PVS Evaluation of write(AddPhone(read[B],

alice, 3)) AND printb . 36

iii

iv

Chapter 1

The PVS Ground Evaluator

The work described in this report exploits the PVS ground evaluator to enhance
the utility of PVS for evaluating, testing, and animating PVS specifications. We
begin the discussion with a brief functional overview of the PVS ground evaluator.
Subsequent chapters discuss enhancements to provide semantic attachments for PVS
symbols while perserving soundness, and strategies to provide a generic framework
for integrating independently developed applications with PVS.

Specification languages like PVS are designed to be expressive rather than exe-
cutable. However, a surprisingly large fragment of PVS turns out to be executable
as a functional language; all ground expressions of ground type are evaluable.1 The
use of static analysis to determine safe destructive updates yields excellent efficiency;
for certain types of applications, PVS serves effectively as a programming language.

The PVS ground evaluator consists of a translator from an executable subset of
PVS into Common Lisp, a proof rule, and an evaluation environment. The proof rule
provides evaluation of ground PVS expressions in the prover. The evaluation envi-
ronment is an interactive read-eval-print loop that reads expressions from the user
and returns the result of their evaluation. The translation and compilation of PVS
expressions is performed lazily, that is, on demand; the first use of a particular defi-
nition will cause the evaluator to proceed more slowly than subsequent evaluations.
The subset of PVS that is handled by the translation is large—the unexecutable
fragments are uninterpreted functions, nonbounded quantification, free variables,
and higher-order equalities. However, the evaluation of expressions is nonstrict,
so expressions may be evaluable even if they contain nonevaluable subexpressions.
Evaluator options include display of timing information, use of destructive updates,
and conversion of the result back into PVS syntax. For example, ground evaluation

1Ground types do not contain any higher-order or uninterpreted types; they are formed from
the base types bool and integer by means of tuples, enumeration types, and recursive datatypes.
Ground expressions do not contain free variables, uninterpreted functions or constants, quantifica-
tion over infinite domains, or equalities between higher-order terms (i.e., functions).

1

2 Chapter 1. The PVS Ground Evaluator

of the factorial function defined in Chapter 2, Section 2.1 with arguments 12 and
120, respectively, yields the following results.

<GndEval> "factorial(12)"
; cpu time (non-gc) 0 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 0 msec user, 0 msec system
; real time 0 msec
; space allocation:
; 3 cons cells, 0 symbols, 0 other bytes, 0 static bytes
==>
479001600

<GndEval> "factorial(120)"
; cpu time (non-gc) 0 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 0 msec user, 0 msec system
; real time 0 msec
; space allocation:
; 3 cons cells, 0 symbols, 6,216 other bytes, 0 static bytes
==>
66895029134491270575881180540903725867527463331380298102956713523016335572
44962989366874165271984981308157637893214090552534408589408121859898481114
389650005964960521256960000000000000000000000000000

The PVS ground evaluator was developed to speed up deduction in proofs con-
taining ground expressions2, and to support the animation, validation, and testing
of PVS specifications by executing them on concrete data. In the following chap-
ters, we explore ways to enhance the utility of the current ground evaluator for these
activities. Our experiments suggest that more effective enhancements require ex-
tensions to PVS; we outline recommendations for these extensions in the concluding
chapter.

2This capability is planned, but not currently implemented. Cf. Chapter 4.

Chapter 2

Semantic Attachments

Confronted with the need to demonstrate the truth of a proposition such as
sin(13

25) < 1
2 , it will have occurred to many users of theorem provers that it would be

expedient to call a mathematical subroutine library, or a numerical or symbolic alge-
bra system to evaluate sin(13

25) rather than laboriously develop the properties of the
sine function from some primitive definitional or axiomatic basis. More generally,
arbitrary computer programs could be associated with certain function or predicate
symbols and the theorem prover could just run the associated program whenever it
needs to evaluate the function or predicate concerned. Weyhrauch [18] coined the
term semantic attachment for such programs “attached” to predicate or function
symbols.1 Semantic attachments are used quite widely in artificial intelligence and
in other applications where logic is viewed as a programming or query language.
Their use in a theorem proving environment presents more of a challenge because of
the need to maintain soundness: the result of executing a semantic attachment must
be consistent with any properties that can be deduced from those defined or axiom-
atized for the symbol. One way to view the PVS ground evaluator is as a mechanism
that constructs semantic attachments for PVS symbols that are guaranteed sound
with respect to the PVS definitions for those symbols (which is why in future, the
PVS evaluator will be used in proofs, as well as simply for evaluation). However,
the programming techniques used in the PVS ground evaluator to attach Lisp code
to PVS functions are available to any user of PVS and create the opportunity for
users to provide their own semantic attachments to PVS symbols.

This opportunity is a powerful one, but also dangerous, so we begin by discussing
how best to use attachments, then describe how to program them, and conclude this
chapter with some illustrations of their use.

1Semantic attachments are used to evaluate ground instances of function or predicate applica-
tions; universal attachments [16] allow programs to be attached to any expression.

3

4 Chapter 2. Semantic Attachments

2.1 Semantic Attachments Used To Compute Values

The previous section motivated semantic attachments with an example involving
sin(13

25). We could attach the built-in Lisp function sin to the PVS symbol sin so
that evaluation of the PVS term sin(13/25) executes the Lisp program (sin (/
13 25)). This yields the internal Lisp result 0.49688 but PVS can only represent
rational constants, so we have to change the program to (rationalize (sin (/
13 25))), which produces 1513/3045. However, this is not the value of sin(13

25)—it
is merely a close approximation to its value. Thus, if we have suitable definitions
or axioms for sin and related functions in PVS (e.g., sin(x)2 + cos(x)2 = 1), we
will be able to prove sin(13/25) /= 1513/3045, thereby contradicting the result
of evaluation, and exhibiting unsoundness. For this reason, it is often better to
define semantic attachments that explicitly approximate PVS functions rather than
ones that have a precise definition. For example, the Lisp program above could
be attached to a PVS function sin approx, which is related to sin by the axiom
abs(sin(x) - sin approx(x)) < delta for some suitable delta (that should be
specified in the documentation of the subroutine library providing the sin program
used).

Because of the ease with which it can introduce unsoundness, PVS flags any
proofs that make use of evaluations involving user-defined semantic attachments.
But, in fact, there is little need for users to define their own semantic attachments
for the purpose of evaluating mathematical functions: the PVS ground evaluator
generates such efficient code that these functions can be defined directly in PVS.
For example, Dutertre [8] and Gottliebsen [11] provide verified libraries of definitions
and properties for many mathematical functions. In particular, Gottliebsen gives
the following definition for sin(x), where even? is a predicate defined in the PVS
prelude that tests if its argument is even, fac is the factorial function, and suminf
(not shown here) denotes an infinite summation.

fac(n) : RECURSIVE nat =
IF n = 0 THEN 1 ELSE n * fac(n-1) ENDIF

MEASURE n

sin_ser(n) : real =
IF even?(n) THEN 0 ELSE ((-1) ^ ((n - 1) / 2)) / fac(n) ENDIF

sin(x) : real = suminf(LAMBDA n : sin_ser(n) * (x ^ n))

From these, we can define the function sin(n, x) that sums just the first n terms
of the series for sin(x) and thereby provides an approximation to its value. We
also need a constructive definition for even?, and this is also shown below.

2.2. Semantic Attachments Used for Side Effects 5

even?(n): RECURSIVE bool =
IF n = 0 THEN true ELSIF n = 1 THEN false ELSE even?(n-2) ENDIF
MEASURE n

sin(n, x): RECURSIVE real =
IF n = 0 THEN 0 ELSE sin_ser(n) * (x ^ n) + sin(n-1,x) ENDIF
MEASURE n

With these definitions, PVS evaluates sin(4,13/25) in less than a millisec-
ond to yield 46553/93750, and sin(12,13/25) in 1 millisecond to yield
47287619319628640249713/95169067382812500000000. Results proved in Got-
tliebsen’s library can be used to establish a relationship between sin(n, x) and
sin(x).

2.2 Semantic Attachments Used for Side Effects

We have seen that it is potentially dangerous, and seldom necessary, to employ
user-defined semantic attachments to compute values for PVS functions: instead,
it is generally preferable to give constructive definitions in PVS and allow the PVS
ground evaluator to generate efficient and sound attachments directly from the PVS
specification.

The most useful application for user-defined semantic attachments is in con-
structing PVS functions with side effects. Side effects are, of course, alien to the
purely functional world of PVS specifications, but their use allows the provision
of services such as I/O and persistent state that are lacking in the PVS ground
evaluator.

An example is a function print with the following signature.

printing[T: TYPE+]: THEORY
begin
print(a: T): bool = true

END printing

We can make a semantic attachment to print that causes the value of its argument
to be printed whenever the function is invoked by the PVS ground evaluator. Now
suppose that we would like to examine the values of the PVS built-in function id (the
identity function) on the bounded type upto(10). In the PVS ground evaluator, we
can evaluate individual elements such as id[upto(10)](3) and receive the result
3, but we cannot examine the whole function: the query id[upto(10)] yields the
error message2 “Result not ground. Cannot convert back to PVS.” However,
using print, we can write the following query

2The query actually produces a closure, which is not ground and cannot be translated back into
PVS. Cf. Section 3.3.

6 Chapter 2. Semantic Attachments

<GndEval> "FORALL (x:upto(10)): print(id(x))"

and receive the following output.

0 1 2 3 4 5 6 7 8 9 10

This works because the PVS ground evaluator evaluates FORALL over a bounded
type by enumerating the elements of the type and evaluating the quantified expres-
sion for each element in turn (using a Lisp loop) until it finds one that is FALSE, in
which case it returns FALSE, or reaches the end of the enumeration, in which case it
returns TRUE. Since print always returns TRUE, the example query enumerates the
whole type and causes the corresponding values of the id function to be printed.
Several more examples of semantic attachments with side effects are described later.

2.3 Programming an Attachment

To attach Lisp code to a PVS function, it is first necessary to register the name of
the function as one having an attachment. This is done by the following Lisp form.
Vertical bars are used to build case sensitive symbol names; the default is uppercase.

(push (mk-name ’|print| nil ’|printing|) *pvs2cl-primitives*)

Here print and printing should be replaced by the function and theory name,
respectively.

Then, the attachment itself is defined as a Lisp defun.

(defun |PVS_print| (x) (format t "~a" x) t)

The name of the defun corresponding to PVS function xxx is |PVS xxx| if the
function takes a single argument, or |PVS xxx| if it takes more than one argument.3

The argument(s) to the defun will be the Lisp encodings of the arguments to the
PVS function, and the defun must return the Lisp encoding of the intended result of
the PVS function. The Lisp encodings of the PVS boolean values are t and nil, so
the defun above returns the encoding of true, as required for consistency with the
PVS specification given for print.4 Notice that this attachment prints the value of
the Lisp encoding of the argument to the PVS print function. To print the value as
a PVS expression, we need a rather more complicated defun5

(defun |PVS print| (x y)
(format t "~a" (cl2pvs x (pc-typecheck (pc-parse y ’type-expr)))) t)

3This is not strictly correct, but is adequate for the programming purposes described here.
4The Lisp function format returns nil and prints its third argument according to the specifica-

tion in its second argument when its first argument is t.
5The definition as stated should be used with care, since, as noted in Section 2.2, cl2pvs may

fail; expressions that are not ground cannot be translated from Lisp back into PVS.

2.4. Applications 7

which is attached to the PVS function

pvsprint(a:T, s:string): bool = true

and has the effect of printing its first argument as a value of the type given as a string
in its second argument (e.g., print(id[upto(10)](3), "nat")).6 It is convenient
to place all the Lisp code in the file .pvs.lisp located either in the home directory
or the current context as this is automatically loaded by PVS as it starts up.7

2.4 Applications

As mentioned in the opening chapter, one of the basic motivations for the PVS
ground evaluator is to support validation of PVS specifications by allowing con-
structive specifications to be tested by running them on concrete (ground) data.
The read-eval-print loop of the ground evaluator allows the user to enter a PVS
ground expression (in quotes), and then prints the result of evaluating that expres-
sion. This simple interaction has several limitations for the purposes of testing a
specification. First, it provides only a single evaluation at a time: we can evaluate
a function, for example, applied to specific arguments, but we cannot easily iterate
over all (or several) values of its arguments. We could write a higher-order recursive
function that builds a list containing the results of iterating over one argument, but
it becomes quite difficult to do this for several arguments and, of course, we would
have no control over the way the resulting list is printed, so the output could be
difficult to interpret. Second, many PVS functions return complex data structures
such as functions, sets, or records of these. The PVS ground evaluator does not
regard any result involving a function as ground and will not print such values.
Third, many PVS specifications define a collection of functions that maintain and
access a system state. As PVS is a purely applicative language, these functions
take the state as one of their arguments, and (possibly) return the modified system
state as a value. Thus, the system state that results from the application of many
operations is represented by a long series of nested function applications—and it is
tedious to type these into the PVS ground evaluator. What we would like to say is
“take the state that resulted from the last operation, and apply this operation to

6It is something of a kludge that the type must be given (particularly as a string) because
this must surely already be known to the PVS system; the explanation is that at the point
that |PVS pvsprint| is invoked, its first argument has been evaluated and type information has
been lost. The type is known to the PVS system at the point where it compiles the call to
|PVS pvsprint|, but causing it to supply the information would require a modification to PVS—
and the point of the present discussion of attachments is to describe methods that allow users to
perform simple augmentations without modifying the core PVS system. The improved development
environment proposed for the ground evaluator in Chapter 4 would include this modification.

7If there is a .pvs.lisp file in both the home directory and current context, the file in the home
directory is loaded before the one in the current context.

8 Chapter 2. Semantic Attachments

it”: in other words, we would like to be able to save the results of PVS function
evaluations in the state of the ground evaluator, and to be able to reference those
saved values in later evaluations. The mechanisms for semantic attachments de-
scribed above are sufficient to provide these and several other useful enhancements
that improve the support for validation provided by the PVS ground evaluator. In
the following sections we illustrate the utility of these mechanisms by applying them
to two examples.

2.4.1 Printing and Iteration

The simple attachments for printing described in Sections 2.2 and 2.3 provide con-
trol over the way values are printed out, allow the values of functions to be printed,
and also allow systematic enumeration of the arguments to a function. Those at-
tachments need to be augmented a little to produce a generally useful collection of
basic printing functions. A suitable library is the following

printing[T : TYPE+]: THEORY
BEGIN
printf(a:T, typ: string, fmt: string): bool = true

% attachment prints a as type typ with
% Lisp format string fmt

print(a:T, typ: string): bool = printf(a, typ, "~a ")

dumpf(a:T, fmt: string): bool = true
% attachment prints Lisp representation of a with
% Lisp format string fmt

dump(a:T): bool = dumpf(a, "~a ")

END printing

printstrings: THEORY
BEGIN
IMPORTING printing[real]
prints(s:string): bool = true

% attachment prints Lisp format string s
space: bool = prints(" ")
tab: bool = prints("~0,8T")

2.4. Applications 9

newline: bool = prints("
")
printreal(a:real): bool = dumpf(a,"~g")
readreal(a:string) : rational
% attachment reads a number expressed in decimal from the string

END printstrings

The primitive functions printf, dumpf, and prints have the following attach-
ments.

(push (mk-name ’|printf| nil ’|printing|) *pvs2cl-primitives*)
(defun |PVS__printf| (a typ fmt)
(not (format t fmt (cl2pvs a (pc-typecheck (pc-parse typ ’type-expr))))))

(push (mk-name ’|dumpf| nil ’|printing|) *pvs2cl-primitives*)
(defun |PVS__dumpf| (a fmt) (not (format t fmt a)))

(push (mk-name ’|prints| nil ’|printstrings|) *pvs2cl-primitives*)
(defun |PVS_prints| (s) (not (format t s)))

Notice that dumpf is a slightly augmented version of the first attachment de-
scribed for print in Section 2.3, while printf is a slightly augmented version of the
second attachment described in that section: dumpf “dumps” the Lisp representa-
tion of its first argument, while printf prints it as a PVS value of the type given
as a string in its second argument. The final argument to both printf and dumpf
is a Lisp format string that determines how their first arguments will be printed;
format strings are described in the Lisp Manual [17]. The simpler functions print
and dump supply a default format string.

The prints function in the printstrings theory prints its single argument as
a Lisp format string: if this is a string with no ~ directives, it will simply be printed
out; ~ directives can be used to obtain control over spacing (as in the tab function).
The functions space, tab, and newline print the characters suggested by their
names.

The only real numbers that can be constructed in PVS are actually rationals, and
are represented as such (i.e., as a pair of integers). The printreal function prints
PVS reals as fixed or floating point real numbers. Using this, the sine examples
in Section 2.1 can be changed to read printreal(sin(4,13/25)), which produces
0.49656534, and printreal(sin(12,13/25)), which produces 0.49688014. The
dual capability is provided by the function readreal, which takes a string con-
taining some representation of a real number as its argument, and returns it as
a rational to PVS. Thus, for example, readreal("3.14159") returns 9918/3157.
The attachment for readreal is the following.

10 Chapter 2. Semantic Attachments

(push (mk-name ’|readreal| nil ’|printstrings|) *pvs2cl-primitives*)
(defun |PVS_readreal| (a) (rationalize (read-from-string a)))

We can illustrate these printing functions by applying them to a moderately
complicated example. The safer example was introduced in a NASA guidebook
[4,5] and later used to illustrate the animation features of VDM-SL [1]. The version
used here is taken from a paper by Di Vito [7] whose PVS files are available at
http://shemesh.larc.nasa.gov/people/bld/safer/. One of the main functions
in this specification is grip command (in file model.pvs), whose signature is

grip_command(grip: hand_grip_position,
mode: control_mode_switch): six_dof_command

where the associated types are defined as follows.

axis_command: TYPE = {NEG, ZERO, POS}

hand_grip_position: TYPE =
[# vert, horiz, trans, twist: axis_command #]

control_mode_switch: TYPE = {ROT, TRAN}

tran_axis: TYPE = {X, Y, Z}
rot_axis: TYPE = {roll, pitch, yaw}

tran_command: TYPE = [tran_axis -> axis_command]
rot_command: TYPE = [rot_axis -> axis_command]

six_dof_command: TYPE = [# tran: tran_command, rot: rot_command #]

The specification of the grip command command function is quite complicated
and involves many nested functions. It would be useful to enumerate the values of
this function over its entire input space.

To start, we need to be able to print a six dof command, which is a record
containing two functions. As noted earlier, the PVS ground evaluator does not print
function values, but we can accomplish our purpose using the print attachments as
follows.

print_six_dof(c:six_dof_command): bool =
prints("TRAN: [") AND
(FORALL (a:tran_axis): print(c‘tran(a), "axis_command")) AND
prints("] ~0,4T ROT: [") AND
(FORALL (a:rot_axis): print(c‘rot(a), "axis_command"))
AND prints("]")

http://shemesh.larc.nasa.gov/people/bld/safer/

2.4. Applications 11

Notice that the general technique for printing a series of values is to exploit the fact
that the printing attachments all return the Boolean value true, and can therefore
be composed by conjunction: the ground evaluator evaluates each conjunct in turn
seeking one that will falsify the overall expression. Because the axis commands range
from three to four characters in length, we use the Lisp format string ~0,4T to tab
to the nearest multiple of four characters between the TRAN and ROT axis commands.

Now we can iterate over the arguments to grip command and print the corre-
sponding six dof command as follows.

print_grip_command: bool =
FORALL (a:axis_command):
FORALL (b:axis_command):
FORALL (c:axis_command):
FORALL (d:axis_command):
FORALL (r:control_mode_switch):
printf(a, "axis_command", "Grip input: ~5a ") AND
printf(b, "axis_command", "~5a") AND
printf(c, "axis_command", "~5a") AND
printf(d, "axis_command", "~5a") AND
printf(r, "control_mode_switch", "Mode: ~5a Output: ") AND
print_six_dof(
grip_command((# vert:= a, horiz:= b, trans:= c, twist:= d #), r)

) AND
newline

Here, we use another way to deal with the varying lengths of the strings: the Lisp
format string ~5a prints in the default format in a field of width 5. In the PVS
ground evaluator, we can now type “print grip command” and receive the following
162 lines of output.

Grip input: NEG NEG NEG NEG Mode: ROT Output: TRAN: [NEG ZERO ZERO] ROT: [NEG NEG NEG]

Grip input: NEG NEG NEG NEG Mode: TRAN Output: TRAN: [NEG NEG NEG] ROT: [ZERO NEG ZERO]

Grip input: NEG NEG NEG ZERO Mode: ROT Output: TRAN: [NEG ZERO ZERO] ROT: [NEG ZERO NEG]

Grip input: NEG NEG NEG ZERO Mode: TRAN Output: TRAN: [NEG NEG NEG] ROT: [ZERO ZERO ZERO]

Grip input: NEG NEG NEG POS Mode: ROT Output: TRAN: [NEG ZERO ZERO] ROT: [NEG POS NEG]

Grip input: NEG NEG NEG POS Mode: TRAN Output: TRAN: [NEG NEG NEG] ROT: [ZERO POS ZERO]

Grip input: NEG NEG ZERO NEG Mode: ROT Output: TRAN: [NEG ZERO ZERO] ROT: [NEG NEG ZERO]

Grip input: NEG NEG ZERO NEG Mode: TRAN Output: TRAN: [NEG ZERO NEG] ROT: [ZERO NEG ZERO]

.

.

.

Grip input: POS POS POS ZERO Mode: ROT Output: TRAN: [POS ZERO ZERO] ROT: [POS ZERO POS]

Grip input: POS POS POS ZERO Mode: TRAN Output: TRAN: [POS POS POS] ROT: [ZERO ZERO ZERO]

Grip input: POS POS POS POS Mode: ROT Output: TRAN: [POS ZERO ZERO] ROT: [POS POS POS]

Grip input: POS POS POS POS Mode: TRAN Output: TRAN: [POS POS POS] ROT: [ZERO POS ZERO]

12 Chapter 2. Semantic Attachments

2.4.2 Saving State

We can save a PVS value in the Lisp system state using a function PVS write
defined as follows

state[T: TYPE]: THEORY
BEGIN
write(a:T): bool = true

% attachment saves a in state
END state

with the following attachment.

(push (mk-name ’|write| nil ’|state|) *pvs2cl-primitives*)
(defun |PVS_write| (x) (progn (setq *pvsstate* x) t))

This attachment simply writes the Lisp encoding of the argument to write into the
global variable *pvsstate* and returns the value true.

The corresponding operation to read the value of *pvsstate* back again should
be a 0-ary function (i.e., a constant), but the PVS ground evaluator does not provide
the necessary coding hooks for attachments to constants, so we define function
innerread that takes a superfluous argument, and then introduce the constant
read by means of a PVS definition.

innerread(i:nat): T % attachment returns saved state
read: T = innerread(3) % argument is ignored

The attachment for innerread is the following.8

(push (mk-name ’|innerread| nil ’|state|) *pvs2cl-primitives*)
(defun |PVS_innerread| (x) *pvsstate*)

We illustrate these attachments using the phone 3 example from the PVS tuto-
rial [6, pp. 16–20]. The PVS specification files are available at ftp://pvs.csl.sri.
com/pub/pvs/examples/wift-tutorial/. This specification maintains a “phone
book,” which is a simple database associating names with sets of phone numbers.

phone_3 : THEORY
BEGIN
N: TYPE % names
P: TYPE % phone numbers
B: TYPE = [N -> setof[P]] % phone books
nm, x: VAR N
pn: VAR P
bk: VAR B

8Of course, the Lisp definition for the attachment depends on the application in which it is used.
For example, Muñoz [15] has defined an attachment for write that takes a second parameter indi-
cating where the value is to be written; his version supports a model of user memory implemented
as a hash list.

ftp://pvs.csl.sri.com/pub/pvs/examples/wift-tutorial/
ftp://pvs.csl.sri.com/pub/pvs/examples/wift-tutorial/

2.4. Applications 13

emptybook(nm): setof[P] = emptyset[P]

FindPhone(bk, nm): setof[P] = bk(nm)

AddPhone(bk, nm, pn): B = bk WITH [(nm) := add(pn, bk(nm))]

DelPhone(bk,nm): B = bk WITH [(nm) := emptyset[P]]

DelPhoneNum(bk,nm,pn): B = bk WITH [(nm) := remove(pn, bk(nm))]
END phone_3

To make this specification suitable for validation by evaluation, we need to in-
stantiate the uninterpreted types N and P (of names and phone numbers, respec-
tively) with suitable ground types. The elegant way to do this would be to make
N and P into parameters to the theory, and then instantiate the theory with suit-
able concrete types. Unfortunately, AddPhone is considered unevaluable because it
operates on uninterpreted types, even though we will only attempt to evaluate an
instance on concrete types. It is therefore necessary to modify the type definitions
for N and P directly in the specification. We do this as follows.

N: TYPE = {alice, bob, carol}
P: TYPE = upto(10)

Next we need a function to print out a set of phone numbers (the result of
FindPhone is a set).

IMPORTING printing, printstrings

printphones(s: setof[P]): bool =
prints(" ") AND
(FORALL pn: IF member(pn, s) THEN print(pn,"P") ELSE true ENDIF) AND
prints("")

Then we can type queries to the PVS evaluator such as the following

printphones(
FindPhone(
AddPhone(
AddPhone(
AddPhone(emptybook,alice,1),

bob,2),
carol,3),

bob))

and receive the result { 2 }. If we now wonder what happens to the “state” when
bob’s phone numbers are deleted following the three AddPhones, we must retype all
this text again (actually, the Emacs command M-p recalls the previous query).

14 Chapter 2. Semantic Attachments

printphones(
FindPhone(
DelPhone(
AddPhone(
AddPhone(
AddPhone(emptybook,alice,1),
bob,2),
carol,3),

bob),
bob))

Using the read and write functions described above, we can make this kind of
exploration rather more convenient. The first query can be split into two as follows.

write(
AddPhone(
AddPhone(
AddPhone(emptybook,alice,1),
bob,2),
carol,3))

printphones(FindPhone(read, bob))

The second query then becomes much simplified as follows.

write(DelPhone(read,bob))

printphones(FindPhone(read, bob))

We can ease the task of entering test cases still further by defining “testing”
versions for each of the functions in the specification; these versions omit the phone
book as an explicit argument and instead access its value implicitly through read
and write calls to the state. For example, the testing versions of DelPhone and
FindPhone are called delphone and findphone, respectively, and are defined as
follows.

delphone(nm): bool = LET bk = read IN write(DelPhone(bk,nm))

findphone(nm): bool = LET bk = read IN printphones(FindPhone(bk,nm))

The testing functions are all derived from their parent functions in a similar
manner, so we can define higher-order “lifting” functions to describe this transfor-
mation. We will need a different higher-order function for each signature of base
function; here is the lifting function for the signature [B,N,P->B].

lift((f: [B,N,P->B]), nm, pn): bool =
LET bk = read[B], v = f(bk,nm,pn) IN write(v)

2.4. Applications 15

Then we can define the testing versions addphone and delphonenum of AddPhone
and DelPhoneNum, respectively, as follows.

addphone(nm,pn): bool = lift(AddPhone,nm,pn)

delphonenum(nm,pn): bool = lift(DelPhoneNum,nm,pn)

We can also define a function printbook that prints an entire phone book, and a
testing version printb that prints the phone book stored in the state.

printbook(bk): bool =
FORALL nm:
print(nm,"N") AND tab AND printphones(FindPhone(bk,nm)) AND newline

printb: bool = LET b = read[B] IN printbook(b)

With these definitions, we can conduct the test described earlier by performing
the following evaluations in sequence (these can either be entered into the evaluator
one at a time, or as a single conjunction).

write(emptybook)
addphone(alice, 1)
addphone(bob, 2)
addphone(carol, 3)
findphone(bob)
delphone(bob)
findphone(bob)

The first findphone prints the result { 2 } and the second { }, as we should expect.
The further sequence

addphone(alice, 5) AND delphone(carol) AND printb

produces the following result.

alice { 1 5 }
bob { }
carol { }

The phone 3 and safer examples discussed in this section illustrate the enhanced
support provided by semantic attachments for validation of PVS specifications in
the ground evaluator. In the next chapter, we further exploit this mechanism to
implement a graphical user interface for the ground evaluator.

16

Chapter 3

Integrating Applications with
PVS

Graphical visualization is useful for communicating in a readily assimilable form the
properties and behaviors captured by a formal specification. Although graphical for-
mats have special merit when presenting a specification to an audience unfamiliar
with formal notations or to a person or group new to a particular application do-
main, graphical tools provide effective interfaces to formal models for both novice
and expert alike. Pressing a “button” on a flight autopilot display to command a
mode change [14] and animating a 3-dimensional model to visualize thruster settings
for a propulsive backpack system [1] exemplify the accessibility and effectiveness of
graphical I/O. Although the mechanisms described in this section may be adapted
to provide interfaces to other PVS components, we focus exclusively on Graphical
User Interfaces (GUIs) for the ground evaluator. Our objective is to provide generic
support for interface capabilities to enhance the evaluator’s utility for testing, ani-
mating, documenting, and communicating formal specifications.

To accommodate interfaces that interact with PVS in various architectural con-
figurations, as well as interfaces developed in a variety of graphical toolkits, we
begin by considering design issues relevant to a general model of interaction. We
then narrow the focus, illustrating design choices that instantiate the general frame-
work with a particular model of interaction and a graphical Tcl/Tk interface.1 The
discussion is intended to provide those interested in integrating independently de-
veloped components and, more particularly, GUIs into PVS with a firm idea of the
design space for such an undertaking, as well as suggested approaches and a generic
framework to facilitate the task.

1Tk is a toolkit that adds about 35 Tcl commands to support the creation and manipulation of
widgets in a graphical user interface. Hereafter, we refer simply to Tcl.

17

18 Chapter 3. Integrating Applications with PVS

3.1 Combining PVS with Other Components

PVS is a Common-Lisp-based system accessed through a customized Emacs interface
that runs as an interactive Lisp process and may be driven by any program that
viably replaces the Emacs interface. We do not consider alternatives such as foreign
function calls—e.g., as used to interface the PVS model checker—or interfaces that
exploit PVS batch mode. Foreign function calls are attractive because they are a
component of the PVS image and therefore provide the fastest and most tightly
coupled communication. However, they also introduce a host of implementation
issues, one of the most challenging of which is garbage collection. PVS batch mode
is built directly on the underlying Emacs batch mode described in the GNU Emacs
Manual [10]. With the possible exception of creating canned demonstrations, the
utility of PVS batch mode for external component interfaces is not clear. For the
remaining alternatives, combining PVS with independently developed components
or providing GUIs for PVS opens a design space that may be explored along several
dimensions. The major design decisions concern model of communication, context
of interaction, and level of integration. We concentrate first and in most depth on
communication models.

3.1.1 Communication Models

Independently developed components and graphical interfaces may be added to PVS
in essentially two ways, depending on whether interprocess communication is imple-
mented following the current model, or an alternate one. In either case, the resulting
model may be seen as a variant of the following general model.

GUI/other GUI/otherPVS Lisp PVS Emacs

Figure 3.1: General Model of PVS Process Communication

3.1. Combining PVS with Other Components 19

3.1.1.1 A General Model of PVS Process Communication

The most general model of PVS interaction would provide full connectivity, with
processes communicating directly as shown in Figure 3.1. Extensibility of this model
is suggested by dashed lines outlining components and their connectivity. This
form of distributed communication is not currently supported in PVS, and would
require rethinking and enhancing the current messaging protocol, and possibly also
the APIs for PVS components such as the parser, typechecker, and prover. The
generality and inherent flexibility of this approach is appealing, but the actual utility
of the fully general model is an open question. Alternate models of communication
may be derived from this general model by restricting connectivity in various ways.
For example, the current model of communication may be viewed as a variant in
which connectivity is restricted and (communication) control centralized in a single
component.

3.1.1.2 The Current Model of PVS Process Communication

The current model of PVS process communication, which provides the context
for the work described in this chapter, appears in Figure 3.2. In this model,

PVS Lisp PVS Emacs Tcl/Tk

Figure 3.2: Current Model of PVS Process Communication

all communication between the PVS Lisp process and the Tcl process passes
through PVS Emacs. More specifically, there is an output filter for each of
the sibling processes—pvs-output-filter and pvs-tcl-output-filter for PVS
Lisp and Tcl, respectively—that identifies the message type and calls the ap-
propriate function. The message format is :<pvs-action> arg 1.. .arg n
:<end-pvs-action>, where pvs-action is one of msg, log, warn, err, qry, buf,
yn, bel, loc, mod, pmt, dis, wish, eval, evaln. The sibling processes use the same
Lisp functions to output and log messages, including error messages; to query the
user for input or yes/no responses; to beep the user; locate a PVS theory or ob-
ject; modify a buffer; prompt the user for input; and so forth. eval evaluates an
expression in Emacs Lisp; the result is read by the PVS Lisp process or sent to the
Tcl process, depending on the output filter and the corresponding function invoked.

20 Chapter 3. Integrating Applications with PVS

Used only by the Tcl process, evaln evaluates an expression in Emacs Lisp, but
does not return the result to the Tcl process. Message types used only by the Lisp
process include warn messages used to collect PVS parse and typecheck warning
messages, and wish messages used to send a string to the sibling Tcl process.

Communication between processes is logged and may be viewed in the Emacs
buffer pvs.2 The fragment of the log shown below illustrates the prover com-
municating via PVS Emacs with a Tcl process in response to the command M-x
x-prover-commands. The latter brings up an interactive Tcl display of PVS
prover commands, including user-defined commands, if any. The prover commands
are first dumped to a temporary file along with the name of the Tcl function
(show-proof-commands) that specifies and displays the Tcl window. The file is then
input by the main Tcl program (wish for “windowing shell”). catch and source
are Tcl commands that provide error handling, and evaluate Tcl commands from a
file, respectively. The Tcl exec command is used to run the UNIX rm program on
the temporary file.

rec:{NIL PVS(47): }

sent:{(x-prover-commands)}

rec:{:pvs-wish catch {source /tmp/pvs-18278.p1};
exec rm -f /tmp/pvs-18278.p1 :end-pvs-wish

NIL
PVS(48): }

Communication between PVS components that run in the PVS Lisp (sub)process,
including the parser, typechecker, prover, and prettyprinter, is similarly mediated
by PVS Emacs. The partial log shown below records the message sequence initiated
by a user request to typecheck theory fcp demo. The NILs in the messages represent
optional arguments.

rec:{PVS(59): }

sent:{(typecheck-file "fcp_demo" nil nil nil)}

rec:{ :pvs-msg Parsing fcp_demo :end-pvs-msg}

rec:{:pvs-msg fcp_demo parsed in 0.39 seconds :end-pvs-msg}

rec:{:pvs-buf fcp_demo.tccs&NIL&NIL&NIL&NIL :end-pvs-buf}

rec:{:pvs-buf fcp_demo.lisp&NIL&NIL&NIL&NIL :end-pvs-buf}

2Appendix A provides a brief tour of the buffers created and used by PVS.

3.1. Combining PVS with Other Components 21

rec:{:pvs-buf fcp_demo.ppe&NIL&NIL&NIL&NIL :end-pvs-buf}

rec:{:pvs-msg Typechecking fcp_demo :end-pvs-msg}

rec:{:pvs-err fcp_demo&/export/u1/homes/.. ./&
Typecheck error&/tmp/pvs-18278.p4&45 30 :end-pvs-err}

rec:{PVS(60): }

The message traffic indicates that parsing completed successfully in 0.39 second,
but that typechecking detected an error, which was recorded in a temporary
file. The pvs-err, end-pvs-err brackets are intercepted by pvs-process-filter,
which passes the error to the PVS error handler, pvs-error, which in turn calls
pvs-error* to display the error to the user and delete the temporary file. If pars-
ing completes successfully, the three ancillary buffers associated with the file are
removed (they may contain outdated information); this is reflected in the :pvs-buf
entries.

There have been a handful of applications that integrate independently devel-
oped components with PVS. We look briefly at three examples, each developed by
PVS users working within the basic structure of the current model. Buth’s inte-
gration of Pamela with PVS [2] and the Rockwell Collins visualizations of PVS
ground evaluator output [14] both served to motivate the current project; although
their approaches differ, these two examples suggest the challenges of combining PVS
with independently developed applications and GUIs. The third example, Dunstan
et al.’s Maple/PVS Project [13], illustrates a potential solution to these challenges.
In this regard, it shares the objectives of our work, while differing in approach.
Although Dunstan et al. jettison PVS Emacs whereas we retain it, both efforts
seek to exploit the current model of interaction to provide a general framework for
integrating new components with PVS.

Visualization for PVS Ground Evaluator: The Flight Guidance System
(FGS) visualization developed by Rockwell Collins [14] was developed primarily
to determine whether graphical interfaces could be used to promote and facilitate
discussion between pilots, human factors experts, and system designers [14, p. 7].
The Collins prototype consists of three graphical displays, one for the Electronic
Flight Instrumentation System (EFIS), the primary flight display in the cockpit;
one for the Flight Control Panel (FCP), the primary user interface with the Flight
Control System; and one for the display of high-level mode information for the Flight
Director, Autopilot, and vertical and lateral flight modes.3 The initial strategy
was to generate PVS specifications automatically from the visualization models.
That strategy was ultimately abandoned; the PVS specifications were generated

3Broadly speaking, the mode of a Flight Guidance System system component refers to the state
of that component. For example, the mode of the Autopilot may be engaged or disengaged.

22 Chapter 3. Integrating Applications with PVS

by hand and their consistency with the visualization models checked via manual
review [14, p. 12]. The implementation4 consists of a “PVS Controller” written
in Java that oversees communication between the PVS Ground Evaluator and the
graphical displays, which are written in Delphi. A second Java process maintains
the FGS state. The Java Controller and Delphi visualizations are PC based; the
PVS code, its “wrapper” (a C program), and the Java state administrator run on
Unix. As Figure 3.3 shows, this implementation omits PVS Emacs; communication

runs on Unix
runs on PC

"Wrapper" (C)

PVS (Lisp) PVS Controller (Java)FGS State (Java) FCP GUI (Delphi)

 EFIS Display (Delphi)

FGS Mode Displays (Delphi)

Figure 3.3: Communication Model for Rockwell Collins FGS Visualization

between PVS and the GUI is handled by the Java controller, in concert with the
Java FGS state administrator, and the C wrapper that filters input to and output
from PVS. Although the Collins GUI yielded a highly effective proof of concept, its
utility as an exemplar for other GUI developers is limited by its inherent complexity
and application-specific design choices.

Pamela+PVS: Pamela was originally developed to establish the partial cor-
rectness of VDM specifications. Subsequent changes and extensions have yielded a
more general system for formal verification of sequential software. The purpose of
Buth’s study is to exploit PVS to provide enhanced proof support for Pamela [3];
Pamela processes specifications and calculates proof obligations (a variant of
strongest postconditions), which are then submitted to PVS. File-oriented and non-
interactive, Pamela is implemented in C for Unix platforms. The Pamela+PVS
interface uses PVS Emacs to process communication between Pamela and PVS,
as shown in Figure 3.4. A quick visual comparison of the current communication

4As far as we know, there are no published accounts of the implementation. The architecture
presented here has been inferred from unpublished notes generously supplied by Steve Miller.

3.1. Combining PVS with Other Components 23

PVS Lisp Tcl/TkPVS Emacs Pamela

Figure 3.4: Communication Model for Pamela+PVS

model in Figure 3.2 and the Pamela+PVS model in Figure 3.4 confirms that Buth’s
system is a straightforward extension of the current model, which allowed her to use
or adapt existing PVS-Tcl interfaces. One of the objectives of Buth’s study was
to encourage reuse by others interested in exploiting the PVS prover as a back
end. This objective is realized via sound software-engineering practices, including
thorough documentation, rather than through general-purpose interface tools or a
generic framework.

Maple/PVS Project: An interesting variant of the current model results if
we manage the communication with something other than PVS Emacs. Although
the Rockwell Collins visualization similarly detours PVS Emacs, the work of Martin
Dunstan and his colleagues at the University of St. Andrews, who are develop-
ing a Maple/PVS interface, provides a more generic example of the opportunities
presented by this approach. Maple [12] is a Computer Algebra System that offers ex-
tensive libraries of symbolic computation algorithms, arbitrary-precision numerics,
and graphics capabilities.5 The Maple/PVS project is exploring strategies to allow
Maple users to solve problems that require theorem technology, optionally without
interacting directly with a theorem prover. The decision to use the PVS theorem
prover for this project was motivated by ongoing work in real analysis in PVS [11].
As Figure 3.5 suggests, Dunstan has replaced PVS Emacs with a Tcl “PVS Con-
troller,” effectively a graphical interface that exists largely to effect communication
between Maple and PVS, but that also displays PVS output and accepts user com-
mands for PVS. All communication is initiated by Maple. The controller includes
a lexical analyzer that filters PVS output, yielding a readily parsable, whole-line
format in which each line is tagged with a unique 2-character code identifying its
content. The analyzer is generated via FLEX (Fast Lexical Analyzer Generator)
and may be used or adapted by others interested in interfacing applications to PVS
in a non-Emacs framework.

5Originally developed by members of the University of Waterloo Symbolic Computation Group
(SCG), Maple is currently sold by Waterloo Maple Software (WMS). Research and development
involves collaboration between SCG, WMS, and several research organizations, including the Nu-
merical Algorithms Group (NAG) (http://www.nag.com), which collaborated on the extensive set
of numerical algorithms included in Maple 6.

http://www.nag.com

24 Chapter 3. Integrating Applications with PVS

PVS Lisp Tcl/Tk Maple 6

Filter

Figure 3.5: Communication Model for Maple/PVS

The continuum along which these three examples lie reflects generality of the ap-
proach, with the FGS visualization being the least and the Maple interface the most
general. All three exemplify the current model of communication in which a central
“controller” mediates communication between a PVS process and one or more in-
dependently developed application processes. Both the FGS visualization and the
Maple interface use a non-Emacs controller. Pamela+PVS provides an adaptable
exemplar, and the Maple-PVS interface offers a reasonably general framework.

3.1.2 Context and Level of Interaction

The second and third of the design dimensions identified earlier delineate the context
necessary to support interaction with PVS, and the level and bandwidth at which
this interaction takes place. The two are interrelated; communication of a single
proof obligation may be accomplished relatively easily via a prover API function
such as prove-formula or prove-formula-decl, whereas communication via large
files containing multiple proof obligations potentially introduces response time and
prover state explosion issues, as noted in [2, p.19], and therefore requires more careful
design of the communication channel(s).

GUIs, such as those in Maple/PVS and in PAMELA+PVS, that simply funnel
input to PVS and display the results do not need to preserve state from one PVS
invocation to another. However, GUIs such as the FGS that drive displays reflecting
state variables need to maintain state either in PVS (cf. Section 2.4.2) or in the
interface or both. The state displayed in the FGS visualizations provides context
for the PVS ground evaluator, and, conversely, the results returned by the ground
evaluator drive updates to the displays. In the Collins interface, the state vector is
maintained in Java. The phone book GUI described in Section 3.2 maintains state
exclusively in PVS.

3.2. Implementing a GUI for the Current PVS System 25

3.2 Implementing a GUI for the Current PVS System

Although we have experimented with several graphical interface languages, including
Glade, GTK, and Perl/Tk, graphical user interfaces for the current PVS system
(e.g., for proof display or proof command selection) continue to be written in Tcl.
For this reason, the GUI development described in this chapter also takes place in
Tcl, which allows us to exploit existing Tcl support in the PVS system.

Assuming the current model of PVS-GUI interaction, implementing a GUI in-
volves creating functionality at each of the three nodes in Figure 3.2. PVS Emacs
Lisp code defines the interface between the sibling PVS Lisp and GUI components.
This code typically creates a new PVS command, initializes the GUI, provides a
communication layer between PVS and the GUI, and so forth. PVS Lisp code im-
plements the PVS end of the interaction, for example, providing a wrapper for the
ground evaluator that accepts input expressions from the Emacs Lisp interface and
returns to the interface the results of the ground evaluation. The GUI code is self-
explanatory; it implements the graphical display for a given interface. The PVS
system uses standard naming conventions; Emacs Lisp code files use a .el exten-
sion, Lisp files use a .lisp extension, and GUI files use an extension that reflects
the chosen graphical interface language, for example, .tcl.

To illustrate the functionality and suggest an implementation for the Emacs
Lisp, Lisp, and GUI interface components, we develop a Tcl GUI for the phone 3
example introduced in Section 2.4.2 of Chapter 2. We first revisit the design choices
outlined in Section 3.1 above, explicitly framing our choice of communication model,
and context and level of interaction.

For largely pragmatic reasons, principally the relatively low overhead and ped-
agogical utility of adopting the existing model of PVS-GUI communication, our
graphical phone 3 interface communicates with PVS via PVS Emacs. The phone 3
GUI sends single expressions—for example, AddPhone(emptybook, alice, 8)6—
to PVS via PVS Emacs, and PVS Emacs sends the Tcl interface the resulting phone
book state if the ground evaluation succeeds. If the ground evaluation does not
succeed—for example, if the user misspells a name, resulting in a type error—PVS
Emacs sends the Tcl interface a value indicating that the attempted evaluation left
the phone book state unchanged.

As a further example of the PVS attachment mechanisms discussed in Chapter 2,
we use semantic attachments to modify and access the phone book state. The state
is maintained exclusively in PVS, and passed via Emacs to the Tcl interface for
display. This design decision is viable because the state in this example is small;
hence, the overhead of passing it to the graphical interface is low. We look first at two

6The actual PVS expression is formatted in Emacs Lisp rather than Tcl, as explained in Sec-
tion 3.2.3.

26 Chapter 3. Integrating Applications with PVS

modest changes to the PVS phone 3 theory and associated semantic attachments,
motivated primarily by GUI requirements on the PVS state.

We add the following function to theory phone 3 to appropriately initialize the
phone book:

InitPhone(bk): bool = (FORALL nm: write(bk WITH [(nm) := emptybook(nm)]))

and we remove the call to tab in printbook, since formatting is now handled by
the graphical interface.

printbook(bk): bool =
FORALL nm: print(nm,"N") AND printphones(FindPhone(bk,nm))

We next modify the Lisp defuns that define the semantic attachments for the
print functions; in the context of the phone book GUI, instead of displaying infor-
mation to the user, the print functions accumulate ground evaluator results in a
global whose value is returned via PVS Emacs to the Tcl interface.

(setq *totcl* nil)

(defun |PVS__printf| (a typ fmt)
(setq *totcl* (append *totcl*

(list(cl2pvs a (pc-typecheck (pc-parse typ ’type-expr)))))))

(defun |PVS_prints| (s)
(setq *totcl* (append *totcl* (list s))))

For convenience, we define the left and right braces as semantic attachments. Since,
as noted in Section 2.4.2, the ground evaluator does not allow attachments to con-
stants, we use the superfluous argument workaround described in that section.

lbrace(b: bool) : bool
rbrace(b: bool) : bool
% argument is ignored, attachment appends {

leftbrace: bool = lbrace(true)
% argument is ignored, attachment appends }

rightbrace: bool = rbrace(true)

The corresponding semantic attachments are straightforward.

(push (mk-name ’|lbrace| nil ’|printstrings|) *pvs2cl-primitives*)
(defun |PVS_lbrace| (x) (setq *totcl* (append *totcl* (list ’{))))

(push (mk-name ’|rbrace| nil ’|printstrings|) *pvs2cl-primitives*)
(defun |PVS_rbrace| (x) (setq *totcl* (append *totcl* (list ’}))))

3.2. Implementing a GUI for the Current PVS System 27

We turn now to the three GUI components mentioned above, each of which
corresponds to a node in the diagram in Figure 3.2. When reading this discussion,
it is helpful to keep in mind the underlying model of communication sketched in the
introductory remarks to Section 3.2, in which all communication is initiated by the
Tcl process in response to user input and consists largely of Tcl requests sent to the
PVS ground evaluator via Emacs Lisp, with the results returned again via Emacs
Lisp to the Tcl process. We begin with the central node, PVS Emacs, and describe
first a generic framework agnostic with respect to GUI implementation language.

3.2.1 PVS Emacs

The generic PVS Emacs framework defines a PVS command to start up a GUI for
a given PVS theory, and loads the Emacs Lisp, Lisp, and GUI source files that
implement the graphical interface. The framework shown below exploits the Emacs
“hook” mechanism, which provides a way to specify functions to be run by Emacs
on particular occasions.7 For example, we use the hook mechanism to run a spec-
ified GUI initialization function whenever the PVS M-x x-gui command is issued
and the theory named in the command by the user has been typechecked. Hook
variables are set via the built-in add-hooks function, and run via the correspond-
ing run-hooks function or one of its variants such as run-hooks-with-args or
run-hooks-with-args-until-failure. Comments marked with # precede globals
whose values need to be set appropriately for each application.

;; # SPECIFY GLOBALS for interface GUI, .lisp, and .el source
(defvar pvs-gui-lisp-source ’(" .. . "))
(defvar pvs-gui-el-source ’(" .. ."))
(defvar pvs-gui-source ’(" .. ."))

;; # SPECIFY THE LOAD PATH
(add-to-list ’load-path "/.. .")

;; # ADD INTERFACE-INIT FN(S) TO GUI INIT HOOK
(add-hook ’gui-init-hook ’gui-init)

(defun gui-load-file (file)
; load file(s) for graphical user interface
.. .
)

7Online descriptions of Emacs Lisp functions, including the hook functions, may be displayed
via the Emacs C-h d or C-h f commands.

28 Chapter 3. Integrating Applications with PVS

(defun gui-init ()
; load el, lisp, GUI sources
(mapc ’load pvs-gui-el-source)
(mapc (function (lambda (f)(pvs-send (format "(load \"%s\") f))))

pvs-gui-lisp-source)
(mapc ’gui-load-file pvs-gui-source)
)

(defpvs x-gui x-display (theoryname)
"Start the gui for theory theoryname"
(interactive (complete-theory-name "Gui for theory:"))
(if (not (getenv "DISPLAY"))

(message "DISPLAY not set, cannot run gui")
(if (pvs-send-and-wait

(format "(typechecked\? \"%s\")" theoryname) nil ’tc nil)
(run-hooks ’gui-init-hook)
(message "Please typecheck %s and reissue x-gui command"

theoryname))))

The generic framework instantiated for the Tcl phone book GUI appears below.
The application-specific version differs only in the values given to the globals, the
inclusion of the function to load Tcl files into the Tcl process, and the calls (to
ensure-pvs-wish and tcl-send-string*) that ensure an existing Tcl process and
unmap the current Tcl window (if any), respectively. For transparency, we have
retained the function gui-load-file, although in the spirit of Occam’s razor it
would be preferable to eliminate it and call tcl-load-file directly in the final
mapc in gui-init.

;; # SPECIFY GLOBALS for interface .tcl, .lisp, .el source
(defvar pvs-gui-lisp-source ’("gui-groundeval.lisp"))
(defvar pvs-gui-el-source ’("pb-interface.el"))
(defvar pvs-gui-tcl-source ’("pb.tcl"))

;; # TO SPECIFY THE LOAD PATH
(add-to-list ’load-path "/.. ./gui")

;; # ADD TCL INTERFACE-INIT FN TO GUI INIT HOOK

(add-hook ’gui-init-hook ’tcl-gui-init)

(defun gui-load-file (file)
(tcl-load-file file)
)

3.2. Implementing a GUI for the Current PVS System 29

(defun tcl-gui-init ()
; load el, lisp, tcl sources
(mapc ’load pvs-gui-el-source)
(mapc (function (lambda (f)(pvs-send (format "(load \"%s\")" f))))

pvs-gui-lisp-source)
(ensure-pvs-wish)
(tcl-send-string* "wm withdraw .")
(mapc ’gui-load-file pvs-gui-tcl-source)
)

(defpvs x-gui x-display (theoryname)
"Start the gui for theory theoryname"
(interactive (complete-theory-name "Gui for theory:"))
(if (not (getenv "DISPLAY"))

(message "DISPLAY not set, cannot run gui")
(if (pvs-send-and-wait

(format "(typechecked\? \"%s\")" theoryname) nil ’tc nil)
(run-hooks ’gui-init-hook)
(message "Please typecheck %s and reissue x-gui command"

theoryname))))

In addition to the Emacs Lisp code obtained by instantiating the generic GUI frame-
work, we need application-specific code that minimally implements the following
functions:

• provide initialization

• convert between PVS and GUI language data structures

• mediate communication between PVS and the GUI

We include portions of the code that implements this functionality for the phone
book example to suggest the flavor of Emacs Lisp mediation. We reproduce entire
functions, but focus primarily on communication between Emacs Lisp and the Lisp
and Tcl (sub)processes.

The initialization function for the phone book GUI, init-gevaluator, is called
via Emacs Lisp from the Tcl process (cf. Section 3.2.3). The function ilisp-send
sends a string to the buffer on an inferior Lisp process and returns the result.8

We use it to pass to PVS Lisp a conjunction whose evaluation initializes the PVS
ground evaluator for GUI interaction in the context of the specified theory, and
invokes the GUI API function to the ground evaluator, gui-gevaluate, to evaluate
a PVS expression that initializes the PVS state. The PVS state must be initialized
to avoid a PVS read operation (cf. Section 2.4.2) on an undefined state.

8This account is somewhat simplified; ilisp-send has several optional arguments that deter-
mine, e.g., whether the command is executed without waiting for results or the result is returned,
whether control remains in the inferior Lisp buffer, and so forth.

30 Chapter 3. Integrating Applications with PVS

(defun init-gevaluator (theory)
;; check that neither prover nor evaluator currently invoked
(confirm-not-in-checker)
;; indicate ground evaluator active
(pvs-evaluator-busy)
;; save PVS buffers
(save-some-pvs-buffers)
;; bury all temporary windows
(pvs-bury-output)
;; initialize ground evaluator and *pvsstate*
(ilisp-send

(format "(and (gui-init-gevaluator \"%s\")

(gui-gevaluate \"InitPhone(emptybook)\"))" theory)
nil ’pr t))

The second role of the Emacs Lisp code noted above was conversion between PVS
and GUI data structures. Given the highly application-specific nature of this code,
we limit the discussion to a single illustrative example. Recall that the Tcl interface
sends expressions consisting of phone book operations to the PVS ground evaluator.
The following function converts a phone book operation and its arguments (if any)
received from the Tcl interface into the corresponding PVS expresssion. The format-
ted expression is passed to PVS Lisp via the Emacs Lisp function Geval-for-Tcl
(cf. below).

;; phone book operators
(defvar *addop ’AddPhone)
(defvar *findop ’FindPhone)
(defvar *delnamop ’DelPhone)
(defvar *delnumop ’DelPhoneNum)
(defvar *printnums ’printphones)
(defvar *printbk ’printb)

(defun pb-tcl-to-pvs (op arg1 arg2)
;; format phone book operations for ground evaluator
;; pb-format formats operations that write PVS state
;; revisit formatting if PVS Phone3 fns are modified
(case op

(add (pb-format *addop arg1 arg2))
(find (format "\"%s(read[B],%s) AND %s\"" *findop arg1 *printbk))
(delete (if arg2 (pb-format *delnumop arg1 arg2)

(pb-format *delnamop arg1 arg2)))
(print (format "\"%s\"" *printbk))
(t nil)))

3.2. Implementing a GUI for the Current PVS System 31

(defun pb-format (op arg1 arg2)
(if arg2

(format "\"write(%s(read[B], %s, %s)) AND printb\"" op arg1 arg2)
(format "\"write(%s(read[B], %s)) AND printb\"" op arg1)))

The final role of the Emacs Lisp code is to mediate communication between the
GUI process and the PVS Lisp process. The following Emacs Lisp function passes
phone book operations and their arguments from Tcl to PVS (with appropriate
formatting), and returns the resulting state from PVS to Tcl. Note the two uses
of ilisp-send. This function is called from Tcl via the function emacs-eval (cf.
Section 3.2.3), and the results returned to Tcl.

(defun GEval-for-Tcl (pbOp pbName pbNbr)
;; reset lisp var that returns PVS state
(ilisp-send (format "(setq %s nil)" *pvstotcl*))
;; format and
(let* ((to-pvs (pb-tcl-to-pvs pbOp pbName pbNbr))

(from-pvs (if to-pvs
(ilisp-send

(format "(gui-gevaluate %s)" to-pvs)))))
(pb-pvs-to-tcl from-pvs)))

This ends our discussion of the Emacs Lisp code minimally required to implement
a Tcl GUI in the current communication model. We turn now to a discussion of the
interface code in the PVS Lisp and Tcl (sub)processes, beginning with the former.

3.2.2 PVS Lisp

The PVS Lisp code for the phone book GUI consists of modified versions of the PVS
ground evaluator API functions. The modifications are not specific to the phone
book example; they would be useful for any GUI that requires the ability to evaluate
single expressions in the PVS ground evaluator. The main differences between the
GUI API functions to the ground evaluator and the standard API functions involve
input from and output to the user. The ground evaluator reads a PVS expression
input by the user and, depending on the values of various control flags, outputs
tccs, timing information, and so forth, in addition to the result. In the context
of a GUI, ground evaluator interaction with the user is processed by the interface;
input is received from the GUI and output returned to the GUI for display. The
ground evaluator currently ignores type correctness conditions (TCCs), but does
check whether the user wishes to proceed in the presence of unproven TCCs. At
present, the modified ground evaluator code for GUI applications similarly ignores
TCCs.

The modified ground evaluator interface consists of three functions:

32 Chapter 3. Integrating Applications with PVS

• gui-init-gevaluator—initialization function called by Emacs Lisp (cf. Sec-
tion 3.2.1) that establishes a given PVS theory as the context for ground
evaluation and checks again that the theory has been typechecked. One of
two API functions for the modified ground evaluator interface.

• gui-gevaluate—once the ground evaluator has been initialized, the API func-
tion used for all subsequent GUI interaction with the evaluator. Sets evalua-
tion parameters and calls gui-gevaluate*.

• gui-gevaluate*—top-level function that sequences evaluation. The type-
checked input expression is translated to Lisp, evaluated, and the results trans-
lated back into PVS. Currently, only ground results are retranslated into PVS.

There is no interprocess communication in any of these functions; hence,
we choose one as an exemplar, but reproduce the code without comment.
gui-geval-current-theory is a global that holds the name of the theory on
which the GUI has been invoked. Other globals are similarly delimited by *.

(defun gui-gevaluate (expression &optional theoryname)
(let ((*current-theory* (or (get-theory theoryname)

(get-theory *gui-geval-current-theory*)))
(gui-geval-result ’none))

(if *current-theory*
(let ((*generate-tccs* ’all)

(*current-context*
(or (saved-context *current-theory*)

(context nil)))
(*in-evaluator* t)
(*destructive?* t)
(*convert-back-to-pvs* t))

(setq gui-geval-result (gui-gevaluate* expression)))
(pvs-message "Gui Eval: Unknown theory: ~a" theoryname))

(pvs-emacs-eval "(pvs-evaluator-ready)")
gui-geval-result)

)

The final interface component in the phone book example is the Tcl GUI itself.

3.2.3 Tcl Phone Book GUI

A snapshot of the Tcl phone book interface appears in Figure 3.8. The two-part
window includes a panel of five buttons on the left, and a larger display area on the
right. Buttons correspond to basic phone book operations. An additional button
closes (i.e., iconifies) the phone book window; reopening the window clears the dis-
play area. The darkened button to the left of the print label in Figure 3.8 indicates

3.2. Implementing a GUI for the Current PVS System 33

that print is the most recently selected button. It is not currently possible to quit
PVS from the phone book interface. Selecting one of the phone book operations
brings up a dialogue box that prompts for the requisite arguments, as indicated
in Figures 3.6 and 3.7, which show the dialogues initiated by selecting the print
and add buttons, respectively. The result of evaluating the PVS expression printb,

Figure 3.6: print Command Dialogue Box

which corresponds to the print command with user-supplied argument “all,” ap-
pears in Figure 3.8. Figure 3.9 shows the result of evaluating a PVS expression
corresponding to the user dialogue in Figure 3.7.

The Tcl procedures responsible for formatting and sending a request to
PVS via Emacs Lisp are shown below. The PVS Tcl procedure emacs-eval
outputs (to the standard output stream) a formatted expression of the form
:pvs-eval <exp> :end-pvs-eval, which is processed by the Emacs Lisp filter
pvs-tcl-output-filter resulting in a call to pvs-tcl-emacs-eval where <exp>
is evaluated and the result returned to the Tcl process. Note that although we
explicitly call emacs-eval from Tcl to evaluate an expression in Emacs Lisp, we do
not explicitly call an analogous function on the result; the result of the evaluation
is automatically returned to the Tcl process via a call to the Emacs Lisp function
tcl-send-string* in pvs-tcl-emacs-eval. For the phone book GUI, the expres-
sion sent from the Tcl process to Emacs Lisp via emacs-eval is (GEval-for-Tcl
$evalstr); for example, the value of the expression corresponding to the add in
Figure 3.7 would be (GEval-for-Tcl ‘add ‘alice ‘3). As we have seen in Sec-
tion 3.2.1, the Emacs Lisp function GEval-for-Tcl formats its arguments and

34 Chapter 3. Integrating Applications with PVS

Figure 3.7: add Command Dialogue Box

sends the resulting PVS expression to the ground evaluator GUI API function
gui-gevaluate (cf. Section 3.2.2) in the inferior Lisp process, where the expression
is evaluated and the resulting value returned via Emacs Lisp to Tcl.

proc ToPvsEmacs evalstr
send operation and associated arguments to PVS,
call pbupdate to update display with result

set result [emacs-eval "(GEval-for-Tcl $evalstr)"]
pbupdate $result

proc PbEnter
format operation, argument string,
call ToPvsEmacs to send string via Emacs to PVS unless
op is ‘‘close’’ which is handled locally (in Tcl)
global PbName PbNbr PbOp noNbr CloseOp
if [string compare $PbOp $CloseOp] == 0 PbClose else

if [string compare $PbNbr $noNbr] == 0
ToPvsEmacs "‘$PbOp ‘$PbName nil"
ToPvsEmacs "‘$PbOp ‘$PbName ‘$PbNbr"

In the phone book example, we use a small subset of the communication functions
available in PVS Lisp and Emacs Lisp, and the PVS Tcl support code. Readers

3.3. Discussion 35

Figure 3.8: Tcl Display Following PVS Evaluation of printb

interested in a more complete account may refer to Appendix A, which provides an
annotated listing of most of the available communication functions.

3.3 Discussion

The phone book GUI sketched in this chapter serves reasonably well as an exam-
ple for introducing a generic framework for GUI development and illustrating an
approach to interfacing independently developed components, such as GUIs, with
PVS. However, the phone book example per se is arguably a rather poor choice;
the specification is highly functional (even setof[P], the set of phone numbers is a
function)9 and therefore a better example for the theorem prover than the ground
evaluator. For this reason, we were pleasantly surprised to find that developing this
small, highly functional example has exposed interesting issues, one of which we dis-
cuss below. We also briefly touch on one of the more pragmatic issues encountered
while developing the Phonebook GUI.

The first issue relates to the distinction between writing programs and writ-
ing specifications, and the dual nature of executable specifications. Given P: TYPE
= upto(10) of phone numbers, evaluating expressions such as AddPhone(read[B],
alice, 9) yield subtype TCCs of the form 9 <= 10. This TCC is clearly trivial and
would be discharged summarily if TCCs were not optionally ignored in the current
ground evaluator. The more interesting case arises when we evaluate an expression

9In PVS, sets are represented as predicates, i.e., as functions of type [t -> bool].

36 Chapter 3. Integrating Applications with PVS

Figure 3.9: Tcl Display Following PVS Evaluation of write(AddPhone(read[B],
alice, 3)) AND printb

such as AddPhone(read[B], alice, 11), which generates a similar, but unprov-
able, subtype TCC. Ground evaluation of the expression write(AddPhone(read[B],
alice, 11)) AND printb reflects no change of state, for reasons that become clear
if we look carefully at the definitions of AddPhone and the PVS prelude function add,
reproduced below. Note that sets[P].add returns a nonempty set whose elements
are of type P.

AddPhone(bk, nm, pn): B = bk WITH [(nm) := add(pn, bk(nm))]

sets [T: TYPE]: THEORY
BEGIN
set: TYPE = setof[T]
x, y: VAR T
a, b, c: VAR set
member(x, a): bool = a(x)
empty?(a): bool = (FORALL x: NOT member(x, a))
emptyset: set = x | false
nonempty?(a): bool = NOT empty?(a)
add(x, a): (nonempty?) = y | x = y OR member(y, a)
.. .

END sets

In a specification environment that includes uninterpreted types, strong typing and
TCC generation yield precisely the expressibility and correctness guarantees we

3.3. Discussion 37

want. However, in an execution environment, the resulting loss of transparency
suggests that we may need to think carefully about how to integrate TCC evaluation
into the execution of PVS expressions. In our example, the subtype TCC 11 <=
10 indicates a type incompatibility somewhere in the specification; the execution,
however, proceeds “normally.” This raises questions about the role of TCCs in an
execution environment and about the kind of information they should convey.

The second issue is more pragmatic. In the ground evaluator, func-
tions, as well as uninterpreted types and certain records and tuples, are
represented in the translation as closures. For example, evaluating the
PVS expression AddPhone(read[B], alice, 9) in the ground evaluator yields
#<Closure (INTERNAL AddPhone!_2 0)>. As noted previously, there is currently
no support in the PVS evaluator for translating Lisp closures into PVS functions.
The phone book example detours this issue by exploiting the attachment mecha-
nism to maintain a PVS state and provide accessors that apply closures to yield
displayable values. In principle, it should be possible to convert a closure to a
function by creating variable(s) of the argument type(s) and applying the closure.
However, since variables are not ground expressions, this approach would require real
symbolic evaluation, a capability not yet available in PVS, although one proposed,
along with others, in the following chapter.

38

Chapter 4

Summary and Future Work

This report has explored ways to enhance the utility of PVS for evaluating, testing,
and animating PVS specifications. Our focus has been the PVS ground evaluator.
We have discussed semantic attachments as a mechanism for extending the use of the
ground evaluator to a larger class of applications, for example, to those for which
printing, iteration, or maintaining and accessing state is essential. We have also
discussed strategies and a generic framework for integrating independently developed
applications with PVS in general, and the ground evaluator in particular. The
work reported here has genuine utility, but nonetheless represents relatively crude
experiments in the context of extant ground evaluator capabilities. Accordingly,
future work can take one of two directions: we can continue our efforts to enhance
the current ground evaluator, or we can design a more productive development
environment, including a new evaluator API, drawing on the work reported here to
suggest desired functionality and preferred implementation.

Earlier chapters of this report have suggested enhancements to the current
ground evaluator that reflect functionality equally desirable in the existing ground
evalutor and any redesign. The list below pairs those suggestions with two additional
capabilities. An enhanced ground evaluator would

1. Optionally evaluate TCCs: TCCs generated via evaluation of ground expres-
sions should themselves be ground and, hence, be evaluable in the ground
evaluator.

2. Allow the use of evaluation in proofs: The result of ground evaluation should
be factored into the state of the proof and reflected in the proofchain analysis.
User-supplied attachments should be distinguished in the proof record from
evaluator-generated attachments.

39

40 Chapter 4. Summary and Future Work

3. Evaluate ground instantiations of generic theories: As noted in Chapter 2,
there should be a mechanism to provide evaluation of phone[N, P: TYPE] in-
stantiated with N: TYPE = {alice, bob, carol} and P: TYPE = upto(10).

4. Support (possibly generic) modifications to the generated Lisp code: This is
useful—for example, for testing, where coverage data could be acquired via
the addition of a count function that tracks frequency of execution for each
code fragment.

The potential impact of these items differs. Item 4 is particularly useful for appli-
cations such as those discussed in this report, whereas items 1 and 3 potentially
benefit a broader class of applications by improving the basic functionality of the
ground evaluator. Item 2 has the most general utility; it enhances both the capa-
bility of the prover and that of the ground evaluator.

To facilitate GUI development for the ground evaluator, we are also considering
development of a “meta-gui,” that is, a GUI generator that would allow the user
to instantiate a particular model of interaction and generate a GUI for a specific
application in a specified graphical interface language. A generic tool of this kind
could be developed in Glade 1 or other interface toolkit and would be highly use-
ful for users integrating independently developed tools with PVS—for example, the
Pamela front end to PVS or the Maple/PVS interface—as well as for those inter-
ested in testing PVS specifications and rapidly prototyping graphical interfaces for
PVS.

The GUI generator, as well as items 1 through 4 above, would clearly enhance
the utility of the ground evaluator, as would other additions to its basic function-
ality. Arguably, however, limitations imposed by the ground evaluator’s current
read-eval-print loop circumscribe our ability to provide desired functionality in a
general way consistent with the aesthetic and underlying philosophy of the PVS
language. Consider, for example, the PVS specifications that manipulate state and
provide printing. What do the functions in theories printing, printstrings, and
state mean in a PVS specification? In a very real sense, they are in semantic limbo,
occupying a half-world between PVS and Lisp. It is virtually impossible to imple-
ment cleanly GUIs or interfaces to independently developed applications that use
the ground evaluator. The application-specific workarounds implied in the discus-
sions of the Rockwell Collins FGS visualization, Pamela+PVS, and the Maple/PVS
Project reflect the problems inherent in trying to handle state, and I/O in PVS in
general, and the ground evaluator in particular. Implications of the work described
in this report for future work point most compellingly to a new read-eval-print loop
realized as part of an integrated development environment for the ground evaluator.

The desired functionality of the new development environment would in many
ways resemble that of a good Lisp debugger (e.g., the Lucid and CMU Lisp debug-

1Glade is a free user interface builder for GTK+ and Gnome released under the GNU License [9].

41

gers). In addition to the capabilities of the current read-eval-print loop, the new
environment would provide the ability to

• assign values to variables, including structured variables

• print results, including the ability to print closures whose arguments have
types on finite domains

• iteratively evaluate an expression over all possible values in the (finite) type
domains of specified variables

• report test coverage data, including statistical information on function execu-
tion and coverage

• provide feedback from static analysis, e.g., indicate to the user those parts of
the specification that are not single threaded

• extend current evaluation techniques to symbolic evaluation

• access generated functions, including the ability to look at and manipulate the
Lisp translation yielded by evaluation of a PVS expression

• provide a facility analogous to the Emacs C-M-x command that allows the user
to change a function dynamically

• provide step and trace facilities, i.e., allow the user to walk through the eval-
uation of an expression one step at a time or to trace specified functions
encountered during expression evaluation

The ability to calculate and predict behaviors of a model using judicious com-
binations of deduction and validation techniques would be significantly increased
by the enhancements and extensions to the PVS ground evaluator proposed here.
The work described in this report provides the basis for this proposal, as well as
pragmatic strategies for increasing the utility of the current PVS ground evaluator.

42

Bibliography

[1] Sten Agerholm and Peter Gorm Larsen. Modeling and validating SAFER in
VDM-SL. In C. Michael Holloway and Kelly J. Hayhurst, editors, LFM’ 97:
Fourth NASA Langley Formal Methods Workshop, pages 51–64, NASA Lan-
gley Research Center, Hampton, VA, September 1997. Available at http:
//atb-www.larc.nasa.gov/Lfm97/proceedings/. 10, 17

[2] Bettina Buth. An Interface between PAMELA and PVS. Unpublished Report,
August 1998. 21, 24

[3] Bettina Buth. PAMELA + PVS. In Rudolph Berghammer and Yassine
Lakhnech, editors, Tool Support for System Specification, Development, and
Verification, pages 62–76, Malente, Germany, June 1998. Proceedings pub-
lished in May 1999. 22

[4] Judith Crow et al. NASA Formal Methods Specification and Verification Guide-
book for Software and Computer Systems, Volume I: Planning and Technology
Insertion. NASA Office of Safety and Mission Assurance, Washington, DC,
1995. Available at http://eis.jpl.nasa.gov/quality/Formal_Methods/.
10

[5] Judith Crow et al. NASA Formal Methods Specification and Verification Guide-
book for Software and Computer Systems, Volume II: A Practitioner’s Com-
panion. NASA Office of Safety and Mission Assurance, Washington, DC, 1997.
Available at http://eis.jpl.nasa.gov/quality/Formal_Methods/. 10

[6] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam
Srivas. A tutorial introduction to PVS. Presented at WIFT ’95: Workshop
on Industrial-Strength Formal Specification Techniques, Boca Raton, Florida,
April 1995. Available, with specification files, at http://www.csl.sri.com/
wift-tutorial.html. 12

[7] Ben L. Di Vito. High-automation proofs for properties of requirements models.
Software Tools for Technology Transfer, 3(1):20–31, September 2000. 10

43

http://atb-www.larc.nasa.gov/Lfm97/proceedings/
http://atb-www.larc.nasa.gov/Lfm97/proceedings/
http://eis.jpl.nasa.gov/quality/Formal_Methods/
http://eis.jpl.nasa.gov/quality/Formal_Methods/
http://www.csl.sri.com/wift-tutorial.html
http://www.csl.sri.com/wift-tutorial.html

44 Bibliography

[8] Bruno Dutertre. Elements of mathematical analysis in PVS. In Joakim von
Wright, Jim Grundy, and John Harrison, editors, Theorem Proving in Higher
Order Logics: 9th International Conference, TPHOLs ’96, Volume 1125 of
Springer-Verlag Lecture Notes in Computer Science, pages 141–156, Turku,
Finland, August 1996. 4

[9] http://glade.pn.org. 40

[10] http://www.gnu.org/manual/emacs/index.html. 18

[11] Hanne Gottliebsen. Transcendental functions and continuity checking in PVS.
In Mark Aargaard and John Harrison, editors, Theorem Proving in Higher
Order Logics: 13th International Conference, TPHOLs 2000, Volume 1869 of
Springer-Verlag Lecture Notes in Computer Science, pages 197–214, Portland,
OR, August 2000. 4, 23

[12] http://www.maplesoft.com. 23

[13] http://www-theory.dcs.st-and.ac.uk/info/example/. 21

[14] Steven P. Miller and James N. Potts. Detecting mode confusion through for-
mal modeling and analysis. NASA Contractor Report CR-1999-208971, NASA
Langley Research Center, Hampton, VA, January 1999. (Work performed by
Rockwell Collins, Inc.). 17, 21, 22

[15] César Muñoz, January 2001. Personal communication. 12

[16] Karen L. Myers. Hybrid reasoning using universal attachments. Artificial In-
telligence, 67(2):329–375, June 1994. 3

[17] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford, MA,
second edition, 1990. 9

[18] Richard W. Weyhrauch. Prolegomena to a theory of mechanized formal rea-
soning. Artificial Intelligence, 13(1 and 2):133–170, April 1980. 3

http://glade.pn.org
http://www.gnu.org/manual/emacs/index.html
http://www.maplesoft.com
http://www-theory.dcs.st-and.ac.uk/info/example/

Appendix A

PVS System Buffers and
Communication Functions

This appendix contains a description of PVS Emacs buffers and an annotated list
of PVS functions used for interprocess communication.

A.1 PVS System Buffers and Associated Functions

In addition to the Emacs buffers that display PVS specification files, the PVS system
minimally creates seven other buffers. For example, an Emacs C-x C-b command
immediately after PVS starts up on the file fcp demo.pvs yields the following list
of buffers, where “.” marks the selected buffer, “*” denotes a buffer that has been
modified, but not saved, and “%” indicates a read-only buffer. We discuss buffers
associated with PVS only; others buffers exist, including the initial *scratch* buffer
(used for evaluating Lisp expressions in Emacs) and the *Messages* buffer (used
to log Emacs activity), but these buffers do not play a role specific to PVS.1

MR Buffer Size Mode File
-- ------ ---- ---- ----
. fcp_demo.pvs 6625 PVS /homes/.. ./fcp_demo.pvs

scratch 0 Lisp Interaction
* *Messages* 1345 Fundamental
* PVS Log 206 PVS View

ilisp-send 0 Lisp
* *pvs* 611 ILISP
* pvs 1687 Fundamental
% PVS Welcome 2278 Text
*% *Buffer List* 400 Buffer Menu

1There is some overlap in the entries in the PVS Log buffer and the *Messages* buffer, but the
latter logs Emacs activity, whereas the former records PVS activity.

45

46 Appendix A. PVS System Buffers and Communication Functions

Certain PVS commands, such as new-pvs-file, help-pvs (alternately, pvs-help),
prettyprint-expanded, and show-tccs, create additional buffers. Buffers for the
latter two have extensions .ppe and .tccs, respectively. help-pvs displays a sum-
mary of PVS commands in the PVS Help buffer. There is also a class of display
commands, e.g., x-theory-hierarchy, x-show-proof, x-show-current-proof,
x-prover-commands, and x-prove, that create a window and an Emacs buffer on
a Tcl/Tk process. The following buffer-list shows the default PVS Tcl/Tk process
buffer, *tcl-pvs*, created in response to the PVS M-x x-gui command.

MR Buffer Size Mode File
-- ------ ---- ---- ----
.* *pvs* 1261 ILISP
* *tcl-pvs* 392 Inferior Tcl

fcp_demo.pvs 6625 PVS /homes/.. ./fcp_demo.pvs
scratch 0 Lisp Interaction

* *Messages* 1533 Fundamental
* PVS Log 475 PVS View

ilisp-send 0 Lisp
* pvs 6786 Fundamental
% PVS Welcome 2278 Text
*% *Buffer List* 194 Buffer Menu

A.2 PVS Interprocess Communication Functions

In the report, we frequently mention the current model of PVS process communica-
tion (cf. Figure 3.2). In this section, we provide an annotated list of the PVS Emacs
functions that implement communication between PVS and Tcl/Tk, beginning with
functions that support communication from PVS to Tcl. Unless otherwise noted,
these functions may be found in file pvs-tcl.el.

• To run an inferior wish (Tcl) from PVS Emacs: (ensure-pvs-wish). This
function checks to see if an inferior wish is running and, if not, starts one.

• To send a string to an inferior Tcl process: (tcl-send-string* <string>).

• To load a file into the inferior Tcl process: (tcl-load-file <file>
&optional and-go) (in file tcl.el). The optional argument indicates
whether or not to switch to the Tcl buffer after loading the file.

• To evaluate a string in the inferior Tcl process: (tcl-eval <string>). (Uses
tcl-send-string*.)

• To evaluate an expression in PVS Emacs and send the result to Tcl (using
tcl-send-string*): (pvs-tcl-emacs-eval <form>).

A.2. PVS Interprocess Communication Functions 47

• To evaluate an expression in PVS Emacs (for use in PVS Emacs):
(pvs-tcl-emacs-eval-nowait <form>).

Communication from Tcl to PVS uses the following functions. Unless otherwise
noted, these functions may be found in file pvs-ilisp.el.

• To evaluate an expression in PVS Emacs and return the result to the Tcl
process: (emacs-eval <arg>). Outputs to standard output stream (stdout)
a string of the form ":pvs-eval $arg :end-pvs-eval" and returns result via
stdin (in file pvs-support.tcl).

• To evaluate an expression in PVS Emacs (result not returned): ":pvs-evaln
$arg :end-pvs-evaln" (in file pvs-support.tcl).

• To send a string to the inferior Lisp process: (ilisp-send <string>
&optional <message> <status> <and-go> <handler>). This function
sends a string to the ilisp process. If <and-go> is nil, it prints <message>,
sets <status>, and returns the result. If <and-go> is true, control switches
to the ilisp process, where <message> and result are displayed. Other options
for the value of <and-go> include dispatch (command is executed without
waiting for results) and call (a call is generated). ilisp-send initializes the
ilisp process (from the files in ilisp-load-inits) if it is the first ilisp com-
mand executed. If there is an error, comint-errorp is set to t and the error
is handled by <handler>.

• To send a string to the PVS ilisp process (result is not returned): (pvs-send
<string> &optional <message> <status>). Calls pvs-send*, which in
turn calls ilisp-send with and-go set to dispatch.

• To send a string to the PVS ilisp process and get the result:
(pvs-send-and-wait <string> &optional <message> <status>
<expected>). Identical to pvs-send except that the result is returned.
Prior to return, the result is processed using the value of <expected> (e.g.,
bool, list, string, dont-care).

• To send a string to PVS ilisp via a file: (pvs-file-send-and-wait
<string> &optional <message> <status> <expected>). Results in the
following call: (pvs-send-and-wait "(write-to-temp-file <string> t)"
<message> <status> ’tmp-file). After the call, the file is deleted and its
associated buffer killed. If the type of the result does not match the value of
<expected>, an error buffer pops up indicating the expected return value(s)
and the result.

	The PVS Ground Evaluator
	Semantic Attachments
	Semantic Attachments Used To Compute Values
	Semantic Attachments Used for Side Effects
	Programming an Attachment
	Applications
	Printing and Iteration
	Saving State

	Integrating Applications with PVS
	Combining PVS with Other Components
	Communication Models
	A General Model of PVS Process Communication
	The Current Model of PVS Process Communication

	Context and Level of Interaction

	Implementing a GUI for the Current PVS System
	PVS Emacs
	PVS Lisp
	Tcl Phone Book GUI

	Discussion

	Summary and Future Work
	Bibliography
	PVS System Buffers and Communication Functions
	PVS System Buffers and Associated Functions
	PVS Interprocess Communication Functions

