
Distributed Secure Systems: Then and Now

Brian Randell * and John Rushby**

* School of Computing Science
Newcastle University
Newcastle upon Tyne

NE1 7RU, UK
Brian.Randell@ncl.ac.uk

** Computer Science Laboratory,
SRI International

Menlo Park CA USA
rushby@csl.sri.com

Abstract

The early 1980s saw the development of some

rather sophisticated distributed systems. These were
not merely networked file systems: rather, using
remote procedure calls, hierarchical naming, and what
would now be called middleware, they allowed a
collection of systems to operate as a coherent whole.
One such system in particular was developed at
Newcastle that allowed pre-existing applications and
(Unix) systems to be used, completely unchanged, as
components of an apparently standard large (multi-
processor) Unix system.

The Distributed Secure System (DSS) described in
our 1983 paper proposed a new way to construct
secure systems by exploiting the design freedom
created by this form of distributed computing. The DSS
separated the security concerns of policy enforcement
from those due to resource sharing and used a variety
of mechanisms (dedicated components, cryptography,
periods processing, separation kernels) to manage
resource sharing in ways that were simpler than
before.

In this retrospective, we provide the full original
text of our DSS paper, prefaced by an introductory
discussion of the DSS in the context of its time, and
followed by an account of the subsequent
implementation and deployment of an industrial
prototype of DSS, and a description of its modern
interpretation in the form of the MILS architecture. We
conclude by outlining current opportunities and
challenges presented by this approach to security.

Introduction and Background

The idea of a DSS (Distributed Secure System) was

in large part an almost accidental outcome of a long-

running and indeed still continuing series of research
projects at Newcastle on reliability and in particular
fault tolerance, work whose origins can be traced back
at least in part to the original 1968 NATO Software
Engineering Conference [11]. The discussions at this
conference of the major problems of many then-current
large software projects were a great spur to research in
subsequent years aimed at producing bug-free
software. But we at Newcastle, on the other hand, were
motivated to wonder whether it might be possible to
find means of achieving reasonably reliable service
from complex software systems despite the bugs that
they would almost certainly still contain.

Our initial work had simply concerned sequential
programs. But by 1975 we had moved on to consider
the problems of providing structuring for error
recovery among sets of co-operating processes. By the
late 1970s we were starting to consider the problems of
distributed computing systems. In effect, what we had
started to do, and in fact continued to do for some
years, was gradually extend the range of systems and
types of fault for which we tried to provide well-
structured error recovery; as a long term research
project, as opposed to an urgently-needed real
application project, we had the luxury of gradually
trying to add complexity to reliability, as opposed to
striving to add reliability to immense complexity.

Our reliability research was mainly funded by the
SRC (Science Research Council), but we had
additional funding from the RSRE (the Royal Signals
and Radar Establishment) of the UK Ministry of
Defence, which later became part of the Defence
Research Agency, and was later still partially
privatized as Qinetiq. But then RSRE offered us some
further funding to work on security rather than
reliability – specifically to undertake a detailed and
critical study of the various projects then under way in

the States aimed at providing formal proofs of various
would-be highly secure systems.

This enabled Rushby to rejoin Newcastle (where he
had been a student), to work alongside the reliability
project. Rushby came to realize that the Secure User
Executive developed (largely by Derek Barnes) [4] had
a much simpler structure than most of the secure
operating systems being developed in the USA, and
that its formal verification would be best served by a
different approach. This led to his formulation of the
ideas of a “separation kernel” [13], and of “proof of
separability” [14], which were later to influence the
conception of DSS.

The reliability project had intended to base its work
on the problems of tolerating faults in distributed
systems on some suitable pre-existing distributed
system. Our efforts to find such a system came to an
abrupt halt when in 1982 we came up with a novel
scheme for constructing a powerful distributed system
from a set of UNIX systems, taking advantage of the
hierarchical naming structure used in UNIX. Our
scheme involved the insertion of a transparent layer of
software (or what would now be called “middleware”)
at the UNIX system call level, so that neither the UNIX
system nor any of the application programs had to be
altered – this layer of software we called the
“Newcastle Connection”, the distributed systems we
could build using it we termed “UNIX United” systems
[7]. An important characteristic of the Newcastle
Connection, the chief designer of which was our
colleague Lindsay Marshall, was that it dealt with all
of the system calls, not just those involved with files,
so that UNIX United was truly a distributed computing
system, not merely a distributed file system.

In UNIX United we had come up with what was
essentially a recursive approach to system building
[12], and we rapidly realized that it would be possible
to exploit the recursive characteristics of the Newcastle
Connection and UNIX United by the provision of other
transparent layers of software, including one for
hardware fault tolerance, based on the use of Triple
Modular Redundancy (TMR).

It was at this stage that Rushby announced that he
was tired of theoretical security research and of
critiquing others’ such research, and said that he
wanted to join in the system-building fun that the rest
of us were having. Within a single conversation,
against the background of the twin ideas of the
Newcastle Connection and of Proofs of Separation, we
came to the understanding that the recursive approach
to system building could be, so to speak, applied to
deconstruct a system as well as to build one. Thus we
realized that would be possible, indeed remarkably
easy, to implement an apparently-conventional UNIX
system that enforced a multi-level security policy by

allocating different security domains to different
physical machines, and enforcing security constraints
on inter-machine communication, rather than by means
of the operating system in a single machine.

By the end of the week we had a working
demonstration of our DSS scheme, albeit an extremely
crude one in which the encryption-based security
controls were implemented in software (indeed in
shell-script!) rather than in the sort of actual small
trusted special-purpose hardware communications
devices that we envisaged using. (We initially called
these devices Z-boxes, but were later strongly advised,
for mysterious reasons that were never explained to us,
to instead refer to them as TNIUs, standing for Trusted
Network Interface Units.)

A further point that struck us almost immediately
was that we could take advantage of complete mutual
independence of the TNIUs and the TMR layer.
Specifically it would be possible to combine the use of
TNIUs, and of groups of three UNIX systems
incorporating TMR layers, and so very readily produce
a system that was both highly reliable and highly
secure, without having to concern ourselves about
possible interference between the security and
reliability mechanisms.

When we reported our DSS ideas to RSRE, they
found them interesting, and sent a small party to
Newcastle to see our demonstration system, but raised
no objections to our submitting the DSS paper for
publication [17]. However, their interest grew, indeed
to the point of their planning their own full-scale
system building exercise. Thus when – prior to
publication of our paper – we discovered a
vulnerability in the design of the (virtual) multi-level
secure file store that had been missed by the referees,
we were forbidden to reveal this vulnerability, leave
alone correct the paper by including a solution to it,

What happened afterwards is described in the
postscript that follows the original DSS paper, which
we reproduce here in full. (The citations in this
introduction and in the postscript are to the “Additional
References” at the end of this document, and so are
kept separate from those in the original DSS paper.)

A distributed general-purpose computing
system that enforces a multilevel security
policy can be created by properly linking

standard Unix systems and small trustworthy
security mechanisms.

A Distributed Secure System
John Rushby and Brian Randell

University of Newcastle upon Tyne

A secure system is one that can be trusted to keep

secrets, and the important word here is “trusted.”
Individuals, governments, and institutions such as
banks, hospitals, and other commercial enterprises will
only consign their secrets to a computer system if they
can be absolutely certain of confidentiality.

The problems of maintaining security are
compounded because the sharing of secrets is generally
desired but only in a tightly controlled manner. In the
simplest case, an individual can choose other
individuals or groups with whom he wishes to share
his private information. This type of controlled sharing
is called discretionary security because it is permitted
at the discretion of the individual.

When the individuals concerned are members of an
organization, however, that organization may
circumscribe their discretionary power to grant access
to information by imposing a mandatory security
policy to safeguard the interests of the organization as
a whole. The most widely used scheme of this type is
the multilevel security, or MLS, policy employed in
military and government environments[1]. Here, each
individual is assigned a clearance chosen from the four
hierarchically ordered levels, Unclassified,
Confidential, Secret, and Top Secret, and each item of
information is assigned a classification chosen from
the same four levels. The fundamental requirement is
that no individual should see information classified
above his clearance.

The fewer the people who share a secret, the less the
risk of its disclosure through accident or betrayal to
unauthorized persons. Consequently, the basic MLS
policy is enhanced by the use of compartments or
categories designed to enforce “need -to-know”
controls on the sharing of sensitive information. Each
individual’s clearance includes the set of compartments
of information to which he is permitted access, and the
classification of information is similarly extended to
include the set of compartments to which it belongs.
The combination of a set of compartments and a

clearance or classification is called a security partition.
An individual is permitted access to information only if
his clearance level equals or exceeds the classification
of the information and if his set of compartments
includes that of the information. Thus an individual
with a Secret-level clearance for the NATO and
Atomic compartments, abbreviated as a Secret(NATO,
Atomic) clearance, may see information classified as
Secret(NATO) or Confidential(NATO, Atomic), but
not that classified as Top Secret(NATO) or
Confidential(NATO, Crypto).

A multilevel secure system should enforce the policy
outlined above; unfortunately, conventional computer
systems are quite incapable of doing so. In the first
place, they generally have no cognizance of the policy
and therefore make no provision for enforcing it; there
is usually no way of marking the security classification
to which a file, for example, belongs. In the second
place, experience shows that conventional systems are
vulnerable to outside penetration. Their protection
mechanisms can always be broken by sufficiently
skilled and determined adversaries. Finally, and most
worrisome of all, there is no assurance that the system
itself cannot be subverted by the insertion of “trap
doors” into its own code or by the infiltration of
“Trojan horse” programs. In these cases, the enemy is
located “inside the walls” and the system’s protection
mechanisms may be rendered worthless. This type of
attack is particularly insidious and hard to detect or
counter because it can compromise security without
doing anything so flagrant as directly copying a Top
Secret file into an Unclassified one. A Trojan horse
program with legitimate access to a Top Secret file can
convey the information therein to an Unclassified
collaborator by “tapping it out” over clandestine
communication channels that depend on the
modulation of some apparently innocuous but visible
component of the system state, such as the amount of
disk space available.

Drastic measures have been adopted to overcome
these deficiencies in the security mechanisms of
conventional systems. One approach is to dedicate the
entire system to a single security partition. Thus a
system dedicated to Secret(NATO) operations would
support only information and users belonging to that
single security partition. The principal objection to this
method of operation is that it fails to provide one of the
main functions required of a secure system – the
controlled sharing of information between different
security partitions. Another drawback is the cost of
providing separate systems for each security partition.
This problem can be mitigated to some extent by
employing periods processing in which a single system
is dedicated to different security partitions at different

times and is cleared of all information belonging to one
partition before it is reallocated to a different one.

Another crude method for coping with the security
problems of ordinary systems is to require all users to
be cleared to the level of the most highly classified
information that the system contains. This is called
“system high” operation. The rationale is that even if
the system has been subverted, it can reveal
information only to those who can be trusted with it.
The disadvantage to this scheme is that it is very
expensive (and counter to normal security doctrines) to
clear large numbers of people for highly classified
information that they have no real need to know.
Furthermore, many excellent people may be unable or
unwilling to obtain the necessary clearances. This
approach can also lead to the overclassification of
information, thereby reducing its availability
unnecessarily.

Acronym Definitions
CBC: Cipher block chaining
DES: Data Encryption Standard
FARM: File access reference monitor
FIG: File integrity guarantor
IFS: Isolated file store
LAN: Local area network
MARI: Microelectronics Applications Research Institute
MLS: Multilevel security
RPC: Remote procedure call
RSRS: Royal Signals and Radar Establishment
SFM: Secure file manager
SFS: Secure file store
TNIU: Trustworthy network interface unit
TTIU: Trustworthy terminal interface unit
Several attempts have been made to construct truly

secure systems for use in classified and other sensitive
environments. However, the builders of such systems
face a new problem: They must not only make their
systems secure, but also convince those who will rely
on them that they are secure. A full general-purpose
operating system is far too complex for anyone to be
able to guarantee this security. Accordingly, most
efforts have focused on partitioning the system into a
small and simple trusted portion and a much larger and
more complex untrusted one. The system should be
structured so that all securityrelevant decisions and
operations are performed by the trusted portion in a
way that makes the untrusted portion irrelevant to the
security of the overall system. It is then necessary to
rigorously establish the properties required of the
trusted portion and prove that it does indeed possess
them. Such proofs constitute security verification; they
use the techniques of formal program verification to
show that the system implementation (usually its
formal specification) is consistent with a mathematical
model of the security properties required[1,2].

The trusted portion of a secure system is generally
identified with a small operating system nucleus
known as a security kernel; the rest of the operating
system and all applications and user programs belong
to the untrusted component. Certain difficulties attend
the use of such kernelized systems, however.

Because it provides an additional level of
interpretation beneath the main operating system, a
security kernel necessarily imposes some performance
degradation. This can be minor when specialized
applications are concerned, since the kernel can be
tuned to the application, but general-purpose
kernelized operating systems are three to ten times
slower than their insecure counterparts. Also, the
division of a conventional operating system into
trusted and untrusted components is a complex and
expensive task that cannot easily accommodate
changes and enhancements to its base operating
system. Consequently, kernelized systems often lag
many versions behind the conventional operating
systems from which they are derived.

Finally, and as we have argued elsewhere[3],
security kernels for general-purpose operating systems
tend to be complex, and their interactions with
nonkernel trusted processes are also complex. The
result is that the verification of their security properties
is neither as complete nor as convincing as might be
desired. None of these problems are arguments against
security kernels per se, which have proved very
successful for certain limited and specialized
applications such as cryptographic processors and
message systems[4]; but they do indicate that security
kernels are unlikely to prove satisfactory as the
primary security mechanism for general-purpose
systems[5].

Our approach is to finesse the problems that have
caused difficulty in the past by constructing a
distributed secure system instead of a secure operating
system. Our system combines a number of different
security mechanisms to provide a general-purpose
distributed computing system that is not only
demonstrably secure but also highly efficient,
cost-effective, and convenient to use. The approach
involves interconnecting small, specialized, provably
trustworthy systems and a number of larger, untrusted
host machines. The latter each provide services to a
single security partition and continue to run at full
speed. The trusted components mediate access to and
communications between the untrusted hosts; they also
provide specialized services such as a multilevel secure
file store and a means for changing the security
partition to which a given host belongs.

The most significant benefits of our approach to
secure computing are that it requires no modifications
to the untrusted host machines and it allows them to

provide their full functionality and performance.
Another benefit is that it enables the mechanisms of
security enforcement to be isolated, single purpose, and
simple. We therefore believe that this approach makes
it possible to construct secure systems whose
verification is more compelling and whose
performance, cost, and functionality are more attractive
than in previous approaches.

Principles and mechanisms for secure and
distributed systems

The structure of all secure systems constructed or

designed recently has been influenced by the concept
of a reference monitor. A reference monitor is a small,
isolated, trustworthy mechanism that controls the
behavior of untrusted system components by mediating
their references to such external entities as data and
other untrusted components. Each proposed access is
checked against a record of the accesses that the
security policy authorizes for that component.

It is implicit in the idea of a reference monitor, and
utterly fundamental to its appreciation and application,
that information, programs in execution, users, and all
other entities belonging to different security
classifications be kept totally separate from one
another. All channels for the flow of information
between or among users and data of different security
classifications must be mediated by reference monitors.
For their own protection, reference monitors must also
be kept separate from untrusted system components.

Our approach to the design of secure systems is
based on these key notions of separation and
mediation. These are distinct logical concerns, and for
ease of development and verification, the mechanisms
that realize them are best kept distinct also. We
consider it a weakness that many previous secure
system designs confused these two issues and used a
single mechanism – a security kernel – to provide both.
Once we recognize that separation is distinct from
mediation, we can consider a number of different
mechanisms for providing it and use each wherever it
is most appropriate. In fact, our system uses four
different separation mechanisms: physical, temporal,
logical, and cryptographical.

Physical separation is achieved by allocating
physically different resources to each security partition
and function. Unfortunately, the structure of
conventional centralized systems is antithetical to this
approach; centralized systems constitute a single
resource that must be shared by a number of users and
functions. For secure operation, a security kernel is
needed to synthesize separate virtual resources from
the shared resources actually available. This is not only

inimical to the efficiency of the system, but it requires
complex mechanisms whose own correctness is
difficult to guarantee.

In contrast with traditional centralized systems,
modern distributed systems are well suited to the
provision of physical separation. They necessarily
comprise a number of physically separated
components, each with the potential for dedication to a
single security level or a single function. To achieve
security, then, we must provide trustworthy reference
monitors to control communications between the
distributed components and to perform other security-
critical operations. The real challenge is to find ways
of structuring the system so that the separation
provided by physical distribution is fully exploited to
simplify the mechanisms of security enforcement
without destroying the coherence of the overall system.

Because it is costly to provide physically separate
systems for each security partition and reference
monitor, we use physical separation only for the
untrusted computing resources (hosts) of our system
and for the security processors that house its trusted
components. Temporal separation allows the untrusted
host machines to be used for activities in different
security partitions by separating those activities in
time. The system state is reinitialized between
activities belonging to different security partitions.

The real challenge is to find ways of structuring the
system so that the separation provided by physical

distribution is fully exploited to simplify the
mechanisms of security enforcement without

destroying the coherence of the overall system.

The security processors can each support a number
of different separation and reference monitor functions,
and also some untrusted support functions, by using a
separation kernel to provide logical separation between
those functions. Experience indicates that separation
kernels (simple security kernels whose only function is
to provide separation) can be relatively small,
uncomplicated, and fast, and verification seems
simpler and potentially more complete for them than it
does for general-purpose security kernels[3].

Our fourth technique, cryptographic separation, uses
encryption and related (checksum) techniques to
separate different uses of shared communications and
storage media.

The four separation techniques provide the basis for
our distributed secure system. This is a heterogeneous
system comprising both untrusted general-purpose
systems and trusted specialized components, and to be
useful it must operate as a coherent whole. To this end,
our mechanisms for providing security are built on a
distributed system called Unix United, developed in

the Computing Laboratory at the University of
Newcastle upon Tyne[6]. A Unix United system is
composed of a (possibly large) set of interlinked
standard Unix systems, or systems that can masquerade
as Unix at the kernel interface level, each with its own
storage and peripheral devices, accredited set of users,
and system administrator. The naming structures (for
files, devices, commands, and directories) of each
component Unix system are joined into a single
naming structure in which each Unix system is, to all
intents and purposes, just a directory. The result is that,
subject to proper accreditation and appropriate access
control, each user on each Unix system can read or
write any file, use any device, execute any command,
or inspect any directory regardless of which system it
belongs to. The directory naming structure of a Unix
United system is set up to reflect the desired logical
relationships between its various machines and is quite
independent of the routing of their physical
interconnections.

Figure 1: The naming structure of a simple

Unix United system.
The simplest possible case of such a structure,

incorporating just two Unix systems, named unix1 and
unix2, is shown in Figure 1. From unixl, and with the
root (“/”)and current working directory (“.”) as shown,
one could copy the file “a” into the corresponding
directory on the other machine with the Unix shell
command

cp a /../unix2/user/brian/a
(For those unfamiliar with Unix, the initial “/”

symbol indicates that a path name starts at the root
directory rather than at the current working directory,
and the “..” symbol is used to indicate a parent
directory.)

This command is in fact a perfectly conventional use
of the standard Unix shell command interpreter and
would have exactly the same effect if the naming
structure shown had been set up on a single machine
and unix I and unix2 had been conventional directories.

All the standard Unix facilities, whether invoked by
shell commands or by system calls within user
programs, apply unchanged to Unix United, causing

intermachine communication as necessary. A user can
therefore specify a directory on a remote machine as
his current working directory, request execution of a
program held in a file on a remote machine, redirect
input and/or output, use files and peripheral devices on
a remote machine, and set up pipelines that cause
parallel execution of communicating processes on
different machines. Since these are completely
standard Unix facilities, a user need not be concerned
that several machines are involved.

Figure 2: The Newcastle Connection.

Unix United conforms to a design principle for
distributed systems that we call the “recursive
structuring principle”. This requires that each
component of a distributed system be functionally
equivalent to the entire system. Applying this principle
results in a system that automatically provides network
transparency and can be extended (or contracted)
without requiring any change to its user interface or to
its external or internal program interfaces. The
principle may seem to preclude systems containing
specialized components such as servers, but this is not
so. Any system interface must contain provisions for
exception conditions to be returned when a requested
operation cannot be carried out. Just as the operating
system of an ordinary host machine can return an
exception when asked to operate on a nonexistent file,
so a specialized server that provides no file storage can
always return exceptions when asked to perform file
operations.

Unix United has been implemented without
changing the standard Unix software in any way;
neither the Unix kernel nor any of its utility programs –
not even the shell command interpreter – have been
reprogrammed. This has been accomplished by
incorporating an additional layer of software called the
Newcastle Connection in each of the component Unix
systems. This layer of software sits on top of the
resident Unix kernel; from above it is functionally
indistinguishable from the kernel, while from below it
looks like a normal user process. Its role is to filter out
system calls that have to be redirected to another Unix
system and to accept system calls that have been
directed to it from other systems. Communication
between the Newcastle Connection layers on the
various systems is based on the use of a remote
procedure call protocol and is shown schematically in
Figure 2.

All requests for system-supported objects such as
files ultimately result in procedure calls on the Unix
kernel interface. If the service or object required is
remote rather than local, the local procedure call is
simply intercepted by the Newcastle Connection and
replaced with a remote one. This substitution is
completely invisible at the user or program level,
providing a powerful yet simple way of putting
systems together. Equally important, it provides a
means of partitioning what appears to be a single
system into a number of distributed components. From
our perspective, this partitioning is the crucial property
of Unix United, since it enables a large, insecure Unix
system to be broken into a number of physically
separate components with no visible change at the user
level. The following sections will explain how we
exploit this physical separation to construct a secure
system. We begin with a very simple system that
merely isolates different security partitions from one
another.

A securely partitioned distributed system

We will describe a secure Unix United system

composed of standard Unix systems (and possibly
some specialized servers that can masquerade as Unix)
interconnected by a local area network, or LAN. We
assume that all the component Unix systems are
untrustworthy and that the security of the overall
system must not depend on assumptions concerning
their behavior – except that the LAN provides their
only means of intercommunication.

The consequence of not trusting the individual
systems is that the unit of protection must be those
systems themselves; thus, we will dedicate each to a
fixed security partition. We might allocate two systems
to the Secret level, one to the Top Secret level, and the
rest to Unclassified use. Limited need-to-know
controls can be provided by dedicating individual
machines to different compartments within a single
security level; thus, one of the Secret systems could be
dedicated to the Atomic compartment and another to
NATO. In a commercial environment, some systems
could be dedicated to Finance and others to Personnel
and Management. Users are assigned to hosts with the
knowledge that no security is guaranteed within those
individual systems. Note also that since the hosts are
not trusted, they cannot be relied upon to authenticate
their users correctly. Therefore, access to each system
must be controlled by physical or other external
mechanisms.

Although there is no security within an individual
Unix system, the key to our proposal is to enforce
security on the communication of information between

systems. To this end, we place a trustworthy mediation
device between each system and its network
connection; we call it a trustworthy network interface
unit, or TNIU (see Figure 3).

The initial and very restrictive purpose of TNIUs is
to permit communication only between machines
belonging to the same security partition. The single
Unix United system is therefore divided into a number
of disjoint subsystems. We will describe later how our
system can be extended to move information between
partitions securely, thereby providing true multilevel
security.

Controlling which hosts can communicate with one
another is a reference monitor function, but because the
LAN can be subverted or tapped, the TNIUs must also
provide a separation function to isolate and protect the
legitimate host-to-host communications channels. This
separation function is provided cryptographically, with
TNIUs encrypting all communications sent over the
LAN. Encryption is traditionally used to protect
communications between parties who share a common
interest in preserving the secrecy of that
communication, but this is not the case here. Host
machines are untrusted and may attempt to thwart the
cryptographic protection provided by their TNIUs. For
this reason, the encryption must be managed very
carefully to prevent clandestine communication
between host machines, or between a host machine and
a wiretapping accomplice.

Although the basic principles of encryption
management are well established[8], a tutorial outline
of the issues and techniques as they affect our system
may benefit readers to whom this material is new.

Encryption and the protection of commun-
ications. Trustworthy network interface units use the
Data Encryption Standard, or DES[8] to protect
information sent over the LAN. However, since host
machines are untrusted and the LAN can be tapped, the
simplest form of DES encryption – the so-called
electronic code book mode – is ruled out. In this mode,
each 64-bit block of data is encrypted as a separate
unit, and even a very powerful encryption algorithm
such as the DES cannot prevent the leakage of
information from a corrupt host machine under these
circumstances. For example, suppose that a corrupt
host wishes to communicate the bit pattern 01101 to a
wiretapping accomplice. The host constructs a message
XYYXY, where X and Y are arbitrary but distinct bit
patterns of the same length and alignment as the units
of block encryption, and sends it to its TNIU for
transmission. The TNIU will encrypt the message to
yield, say, PQQPQ before transmitting it over the
LAN, but the bit pattern 01101 remains visible in this
encrypted message and can easily be extracted by a
wiretapper. Notice that the threat here is not due to any

weakness in the encryption algorithm employed, but to
the way in which it is used; one need not be able to
decrypt messages to extract information planted by a
corrupt machine,

Figure 3: A securely partitioned system.

Clandestine communications channels based on
plaintext patterns that persist into the ciphertext can be
thwarted by employing a more elaborate mode of
encryption called cipher block chaining, or CBC,
which uses a feedback technique to mask such patterns
by causing the encrypted value of each block to be a
complex function of all previous blocks[8]. Of course,
identical messages will yield identical ciphertexts, even
when CBC-mode encryption is used. More
importantly, messages that begin with the same prefix
will yield ciphertexts that also share a common prefix.
A corrupt host can therefore signal to a wiretapping
accomplice by modulating the length of the prefix that
successive messages have in common. This channel for
clandestine information flow must be closed, and this
will be achieved if TNIUs attach a random block of
data, different in each case, to the front of each
message before encrypting it,

The careful use of CBC-mode encryption prevents
information from leaking through channels that
modulate message contents, but significant channels
for information leakage still remain. These are
pattern-of-use channels whereby a corrupt host
modulates the visible parameters of messages in a way
that can be decoded by a wiretapping accomplice. The
properties that can be modulated are the lengths of
individual messages, their time and frequency of
transmission, and their destination.

All techniques for introducing noise inevitably
reduce the bandwidth available for legitimate

communications and may increase the latency of
message delivery.

(Presumably the source is fixed at the location of the

corrupt host.) These properties, of which length and
destination are by far the most important, can be
modulated to yield clandestine communication
channels of surprisingly high bandwidth. Unless link

encryption is used to reinforce the end-to-end
encryption described here, it will not be possible to
completely sever these channels. Since link encryption
is infeasible with most LAN technologies, the best
approach is to reduce the bandwidth of these
pattern-of-use channels to a tolerable level, either
directly or through the introduction of noise,

The length channel is the easiest to deal with. TNIUs
process message units of a fairly large, fixed size – say
1024 bytes. Long messages must be broken into a
number of separate message units; short ones, and the
residue of long ones, must be padded to fill a whole
unit. (If this technique causes great numbers of largely
empty message units to be generated, some of the
legitimate bandwidth of the LAN will be wasted; but
this is not usually a scarce resource and some tuning of
the choice of the unit size is possible in any case.)
When this is done, a wiretapper cannot observe the
exact length of a message but can only estimate the
number of message units that it occupies. This
information will be difficult to extract, and the corrupt
host will also have to modulate a second parameter
(e.g., destination) so that the wiretapper can identify
the message units constituting each message.

The bandwidth of the channel that modulates
message destinations can only be reduced by
introducing noise, thereby complicating traffic patterns
so that the wiretapper finds it hard to detect and extract
any deliberate modulation. The obvious way to do this
is for each TNIU to generate a steady stream of
spurious messages to all other TNIUs in its own
security partition. Spurious messages are marked as
such (under encryption, of course) and are discarded by
TNIUs that receive them. More refined strategies, such
as routing messages indirectly through a number of
intermediate TNIUs before delivering them to their
final destination, are clearly possible, but all techniques
for introducing noise inevitably reduce the bandwidth
available for legitimate communications and may
increase the latency of message delivery. Each
installation must choose its priorities in such a
trade-off.

The techniques described so far enforce separation
between the outside world and communications
internal to the distributed secure system. They do not,
however, provide separation between the different
internal communications channels of the system. Thus,
the reference monitor component of a Secret-level
TNIU can determine that its host is attempting to
communicate with another Secret-level host and that
this communication accords with the security policy
and may therefore proceed; however, it cannot prevent
the LAN messages that constitute the communication
from being delivered, either through error or malice, to
the TNIU of, say, an Unclassified host. Furthermore,

unless additional mechanisms are introduced, the
receiving TNIU will not necessarily be able to detect
that the messages have been sent to it in error.

Incorrect delivery can occur because the LAN
hardware, by accident or intent, misinterprets message
destination fields, or because those fields are modified
by an active wiretapper. (Remember that these fields
must be in the clear so that the LAN hardware can
interpret them.) TNIUs may attempt to overcome this
threat by embedding the true source, destination, and
security partition of each message unit inside the data
portion of the message unit itself, where it will be
protected by encryption, However, this technique can
be defeated by an active wiretapper who splices the
identification portion of a genuinely Unclassified
message onto the body of a Secret one.

It might appear that CBC-mode encryption
automatically protects against this type of attack and
that because the encrypted value of each block within a
message unit is a complex function of all previous
blocks, messages formed by splicing parts of different
messages together will decrypt unintelligibly, In fact,
this is not so. Although the encrypted value of each
block produced by CBC-mode encryption depends
implicitly on all prior plaintext blocks, it depends
explicitly on only the immediately preceding ciphertext
block[8]. Thus, damage to the contents or sequencing
of ciphertext blocks affects only the decryption of the
block immediately following the damaged or
misplaced block; in other words, CBC-mode
decryption is “self-healing.”

Two methods are available for securely separating
the communications channels belonging to different
security partitions. The first uses a high-quality
checksum to guarantee the integrity of each message
unit, including its identification fields. TNIUs must
calculate the checksum of each message unit before
they encrypt it, and they must encrypt the message unit
and its checksum as a single unit so that the checksum
will be protected by encryption. Whenever a TNIU
receives a message unit, it must first decrypt it and
recompute its checksum. Only if the recomputed
checksum matches the one sent with the message unit
should the unit be accepted by the TNIU for further
processing. The integrity of all message units accepted
is thereby guaranteed because they cannot be forged,
modified, or formed by splicing parts of different units
together during transmission over the LAN,
Consequently, TNIUs can trust the value of the
security partition identifier embedded in each message
unit, then they can (and must) reject those bearing a
different identifier.

The second method for distinguishing the
communications belonging to different security
partitions is to use a different encryption key for each

partition. (Until now, we have implicitly assumed that
the same key is used for all communications.) Each
TNIU will be provided with only the single key
associated with its own security partition and will
therefore have no way of communicating with TNIUs
belonging to different partitions. If a message unit is
delivered to a TNIU belonging to a different security
partition from its sender, it will be encrypted using one
key and decrypted using another, making it
unintelligible to the host attached to the receiving
TNIU. It is unwise, however, to allow the untrusted
host machines to see even such unintelligible
transmissions from another security partition, so we
propose to combine the use of different encryption
keys with the checksum technique described earlier. A
message delivered to a TNIU in a different security
partition from its sender, and therefore encrypted and
decrypted with different keys, will certainly fail to
checksum correctly.

The use of both checksums and different encryption
keys is not strictly necessary, since either technique is
sufficient to separate the communications channels
belonging to different security partitions. The two
techniques are complementary, however, and provide
worthwhile redundancy. Checksums guarantee the
integrity of message contents, a very desirable property
in its own right, while the use of different encryption
keys provides failsafe separation.

Any system using encryption must contain
mechanisms for generating and distributing keys
securely. But unlike connection-oriented (virtual
circuit) schemes in which a unique key must be
manufactured and distributed every time a new circuit
is opened, our system imposes no requirement for
frequent or rapid key distribution. The key allocated to
a TNIU is a function of the (fixed) security partition to
which its host belongs. This, combined with the
presumption that a LAN-based system is
geographically compact, makes manual key
distribution perfectly viable. Because of its evident
simplicity and security, this is the mechanism we
employ. If the fear of cryptanalysis calls for more
frequent key changes than is convenient for manual
distribution, a set of keys can be installed on each
occasion or a single master key can be installed from
which the TNIU can manufacture a whole set of
communications keys. In either case, the TNIUs must
contain mechanisms for synchronizing their current
encryption keys.

Although not strictly necessary, it is highly desirable
to be able to detect and counter the activity of an active
wiretapper who attempts to “spoof” the system by
replaying recordings of genuine LAN messages.
(Consider, for example, a banking system that carries
messages such as “move $100 from account A to

account B. “) Spoofs can be detected if sequence
numbers or time stamps are embedded in each message
unit. Of course, it is perfectly feasible for hosts to do
this themselves, but it seems more appropriate for
TNIUs to provide this function. The sequence number
or time stamp of each message unit can constitute the
unique material that should be attached to the front of
each message prior to encryption to mask the similarity
between messages that share a common prefix.
Synchronizing the sequence numbers or time stamps
used between each pair of TNIUs requires a special
TNIU-to-TNIU protocol. This protocol must be
resistant to spoofs, but it obviously cannot use
sequence numbers or time stamps itself for this
purpose. A challenge-response technique first proposed
by Needham and Schroeder[9] can be used instead.

The integration and construction of TNIUs. The
interposition of a TNIU between a host and its LAN
station raises interesting questions concerning the
location of various protocol functions. The whole issue
of assigning function to layers in a protocol hierarchy
can become quite complex in the presence of
encryption because standard functions such as
checksums and sequence numbering, for example, are
duplicated – though in a different and more
sophisticated way – by the protection and security
mechanisms. For this reason, TNIUs should not
operate below the normal protocol layering hierarchy
but must be integrated with it. In fact, we propose that
TNIUs take over all protocol functions, except those at
the highest level. The benefit of this approach is that
the TNIUs act as network front ends, relieving their
hosts of the low-level network load and thereby
boosting overall performance.

The top-level protocol of the Newcastle Connection
provides a remote procedure call, or RPC, service and
requires a fairly reliable datagram service from the
lower levels of its protocol hierarchy. We use this
datagram service as the interface between host
machines and their TNIUs; individual datagrams form
the message units that are encrypted and protected by
the TNIUs. Most RPCs and their results can be
encoded into a single datagram, but those concerned
with file reads and writes, which can transfer arbitrarily
large amounts of data, are broken into as many
separate datagrams as necessary by a subprotocol of
the host machines’ RPC protocol.

The cryptographic techniques employed by TNIUs
counter the threat of information disclosure. The
remaining danger is denial of service caused by the
destruction of genuine LAN traffic or the injection of
large quantities of garbage. Although they can do
nothing to prevent or defeat such attacks, TNIUs must,
as a correctness requirement, continue to provide
reliable (though necessarily degraded) service in spite

of such occurrences. It is also a correctness
requirement of TNIUs that they recover from crashes
safely. (Of course, verified software does not crash, but
we must allow for the possibility of a power failure.)

TNIUs that perform all the functions described
certainly present a challenge in both construction and
verification. We argue, however, that they are very
similar to the cryptographic front ends of wide-area
networks, and examples of these have already been
built and, in some cases, verified,4 Modern 16-bit
microprocessors provide a suitable hardware base for
the construction of TNIUs, and single-chip
implementations of the DES algorithm are available
that can perform CBC-mode encryption at LAN
speeds. A separation kernel must be used to enforce
cleartext/ciphertext (so-called red/black) separation
within each TNIU, with the basic physical protection
provided by the memory management chips
appropriate to the chosen processor. Since no disks are
needed (the software can be held in ROM), a complete
TNIU should fit on a single board and cost less than a
thousand dollars.

Unclassified hosts can generally be considered to
belong to the same security partition as the outside
world. They need not be separated from it, and
therefore their TNIUs need not use encryption to
protect their communications. In this case, there is no
need to provide TNIUs to Unclassified hosts, and this
provides a worthwhile economy in systems where the
majority of hosts are Unclassified. It also permits a
standard, unpartitioned Unix United system to be
smoothly upgraded to a securely partitioned one by the
addition of a limited number of TNIUs.

A multilevel secure file store

The design introduced so far imposes a very

restrictive security policy. The security partitions are
isolated from one another with no flow of information
possible across different levels or compartments. We
will now explain how to extend this design to permit
information to cross security partitions in a multilevel
secure manner. This will allow information to flow
from the Secret to the Top Secret levels, for example,
but not vice versa.

It might seem that multilevel secure information
flow could be provided by simply modifying the policy
enforced at the TNIUs so that, for example, Top Secret
machines could receive communications from Secret
machines as well as Top Secret ones. Top Secret
TNUIS would be provided with the Secret as well as
the Top Secret encryption keys and would permit
incoming but not outgoing communications with
Secret-level machines. The flaw in this scheme is that

the communication could not be truly one way; a
Secret machine cannot reliably send information to a
Top Secret one without first obtaining confirmation
that the Top Secret machine is able to accept it and,
later, that it has received it correctly. The Secret
machine must therefore be able to receive information
from the Top Secret machine as well as send to it. This
conflicts with the multilevel security policy.

Figure 4. The naming structure of a simple

Unix United system incorporating a secure file
store.

Certainly the trustworthy TNIUs in the system could
be enhanced to undertake reliable delivery of data
across security partitions, but this misses the point. If
one host sends a file to another, the sender needs to
know that the receiver has been able to store the file
correctly, not merely that its TNIU received it
correctly. Notice, too, that this scheme would only
provide for unsolicited communications; a Secret
machine could send information to a Top Secret
machine of its own volition, but the Top Secret
machine could not request that the information be sent
because its request would constitute an insecure
information flow.

The best way to provide secure information flow
across security boundaries is through a trustworthy
intermediary that provides an independent and useful
service. The complexity of such an intermediary will
depend on the generality of that service. Combining
simplicity with the most useful function, we have
selected files as the only objects allowed to cross
security boundaries, and we have chosen the multilevel
secure storage and retrieval of files as the service
provided by the trustworthy intermediary. This is
achieved by adding to the system a secure file store
with the ability to communicate with hosts of all
security classifications. The idea is that when a
Secret-level host wishes to make one of its files
available to higher levels, it “publishes” it by sending it
to the secure file store. A Top Secret host can
subsequently acquire a copy of this file from the secure
file store.

Before describing the mechanism of the secure file
store, we need to outline its logical position and role
within the overall Unix United system. Conceptually,
the secure file store is just an ordinary Unix system
that returns exceptions to all system calls except
certain ones concerned with files. As with any other
component, it will be associated with a directory, say
SFS, in the Unix United directory structure. The SFS
directory will contain subdirectories for each security
partition in the overall system. A simple Unix United
directory structure containing just the secure file store
and two ordinary hosts is shown in Figure 4.

The ordinary hosts are associated with the directories
TSUnix and SUnix and are allocated to the Top Secret
and Secret security partitions, respectively. Of course,
from within SUnix, the TSUnix branch of the directory
tree is invisible, and vice versa. Even if the Newcastle
Connections within TSUnix and SUnix are aware of
each other’s existence, any attempted
intercommunication will be stopped by their TNIUs. If
the Secret-level user John of SUnix wishes to make his
“paper” file available to the Top Secret user Brian, he
does so by simply copying it into a directory that is
subordinate to the SFS directory. For example:

publish <paper/ ../SFS/SECRET/john/paper.
(We explain later why this command uses “publish”

and a later one uses “acquire” instead of the standard
Unix command “cp.”) This command will cause the
secure file store machine to receive a remote procedure
call from SUnix requesting it to create and write a file
called paper located as a sibling of the file “c. “ The
secure file store will consult its record of the security
policy to determine whether such a machine is allowed
to create Secret-level files. Assuming that it is, the
requested file operation will be allowed to proceed and
the copy of the file will be created. Similarly, when the
Top Secret user Brian attempts to print a copy of the
paper by issuing the command

acquire /../SFS/SECRET/john/paper|lpr
the secure file store will receive a remote procedure
call from the machine TSUnix requesting a copy of the
file. Once again, it can consult the security policy,
where it will see that the request should be allowed to
proceed. The secure file store will, however, refuse
requests from TSUnix to write into this “paper” file, or
to delete it, since these contravene the requirements of
multilevel security. Similarly, John will not be allowed
to read the “salaries” file held under the TOPSECRET
directory.

We now move from the services provided by the
secure file store to its construction. A multilevel secure
Unix file system might seem to demand a substantial
number of provably trustworthy mechanisms –
virtually a secure Unix. With careful design, however,

we can reduce the number of trusted mechanisms
considerably.

The basic idea is to partition the secure file store into
trusted and untrusted components housed in physically
separate machines. The trusted component, called the
secure file manager, or SFM, is a reference monitor
concerned with enforcing the security policy; its file
storage is provided by the untrusted components.
These untrusted components can be thought of as
separate, standard Unix systems connected directly to
the SFM. Each untrusted file storage machine is
dedicated to a single security partition and is identified
with one of the subdirectories of the SFS directory (see
Figure 5).

Communicating with hosts in different security
partitions requires an enhanced TNIU for the SFM, one
that contains the encryption keys of all security
partitions. The internal structure of a TNIU with
multiple encryption keys will be slightly more complex
than that of one with just a single key, particularly if
communications using different keys can be in
progress simultaneously. Cleartext belonging to
logically separate channels should be managed by
separate virtual machines, and temporal separation
must be provided for different uses of its single DES
chip. These are not significant complications, however,
and the responsibility for correctly managing more
than one encryption key is a small additional burden
for the trusted mechanism of a TNIU.

Host machines requiring access to secure files send
remote procedure calls, or RPCs, to the SFM. The
TNIU of the SFM determines the sender’s security
partition and passes this information to the SFM along
with the decrypted RPC. The SFM can then inspect the
RPC to check if the requested operation complies with
its security policy. If it does, the SFM simply forwards
the RPC to the appropriate file storage machine for
processing and relays the results (suitably encrypted)
back to the original caller.

There is an obvious flaw in this scheme, however.
Because the Unix file storage machines cannot be
trusted, they constitute a security weakness – even
though each holds files belonging to only a single
security partition. A host machine in the Top Secret
partition could modulate its legitimate requests for
reading secure files belonging to the Secret partition to
convey Top Secret information to the Secret-level file
storage machine. For example, suppose the secret file
storage machine contains a group of 26 files, each a
different length. If a corrupt Top Secret host requests,
as it may legitimately do, copies of the fifth,
fourteenth, ninth, seventh, thirteenth, and first shortest
files in that order, then the Top Secret string
E-N-I-G-M-A will have been communicated to the
Secret file storage machine. This machine could then

encode the information received into a file that could
subsequently and legitimately be retrieved by a
Secret-level host.

Although we cannot prevent Top Secret information
from getting into the Secret-level file store, we can
prevent it from getting back out again. Once we
recognize this, the solution to the above problem is at
hand.

The only objects that leave file storage machines are
files retrieved in response to external requests.
Consequently, any clandestine information that is to
reach the outside world must be encoded into those
files. Since all movement of files into and out of the
file storage machines is mediated by the SFM, security
will be maintained if the SFM prevents the file storage
machines from encoding information into (i.e.,
modifying) outgoing files. In other words, security
depends on the SFM being able to guarantee the
integrity of files retrieved from the file storage
machines.

Figure 5. Conceptual structure of the secure

file store.
This can be achieved if a checksum is added to each

file by the SFM before it is stored in one of the
untrusted file storage machines. Any attempt by a file
storage machine to modify a file will be detected on its
subsequent retrieval by the SFM when the recomputed
checksum fails to match the one stored with the file. Of
course, this only works so long as the file storage
machines are unable to forge the checksums. This can
be ensured in two ways (other than by keeping the
checksums in the SFM). The first is to use a
conventional checksum (i.e., one computed by an
algorithm that may be known to the file storage
machines) but to protect it by encrypting the file and
the checksum as a single unit. The second technique is
to use a crypto-checksum that depends on a secret key
for its computation. An example of a crypto-checksum
is the final block of ciphertext produced during
CBC-mode encryption, an alternative is to simply
encrypt a conventional checksum. The advantage of
crypto-check sums is that they cannot be forged by
those who do not possess the key; they can therefore be
used with information stored in the clear.

Either technique can be used to guarantee the
integrity of files retrieved from the untrusted file

storage machines. We prefer the crypto-checksum
approach because it requires only a single operation.
Intermediate checksums can be included at intervals
within the file if the SFM has insufficient space to
buffer an entire file. If part of a file has already been
delivered to a host when modification to a later part is
detected by the SFM, then some clandestine
information may have been conveyed to the host
through the position at which the modification began
and file transfer was aborted by the SFM. This channel
has very limited bandwidth, and as long as all
checksum failures raise a security alarm and are logged
by the SFM, it is not considered a serious security risk.

Figure 6. Actual structure of the secure file

store.
Checksums prevent the untrusted file storage

machines from modifying the files consigned to them
and from manufacturing forgeries, but they do not
prevent them from signaling to a collaborator by
choosing which legitimate files they return in response
to requests. For example, a Secret host could send a
steady stream of requests for file X, but the files
actually returned by the Secret file storage machine
could be quite different. In particular, they could be
files selected on the basis of length, say, to convey
information in the manner of the E-N-I-G-M-A
example given earlier, To close this channel, the SFM
must be able to verify that the correct file is returned in
response to each request. This is easily accomplished
by including the name of each file in the checksum
calculation.

A variation on this method of covert communication
is not so easily countered, however. A file storage
machine can keep several old copies of a legitimate file
and signal to an outside collaborator by choosing
which version of the file to return in response to each
request. This type of attack can be countered by
recording a time stamp with each file and keeping a
separate record of the time stamp that identifies the
current version of the file. The problem here is to find
a safe place to keep the record of each file’s current
time stamp. It cannot be entrusted to the file storage
machines without additional mechanisms for

safeguarding its own integrity, and keeping it in the
SFNI will impose a substantial storage requirement on
a machine that is intended to have no disks of its own.

To keep the trusted mechanism of the SFM simple,
we prefer to reduce the bandwidth of this channel
rather than attempt to close it completely. The SFM
embeds a time stamp into each file before calculating
its checksum and consigning it to an untrusted file
storage machine. In addition, the SFM maintains. in its
own private storage, a cache of the names and time
stamps of all files read from or written to an untrusted
file storage machine during, say, the last five minutes.
Any attempt to return different versions of the same
file within a shorter period will be detected by the SFM
and will raise a security alarm. Attacks that operate
over a longer period will go undetected, but their
bandwidth will then be so low that they can be
discounted as serious threats.

Once clandestine information has been prevented
from leaving a file storage machine, there is no longer
any need to provide separate file storage machines for
each security partition; the integrity checks performed
by the SFM constitute the required separation
mechanism. Accordingly, the file storage machines can
all be replaced by a single Unix system called the
isolated file store, or IFS. Rather than connect the IFS
directly to the SFM, we prefer to connect it to the LAN
via a TNIU in the standard way. For it to be truly
isolated from the rest of the system, however, the
TNIU of the IFS must be loaded with a special
encryption key that is shared only with the TNIU of the
SFM (see Figure 6).

The revised SFM is required to perform two
security-critical tasks and is therefore split into two
logically separate components: the file access reference
monitor, or FARM, and the file integrity guarantor, or
FIG. The task of the FARM is to ensure that all file
access requests comply with the security policy. the
FIG is responsible for computing and checking the
checksums and time stamps on files sent to or received
from the IFS.

The FIG achieves its purpose by employing
checksum techniques very similar to those used for
LAN messages by the TNIUs. We therefore suggest
constructing the FIG by making minor modifications
and extensions to an ordinary TNIU. The FARM
function of the SFM is also straightforward, requiring
only the imposition of simple access control rules
determined by a security policy. This function can be
performed inside a separate virtual machine provided
by the separation kernel of the machine that supports
the TNIU/SFM functions.

We therefore conclude that all the functions of a
complete SFM can be easily integrated into the TNIU
that connects it to the LAN. The development and

verification costs of an integrated TNIU/SFM should
be little more than those for a TNIU alone, and
production costs should be about the same –
approximately a thousand dollars.

The FIG checksum mechanism allows files to be
read or written only in their entirety. This is different
from the standard Unix file system interface, which
permits incremental reading and writing, and the
repositioning of the file pointer. For this reason, secure
files cannot be accessed through the normal Unix file
system interface but must use a special extension to
that interface provided by the Newcastle Connection.
This extension adds new system calls to publish,
acquire, and delete secure files, and to list the names of
the secure files belonging to a given security partition,
(The list operation must be implemented very carefully
so as not to provide the IFS with a clandestine
information channel.) The minor inconvenience caused
for users by this nonstandard interface is certainly no
worse than that imposed by the file transfer programs
used in conventional network architectures and is more
than outweighed by the simplicity of the trusted
mechanisms needed to implement it. Extensions to this
scheme that do provide the full, standard Unix file
system interface are described in a technical report[10],
but the difficulties of providing secure access to Unix
i-node information and to directories tend to
compromise the attractive simplicity of the basic
scheme. Completely different mechanisms are known
and are probably preferable in this case.

The accessing and allocation of security
partitions

A system in which terminals are attached to

machines of fixed security level can be somewhat
inconvenient to use. A Secret-level user can send mail
to a Top Secret user via the secure file system, but the
recipient can only reply by leaving his Top Secret
machine and logging in to one at the Secret level, or
lower. We can avoid this inconvenience and make
additional services possible by connecting terminals to
trustworthy terminal interface units, or TTIUs, rather
than to hosts directly. Moreover, we can then include
provisions for dynamically changing the allocation of
machines to security partitions.

Accessing different security partitions. What we
term a trustworthy terminal interface unit is basically a
TNIU enhanced with some additional trusted
functions, including a terminal driver, some very
limited Newcastle Connection software, and an
authentication mechanism. Each of these logically
separate mechanisms runs in an individual virtual

machine provided by the separation kernel supporting
the TTIU.

A TTIU in the “idle” state simply ignores all
characters reaching it from the LAN or from its
terminal until a special character sequence is typed at
the keyboard. This will cause the TTIU to connect the
terminal to its authentication mechanism, which will
then interrogate the user to determine his identity.
Once the user has been authenticated, he can be asked
for the security partition to which he wishes to be
connected. If the requested partition is within his
clearance and all other requirements of the security
policy are satisfied (for example, a terminal located in
a public place is not permitted a Top Secret connection
even if its user is authorized to that level), then the
TTIU will load the encryption key of the partition
concerned into its DES chip. The Newcastle
Connection software in the TTIU will then be able to
contact its counterpart in a host machine belonging to
the appropriate security partition, and the user will
thereafter interact with that remote machine exactly as
if he were connected to it directly.

The Newcastle Connection component in the TTIU
must be able to respond to remote procedure calls
directed to it by the Newcastle Connection of the
remote machine. The only calls that require a nonerror
response are those appropriate to terminals, namely
“read from the keyboard”, “write to the screen,” and a
couple of others concerned with status information.
Thus, only a fraction of the full Newcastle Connection
software is required for a TTIU, and just like the
similar software in a conventional host, it need not be
trusted.

A system in which terminals are attached to

machines of fixed security level can be somewhat
inconvenient to use.

None of the additional trusted mechanisms required

to upgrade a TNIU to a TTIU should present an undue
challenge in either construction or verification, Nor
should the presence of these additional mechanisms
affect the construction or verification of the TNIU
components themselves, since TNIUs are constructed
on top of a separation kernel. In fact, the presence of a
separation kernel makes it perfectly feasible to support
multiple terminals, each with a separate set of TTIU
and TNIU components, on a single processor.

Changing security partitions dynamically. TTIUs
enable users to connect to machines in different
security partitions, thereby allowing them to perform
each of their activities at the most appropriate level
within their clearance. If a security policy with a large
number of need-to-know compartments is supported,
however, the number of different security partitions

can well exceed the number of physical hosts available.
Even when the number of distinct security partitions is
small, the demand for resources within each partition
can vary with time. Furthermore, some users might
prefer to use personal workstations for their activities
in many different security partitions. All these cases
require some provision for reallocating host machines
to different security partitions.

With untrusted hosts, this can only be accomplished
by temporal separation, which in its simplest form is
periods processing. This requires manual intervention
to exchange all demountable storage and the
reinitialization of all fixed storage to remove every
trace of information from the old security partition
before the machine can be brought up again at its new
level, either “clean” or reloaded with the suspended
state of some previous activation at that level.

Manual periods processing requires very rigid
administrative controls, and it is slow and expensive,
We therefore propose mechanisms for automating the
process, making it both rapid and secure. The
mechanisms required include one that causes a host’s
TNIU to load the encryption key of a new security
partition, and another that provides temporal separation
for different uses of the host machine,

A project to develop an implementation of the

system described here has a sponsor and is being
carried out.

The system state of a host machine is contained in its

writable storage: CPU registers, RAM, and disks, The
disks of a Unix system provide swap space and contain
the local file system. With the exception of the file
system, the local storage available to a host is all used
for strictly temporary purposes and can simply be
erased and reinitialized when the host changes security
partitions. This is achieved by causing the host to
boot-load a trusted stand-alone purge program from
ROM on power-up, or on command from its TNIU.
This program systematically clears and reinitializes all
temporary storage available to its host processor.

Unlike temporary storage, the local file system
cannot just be erased when the host changes security
partitions; it must be retained (inaccessibly) for later
activations of the host in the same partition. Since Unix
United provides convenient access to remote files, this
requirement can be satisfied by holding files remotely,
either in file servers dedicated to particular security
partitions, or in the secure file store.

Operating host machines without local file store is
inefficient. Accordingly, the purge program creates a
local file system on its host’s disk and initializes it to
contain the standard utility programs. (These can be
obtained from a local read-only floppy disk, or from a

“boot server” accessed over the LAN.) Each reference
to an apparently local file is intercepted by a local file
relocation process added to the Newcastle Connection.
This process checks to see if the requested file is
already present in the local file system. If it is, the
access is allowed to proceed normally. If it is not, the
relocation process first obtains a local copy of the file
from the machine that maintains the permanent version
of the host’s file system for the security partition
concerned. For example, if the host is known as PW5
(personal workstation number 5) and is currently
operating in the Secret(NATO) partition, then a
reference to the local file /user /john /paper might
cause the local file relocation process to obtain a copy
of the file /../SNSERVER/PW5/user/john/paper, where
SNSERVER is the name of the machine that maintains
the Secret(NATO) file system. This process is
perfectly straightforward and need not be trusted, since
an attempt to name a machine in the wrong security
partition will be caught by the standard TNIU
mechanisms (the local and remote machines will have
incompatible encryption keys). Files modified or
created during a session must, of course, be written
back to their permanent file system by the local file
relocation process at or before the end of the session,

In outline, the complete scenario for automatically
changing the security partition in which a host operates
is as follows. A user at a terminal attached to a TTIU is
authenticated and asked for the security partition in
which he wishes to work. If this partition is within his
clearance, a signal is sent to the TNIU of a vacant host
machine (or to the user’s personal workstation)
instructing it to switch to the indicated security
partition. This signal is protected against forgery or
spoofing by the standard encryption techniques
employed between TNIUs. Upon receipt of the signal,
the host’s TNIU loads the encryption key appropriate
to the new security partition, initiates the purging and
reinitialization of its host machine, and informs the
host’s local file relocation process of the identity of its
new security partition,

We have described a distributed system that provides
a limited but useful form of multilevel secure
operation. Four distinct methods for achieving
separation (physical, temporal, cryptographical, and
logical) have been illustrated. When used judiciously,
they can provide security without inefficiency and with
only a limited number of trusted mechanisms.
Moreover, our trusted mechanisms are relatively
simple and within the current state of the art. Indeed, a
number of them have previously been proposed (and
some implemented) by others, though usually as
stand-alone systems. A more extensive treatment of the
topics covered in this article is available as a technical
report[10]. It describes our mechanisms in more detail,

relates them to their precursors, and discusses some
enhancements to the basic system (the inclusion of
downgraders or guards, and support for multilevel
objects, for instance). Readers who wish to learn more
about issues and techniques relating to computer
security should consult the excellent book by D. E.
Denning[8].

A project to develop an implementation of the
system described here is being sponsored by the Royal
Signals and Radar Establishment, or RSRE, of the UK
Ministry of Defence, and is being carried out by
System Designers Ltd, of Camberley in conjunction
with the Microelectronics Applications Research
Institute, or MARI, and the Computing Laboratory of
the University of Newcastle upon Tyne. The first stage
of this project will result in the delivery of a prototype
to RSRE in mid-1983. The security mechanisms of the
prototype will be provided by ordinary user processes
in a standard Unix United system. This will not, of
course, be secure, but it will allow the operation of the
various mechanisms to be studied in practice, enable
the overall performance of the system to be evaluated,
and most importantly, permit the impact of a
mechanically enforced security policy to be observed
in a realistic environment. If this stage is judged a
success, a prototype implementation of the real system
will follow. We hope that before long we will be able
to report on the progress of this project and, in due
course, on how well it achieves its security, usability,
and performance goals.

Acknowledgments

This research was sponsored by the Royal Signals

and Radar Establishment, Malvern, England. We very
much appreciate the enthusiastic encouragement of
Derek Barnes of RSRE and the stimulation of our
many colleagues at Newcastle, particularly those
involved with Unix United. The Newcastle
Connection, a commercial product licensed by MARI,
is the creation of Lindsay Marshall and Dave
Brownbridge, while the remote procedure call
mechanism is the work of Fabio Panzieri and Santosh
Shrivastava.

Two anonymous referees directed our attention to a
number of vexatious technical problems with some of
our mechanisms and led us to make several
improvements. The final form of this article benefited
considerably from the careful reading, criticism, and
advice of Pete Tasker of the Mitre Corporation. Sarah
Rolph, also of the Mitre Corporation, suggested many
improvements in the presentation of this material.

References

1. C. E. Landwehr, “A Survey of Formal Models for
Cornputer Security, “ Computing Surveys, Vol. 13, No. 3,
Sept. 1981, pp. 247-278.

2. M. H. Cheheyl et al., “Verifying Security,” Computing
Surveys, Vol. 13, No. 3, Sept. 1981, pp. 279-339.

3. J. M. Rushby, “The Design and Verification of Secure
Systems,” Proc. Eighth ACM Symp. Operating System
Principles, Dec. 1981, pp. 12-21, (ACM Operating Systems
Review, Vol. 15, No. 5).

4. G. Grossman, “A Practical Executive for Secure
Communications,” Proc. 1982 Symp. Security and Privacy,
IEEE Computer Society, Apr. 1982, pp. 144-155.

5. D. Lomet et al., “A Study of Provably Secure Operating
Systems,” research report RC9239, IBM T. J. Watson
Research Center, Feb. 1982.

6. D. R. Brownbridge, L. F. Marshall, and B. Randell, “The
Newcastle Connection, or UNIXes of the World Unite!”
Software – Practice and Experience, Vol. 12, Wiley
Interscience, Dec. 1982, pp. 1147-1162.

7. S. K. Shrivastava and F. Panzieri, “The Design of a
Reliable Remote Procedure Call Mechanism,” IEEE Trans.
Computers, Vol. C-31, No. 7, July 1982, pp. 692-697.

8. D. E. Denning, Cryptography and Data Security,
Addison-Wesley, Reading, Mass., 1982.

9. R. M. Needham and M. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Comm.
ACM, Vol. 21, No, 12, Dec. 1978, pp. 993-999.

10. J. M. Rushby and B. Randell, “A Distributed Secure
System,” tech. report 182, Computing Laboratory, University
of Newcastle upon Tyne, England, Feb. 1983.

John M. Rushby is a computer
scientist with the Computer Science
Laboratory of SRI International.
His research interests include the
design, specification, and
verification of secure systems and
other computer systems that must
satisfy stringent requirements. From
1979 to 1982, he was a research
associate with the Computing
Laboratory of the University of
Newcastle upon Tyne, England, and
from 1975 to 1978 he was a lecturer
in the Department of Computer
Science at Manchester University,
England. Rushby received BSc and
PhD degrees in Computer Science,
both from the University of
Newcastle upon Tyne, in 1971 and
1977, respectively.

Brian Randell is a professor of
computing science at the University
of Newcastle upon Tyne, where in
1971 he initiated a program of
research on computing systems that
now encompasses several major
projects. From 1964 to 1969, he
was with IBM, primarily at the
IBM Research Center in the US,
working on operating systems, the
design of ultra high speed
computers, and system design
methodology. Before that, he
worked for the English Electric
Company, where he led a team that
implemented a number of
compilers, including the Whetstone
KDF9 Algol compiler. Randell
graduated in mathematics from
Imperial College, London, in 1957.

Subsequent Developments

 For some years after the publication of the DSS

paper we had little knowledge of how RSRE’s work
was progressing. However by about 1985 the RSRE
DSS prototype had been completed and partially
declassified, and we had been brought back into the
picture somewhat. We then belatedly realized that,
though the DSS scheme directly exploited one of our
system design concepts, that relating to the use of
recursion, it had applied only one of Newcastle's ideas
about system structuring to security, and that there was
an opportunity to apply another, that of “ideal fault-
tolerant computing components” [3]. The resulting
work led to the paper “Building Reliable Secure
Computing Systems out of Unreliable Insecure
Components”, which was published in the 1986
Oakland conference [8] – and which was reprised in
ACSAC’s Classic Papers track in 2001.

But the invitation from ACSAC to provide a
retrospective on our original DSS paper has prompted
us to attempt to discover more about the subsequent
implementation and deployment of the industrial
prototype of DSS, and also to provide a description of
DSS’s modern interpretation in the form of the MILS
architecture.

The UK DSS Technology Demonstrator
Programme

Prompted by our initial work on DSS, RSRE started

a “Technology Demonstrator Programme” (DSS TDP)
to develop and deploy prototypes of DSS – such TDPs
were typical for large physical systems, such as tanks
and ships, but this was the Ministry of Defence’s first-
ever Information Technology TDP. The present
authors were not involved in the demonstrator
programme, which was conducted by RSRE with
private contractors whose identities changed several
times owing to acquisitions and reorganizations, and
knew nothing of how it was developing other than
through publications describing promising progress.

Barnes and Macdonald [5] describe an apparently
successful emulation of DSS that “demonstrated the
full internal functionality of the DSS.” As an
emulation, “the TNIU functions are implemented as
sub-systems within the untrusted host machines, rather
than as separate front-end processors . . . however, in
all other respects the emulation is functionally
complete.” The demonstration was “provided with
applications software which is aimed at an office
automation type of environment.” Its purpose was to
“prove the concept and improve the design.” The cited
paper was based on one presented at a conference in
September 1985, so that stage of the project was
presumably largely complete by that date. The next
stage was “to realize a full, practical DSS prototype”
and it seems this was already under way in 1986 (the
date of the cited paper).

Bates [6] describes progress on the full DSS TDP
five years later and states that it was being developed
to Level 5 of the “computer security confidence scale”
then in use by the UK (roughly B3 on the
contemporaneous US “Orange Book” scheme [9]). It is
stated that the programme was “on target to complete
in 1991 . . . evaluation and certification is expected to
be completed in late 1991 and commercially supported
DSS products are also expected in late 1991.”
Furthermore, “it is intended that the DSS TDP
products will be commercially exploited by several UK
suppliers . . . the first licence to commercially exploit
the DSS technology has already been signed by a
major UK IT company.”

When we received the invitation to present this
retrospective, we inquired after the later history of the
DSS TDP. We were fortunate to obtain a final report
on the “Phase 2 Insertion Trials” [23]. This reports that
the DSS TDP was awarded a UK Level 4 Certificate
(not 5 as anticipated earlier) in April 1993 and was
licensed to British Telecommunications PLC and
GEC-Marconi Secure Systems. The trials were

intended to deploy DSS TDP installations at three
sites: “HQ PTC Innsworth,” “DRA Fort Halstead,” and
“HM Treasury.” The first used a version running OSI
protocols and the other two used TCP/IP. The initial
HQ PTC Innsworth trial in December 1993 failed due
to “an error in the key material supplied by CESG.” A
later attempt in June 1994 was hampered by network
problems suggesting “the Black Network Ethernet
interface might not be fully within IEEE 802.3
specification.” These were finally resolved and the
system worked but “was considered too slow for day-
to-day use.” Furthermore, “the DSS system proved too
unreliable to leave in place.” Improving performance
and reliability “would involve significant reengineering
of the DSS kernel.”

The DRA Fort Halstead trial was conducted in
February 1994. Again, network problems intervened so
that “a liaison could not be established between the
TNIU and the TNIU/TMC.” It seems that heavy loads
(due to other traffic) on a certain network segment
caused the TMC/TNIU to miss the liaison request
packets. The DSS software was modified to operate
better under high network loads but the trial was not
continued. Owing to the problems at the first two trials,
the trial at HM Treasury was canceled.

The report concludes: “it is unlikely that MOD or
DRA will provide further funding for DSS
development . . . its future therefore depends on the
licensees being convinced that the necessary
substantial investment will be worthwhile.” We may be
confident the licensees were not convinced and that the
DSS project was promptly dropped.

From DSS to MILS

After a decade of development effort, the DSS

Technology Demonstration Programme ended in
disappointing failure. Naturally, we tend to attribute
this to the technological limitations of the time (a topic
we will return to later) and to UK development and
management practices, and we remain serene and
confident in the rightness of the DSS ideas. To
describe the subsequent history and evolution of those
ideas, we first need to set the context.

The period from the 1970s through the 90s saw
many efforts to construct secure computer systems.
These systems were of two broad categories:
components for network security (end-to-end
encryption devices, downgraders, filters, etc.), and
general purpose systems supporting Multi-Level
Secure (MLS) applications. However, both categories
used a similar architecture, in which most of the
Trusted Computing Base (TCB) was identified with
the operating system kernel. These monolithic

“security kernels” had a dual responsibility: they had to
provide the basic protection mechanisms of an
operating system (address space isolation, controlled
access to privileged mode and so on) and they had to
enforce the system’s security policy.

Rushby’s 1981 paper [13] argued that this dual
responsibility inevitably leads to complex
implementations that are hard to verify and, instead,
proposed that secure network components would be
better served by a specialized operating system core (a
“separation kernel”) that focuses solely on the
provision of isolated address spaces with controlled
communications between them, while policy is
enforced by trusted applications running in some of
those address spaces.

The paper that is the subject of this retrospective
extended this idea to general purpose systems and
multilevel security. It argues that “separation” is the
essential foundation for any kind of secure
architecture, and that it can be achieved by several
mechanisms: logical (a separation kernel), physical
(separate machines), cryptographic (encryption or
digital signatures), and temporal (periods processing).
Separation creates an architecture of encapsulated
subjects (computational entities with state, often
portrayed diagrammatically as circles or boxes) and
known communication channels between them
(generally portrayed as arrows). Various security
policies can be achieved by a suitable geography of
subjects and channels, and the allocation of trusted
functions to certain subjects, which mediate the
services provided or information allowed to flow to
their outgoing channels. The DSS paper illustrated this
approach with the conceptual design of a system able
to provide limited MLS functionality using all four
kinds of separation mechanisms and relatively simple
trusted functions. The trusted functions were simple
because we used the design freedom afforded by the
Newcastle Connection to “deconstruct” complex
functions (such as the multilevel filestore) into simpler,
separated components. The functionality of the full
filestore was then reconstructed as a distributed
computation over these simpler components. It is for
this reason that we refer to our system as a “Distributed
Secure System,” rather than a “Secure Distributed
System,” the implication being that it is a secure
system that exploits distribution, rather than a
distributed system that happens to be secure.

While approaches based on monolithic security
kernels can deliver cost-effective and functional secure
systems (see, for example, the fervent advocacy of
Schell [20]), it seems there were some
disappointments. Reviews at NSA in the early 1990s
led to reexamination of the separation kernel idea ([10]
states “in 1993 an informal separation kernel working

group was established”) and to prototype
implementations.

Rather later, an architecture for embedded
applications emerged called MILS. The earliest
references seem to be NSA internal papers by Mark
Vanfleet and others dated 1996 and 2003, which are
cited in [2]. MILS originally stood for Multiple
Independent Levels of Security, but is now best
understood as simply a name. Papers on MILS [22],
[1] always credit [13] as their inspiration, and cite DSS
in passing, but we would like to suggest that MILS is
best seen as the modern realization of DSS.

Figure: Encryption Device Composed of Four

Subjects
Like DSS, MILS is a two-level architecture that

considers the issues and mechanisms of policy
enforcement separately from those of resource sharing.
Security policy is the concern of the upper level of the
architecture and is understood in terms of isolated
subjects interacting over known channels (i.e., a
“boxes and arrows” picture). Some subjects will be
trusted, others untrusted, and the goal is to design the
system in such a way that the complexity of trusted
subjects is minimized: this may be achieved by
splitting large trusted functions into smaller and
simpler sub-functions that are allocated to dedicated
subjects with carefully configured communications
channels. For example, in the elementary end-to-end
encryption unit considered in [13], the concern is that
plaintext from the secret “red” side might escape to the
public network on the “black” side. By splitting the
encryption device into four subjects – red, black,
bypass, and crypto – as shown in the above figure, we
simplify this problem. The crypto is trusted to encrypt
everything that passes across its input and output
channels, the bypass is trusted to check that the
plaintext that passes across its input to output channels
looks like packet headers and has limited bandwidth,
and there are no other channels connecting the red to
black sides. With this architecture, the black side
(which will contain the protocol stack, network drivers,
and other complex software) can be completely
untrusted (and similarly for the red side).

To derive maximum benefit from this approach, we
should assume that the resources required for subjects
and their communication channels are cheap, and we

should create subjects and channels freely whenever
this can minimize the complexity of trusted subjects
(where complexity refers to the difficulty of the
associated assurance task, which will generally depend
on both the function provided by the subject, and the
property to be trusted of it). Papers on MILS often
show a more elaborate encryption device with 12
subjects (e.g., Figure12 in [1], and MILS architectures
for the F22 and other complex platforms have
hundreds or thousands of subjects.

We are able to design on the assumption that
subjects and communication channels are cheap
because the lower level of the MILS architecture
makes them so – through the provision of efficient and
secure resource sharing. The MILS lower level
comprises several interoperable components that each
“partition,” “virtualize”, or otherwise separate
individual physical or logical resources into many
separated instances that communicate only through
controlled channels. These components are specialized
to the kind of resource they manage: a separation
kernel supports subjects directly, partitioned
communication systems and networks, and virtualized
NICs provide securely multiplexed communications
with various levels of functionality (roughly, CORBA,
TCP/IP, and bare metal, respectively), a partitioned file
system provides storage functions similar to that
proposed for the DSS filestore, while a console
subsystem securely partitions display area.

Whereas DSS was conceived as a single system,
MILS is conceived as an architecture and a collection
of components that integrators can use to build many
systems. Indeed, part of the aim of MILS is to foster an
infrastructure of commercial off the shelf (COTS)
security components. To this end, Common Criteria
Protection Profiles are being developed for separation
kernels (SKPP), partitioned communications systems
(PCSPP), network subsystems (MNSPP) and other
MILS elements. The idea is that vendors will develop a
COTS marketplace for MILS-compliant components.
The SKPP has been approved [21] and one commercial
separation kernel has been evaluated against it (to
approximately EAL7) and others are planned.

No complete system has been fielded yet, so what
are the reasons for believing MILS will be more
successful than the DSS TDP? First, the basic
technology has evolved and improved greatly over the
years. Separation kernels are similar to the partitioning
real-time kernels used routinely in modern avionics
(indeed some vendors base their separation kernel on
their avionics offering) and to hypervisors such as Xen
(one project aims to develop a separation kernel by
slicing Xen to a minimal subset). Improved hardware
support such as the Intel VT architecture, and
improved understanding of kernel APIs (such as

paravirtualization), all simplify the task of developing
a separation kernel, and improve its performance. It is
entirely feasible to contemplate 100,000 partition
switches per second at a performance cost in single
percentage digits. (On the other hand, modern cache
architectures make it difficult and costly to reduce
covert channel bandwidth as they introduce wide
variation into execution time.) Similarly, avionics
buses such as AFDX and TTA demonstrate the
feasibility of partitioned communications, while
integrated modular avionics (IMA) architectures used
successfully in modern commercial airplanes such as
the Boeing 777 and 787 and Airbus A380 have much
in common with MILS.

Second, the use of distributed computation in DSS
was advanced for its time and there was little
intellectual or infrastructural support for developing
distributed systems. The prevalent thinking was of
networks, rather than systems (hence [15]). Now, we
have middleware and rich infrastructure for developing
distributed applications.

Finally, there is improved understanding of system
development and system integration processes and
their management. The devolved, component-based
approach used in IMA and MILS seems more robust
than the central planning used for DSS TDP.

Looking Forward

Twenty-five years is often cited as the time lag from

research to deployment. The 25th anniversary of the
publication of the DSS paper is approaching (the
extended abstract [19] must have been submitted to the
conference around December 1982, and the technical
report [18] would have been completed about the same
time), so we are hopeful that successful realization of
these ideas is imminent.

As described above, our hope currently rests on the
MILS architecture (and a similar program called HAP,
which is developing a specific platform, rather than a
set of components). However, a successful system
based around MILS would initially establish only the
pragmatic viability of the DSS approach; the bigger
challenge is to develop a certifiably secure system this
way.

As noted, DSS was conceived as a system, and its
components were designed for their specific role
within the system; MILS, in contrast, is conceived as a
set of components that can be integrated with bespoke
and glue components, to realize many systems.
Roughly, DSS was top-down while MILS is bottom-
up. What is the assurance argument for certifiable
security of a system assembled this way? That is the
role of the MILS architecture, and the MILS

Integration Protection Profile (MIPP) being developed
by Rushby and Rance DeLong. The MILS architecture
has two levels of components; the MIPP specifies that
the upper (circles and arrows) level must be
compositional, and the lower (resource sharing) level
must be additively composable. Intuitively,
compositionality means that there must be a way to
calculate the collective security properties of the upper
level components given the security properties of the
components; composable means that the security
properties of a collection of upper level components
are unchanged when these run in the environment
provided by a lower level component (even if faulty or
malicious upper-level components are also present);
and additive means that a collection of composable
lower level components is itself composable.

We believe these ideas can be developed to provide
a formal foundation for compositional certification in
security and other critical fields, including safety [16].
Compositional assurance and certification seem a
worthwhile research challenge for the next twenty-five
years and a logical continuation of the design vision
that inspired DSS.

Additional References

[1]. J. Alves-Foss, P.W. Oman, C. Taylor and W.S. Harrison,
“The MILS architecture for high-assurance embedded
systems,” International Journal of Embedded Systems, vol. 2,
no. 3/4, pp.239-247, 2006.

[2]. J. Alves-Foss, C. Taylor and P. Oman. “A Multi-Layered
Approach to Security in High Assurance Systems,” in
Proceedings of the 37th Annual Hawaii International
Conference on System Sciences, Waikola, HI, IEEE
Computer Society, 2004.

[3]. T. Anderson and P.A. Lee. Fault Tolerance: Principles
and practice, Prentice Hall, 1981.

[4]. D.H. Barnes. “The Provision of Security for User Data
on Packet Switched Networks,” in Proc. 1983 Symp. on
Security and Privacy, pp.121-126, Oakland, CA, IEEE
Computer Society Press, 1983.

[5]. D.H. Barnes and R. MacDonald, “A Practical Distributed
Secure System,” J. Institution of Electronic and Radio
Engineers, vol. 56, no. 5, pp.192-196, 1986.

[6]. A.S. Bates. “Distributed Secure Systems,” in Proc.
DECUS 91, University of Warwick, UK, 1991.

[7]. D.R. Brownbridge, L.F. Marshall and B. Randell, “The
Newcastle Connection, or - UNIXes of the World Unite!,”
Software Practice and Experience, vol. 12, no. 12, pp.1147-
1162, 1982.

[8]. J.E. Dobson and B. Randell. “Building Reliable Secure
Systems out of Unreliable Insecure Components,” in Proc.
Conf. on Security and Privacy, Oakland, IEEE Computer
Society Press, 1986.

[9]. DoD. Department of Defense Trusted Computer System
Evaluation Criteria, DOD 5200.28.STD (supersedes CSC-
STD-001-83), Department of Defense, Washington, DC,
USA, 1985. [(US Government Printing Office Number 008-
000-00461-7)]

[10]. W. Martin, P. White, F.S. Taylor and A. Goldberg.
“Formal Construction of the Mathematically Analyzed
Separation Kernel,” in Proc. 15th IEEE international
conference on Automated software engineering, pp.133-142,
Washington, DC, USA, IEEE Computer Society, 2000.
[ISBN:0-7695-0710-7]

[11]. P. Naur and B. Randell, (Ed.). Software Engineering:
Report of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7th to 11th October 1968,
Brussels, Scientific Affairs Division, NATO, 1969, 231 p.

[12]. B. Randell. “Recursively Structured Distributed
Computer Systems,” in Proc. 3rd Symp. on Reliability on
Distributed Software and Database Systems, pp. 3-11,
Clearwater Beach, Florida, IEEE Computer Society Press,
1983.

[13]. J.M. Rushby. “The Design and Verification of Secure
Systems,” in Proc. Symp. on Operating System Principles
(SOSP-8), pp.12-21, ACM, 1981. [ACM Operating Systems
Review, Vol. 15, No. 5]

[14]. J.M. Rushby. “Proof of Separability - A Verification
Technique for a Class of Security Kernels,” in Proc. 5th
International Symposium on Programming, pp.352-367,
Turin, Italy, Springer Verlag LNCS Vol. 137, 1982.

[15]. J.M. Rushby. “Networks are Systems,” in Proc.
Department of Defense Computer Security Center
Invitational Workshop on Network Security, pp.7.24-7.37,
New Orleans, LA, Department of Defense Computer
Security Center, 1985. [Reprinted Abrams & Podell, pp.
300-316]

[16]. J.M. Rushby. “Just-in-Time Certification,” in Proc.
12th IEEE International Conference on the Engineering of
Complex Computer Systems (ICECCS), pp.15-24, Auckland,
New Zealand, IEEE CS, 2007.

[17]. J.M. Rushby and B. Randell, “A Distributed Secure
System,” IEEE Computer, vol. 16, no. 7, pp.55-67, 1983.

[18]. J.M. Rushby and B. Randell. A Distributed Secure
System, TR 182, Computing Laboratory, University of
Newcastle upon Tyne, 1983.

[19]. J.M. Rushby and B. Randell. “A Distributed Secure
System (Extended Abstract),” in Proc. 1983 Symp. on
Security and Privacy, pp.127-135, Oakland, CA, IEEE, 1983.

[20]. R. Schell. “Information Security: Science,
Pseudoscience, and Flying Pigs,” in Proc. 17th Computer
Security Applications Conference (ACSAC), pp.205-216,
New Orleans, LA, Dec 2001.

[21]. Validated Protection Profile - U.S. Government
Protection Profile for Separation Kernels in Environments
Requiring High Robustness (Version 1.03), NSA, National

Information Assurance Partnership, Information Assurance
Directorate, 29 June 2007.

[22]. W.M. Vanfleet, J.A. Luke, R.W. Beckwith, C. Taylor,
B. Calloni and G. Uchenick, “MILS: Architecture for High-
Assurance Embedded Computing,” Crosstalk: The Journal of
Defense Software Engineering, Aug 2005.

[23]. J. Wood and N. O'Connor. Distributed Secure System
Phase 2 Insertion Trials Final Report, Report W041037,
Defence Research Agency, 1944.

Acknowledgements

The preparation of this reprise of our 1983 paper has
provided us with a welcome opportunity to renew
contact with Derek Barnes and Andy Bates, who have
been very helpful to us regarding the aftermath of our
work on DSS.

John Rushby’s research was partially supported by
AFRL through a subcontract to Raytheon, and by NSF
grant CNS-0720908. His work on MILS has been
performed in collaboration with Rance DeLong.

