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Abstract 
 
The early 1980s saw the development of some 

rather sophisticated distributed systems. These were 
not merely networked file systems: rather, using 
remote procedure calls, hierarchical naming, and what 
would now be called middleware, they allowed a 
collection of systems to operate as a coherent whole. 
One such system in particular was developed at 
Newcastle that allowed pre-existing applications and 
(Unix) systems to be used, completely unchanged, as 
components of an apparently standard large (multi-
processor) Unix system. 

The Distributed Secure System (DSS) described in 
our 1983 paper proposed a new way to construct 
secure systems by exploiting the design freedom 
created by this form of distributed computing. The DSS 
separated the security concerns of policy enforcement 
from those due to resource sharing and used a variety 
of mechanisms (dedicated components, cryptography, 
periods processing, separation kernels) to manage 
resource sharing in ways that were simpler than 
before. 

In this retrospective, we provide the full original 
text of our DSS paper, prefaced by an introductory 
discussion of the DSS in the context of its time, and 
followed by an account of the subsequent 
implementation and deployment of an industrial 
prototype of DSS, and a description of its modern 
interpretation in the form of the MILS architecture. We 
conclude by outlining current opportunities and 
challenges presented by this approach to security. 

 
Introduction and Background 

 
The idea of a DSS (Distributed Secure System) was 

in large part an almost accidental outcome of a long-

running and indeed still continuing series of research 
projects at Newcastle on reliability and in particular 
fault tolerance, work whose origins can be traced back 
at least in part to the original 1968 NATO Software 
Engineering Conference [11]. The discussions at this 
conference of the major problems of many then-current 
large software projects were a great spur to research in 
subsequent years aimed at producing bug-free 
software. But we at Newcastle, on the other hand, were 
motivated to wonder whether it might be possible to 
find means of achieving reasonably reliable service 
from complex software systems despite the bugs that 
they would almost certainly still contain.  

Our initial work had simply concerned sequential 
programs. But by 1975 we had moved on to consider 
the problems of providing structuring for error 
recovery among sets of co-operating processes. By the 
late 1970s we were starting to consider the problems of 
distributed computing systems. In effect, what we had 
started to do, and in fact continued to do for some 
years, was gradually extend the range of systems and 
types of fault for which we tried to provide well-
structured error recovery; as a long term research 
project, as opposed to an urgently-needed real 
application project, we had the luxury of gradually 
trying to add complexity to reliability, as opposed to 
striving to add reliability to immense complexity. 

Our reliability research was mainly funded by the 
SRC (Science Research Council), but we had 
additional funding from the RSRE (the Royal Signals 
and Radar Establishment) of the UK Ministry of 
Defence, which later became part of the Defence 
Research Agency, and was later still partially 
privatized as Qinetiq. But then RSRE offered us some 
further funding to work on security rather than 
reliability – specifically to undertake a detailed and 
critical study of the various projects then under way in 



the States aimed at providing formal proofs of various 
would-be highly secure systems.  

This enabled Rushby to rejoin Newcastle (where he 
had been a student), to work alongside the reliability 
project. Rushby came to realize that the Secure User 
Executive developed (largely by Derek Barnes) [4] had 
a much simpler structure than most of the secure 
operating systems being developed in the USA, and 
that its formal verification would be best served by a 
different approach. This led to his formulation of the 
ideas of a “separation kernel” [13], and of “proof of 
separability” [14], which were later to influence the 
conception of DSS. 

The reliability project had intended to base its work 
on the problems of tolerating faults in distributed 
systems on some suitable pre-existing distributed 
system. Our efforts to find such a system came to an 
abrupt halt when in 1982 we came up with a novel 
scheme for constructing a powerful distributed system 
from a set of UNIX systems, taking advantage of the 
hierarchical naming structure used in UNIX. Our 
scheme involved the insertion of a transparent layer of 
software (or what would now be called “middleware”) 
at the UNIX system call level, so that neither the UNIX 
system nor any of the application programs had to be 
altered – this layer of software we called the 
“Newcastle Connection”, the distributed systems we 
could build using it we termed “UNIX United” systems 
[7]. An important characteristic of the Newcastle 
Connection, the chief designer of which was our 
colleague Lindsay Marshall, was that it dealt with all 
of the system calls, not just those involved with files, 
so that UNIX United was truly a distributed computing 
system, not merely a distributed file system. 

In UNIX United we had come up with what was 
essentially a recursive approach to system building 
[12], and we rapidly realized that it would be possible 
to exploit the recursive characteristics of the Newcastle 
Connection and UNIX United by the provision of other 
transparent layers of software, including one for 
hardware fault tolerance, based on the use of Triple 
Modular Redundancy (TMR).  

It was at this stage that Rushby announced that he 
was tired of theoretical security research and of 
critiquing others’ such research, and said that he 
wanted to join in the system-building fun that the rest 
of us were having. Within a single conversation, 
against the background of the twin ideas of the 
Newcastle Connection and of Proofs of Separation, we 
came to the understanding that the recursive approach 
to system building could be, so to speak, applied to 
deconstruct a system as well as to build one. Thus we 
realized that would be possible, indeed remarkably 
easy, to implement an apparently-conventional UNIX 
system that enforced a multi-level security policy by 

allocating different security domains to different 
physical machines, and enforcing security constraints 
on inter-machine communication, rather than by means 
of the operating system in a single machine.  

By the end of the week we had a working 
demonstration of our DSS scheme, albeit an extremely 
crude one in which the encryption-based security 
controls were implemented in software (indeed in 
shell-script!) rather than in the sort of actual small 
trusted special-purpose hardware communications 
devices that we envisaged using. (We initially called 
these devices Z-boxes, but were later strongly advised, 
for mysterious reasons that were never explained to us, 
to instead refer to them as TNIUs, standing for Trusted 
Network Interface Units.)  

A further point that struck us almost immediately 
was that we could take advantage of complete mutual 
independence of the TNIUs and the TMR layer. 
Specifically it would be possible to combine the use of 
TNIUs, and of groups of three UNIX systems 
incorporating TMR layers, and so very readily produce 
a system that was both highly reliable and highly 
secure, without having to concern ourselves about 
possible interference between the security and 
reliability mechanisms.  

When we reported our DSS ideas to RSRE, they 
found them interesting, and sent a small party to 
Newcastle to see our demonstration system, but raised 
no objections to our submitting the DSS paper for 
publication [17]. However, their interest grew, indeed 
to the point of their planning their own full-scale 
system building exercise. Thus when – prior to 
publication of our paper – we discovered a 
vulnerability in the design of the (virtual) multi-level 
secure file store that had been missed by the referees, 
we were forbidden to reveal this vulnerability, leave 
alone correct the paper by including a solution to it, 

What happened afterwards is described in the 
postscript that follows the original DSS paper, which 
we reproduce here in full. (The citations in this 
introduction and in the postscript are to the “Additional 
References” at the end of this document, and so are 
kept separate from those in the original DSS paper.) 



 
A distributed general-purpose computing 
system that enforces a multilevel security 
policy can be created by properly linking 

standard Unix systems and small trustworthy 
security mechanisms. 

 

A Distributed Secure System 
John Rushby and Brian Randell 

University of Newcastle upon Tyne 
 
A secure system is one that can be trusted to keep 

secrets, and the important word here is “trusted.” 
Individuals, governments, and institutions such as 
banks, hospitals, and other commercial enterprises will 
only consign their secrets to a computer system if they 
can be absolutely certain of confidentiality. 

The problems of maintaining security are 
compounded because the sharing of secrets is generally 
desired but only in a tightly controlled manner. In the 
simplest case, an individual can choose other 
individuals or groups with whom he wishes to share 
his private information. This type of controlled sharing 
is called discretionary security because it is permitted 
at the discretion of the individual. 

When the individuals concerned are members of an 
organization, however, that organization may 
circumscribe their discretionary power to grant access 
to information by imposing a mandatory security 
policy to safeguard the interests of the organization as 
a whole. The most widely used scheme of this type is 
the multilevel security, or MLS, policy employed in 
military and government environments[1]. Here, each 
individual is assigned a clearance chosen from the four 
hierarchically ordered levels, Unclassified, 
Confidential, Secret, and Top Secret, and each item of 
information is assigned a classification chosen from 
the same four levels. The fundamental requirement is 
that no individual should see information classified 
above his clearance. 

The fewer the people who share a secret, the less the 
risk of its disclosure through accident or betrayal to 
unauthorized persons. Consequently, the basic MLS 
policy is enhanced by the use of compartments or 
categories designed to enforce “need -to-know” 
controls on the sharing of sensitive information. Each 
individual’s clearance includes the set of compartments 
of information to which he is permitted access, and the 
classification of information is similarly extended to 
include the set of compartments to which it belongs. 
The combination of a set of compartments and a 

clearance or classification is called a security partition. 
An individual is permitted access to information only if 
his clearance level equals or exceeds the classification 
of the information and if his set of compartments 
includes that of the information. Thus an individual 
with a Secret-level clearance for the NATO and 
Atomic compartments, abbreviated as a Secret(NATO, 
Atomic) clearance, may see information classified as 
Secret(NATO) or Confidential(NATO, Atomic), but 
not that classified as Top Secret(NATO) or 
Confidential(NATO, Crypto). 

A multilevel secure system should enforce the policy 
outlined above; unfortunately, conventional computer 
systems are quite incapable of doing so. In the first 
place, they generally have no cognizance of the policy 
and therefore make no provision for enforcing it; there 
is usually no way of marking the security classification 
to which a file, for example, belongs. In the second 
place, experience shows that conventional systems are 
vulnerable to outside penetration. Their protection 
mechanisms can always be broken by sufficiently 
skilled and determined adversaries. Finally, and most 
worrisome of all, there is no assurance that the system 
itself cannot be subverted by the insertion of “trap 
doors” into its own code or by the infiltration of 
“Trojan horse” programs. In these cases, the enemy is 
located “inside the walls” and the system’s protection 
mechanisms may be rendered worthless. This type of 
attack is particularly insidious and hard to detect or 
counter because it can compromise security without 
doing anything so flagrant as directly copying a Top 
Secret file into an Unclassified one. A Trojan horse 
program with legitimate access to a Top Secret file can 
convey the information therein to an Unclassified 
collaborator by “tapping it out” over clandestine 
communication channels that depend on the 
modulation of some apparently innocuous but visible 
component of the system state, such as the amount of 
disk space available. 

Drastic measures have been adopted to overcome 
these deficiencies in the security mechanisms of 
conventional systems. One approach is to dedicate the 
entire system to a single security partition. Thus a 
system dedicated to Secret(NATO) operations would 
support only information and users belonging to that 
single security partition. The principal objection to this 
method of operation is that it fails to provide one of the 
main functions required of a secure system – the 
controlled sharing of information between different 
security partitions. Another drawback is the cost of 
providing separate systems for each security partition. 
This problem can be mitigated to some extent by 
employing periods processing in which a single system 
is dedicated to different security partitions at different 



times and is cleared of all information belonging to one 
partition before it is reallocated to a different one. 

Another crude method for coping with the security 
problems of ordinary systems is to require all users to 
be cleared to the level of the most highly classified 
information that the system contains. This is called 
“system high” operation. The rationale is that even if 
the system has been subverted, it can reveal 
information only to those who can be trusted with it. 
The disadvantage to this scheme is that it is very 
expensive (and counter to normal security doctrines) to 
clear large numbers of people for highly classified 
information that they have no real need to know. 
Furthermore, many excellent people may be unable or 
unwilling to obtain the necessary clearances. This 
approach can also lead to the overclassification of 
information, thereby reducing its availability 
unnecessarily. 

Acronym Definitions 
CBC:  Cipher block chaining 
DES:  Data Encryption Standard 
FARM: File access reference monitor 
FIG:  File integrity guarantor 
IFS:  Isolated file store 
LAN:  Local area network 
MARI: Microelectronics Applications Research Institute 
MLS:  Multilevel security 
RPC:  Remote procedure call 
RSRS: Royal Signals and Radar Establishment 
SFM:  Secure file manager 
SFS:  Secure file store 
TNIU: Trustworthy network interface unit 
TTIU: Trustworthy terminal interface unit 
Several attempts have been made to construct truly 

secure systems for use in classified and other sensitive 
environments. However, the builders of such systems 
face a new problem: They must not only make their 
systems secure, but also convince those who will rely 
on them that they are secure. A full general-purpose 
operating system is far too complex for anyone to be 
able to guarantee this security. Accordingly, most 
efforts have focused on partitioning the system into a 
small and simple trusted portion and a much larger and 
more complex untrusted one. The system should be 
structured so that all securityrelevant decisions and 
operations are performed by the trusted portion in a 
way that makes the untrusted portion irrelevant to the 
security of the overall system. It is then necessary to 
rigorously establish the properties required of the 
trusted portion and prove that it does indeed possess 
them. Such proofs constitute security verification; they 
use the techniques of formal program verification to 
show that the system implementation (usually its 
formal specification) is consistent with a mathematical 
model of the security properties required[1,2]. 

The trusted portion of a secure system is generally 
identified with a small operating system nucleus 
known as a security kernel; the rest of the operating 
system and all applications and user programs belong 
to the untrusted component. Certain difficulties attend 
the use of such kernelized systems, however. 

Because it provides an additional level of 
interpretation beneath the main operating system, a 
security kernel necessarily imposes some performance 
degradation. This can be minor when specialized 
applications are concerned, since the kernel can be 
tuned to the application, but general-purpose 
kernelized operating systems are three to ten times 
slower than their insecure counterparts. Also, the 
division of a conventional operating system into 
trusted and untrusted components is a complex and 
expensive task that cannot easily accommodate 
changes and enhancements to its base operating 
system. Consequently, kernelized systems often lag 
many versions behind the conventional operating 
systems from which they are derived. 

Finally, and as we have argued elsewhere[3], 
security kernels for general-purpose operating systems 
tend to be complex, and their interactions with 
nonkernel trusted processes are also complex. The 
result is that the verification of their security properties 
is neither as complete nor as convincing as might be 
desired. None of these problems are arguments against 
security kernels per se, which have proved very 
successful for certain limited and specialized 
applications such as cryptographic processors and 
message systems[4]; but they do indicate that security 
kernels are unlikely to prove satisfactory as the 
primary security mechanism for general-purpose 
systems[5]. 

Our approach is to finesse the problems that have 
caused difficulty in the past by constructing a 
distributed secure system instead of a secure operating 
system. Our system combines a number of different 
security mechanisms to provide a general-purpose 
distributed computing system that is not only 
demonstrably secure but also highly efficient, 
cost-effective, and convenient to use. The approach 
involves interconnecting small, specialized, provably 
trustworthy systems and a number of larger, untrusted 
host machines. The latter each provide services to a 
single security partition and continue to run at full 
speed. The trusted components mediate access to and 
communications between the untrusted hosts; they also 
provide specialized services such as a multilevel secure 
file store and a means for changing the security 
partition to which a given host belongs. 

The most significant benefits of our approach to 
secure computing are that it requires no modifications 
to the untrusted host machines and it allows them to 



provide their full functionality and performance. 
Another benefit is that it enables the mechanisms of 
security enforcement to be isolated, single purpose, and 
simple. We therefore believe that this approach makes 
it possible to construct secure systems whose 
verification is more compelling and whose 
performance, cost, and functionality are more attractive 
than in previous approaches. 

 
Principles and mechanisms for secure and 
distributed systems 

 
The structure of all secure systems constructed or 

designed recently has been influenced by the concept 
of a reference monitor. A reference monitor is a small, 
isolated, trustworthy mechanism that controls the 
behavior of untrusted system components by mediating 
their references to such external entities as data and 
other untrusted components. Each proposed access is 
checked against a record of the accesses that the 
security policy authorizes for that component. 

It is implicit in the idea of a reference monitor, and 
utterly fundamental to its appreciation and application, 
that information, programs in execution, users, and all 
other entities belonging to different security 
classifications be kept totally separate from one 
another. All channels for the flow of information 
between or among users and data of different security 
classifications must be mediated by reference monitors. 
For their own protection, reference monitors must also 
be kept separate from untrusted system components. 

Our approach to the design of secure systems is 
based on these key notions of separation and 
mediation. These are distinct logical concerns, and for 
ease of development and verification, the mechanisms 
that realize them are best kept distinct also. We 
consider it a weakness that many previous secure 
system designs confused these two issues and used a 
single mechanism – a security kernel – to provide both. 
Once we recognize that separation is distinct from 
mediation, we can consider a number of different 
mechanisms for providing it and use each wherever it 
is most appropriate. In fact, our system uses four 
different separation mechanisms: physical, temporal, 
logical, and cryptographical. 

Physical separation is achieved by allocating 
physically different resources to each security partition 
and function. Unfortunately, the structure of 
conventional centralized systems is antithetical to this 
approach; centralized systems constitute a single 
resource that must be shared by a number of users and 
functions. For secure operation, a security kernel is 
needed to synthesize separate virtual resources from 
the shared resources actually available. This is not only 

inimical to the efficiency of the system, but it requires 
complex mechanisms whose own correctness is 
difficult to guarantee. 

In contrast with traditional centralized systems, 
modern distributed systems are well suited to the 
provision of physical separation. They necessarily 
comprise a number of physically separated 
components, each with the potential for dedication to a 
single security level or a single function. To achieve 
security, then, we must provide trustworthy reference 
monitors to control communications between the 
distributed components and to perform other security- 
critical operations. The real challenge is to find ways 
of structuring the system so that the separation 
provided by physical distribution is fully exploited to 
simplify the mechanisms of security enforcement 
without destroying the coherence of the overall system. 

Because it is costly to provide physically separate 
systems for each security partition and reference 
monitor, we use physical separation only for the 
untrusted computing resources (hosts) of our system 
and for the security processors that house its trusted 
components. Temporal separation allows the untrusted 
host machines to be used for activities in different 
security partitions by separating those activities in 
time. The system state is reinitialized between 
activities belonging to different security partitions. 

 
The real challenge is to find ways of structuring the 
system so that the separation provided by physical 

distribution is fully exploited to simplify the 
mechanisms of security enforcement without 

destroying the coherence of the overall system. 
 

The security processors can each support a number 
of different separation and reference monitor functions, 
and also some untrusted support functions, by using a 
separation kernel to provide logical separation between 
those functions. Experience indicates that separation 
kernels (simple security kernels whose only function is 
to provide separation) can be relatively small, 
uncomplicated, and fast, and verification seems 
simpler and potentially more complete for them than it 
does for general-purpose security kernels[3]. 

Our fourth technique, cryptographic separation, uses 
encryption and related (checksum) techniques to 
separate different uses of shared communications and 
storage media. 

The four separation techniques provide the basis for 
our distributed secure system. This is a heterogeneous 
system comprising both untrusted general-purpose 
systems and trusted specialized components, and to be 
useful it must operate as a coherent whole. To this end, 
our mechanisms for providing security are built on a 
distributed system called Unix United, developed in 



the Computing Laboratory at the University of 
Newcastle upon Tyne[6]. A Unix United system is 
composed of a (possibly large) set of interlinked 
standard Unix systems, or systems that can masquerade 
as Unix at the kernel interface level, each with its own 
storage and peripheral devices, accredited set of users, 
and system administrator. The naming structures (for 
files, devices, commands, and directories) of each 
component Unix system are joined into a single 
naming structure in which each Unix system is, to all 
intents and purposes, just a directory. The result is that, 
subject to proper accreditation and appropriate access 
control, each user on each Unix system can read or 
write any file, use any device, execute any command, 
or inspect any directory regardless of which system it 
belongs to. The directory naming structure of a Unix 
United system is set up to reflect the desired logical 
relationships between its various machines and is quite 
independent of the routing of their physical 
interconnections. 

 
Figure 1: The naming structure of a simple 

Unix United system. 
The simplest possible case of such a structure, 

incorporating just two Unix systems, named unix1 and 
unix2, is shown in Figure 1. From unixl, and with the 
root (“/”)and current working directory (“.”) as shown, 
one could copy the file “a” into the corresponding 
directory on the other machine with the Unix shell 
command 

cp a /../unix2/user/brian/a 
(For those unfamiliar with Unix, the initial “/” 

symbol indicates that a path name starts at the root 
directory rather than at the current working directory, 
and the “..” symbol is used to indicate a parent 
directory.)  

This command is in fact a perfectly conventional use 
of the standard Unix shell command interpreter and 
would have exactly the same effect if the naming 
structure shown had been set up on a single machine 
and unix I and unix2 had been conventional directories. 

All the standard Unix facilities, whether invoked by 
shell commands or by system calls within user 
programs, apply unchanged to Unix United, causing 

intermachine communication as necessary. A user can 
therefore specify a directory on a remote machine as 
his current working directory, request execution of a 
program held in a file on a remote machine, redirect 
input and/or output, use files and peripheral devices on 
a remote machine, and set up pipelines that cause 
parallel execution of communicating processes on 
different machines. Since these are completely 
standard Unix facilities, a user need not be concerned 
that several machines are involved. 

 
Figure 2: The Newcastle Connection. 

Unix United conforms to a design principle for 
distributed systems that we call the “recursive 
structuring principle”. This requires that each 
component of a distributed system be functionally 
equivalent to the entire system. Applying this principle 
results in a system that automatically provides network 
transparency and can be extended (or contracted) 
without requiring any change to its user interface or to 
its external or internal program interfaces. The 
principle may seem to preclude systems containing 
specialized components such as servers, but this is not 
so. Any system interface must contain provisions for 
exception conditions to be returned when a requested 
operation cannot be carried out. Just as the operating 
system of an ordinary host machine can return an 
exception when asked to operate on a nonexistent file, 
so a specialized server that provides no file storage can 
always return exceptions when asked to perform file 
operations. 

Unix United has been implemented without 
changing the standard Unix software in any way; 
neither the Unix kernel nor any of its utility programs – 
not even the shell command interpreter – have been 
reprogrammed. This has been accomplished by 
incorporating an additional layer of software called the 
Newcastle Connection in each of the component Unix 
systems. This layer of software sits on top of the 
resident Unix kernel; from above it is functionally 
indistinguishable from the kernel, while from below it 
looks like a normal user process. Its role is to filter out 
system calls that have to be redirected to another Unix 
system and to accept system calls that have been 
directed to it from other systems. Communication 
between the Newcastle Connection layers on the 
various systems is based on the use of a remote 
procedure call protocol and is shown schematically in 
Figure 2. 



All requests for system-supported objects such as 
files ultimately result in procedure calls on the Unix 
kernel interface. If the service or object required is 
remote rather than local, the local procedure call is 
simply intercepted by the Newcastle Connection and 
replaced with a remote one. This substitution is 
completely invisible at the user or program level, 
providing a powerful yet simple way of putting 
systems together. Equally important, it provides a 
means of partitioning what appears to be a single 
system into a number of distributed components. From 
our perspective, this partitioning is the crucial property 
of Unix United, since it enables a large, insecure Unix 
system to be broken into a number of physically 
separate components with no visible change at the user 
level. The following sections will explain how we 
exploit this physical separation to construct a secure 
system. We begin with a very simple system that 
merely isolates different security partitions from one 
another. 

 
A securely partitioned distributed system 

 
We will describe a secure Unix United system 

composed of standard Unix systems (and possibly 
some specialized servers that can masquerade as Unix) 
interconnected by a local area network, or LAN. We 
assume that all the component Unix systems are 
untrustworthy and that the security of the overall 
system must not depend on assumptions concerning 
their behavior – except that the LAN provides their 
only means of intercommunication. 

The consequence of not trusting the individual 
systems is that the unit of protection must be those 
systems themselves; thus, we will dedicate each to a 
fixed security partition. We might allocate two systems 
to the Secret level, one to the Top Secret level, and the 
rest to Unclassified use. Limited need-to-know 
controls can be provided by dedicating individual 
machines to different compartments within a single 
security level; thus, one of the Secret systems could be 
dedicated to the Atomic compartment and another to 
NATO. In a commercial environment, some systems 
could be dedicated to Finance and others to Personnel 
and Management. Users are assigned to hosts with the 
knowledge that no security is guaranteed within those 
individual systems. Note also that since the hosts are 
not trusted, they cannot be relied upon to authenticate 
their users correctly. Therefore, access to each system 
must be controlled by physical or other external 
mechanisms. 

Although there is no security within an individual 
Unix system, the key to our proposal is to enforce 
security on the communication of information between 

systems. To this end, we place a trustworthy mediation 
device between each system and its network 
connection; we call it a trustworthy network interface 
unit, or TNIU (see Figure 3). 

The initial and very restrictive purpose of TNIUs is 
to permit communication only between machines 
belonging to the same security partition. The single 
Unix United system is therefore divided into a number 
of disjoint subsystems. We will describe later how our 
system can be extended to move information between 
partitions securely, thereby providing true multilevel 
security. 

Controlling which hosts can communicate with one 
another is a reference monitor function, but because the 
LAN can be subverted or tapped, the TNIUs must also 
provide a separation function to isolate and protect the 
legitimate host-to-host communications channels. This 
separation function is provided cryptographically, with 
TNIUs encrypting all communications sent over the 
LAN. Encryption is traditionally used to protect 
communications between parties who share a common 
interest in preserving the secrecy of that 
communication, but this is not the case here. Host 
machines are untrusted and may attempt to thwart the 
cryptographic protection provided by their TNIUs. For 
this reason, the encryption must be managed very 
carefully to prevent clandestine communication 
between host machines, or between a host machine and 
a wiretapping accomplice. 

Although the basic principles of encryption 
management are well established[8], a tutorial outline 
of the issues and techniques as they affect our system 
may benefit readers to whom this material is new. 

Encryption and the protection of commun-
ications. Trustworthy network interface units use the 
Data Encryption Standard, or DES[8] to protect 
information sent over the LAN. However, since host 
machines are untrusted and the LAN can be tapped, the 
simplest form of DES encryption – the so-called 
electronic code book mode – is ruled out. In this mode, 
each 64-bit block of data is encrypted as a separate 
unit, and even a very powerful encryption algorithm 
such as the DES cannot prevent the leakage of 
information from a corrupt host machine under these 
circumstances. For example, suppose that a corrupt 
host wishes to communicate the bit pattern 01101 to a 
wiretapping accomplice. The host constructs a message 
XYYXY, where X and Y are arbitrary but distinct bit 
patterns of the same length and alignment as the units 
of block encryption, and sends it to its TNIU for 
transmission. The TNIU will encrypt the message to 
yield, say, PQQPQ before transmitting it over the 
LAN, but the bit pattern 01101 remains visible in this 
encrypted message and can easily be extracted by a 
wiretapper. Notice that the threat here is not due to any 



weakness in the encryption algorithm employed, but to 
the way in which it is used; one need not be able to 
decrypt messages to extract information planted by a 
corrupt machine, 

 
Figure 3: A securely partitioned system. 

Clandestine communications channels based on 
plaintext patterns that persist into the ciphertext can be 
thwarted by employing a more elaborate mode of 
encryption called cipher block chaining, or CBC, 
which uses a feedback technique to mask such patterns 
by causing the encrypted value of each block to be a 
complex function of all previous blocks[8]. Of course, 
identical messages will yield identical ciphertexts, even 
when CBC-mode encryption is used. More 
importantly, messages that begin with the same prefix 
will yield ciphertexts that also share a common prefix. 
A corrupt host can therefore signal to a wiretapping 
accomplice by modulating the length of the prefix that 
successive messages have in common. This channel for 
clandestine information flow must be closed, and this 
will be achieved if TNIUs attach a random block of 
data, different in each case, to the front of each 
message before encrypting it, 

The careful use of CBC-mode encryption prevents 
information from leaking through channels that 
modulate message contents, but significant channels 
for information leakage still remain. These are 
pattern-of-use channels whereby a corrupt host 
modulates the visible parameters of messages in a way 
that can be decoded by a wiretapping accomplice. The 
properties that can be modulated are the lengths of 
individual messages, their time and frequency of 
transmission, and their destination. 

 
All techniques for introducing noise inevitably 
reduce the bandwidth available for legitimate 

communications and may increase the latency of 
message delivery. 

 
(Presumably the source is fixed at the location of the 

corrupt host.) These properties, of which length and 
destination are by far the most important, can be 
modulated to yield clandestine communication 
channels of surprisingly high bandwidth. Unless link 

encryption is used to reinforce the end-to-end 
encryption described here, it will not be possible to 
completely sever these channels. Since link encryption 
is infeasible with most LAN technologies, the best 
approach is to reduce the bandwidth of these 
pattern-of-use channels to a tolerable level, either 
directly or through the introduction of noise, 

The length channel is the easiest to deal with. TNIUs 
process message units of a fairly large, fixed size – say 
1024 bytes. Long messages must be broken into a 
number of separate message units; short ones, and the 
residue of long ones, must be padded to fill a whole 
unit. (If this technique causes great numbers of largely 
empty message units to be generated, some of the 
legitimate bandwidth of the LAN will be wasted; but 
this is not usually a scarce resource and some tuning of 
the choice of the unit size is possible in any case.) 
When this is done, a wiretapper cannot observe the 
exact length of a message but can only estimate the 
number of message units that it occupies. This 
information will be difficult to extract, and the corrupt 
host will also have to modulate a second parameter 
(e.g., destination) so that the wiretapper can identify 
the message units constituting each message. 

The bandwidth of the channel that modulates 
message destinations can only be reduced by 
introducing noise, thereby complicating traffic patterns 
so that the wiretapper finds it hard to detect and extract 
any deliberate modulation. The obvious way to do this 
is for each TNIU to generate a steady stream of 
spurious messages to all other TNIUs in its own 
security partition. Spurious messages are marked as 
such (under encryption, of course) and are discarded by 
TNIUs that receive them. More refined strategies, such 
as routing messages indirectly through a number of 
intermediate TNIUs before delivering them to their 
final destination, are clearly possible, but all techniques 
for introducing noise inevitably reduce the bandwidth 
available for legitimate communications and may 
increase the latency of message delivery. Each 
installation must choose its priorities in such a 
trade-off. 

The techniques described so far enforce separation 
between the outside world and communications 
internal to the distributed secure system. They do not, 
however, provide separation between the different 
internal communications channels of the system. Thus, 
the reference monitor component of a Secret-level 
TNIU can determine that its host is attempting to 
communicate with another Secret-level host and that 
this communication accords with the security policy 
and may therefore proceed; however, it cannot prevent 
the LAN messages that constitute the communication 
from being delivered, either through error or malice, to 
the TNIU of, say, an Unclassified host. Furthermore, 



unless additional mechanisms are introduced, the 
receiving TNIU will not necessarily be able to detect 
that the messages have been sent to it in error. 

Incorrect delivery can occur because the LAN 
hardware, by accident or intent, misinterprets message 
destination fields, or because those fields are modified 
by an active wiretapper. (Remember that these fields 
must be in the clear so that the LAN hardware can 
interpret them.) TNIUs may attempt to overcome this 
threat by embedding the true source, destination, and 
security partition of each message unit inside the data 
portion of the message unit itself, where it will be 
protected by encryption, However, this technique can 
be defeated by an active wiretapper who splices the 
identification portion of a genuinely Unclassified 
message onto the body of a Secret one. 

It might appear that CBC-mode encryption 
automatically protects against this type of attack and 
that because the encrypted value of each block within a 
message unit is a complex function of all previous 
blocks, messages formed by splicing parts of different 
messages together will decrypt unintelligibly, In fact, 
this is not so. Although the encrypted value of each 
block produced by CBC-mode encryption depends 
implicitly on all prior plaintext blocks, it depends 
explicitly on only the immediately preceding ciphertext 
block[8]. Thus, damage to the contents or sequencing 
of ciphertext blocks affects only the decryption of the 
block immediately following the damaged or 
misplaced block; in other words, CBC-mode 
decryption is “self-healing.” 

Two methods are available for securely separating 
the communications channels belonging to different 
security partitions. The first uses a high-quality 
checksum to guarantee the integrity of each message 
unit, including its identification fields. TNIUs must 
calculate the checksum of each message unit before 
they encrypt it, and they must encrypt the message unit 
and its checksum as a single unit so that the checksum 
will be protected by encryption. Whenever a TNIU 
receives a message unit, it must first decrypt it and 
recompute its checksum. Only if the recomputed 
checksum matches the one sent with the message unit 
should the unit be accepted by the TNIU for further 
processing. The integrity of all message units accepted 
is thereby guaranteed because they cannot be forged, 
modified, or formed by splicing parts of different units 
together during transmission over the LAN, 
Consequently, TNIUs can trust the value of the 
security partition identifier embedded in each message 
unit, then they can (and must) reject those bearing a 
different identifier. 

The second method for distinguishing the 
communications belonging to different security 
partitions is to use a different encryption key for each 

partition. (Until now, we have implicitly assumed that 
the same key is used for all communications.) Each 
TNIU will be provided with only the single key 
associated with its own security partition and will 
therefore have no way of communicating with TNIUs 
belonging to different partitions. If a message unit is 
delivered to a TNIU belonging to a different security 
partition from its sender, it will be encrypted using one 
key and decrypted using another, making it 
unintelligible to the host attached to the receiving 
TNIU. It is unwise, however, to allow the untrusted 
host machines to see even such unintelligible 
transmissions from another security partition, so we 
propose to combine the use of different encryption 
keys with the checksum technique described earlier. A 
message delivered to a TNIU in a different security 
partition from its sender, and therefore encrypted and 
decrypted with different keys, will certainly fail to 
checksum correctly. 

The use of both checksums and different encryption 
keys is not strictly necessary, since either technique is 
sufficient to separate the communications channels 
belonging to different security partitions. The two 
techniques are complementary, however, and provide 
worthwhile redundancy. Checksums guarantee the 
integrity of message contents, a very desirable property 
in its own right, while the use of different encryption 
keys provides failsafe separation. 

Any system using encryption must contain 
mechanisms for generating and distributing keys 
securely. But unlike connection-oriented (virtual 
circuit) schemes in which a unique key must be 
manufactured and distributed every time a new circuit 
is opened, our system imposes no requirement for 
frequent or rapid key distribution. The key allocated to 
a TNIU is a function of the (fixed) security partition to 
which its host belongs. This, combined with the 
presumption that a LAN-based system is 
geographically compact, makes manual key 
distribution perfectly viable. Because of its evident 
simplicity and security, this is the mechanism we 
employ. If the fear of cryptanalysis calls for more 
frequent key changes than is convenient for manual 
distribution, a set of keys can be installed on each 
occasion or a single master key can be installed from 
which the TNIU can manufacture a whole set of 
communications keys. In either case, the TNIUs must 
contain mechanisms for synchronizing their current 
encryption keys. 

Although not strictly necessary, it is highly desirable 
to be able to detect and counter the activity of an active 
wiretapper who attempts to “spoof” the system by 
replaying recordings of genuine LAN messages. 
(Consider, for example, a banking system that carries 
messages such as “move $100 from account A to 



account B. “) Spoofs can be detected if sequence 
numbers or time stamps are embedded in each message 
unit. Of course, it is perfectly feasible for hosts to do 
this themselves, but it seems more appropriate for 
TNIUs to provide this function. The sequence number 
or time stamp of each message unit can constitute the 
unique material that should be attached to the front of 
each message prior to encryption to mask the similarity 
between messages that share a common prefix. 
Synchronizing the sequence numbers or time stamps 
used between each pair of TNIUs requires a special 
TNIU-to-TNIU protocol. This protocol must be 
resistant to spoofs, but it obviously cannot use 
sequence numbers or time stamps itself for this 
purpose. A challenge-response technique first proposed 
by Needham and Schroeder[9] can be used instead. 

The integration and construction of TNIUs. The 
interposition of a TNIU between a host and its LAN 
station raises interesting questions concerning the 
location of various protocol functions. The whole issue 
of assigning function to layers in a protocol hierarchy 
can become quite complex in the presence of 
encryption because standard functions such as 
checksums and sequence numbering, for example, are 
duplicated – though in a different and more 
sophisticated way – by the protection and security 
mechanisms. For this reason, TNIUs should not 
operate below the normal protocol layering hierarchy 
but must be integrated with it. In fact, we propose that 
TNIUs take over all protocol functions, except those at 
the highest level. The benefit of this approach is that 
the TNIUs act as network front ends, relieving their 
hosts of the low-level network load and thereby 
boosting overall performance. 

The top-level protocol of the Newcastle Connection 
provides a remote procedure call, or RPC, service and 
requires a fairly reliable datagram service from the 
lower levels of its protocol hierarchy. We use this 
datagram service as the interface between host 
machines and their TNIUs; individual datagrams form 
the message units that are encrypted and protected by 
the TNIUs. Most RPCs and their results can be 
encoded into a single datagram, but those concerned 
with file reads and writes, which can transfer arbitrarily 
large amounts of data, are broken into as many 
separate datagrams as necessary by a subprotocol of 
the host machines’ RPC protocol. 

The cryptographic techniques employed by TNIUs 
counter the threat of information disclosure. The 
remaining danger is denial of service caused by the 
destruction of genuine LAN traffic or the injection of 
large quantities of garbage. Although they can do 
nothing to prevent or defeat such attacks, TNIUs must, 
as a correctness requirement, continue to provide 
reliable (though necessarily degraded) service in spite 

of such occurrences. It is also a correctness 
requirement of TNIUs that they recover from crashes 
safely. (Of course, verified software does not crash, but 
we must allow for the possibility of a power failure.) 

TNIUs that perform all the functions described 
certainly present a challenge in both construction and 
verification. We argue, however, that they are very 
similar to the cryptographic front ends of wide-area 
networks, and examples of these have already been 
built and, in some cases, verified,4 Modern 16-bit 
microprocessors provide a suitable hardware base for 
the construction of TNIUs, and single-chip 
implementations of the DES algorithm are available 
that can perform CBC-mode encryption at LAN 
speeds. A separation kernel must be used to enforce 
cleartext/ciphertext (so-called red/black) separation 
within each TNIU, with the basic physical protection 
provided by the memory management chips 
appropriate to the chosen processor. Since no disks are 
needed (the software can be held in ROM), a complete 
TNIU should fit on a single board and cost less than a 
thousand dollars. 

Unclassified hosts can generally be considered to 
belong to the same security partition as the outside 
world. They need not be separated from it, and 
therefore their TNIUs need not use encryption to 
protect their communications. In this case, there is no 
need to provide TNIUs to Unclassified hosts, and this 
provides a worthwhile economy in systems where the 
majority of hosts are Unclassified. It also permits a 
standard, unpartitioned Unix United system to be 
smoothly upgraded to a securely partitioned one by the 
addition of a limited number of TNIUs. 

 
A multilevel secure file store 

 
The design introduced so far imposes a very 

restrictive security policy. The security partitions are 
isolated from one another with no flow of information 
possible across different levels or compartments. We 
will now explain how to extend this design to permit 
information to cross security partitions in a multilevel 
secure manner. This will allow information to flow 
from the Secret to the Top Secret levels, for example, 
but not vice versa.  

It might seem that multilevel secure information 
flow could be provided by simply modifying the policy 
enforced at the TNIUs so that, for example, Top Secret 
machines could receive communications from Secret 
machines as well as Top Secret ones. Top Secret 
TNUIS would be provided with the Secret as well as 
the Top Secret encryption keys and would permit 
incoming but not outgoing communications with 
Secret-level machines. The flaw in this scheme is that 



the communication could not be truly one way; a 
Secret machine cannot reliably send information to a 
Top Secret one without first obtaining confirmation 
that the Top Secret machine is able to accept it and, 
later, that it has received it correctly. The Secret 
machine must therefore be able to receive information 
from the Top Secret machine as well as send to it. This 
conflicts with the multilevel security policy.  

 
Figure 4. The naming structure of a simple 

Unix United system incorporating a secure file 
store. 

Certainly the trustworthy TNIUs in the system could 
be enhanced to undertake reliable delivery of data 
across security partitions, but this misses the point. If 
one host sends a file to another, the sender needs to 
know that the receiver has been able to store the file 
correctly, not merely that its TNIU received it 
correctly. Notice, too, that this scheme would only 
provide for unsolicited communications; a Secret 
machine could send information to a Top Secret 
machine of its own volition, but the Top Secret 
machine could not request that the information be sent 
because its request would constitute an insecure 
information flow. 

The best way to provide secure information flow 
across security boundaries is through a trustworthy 
intermediary that provides an independent and useful 
service. The complexity of such an intermediary will 
depend on the generality of that service. Combining 
simplicity with the most useful function, we have 
selected files as the only objects allowed to cross 
security boundaries, and we have chosen the multilevel 
secure storage and retrieval of files as the service 
provided by the trustworthy intermediary. This is 
achieved by adding to the system a secure file store 
with the ability to communicate with hosts of all 
security classifications. The idea is that when a 
Secret-level host wishes to make one of its files 
available to higher levels, it “publishes” it by sending it 
to the secure file store. A Top Secret host can 
subsequently acquire a copy of this file from the secure 
file store. 

Before describing the mechanism of the secure file 
store, we need to outline its logical position and role 
within the overall Unix United system. Conceptually, 
the secure file store is just an ordinary Unix system 
that returns exceptions to all system calls except 
certain ones concerned with files. As with any other 
component, it will be associated with a directory, say 
SFS, in the Unix United directory structure. The SFS 
directory will contain subdirectories for each security 
partition in the overall system. A simple Unix United 
directory structure containing just the secure file store 
and two ordinary hosts is shown in Figure 4. 

The ordinary hosts are associated with the directories 
TSUnix and SUnix and are allocated to the Top Secret 
and Secret security partitions, respectively. Of course, 
from within SUnix, the TSUnix branch of the directory 
tree is invisible, and vice versa. Even if the Newcastle 
Connections within TSUnix and SUnix are aware of 
each other’s existence, any attempted 
intercommunication will be stopped by their TNIUs. If 
the Secret-level user John of SUnix wishes to make his 
“paper” file available to the Top Secret user Brian, he 
does so by simply copying it into a directory that is 
subordinate to the SFS directory. For example: 

publish <paper/ ../SFS/SECRET/john/paper. 
(We explain later why this command uses “publish” 

and a later one uses “acquire” instead of the standard 
Unix command “cp.”) This command will cause the 
secure file store machine to receive a remote procedure 
call from SUnix requesting it to create and write a file 
called paper located as a sibling of the file “c. “ The 
secure file store will consult its record of the security 
policy to determine whether such a machine is allowed 
to create Secret-level files. Assuming that it is, the 
requested file operation will be allowed to proceed and 
the copy of the file will be created. Similarly, when the 
Top Secret user Brian attempts to print a copy of the 
paper by issuing the command 

acquire /../SFS/SECRET/john/paper|lpr 
the secure file store will receive a remote procedure 
call from the machine TSUnix requesting a copy of the 
file. Once again, it can consult the security policy, 
where it will see that the request should be allowed to 
proceed. The secure file store will, however, refuse 
requests from TSUnix to write into this “paper” file, or 
to delete it, since these contravene the requirements of 
multilevel security. Similarly, John will not be allowed 
to read the “salaries” file held under the TOPSECRET 
directory. 

We now move from the services provided by the 
secure file store to its construction. A multilevel secure 
Unix file system might seem to demand a substantial 
number of provably trustworthy mechanisms – 
virtually a secure Unix. With careful design, however, 



we can reduce the number of trusted mechanisms 
considerably. 

The basic idea is to partition the secure file store into 
trusted and untrusted components housed in physically 
separate machines. The trusted component, called the 
secure file manager, or SFM, is a reference monitor 
concerned with enforcing the security policy; its file 
storage is provided by the untrusted components. 
These untrusted components can be thought of as 
separate, standard Unix systems connected directly to 
the SFM. Each untrusted file storage machine is 
dedicated to a single security partition and is identified 
with one of the subdirectories of the SFS directory (see 
Figure 5). 

Communicating with hosts in different security 
partitions requires an enhanced TNIU for the SFM, one 
that contains the encryption keys of all security 
partitions. The internal structure of a TNIU with 
multiple encryption keys will be slightly more complex 
than that of one with just a single key, particularly if 
communications using different keys can be in 
progress simultaneously. Cleartext belonging to 
logically separate channels should be managed by 
separate virtual machines, and temporal separation 
must be provided for different uses of its single DES 
chip. These are not significant complications, however, 
and the responsibility for correctly managing more 
than one encryption key is a small additional burden 
for the trusted mechanism of a TNIU. 

Host machines requiring access to secure files send 
remote procedure calls, or RPCs, to the SFM. The 
TNIU of the SFM determines the sender’s security 
partition and passes this information to the SFM along 
with the decrypted RPC. The SFM can then inspect the 
RPC to check if the requested operation complies with 
its security policy. If it does, the SFM simply forwards 
the RPC to the appropriate file storage machine for 
processing and relays the results (suitably encrypted) 
back to the original caller. 

There is an obvious flaw in this scheme, however. 
Because the Unix file storage machines cannot be 
trusted, they constitute a security weakness – even 
though each holds files belonging to only a single 
security partition. A host machine in the Top Secret 
partition could modulate its legitimate requests for 
reading secure files belonging to the Secret partition to 
convey Top Secret information to the Secret-level file 
storage machine. For example, suppose the secret file 
storage machine contains a group of 26 files, each a 
different length. If a corrupt Top Secret host requests, 
as it may legitimately do, copies of the fifth, 
fourteenth, ninth, seventh, thirteenth, and first shortest 
files in that order, then the Top Secret string 
E-N-I-G-M-A will have been communicated to the 
Secret file storage machine. This machine could then 

encode the information received into a file that could 
subsequently and legitimately be retrieved by a 
Secret-level host. 

Although we cannot prevent Top Secret information 
from getting into the Secret-level file store, we can 
prevent it from getting back out again. Once we 
recognize this, the solution to the above problem is at 
hand. 

The only objects that leave file storage machines are 
files retrieved in response to external requests. 
Consequently, any clandestine information that is to 
reach the outside world must be encoded into those 
files. Since all movement of files into and out of the 
file storage machines is mediated by the SFM, security 
will be maintained if the SFM prevents the file storage 
machines from encoding information into (i.e., 
modifying) outgoing files. In other words, security 
depends on the SFM being able to guarantee the 
integrity of files retrieved from the file storage 
machines. 

 
Figure 5. Conceptual structure of the secure 

file store. 
This can be achieved if a checksum is added to each 

file by the SFM before it is stored in one of the 
untrusted file storage machines. Any attempt by a file 
storage machine to modify a file will be detected on its 
subsequent retrieval by the SFM when the recomputed 
checksum fails to match the one stored with the file. Of 
course, this only works so long as the file storage 
machines are unable to forge the checksums. This can 
be ensured in two ways (other than by keeping the 
checksums in the SFM). The first is to use a 
conventional checksum (i.e., one computed by an 
algorithm that may be known to the file storage 
machines) but to protect it by encrypting the file and 
the checksum as a single unit. The second technique is 
to use a crypto-checksum that depends on a secret key 
for its computation. An example of a crypto-checksum 
is the final block of ciphertext produced during 
CBC-mode encryption, an alternative is to simply 
encrypt a conventional checksum. The advantage of 
crypto-check sums is that they cannot be forged by 
those who do not possess the key; they can therefore be 
used with information stored in the clear.  

Either technique can be used to guarantee the 
integrity of files retrieved from the untrusted file 



storage machines. We prefer the crypto-checksum 
approach because it requires only a single operation. 
Intermediate checksums can be included at intervals 
within the file if the SFM has insufficient space to 
buffer an entire file. If part of a file has already been 
delivered to a host when modification to a later part is 
detected by the SFM, then some clandestine 
information may have been conveyed to the host 
through the position at which the modification began 
and file transfer was aborted by the SFM. This channel 
has very limited bandwidth, and as long as all 
checksum failures raise a security alarm and are logged 
by the SFM, it is not considered a serious security risk. 

 
Figure 6. Actual structure of the secure file 

store. 
Checksums prevent the untrusted file storage 

machines from modifying the files consigned to them 
and from manufacturing forgeries, but they do not 
prevent them from signaling to a collaborator by 
choosing which legitimate files they return in response 
to requests. For example, a Secret host could send a 
steady stream of requests for file X, but the files 
actually returned by the Secret file storage machine 
could be quite different. In particular, they could be 
files selected on the basis of length, say, to convey 
information in the manner of the E-N-I-G-M-A 
example given earlier, To close this channel, the SFM 
must be able to verify that the correct file is returned in 
response to each request. This is easily accomplished 
by including the name of each file in the checksum 
calculation. 

A variation on this method of covert communication 
is not so easily countered, however. A file storage 
machine can keep several old copies of a legitimate file 
and signal to an outside collaborator by choosing 
which version of the file to return in response to each 
request. This type of attack can be countered by 
recording a time stamp with each file and keeping a 
separate record of the time stamp that identifies the 
current version of the file. The problem here is to find 
a safe place to keep the record of each file’s current 
time stamp. It cannot be entrusted to the file storage 
machines without additional mechanisms for 

safeguarding its own integrity, and keeping it in the 
SFNI will impose a substantial storage requirement on 
a machine that is intended to have no disks of its own. 

To keep the trusted mechanism of the SFM simple, 
we prefer to reduce the bandwidth of this channel 
rather than attempt to close it completely. The SFM 
embeds a time stamp into each file before calculating 
its checksum and consigning it to an untrusted file 
storage machine. In addition, the SFM maintains. in its 
own private storage, a cache of the names and time 
stamps of all files read from or written to an untrusted 
file storage machine during, say, the last five minutes. 
Any attempt to return different versions of the same 
file within a shorter period will be detected by the SFM 
and will raise a security alarm. Attacks that operate 
over a longer period will go undetected, but their 
bandwidth will then be so low that they can be 
discounted as serious threats. 

Once clandestine information has been prevented 
from leaving a file storage machine, there is no longer 
any need to provide separate file storage machines for 
each security partition; the integrity checks performed 
by the SFM constitute the required separation 
mechanism. Accordingly, the file storage machines can 
all be replaced by a single Unix system called the 
isolated file store, or IFS. Rather than connect the IFS 
directly to the SFM, we prefer to connect it to the LAN 
via a TNIU in the standard way. For it to be truly 
isolated from the rest of the system, however, the 
TNIU of the IFS must be loaded with a special 
encryption key that is shared only with the TNIU of the 
SFM (see Figure 6). 

The revised SFM is required to perform two 
security-critical tasks and is therefore split into two 
logically separate components: the file access reference 
monitor, or FARM, and the file integrity guarantor, or 
FIG. The task of the FARM is to ensure that all file 
access requests comply with the security policy. the 
FIG is responsible for computing and checking the 
checksums and time stamps on files sent to or received 
from the IFS. 

The FIG achieves its purpose by employing 
checksum techniques very similar to those used for 
LAN messages by the TNIUs. We therefore suggest 
constructing the FIG by making minor modifications 
and extensions to an ordinary TNIU. The FARM 
function of the SFM is also straightforward, requiring 
only the imposition of simple access control rules 
determined by a security policy. This function can be 
performed inside a separate virtual machine provided 
by the separation kernel of the machine that supports 
the TNIU/SFM functions.  

We therefore conclude that all the functions of a 
complete SFM can be easily integrated into the TNIU 
that connects it to the LAN. The development and 



verification costs of an integrated TNIU/SFM should 
be little more than those for a TNIU alone, and 
production costs should be about the same – 
approximately a thousand dollars. 

The FIG checksum mechanism allows files to be 
read or written only in their entirety. This is different 
from the standard Unix file system interface, which 
permits incremental reading and writing, and the 
repositioning of the file pointer. For this reason, secure 
files cannot be accessed through the normal Unix file 
system interface but must use a special extension to 
that interface provided by the Newcastle Connection. 
This extension adds new system calls to publish, 
acquire, and delete secure files, and to list the names of 
the secure files belonging to a given security partition, 
(The list operation must be implemented very carefully 
so as not to provide the IFS with a clandestine 
information channel.) The minor inconvenience caused 
for users by this nonstandard interface is certainly no 
worse than that imposed by the file transfer programs 
used in conventional network architectures and is more 
than outweighed by the simplicity of the trusted 
mechanisms needed to implement it. Extensions to this 
scheme that do provide the full, standard Unix file 
system interface are described in a technical report[10], 
but the difficulties of providing secure access to Unix 
i-node information and to directories tend to 
compromise the attractive simplicity of the basic 
scheme. Completely different mechanisms are known 
and are probably preferable in this case. 

 
The accessing and allocation of security 
partitions 

 
A system in which terminals are attached to 

machines of fixed security level can be somewhat 
inconvenient to use. A Secret-level user can send mail 
to a Top Secret user via the secure file system, but the 
recipient can only reply by leaving his Top Secret 
machine and logging in to one at the Secret level, or 
lower. We can avoid this inconvenience and make 
additional services possible by connecting terminals to 
trustworthy terminal interface units, or TTIUs, rather 
than to hosts directly. Moreover, we can then include 
provisions for dynamically changing the allocation of 
machines to security partitions. 

Accessing different security partitions. What we 
term a trustworthy terminal interface unit is basically a 
TNIU enhanced with some additional trusted 
functions, including a terminal driver, some very 
limited Newcastle Connection software, and an 
authentication mechanism. Each of these logically 
separate mechanisms runs in an individual virtual 

machine provided by the separation kernel supporting 
the TTIU. 

A TTIU in the “idle” state simply ignores all 
characters reaching it from the LAN or from its 
terminal until a special character sequence is typed at 
the keyboard. This will cause the TTIU to connect the 
terminal to its authentication mechanism, which will 
then interrogate the user to determine his identity. 
Once the user has been authenticated, he can be asked 
for the security partition to which he wishes to be 
connected. If the requested partition is within his 
clearance and all other requirements of the security 
policy are satisfied (for example, a terminal located in 
a public place is not permitted a Top Secret connection 
even if its user is authorized to that level), then the 
TTIU will load the encryption key of the partition 
concerned into its DES chip. The Newcastle 
Connection software in the TTIU will then be able to 
contact its counterpart in a host machine belonging to 
the appropriate security partition, and the user will 
thereafter interact with that remote machine exactly as 
if he were connected to it directly. 

The Newcastle Connection component in the TTIU 
must be able to respond to remote procedure calls 
directed to it by the Newcastle Connection of the 
remote machine. The only calls that require a nonerror 
response are those appropriate to terminals, namely 
“read from the keyboard”, “write to the screen,” and a 
couple of others concerned with status information. 
Thus, only a fraction of the full Newcastle Connection 
software is required for a TTIU, and just like the 
similar software in a conventional host, it need not be 
trusted. 

 
A system in which terminals are attached to 

machines of fixed security level can be somewhat 
inconvenient to use. 

 
None of the additional trusted mechanisms required 

to upgrade a TNIU to a TTIU should present an undue 
challenge in either construction or verification, Nor 
should the presence of these additional mechanisms 
affect the construction or verification of the TNIU 
components themselves, since TNIUs are constructed 
on top of a separation kernel. In fact, the presence of a 
separation kernel makes it perfectly feasible to support 
multiple terminals, each with a separate set of TTIU 
and TNIU components, on a single processor. 

Changing security partitions dynamically. TTIUs 
enable users to connect to machines in different 
security partitions, thereby allowing them to perform 
each of their activities at the most appropriate level 
within their clearance. If a security policy with a large 
number of need-to-know compartments is supported, 
however, the number of different security partitions 



can well exceed the number of physical hosts available. 
Even when the number of distinct security partitions is 
small, the demand for resources within each partition 
can vary with time. Furthermore, some users might 
prefer to use personal workstations for their activities 
in many different security partitions. All these cases 
require some provision for reallocating host machines 
to different security partitions. 

With untrusted hosts, this can only be accomplished 
by temporal separation, which in its simplest form is 
periods processing. This requires manual intervention 
to exchange all demountable storage and the 
reinitialization of all fixed storage to remove every 
trace of information from the old security partition 
before the machine can be brought up again at its new 
level, either “clean” or reloaded with the suspended 
state of some previous activation at that level. 

Manual periods processing requires very rigid 
administrative controls, and it is slow and expensive, 
We therefore propose mechanisms for automating the 
process, making it both rapid and secure. The 
mechanisms required include one that causes a host’s 
TNIU to load the encryption key of a new security 
partition, and another that provides temporal separation 
for different uses of the host machine, 

 
A project to develop an implementation of the 

system described here has a sponsor and is being 
carried out. 

 
The system state of a host machine is contained in its 

writable storage: CPU registers, RAM, and disks, The 
disks of a Unix system provide swap space and contain 
the local file system. With the exception of the file 
system, the local storage available to a host is all used 
for strictly temporary purposes and can simply be 
erased and reinitialized when the host changes security 
partitions. This is achieved by causing the host to 
boot-load a trusted stand-alone purge program from 
ROM on power-up, or on command from its TNIU. 
This program systematically clears and reinitializes all 
temporary storage available to its host processor. 

Unlike temporary storage, the local file system 
cannot just be erased when the host changes security 
partitions; it must be retained (inaccessibly) for later 
activations of the host in the same partition. Since Unix 
United provides convenient access to remote files, this 
requirement can be satisfied by holding files remotely, 
either in file servers dedicated to particular security 
partitions, or in the secure file store. 

Operating host machines without local file store is 
inefficient. Accordingly, the purge program creates a 
local file system on its host’s disk and initializes it to 
contain the standard utility programs. (These can be 
obtained from a local read-only floppy disk, or from a 

“boot server” accessed over the LAN.) Each reference 
to an apparently local file is intercepted by a local file 
relocation process added to the Newcastle Connection. 
This process checks to see if the requested file is 
already present in the local file system. If it is, the 
access is allowed to proceed normally. If it is not, the 
relocation process first obtains a local copy of the file 
from the machine that maintains the permanent version 
of the host’s file system for the security partition 
concerned. For example, if the host is known as PW5 
(personal workstation number 5) and is currently 
operating in the Secret(NATO) partition, then a 
reference to the local file /user /john /paper might 
cause the local file relocation process to obtain a copy 
of the file /../SNSERVER/PW5/user/john/paper, where 
SNSERVER is the name of the machine that maintains 
the Secret(NATO) file system. This process is 
perfectly straightforward and need not be trusted, since 
an attempt to name a machine in the wrong security 
partition will be caught by the standard TNIU 
mechanisms (the local and remote machines will have 
incompatible encryption keys). Files modified or 
created during a session must, of course, be written 
back to their permanent file system by the local file 
relocation process at or before the end of the session, 

In outline, the complete scenario for automatically 
changing the security partition in which a host operates 
is as follows. A user at a terminal attached to a TTIU is 
authenticated and asked for the security partition in 
which he wishes to work. If this partition is within his 
clearance, a signal is sent to the TNIU of a vacant host 
machine (or to the user’s personal workstation) 
instructing it to switch to the indicated security 
partition. This signal is protected against forgery or 
spoofing by the standard encryption techniques 
employed between TNIUs. Upon receipt of the signal, 
the host’s TNIU loads the encryption key appropriate 
to the new security partition, initiates the purging and 
reinitialization of its host machine, and informs the 
host’s local file relocation process of the identity of its 
new security partition, 

We have described a distributed system that provides 
a limited but useful form of multilevel secure 
operation. Four distinct methods for achieving 
separation (physical, temporal, cryptographical, and 
logical) have been illustrated. When used judiciously, 
they can provide security without inefficiency and with 
only a limited number of trusted mechanisms. 
Moreover, our trusted mechanisms are relatively 
simple and within the current state of the art. Indeed, a 
number of them have previously been proposed (and 
some implemented) by others, though usually as 
stand-alone systems. A more extensive treatment of the 
topics covered in this article is available as a technical 
report[10]. It describes our mechanisms in more detail, 



relates them to their precursors, and discusses some 
enhancements to the basic system (the inclusion of 
downgraders or guards, and support for multilevel 
objects, for instance). Readers who wish to learn more 
about issues and techniques relating to computer 
security should consult the excellent book by D. E. 
Denning[8]. 

A project to develop an implementation of the 
system described here is being sponsored by the Royal 
Signals and Radar Establishment, or RSRE, of the UK 
Ministry of Defence, and is being carried out by 
System Designers Ltd, of Camberley in conjunction 
with the Microelectronics Applications Research 
Institute, or MARI, and the Computing Laboratory of 
the University of Newcastle upon Tyne. The first stage 
of this project will result in the delivery of a prototype 
to RSRE in mid-1983. The security mechanisms of the 
prototype will be provided by ordinary user processes 
in a standard Unix United system. This will not, of 
course, be secure, but it will allow the operation of the 
various mechanisms to be studied in practice, enable 
the overall performance of the system to be evaluated, 
and most importantly, permit the impact of a 
mechanically enforced security policy to be observed 
in a realistic environment. If this stage is judged a 
success, a prototype implementation of the real system 
will follow. We hope that before long we will be able 
to report on the progress of this project and, in due 
course, on how well it achieves its security, usability, 
and performance goals.  
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Subsequent Developments 
 
 For some years after the publication of the DSS 

paper we had little knowledge of how RSRE’s work 
was progressing. However by about 1985 the RSRE 
DSS prototype had been completed and partially 
declassified, and we had been brought back into the 
picture somewhat. We then belatedly realized that, 
though the DSS scheme directly exploited one of our 
system design concepts, that relating to the use of 
recursion, it had applied only one of Newcastle's ideas 
about system structuring to security, and that there was 
an opportunity to apply another, that of “ideal fault-
tolerant computing components” [3]. The resulting 
work led to the paper “Building Reliable Secure 
Computing Systems out of Unreliable Insecure 
Components”, which was published in the 1986 
Oakland conference [8] – and which was reprised in 
ACSAC’s Classic Papers track in 2001. 

But the invitation from ACSAC to provide a 
retrospective on our original DSS paper has prompted 
us to attempt to discover more about the subsequent 
implementation and deployment of the industrial 
prototype of DSS, and also to provide a description of 
DSS’s modern interpretation in the form of the MILS 
architecture. 

 

The UK DSS Technology Demonstrator 
Programme 

 
Prompted by our initial work on DSS, RSRE started 

a “Technology Demonstrator Programme” (DSS TDP) 
to develop and deploy prototypes of DSS – such TDPs 
were typical for large physical systems, such as tanks 
and ships, but this was the Ministry of Defence’s first-
ever Information Technology TDP. The present 
authors were not involved in the demonstrator 
programme, which was conducted by RSRE with 
private contractors whose identities changed several 
times owing to acquisitions and reorganizations, and 
knew nothing of how it was developing other than 
through publications describing promising progress.  

Barnes and Macdonald [5] describe an apparently 
successful emulation of DSS that “demonstrated the 
full internal functionality of the DSS.” As an 
emulation, “the TNIU functions are implemented as 
sub-systems within the untrusted host machines, rather 
than as separate front-end processors . . . however, in 
all other respects the emulation is functionally 
complete.” The demonstration was “provided with 
applications software which is aimed at an office 
automation type of environment.” Its purpose was to 
“prove the concept and improve the design.” The cited 
paper was based on one presented at a conference in 
September 1985, so that stage of the project was 
presumably largely complete by that date. The next 
stage was “to realize a full, practical DSS prototype” 
and it seems this was already under way in 1986 (the 
date of the cited paper).  

Bates [6] describes progress on the full DSS TDP 
five years later and states that it was being developed 
to Level 5 of the “computer security confidence scale” 
then in use by the UK (roughly B3 on the 
contemporaneous US “Orange Book” scheme [9]). It is 
stated that the programme was “on target to complete 
in 1991 . . . evaluation and certification is expected to 
be completed in late 1991 and commercially supported 
DSS products are also expected in late 1991.” 
Furthermore, “it is intended that the DSS TDP 
products will be commercially exploited by several UK 
suppliers . . . the first licence to commercially exploit 
the DSS technology has already been signed by a 
major UK IT company.” 

When we received the invitation to present this 
retrospective, we inquired after the later history of the 
DSS TDP. We were fortunate to obtain a final report 
on the “Phase 2 Insertion Trials” [23]. This reports that 
the DSS TDP was awarded a UK Level 4 Certificate 
(not 5 as anticipated earlier) in April 1993 and was 
licensed to British Telecommunications PLC and 
GEC-Marconi Secure Systems. The trials were 



intended to deploy DSS TDP installations at three 
sites: “HQ PTC Innsworth,” “DRA Fort Halstead,” and 
“HM Treasury.” The first used a version running OSI 
protocols and the other two used TCP/IP. The initial 
HQ PTC Innsworth trial in December 1993 failed due 
to “an error in the key material supplied by CESG.” A 
later attempt in June 1994 was hampered by network 
problems suggesting “the Black Network Ethernet 
interface might not be fully within IEEE 802.3 
specification.” These were finally resolved and the 
system worked but “was considered too slow for day-
to-day use.” Furthermore, “the DSS system proved too 
unreliable to leave in place.” Improving performance 
and reliability “would involve significant reengineering 
of the DSS kernel.” 

The DRA Fort Halstead trial was conducted in 
February 1994. Again, network problems intervened so 
that “a liaison could not be established between the 
TNIU and the TNIU/TMC.” It seems that heavy loads 
(due to other traffic) on a certain network segment 
caused the TMC/TNIU to miss the liaison request 
packets. The DSS software was modified to operate 
better under high network loads but the trial was not 
continued. Owing to the problems at the first two trials, 
the trial at HM Treasury was canceled. 

The report concludes: “it is unlikely that MOD or 
DRA will provide further funding for DSS 
development . . . its future therefore depends on the 
licensees being convinced that the necessary 
substantial investment will be worthwhile.” We may be 
confident the licensees were not convinced and that the 
DSS project was promptly dropped. 

 
From DSS to MILS 

 
After a decade of development effort, the DSS 

Technology Demonstration Programme ended in 
disappointing failure. Naturally, we tend to attribute 
this to the technological limitations of the time (a topic 
we will return to later) and to UK development and 
management practices, and we remain serene and 
confident in the rightness of the DSS ideas. To 
describe the subsequent history and evolution of those 
ideas, we first need to set the context. 

The period from the 1970s through the 90s saw 
many efforts to construct secure computer systems. 
These systems were of two broad categories: 
components for network security (end-to-end 
encryption devices, downgraders, filters, etc.), and 
general purpose systems supporting Multi-Level 
Secure (MLS) applications. However, both categories 
used a similar architecture, in which most of the 
Trusted Computing Base (TCB) was identified with 
the operating system kernel. These monolithic 

“security kernels” had a dual responsibility: they had to 
provide the basic protection mechanisms of an 
operating system (address space isolation, controlled 
access to privileged mode and so on) and they had to 
enforce the system’s security policy. 

Rushby’s 1981 paper [13] argued that this dual 
responsibility inevitably leads to complex 
implementations that are hard to verify and, instead, 
proposed that secure network components would be 
better served by a specialized operating system core (a 
“separation kernel”) that focuses solely on the 
provision of isolated address spaces with controlled 
communications between them, while policy is 
enforced by trusted applications running in some of 
those address spaces. 

The paper that is the subject of this retrospective 
extended this idea to general purpose systems and 
multilevel security. It argues that “separation” is the 
essential foundation for any kind of secure 
architecture, and that it can be achieved by several 
mechanisms: logical (a separation kernel), physical 
(separate machines), cryptographic (encryption or 
digital signatures), and temporal (periods processing). 
Separation creates an architecture of encapsulated 
subjects (computational entities with state, often 
portrayed diagrammatically as circles or boxes) and 
known communication channels between them 
(generally portrayed as arrows). Various security 
policies can be achieved by a suitable geography of 
subjects and channels, and the allocation of trusted 
functions to certain subjects, which mediate the 
services provided or information allowed to flow to 
their outgoing channels. The DSS paper illustrated this 
approach with the conceptual design of a system able 
to provide limited MLS functionality using all four 
kinds of separation mechanisms and relatively simple 
trusted functions. The trusted functions were simple 
because we used the design freedom afforded by the 
Newcastle Connection to “deconstruct” complex 
functions (such as the multilevel filestore) into simpler, 
separated components. The functionality of the full 
filestore was then reconstructed as a distributed 
computation over these simpler components. It is for 
this reason that we refer to our system as a “Distributed 
Secure System,” rather than a “Secure Distributed 
System,” the implication being that it is a secure 
system that exploits distribution, rather than a 
distributed system that happens to be secure. 

While approaches based on monolithic security 
kernels can deliver cost-effective and functional secure 
systems (see, for example, the fervent advocacy of 
Schell [20]), it seems there were some 
disappointments. Reviews at NSA in the early 1990s 
led to reexamination of the separation kernel idea ([10] 
states “in 1993 an informal separation kernel working 



group was established”) and to prototype 
implementations. 

Rather later, an architecture for embedded 
applications emerged called MILS. The earliest 
references seem to be NSA internal papers by Mark 
Vanfleet and others dated 1996 and 2003, which are 
cited in [2]. MILS originally stood for Multiple 
Independent Levels of Security, but is now best 
understood as simply a name. Papers on MILS [22], 
[1] always credit [13] as their inspiration, and cite DSS 
in passing, but we would like to suggest that MILS is 
best seen as the modern realization of DSS. 

 
Figure: Encryption Device Composed of Four 

Subjects 
Like DSS, MILS is a two-level architecture that 

considers the issues and mechanisms of policy 
enforcement separately from those of resource sharing. 
Security policy is the concern of the upper level of the 
architecture and is understood in terms of isolated 
subjects interacting over known channels (i.e., a 
“boxes and arrows” picture). Some subjects will be 
trusted, others untrusted, and the goal is to design the 
system in such a way that the complexity of trusted 
subjects is minimized: this may be achieved by 
splitting large trusted functions into smaller and 
simpler sub-functions that are allocated to dedicated 
subjects with carefully configured communications 
channels. For example, in the elementary end-to-end 
encryption unit considered in [13], the concern is that 
plaintext from the secret “red” side might escape to the 
public network on the “black” side. By splitting the 
encryption device into four subjects – red, black, 
bypass, and crypto – as shown in the above figure, we 
simplify this problem. The crypto is trusted to encrypt 
everything that passes across its input and output 
channels, the bypass is trusted to check that the 
plaintext that passes across its input to output channels 
looks like packet headers and has limited bandwidth, 
and there are no other channels connecting the red to 
black sides. With this architecture, the black side 
(which will contain the protocol stack, network drivers, 
and other complex software) can be completely 
untrusted (and similarly for the red side). 

To derive maximum benefit from this approach, we 
should assume that the resources required for subjects 
and their communication channels are cheap, and we 

should create subjects and channels freely whenever 
this can minimize the complexity of trusted subjects 
(where complexity refers to the difficulty of the 
associated assurance task, which will generally depend 
on both the function provided by the subject, and the 
property to be trusted of it). Papers on MILS often 
show a more elaborate encryption device with 12 
subjects (e.g., Figure12 in [1], and MILS architectures 
for the F22 and other complex platforms have 
hundreds or thousands of subjects. 

We are able to design on the assumption that 
subjects and communication channels are cheap 
because the lower level of the MILS architecture 
makes them so – through the provision of efficient and 
secure resource sharing. The MILS lower level 
comprises several interoperable components that each 
“partition,” “virtualize”, or otherwise separate 
individual physical or logical resources into many 
separated instances that communicate only through 
controlled channels. These components are specialized 
to the kind of resource they manage: a separation 
kernel supports subjects directly, partitioned 
communication systems and networks, and virtualized 
NICs provide securely multiplexed communications 
with various levels of functionality (roughly, CORBA, 
TCP/IP, and bare metal, respectively), a partitioned file 
system provides storage functions similar to that 
proposed for the DSS filestore, while a console 
subsystem securely partitions display area. 

Whereas DSS was conceived as a single system, 
MILS is conceived as an architecture and a collection 
of components that integrators can use to build many 
systems. Indeed, part of the aim of MILS is to foster an 
infrastructure of commercial off the shelf (COTS) 
security components. To this end, Common Criteria 
Protection Profiles are being developed for separation 
kernels (SKPP), partitioned communications systems 
(PCSPP), network subsystems (MNSPP) and other 
MILS elements. The idea is that vendors will develop a 
COTS marketplace for MILS-compliant components. 
The SKPP has been approved [21] and one commercial 
separation kernel has been evaluated against it (to 
approximately EAL7) and others are planned. 

No complete system has been fielded yet, so what 
are the reasons for believing MILS will be more 
successful than the DSS TDP? First, the basic 
technology has evolved and improved greatly over the 
years. Separation kernels are similar to the partitioning 
real-time kernels used routinely in modern avionics 
(indeed some vendors base their separation kernel on 
their avionics offering) and to hypervisors such as Xen 
(one project aims to develop a separation kernel by 
slicing Xen to a minimal subset). Improved hardware 
support such as the Intel VT architecture, and 
improved understanding of kernel APIs (such as 



paravirtualization), all simplify the task of developing 
a separation kernel, and improve its performance. It is 
entirely feasible to contemplate 100,000 partition 
switches per second at a performance cost in single 
percentage digits. (On the other hand, modern cache 
architectures make it difficult and costly to reduce 
covert channel bandwidth as they introduce wide 
variation into execution time.) Similarly, avionics 
buses such as AFDX and TTA demonstrate the 
feasibility of partitioned communications, while 
integrated modular avionics (IMA) architectures used 
successfully in modern commercial airplanes such as 
the Boeing 777 and 787 and Airbus A380 have much 
in common with MILS.  

Second, the use of distributed computation in DSS 
was advanced for its time and there was little 
intellectual or infrastructural support for developing 
distributed systems. The prevalent thinking was of 
networks, rather than systems (hence [15]). Now, we 
have middleware and rich infrastructure for developing 
distributed applications. 

Finally, there is improved understanding of system 
development and system integration processes and 
their management. The devolved, component-based 
approach used in IMA and MILS seems more robust 
than the central planning used for DSS TDP. 

 
Looking Forward 

 
Twenty-five years is often cited as the time lag from 

research to deployment. The 25th anniversary of the 
publication of the DSS paper is approaching (the 
extended abstract [19] must have been submitted to the 
conference around December 1982, and the technical 
report [18] would have been completed about the same 
time), so we are hopeful that successful realization of 
these ideas is imminent. 

As described above, our hope currently rests on the 
MILS architecture (and a similar program called HAP, 
which is developing a specific platform, rather than a 
set of components). However, a successful system 
based around MILS would initially establish only the 
pragmatic viability of the DSS approach; the bigger 
challenge is to develop a certifiably secure system this 
way. 

As noted, DSS was conceived as a system, and its 
components were designed for their specific role 
within the system; MILS, in contrast, is conceived as a 
set of components that can be integrated with bespoke 
and glue components, to realize many systems. 
Roughly, DSS was top-down while MILS is bottom-
up. What is the assurance argument for certifiable 
security of a system assembled this way? That is the 
role of the MILS architecture, and the MILS 

Integration Protection Profile (MIPP) being developed 
by Rushby and Rance DeLong. The MILS architecture 
has two levels of components; the MIPP specifies that 
the upper (circles and arrows) level must be 
compositional, and the lower (resource sharing) level 
must be additively composable. Intuitively, 
compositionality means that there must be a way to 
calculate the collective security properties of the upper 
level components given the security properties of the 
components; composable means that the security 
properties of a collection of upper level components 
are unchanged when these run in the environment 
provided by a lower level component (even if faulty or 
malicious upper-level components are also present); 
and additive means that a collection of composable 
lower level components is itself composable. 

We believe these ideas can be developed to provide 
a formal foundation for compositional certification in 
security and other critical fields, including safety [16]. 
Compositional assurance and certification seem a 
worthwhile research challenge for the next twenty-five 
years and a logical continuation of the design vision 
that inspired DSS. 
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