
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A Brief Overview of the PVS User Interface

Sam Owre1

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA

Abstract

An overview of the PVS system is presented from a user interface perspective. We present the interfaces from the PVS Lisp
core to Emacs, Tcl/Tk, the Prover, markup languages, and some of the various back-end and front-end systems that have
been integrated with PVS.

1 Introduction

PVS is an open source verification system that has been in use since it was first released in
1993. The PVS interface historically was simply Emacs, with the Lisp image comprising
most of PVS as a subprocess. This is still the standard way to use PVS, but over the years it
has been substantially augmented with browsing tools, enhanced prover interfaces, ground
evaluation, graphical displays, and LATEX, HTML, and XML output. In addition, it has been
used as both a back-end and front-end with many systems, and has a ground evaluator that
even allows PVS to be used as a scripting language. Figure 1 shows the basic architecture
of PVS from a user perspective. The rest of this paper is an overview of some of the aspects
of the PVS system, focusing on the user interface.

2 Emacs

The basic User Interface for PVS is Emacs (or XEmacs), an extensible and very flexible
editor. The PVS Lisp image runs as a subprocess of Emacs, with PVS Emacs commands
translated to forms for the underlying Lisp. For example, a proof is started by placing the
cursor on the lemma to be proved, and issuing the M-x prove command. This sends the
current line and theory information to Lisp, which then locates the internal (typechecked)
form of the lemma and starts the proof.

1 This work was partially supported by NSF CCR-ITR-0325808 and CNS-0823086.

c©2008 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs


Fig. 1. PVS User Interface Overview

Specifications are edited in a special pvs-mode in Emacs, which in addition to the
usual keyword highlighting, provides numerous functions, all of which are available from
the PVS menu.

The interface is built on a modified version of ILISP [12], allowing the same interface
to be used both for developing the PVS system and for creating PVS specifications. In fact,
as it is just an extended version of Emacs, PVS may be used to undertake any task normally
done using Emacs. PVS Lisp makes requests of Emacs by means of specially formatted
strings, that are recognized by the output filter associated with the PVS Lisp subprocess.
For example, by this means PVS Lisp can create a buffer and have it displayed in Emacs.

3 Tcl/Tk Interface

The Tcl/Tk interface provides some graphical interface, in particular, it allows proof trees
and theory hierarchies to be viewed and manipulated. This is especially useful for large
proofs or specifications. The displays are mouse-sensitive; clicking on a theory name in the
theory hierarchy will display the corresponding theory specification in an Emacs buffer, and
clicking on a sequent symbol in the proof tree window pops up a Tck/Tk window showing
the full sequent at that point in the proof tree.

Tcl/Tk is invoked as a subprocess of PVS, and strings are passed from the PVS Lisp
process to Emacs, which passes them on to Tcl/Tk. This works in both directions. Unfor-
tunately, the interface is slow, inflexible, and buggy. In particular, there is a bug that seems
to be due to a difficult to track race condition that happens when rerunning a large proof
as the Tcl/Tk window tries to keep up. We plan on moving to Gtk in the future, which

2



can be invoked directly from PVS Lisp as foreign functions. In addition to fixing the race
condition, this should make it easier to create more graphical interfaces to PVS, as process
of going from Lisp to Emacs to Tcl/Tk and back again is unwieldy.

4 Prover interaction

The PVS prover is interactive; starting form a goal sequent, the user constructs a proof
tree using available prover commands. The prover provides a collection of powerful proof
commands to carry out propositional, equality, and arithmetic reasoning with the use of
definitions and lemmas. These proof commands can be combined to form proof strategies.
To make proofs easier to debug, the PVS proof checker permits proof steps to be undone,
and checkpointed, and allows the specification to be modified during the course of a proof.
After modification, the prover offers to rerun the proof to see that it is still valid. It marks all
formulas whose proofs depend on the modified declaration as unchecked. To support proof
maintenance, PVS allows proofs (and partial proofs) to be edited and rerun, and allows for
multiple proofs to be associated with a formula. Currently, the proofs generated by PVS
can be made presentable but they still fall short of being humanly readable.

New strategies and rules may be defined as described in [18], using the defstep and
addrule functions, which may be added to an automatically loaded PVS strategies file.
Typically only defstep is used to define new user strategies in terms of existing ones.
In this way, strategies are built up from primitive rules, and only they need to be trusted.
However, some extensions require the addition of new rules, which must be done carefully
as soundness may be compromised.

Note that although the strategy language allows arbitrary calls to Lisp, the proofs may
be rerun in a mode in which all strategies have been expanded to their primitive rules, in
which the Lisp calls are no longer made. In this way the soundness of PVS relies only on
the primitive rules and the core execution engine.

5 Generating Latex, HTML, and XML

PVS specifications are in ASCII, which is fine for developing specifications and proofs, but
it is often desirable to present them differently. Toward this end, PVS includes facilities
for generating LATEX, HTML, and XML output. The LATEX output can be generated for
specifications or proofs, and the user has control over the mapping from PVS identifiers
and operators to LATEX. The HTML and XML are similar, but only available for specifica-
tions. The HTML interface does provide links that lead from a symbol to its corresponding
declaration.

The XML output provides much more than the LATEX and HTML output, as it is a com-
plete representation of the internal typechecked form of PVS entities. This makes it easy
to map from PVS to other systems, which is very difficult to do directly from PVS speci-
fications and proofs. Not only is the PVS grammar difficult to parse, but the overloading
and automatic conversions allowed by PVS makes it impossible to know how to interpret
a concrete expression without typechecking it. The XML form solves this, as it directly
represents the parse tree, and provides full resolutions for each identifier. The XML repre-
sentation includes enough information that the original concrete syntax may be generated,
and we have generated an XSLT script that does this.

3



6 PVS as a Back-end

It is often desirable to have the PVS typechecking and theorem proving available at the
back-end of a system. This can easily be done by invoking PVS in raw mode, which
runs it without the Emacs interface. In this mode it waits for Lisp input, and returns
the results, exactly in the way it does with Emacs. There are several functions (e.g.,
typecheck-formula-decl and prove-formula-decl) that provide support for
proving individual formulas, without generating a full theory. Several existing systems
have used PVS as a back-end typechecker and/or theorem prover. Skakkebæk [21] made a
deep embedding of the Duration Calculus in his PC/DC system.

César Muñoz implemented a shallow embedding of the B-method [1] into a front-end
for PVS called PBS [14]. The B-method is a state-oriented formal method for software
development that provides a uniform language, the abstract machine notation, to specify,
design, and implement systems. The method is founded on set theory with a first-order
predicate calculus, which is embedded into the higher-order logic of PVS.

The LOOP project [22, 6] has developed a tool for specifying and verifying properties
of Java programs, using PVS as a back-end. It represents Java objects as coalgebras, and
has been used to prove properties of some Java libraries, as well as proving properties of
smartcards, as part of the Verificard project.

TAME (Timed Automata Modeling Environment) [4, 3] is a system for specifying sev-
eral classes of automata, providing templates, a set of auxiliary theories, and specialized
prover strategies for specifying and proving properties of automata models.

An interface between the Maple computer algebra system and the PVS theorem prover
was implemented [2]. The interface allows Maple users access to the robust and strongly
typechecked proof environment of PVS. The environment was extended by a library of
proof strategies for use in real analysis. This provides both strong typechecking and theo-
rem proving capabilities to Maple users.

Carlos Pómbo [19], used PVS to provide the semantics of Ag specifications, defining
the semantics of First Order Dynamic Logic and Fork Algebras, along with rules and strate-
gies that allow a user to reason in Ag. Here conversions were defined, such as a meaning
function, and arguments such as the current world of the Kripke structure, that by default
are included in the prover interaction, but add clutter to the proof. In this case the function
for pretty-printing applications was modified in order to suppress the meaning function and
the world argument.

There are many other systems that use PVS as a back-end, including Pamela [7],
InVeSt [5], the Java Interactive Verification Environment (JIVE) [13], TRIO [10], SO-
COS [11], and Why [9]. This is just a partial list.

7 PVS as a Front-end

PVS has also been used as a front-end to several systems. Generally this involves creating
a proof rule that interacts with the specified system. This interaction can be through a shell,
or directly via foreign function calls. The usual method is to define supporting theories in
PVS, define a translation from these theories to the target system, and to define a rule that
performs the translation and invokes the system. If the system is intended to return more
than simply true or false, a translator must also be provided to convert the results into a

4



valid PVS sequent. Note that, in general, the soundness of the resulting proof depends on
the soundness of the underlying system.

For decision procedures, a special interface was created making it easy to implement
new decision procedures. This was used to integrate ICS in earlier versions of PVS.

The built-in PVS model checker [20] is an example of this, in which the model checker
only returns true, finishing the proof of this sequent, or unknown with an explanation,
leaving the sequent untouched. The model checker relies on the mu-calculus, and theories
to support this were provided in the PVS prelude.

The Mona WS1S system was integrated into PVS [17] in the same way. Yices was
recently integrated as well, as an end-game prover. This greatly speeds up many kinds of
proofs.

PVS may also be used for programming, by using the ground evaluator to translate
specifications to Lisp or the Clean functional programming language (see the description
at http://clean.cs.ru.nl/). This opens up many possibilities. Using seman-
tic attachments, one can evaluate, test, and animate specifications [8]. The PVS random
tester [16] builds on the ground evaluator, and allows specifications to be randomly tested,
which is often useful for detecting bugs in specifications before attempting difficult proofs.

César Muñoz developed PVSio [15] an extension of the ground evaluator that makes it
simple to define new attachments, use the ground evaluator during proof, and even create
PVS scripts that may be used from the command line as with any other scripting language.

8 Proof discovery and maintenance

PVS has limited capabilities for browsing formulas and proofs, and copying proofs from
one formula to another. Proof trees may be displayed, and proofs may be single-stepped
and check-pointed. Declarations may be modified and added during a proof.

Proof discovery and maintenance is a wide open area of research. Much more is needed,
for example, it should be possible to match the current sequent to formulas in the prelude
or existing libraries and list the ones likely to be useful. This is quite difficult for sev-
eral reasons: the libraries might not be referenced, and may only be available remotely,
the matching formulas may be useless because some precondition is false, or because an
inequality is in the wrong direction. Formulas might not be considered because theories
were developed with different names, though they are actually relating to the same entities
- for example groups could be defined in one theory using * and using + in another, thus
rendering syntactic matches useless.

9 Conclusion

PVS has a rich user interface, which we have outlined here. It continues to grow, and new
paradigms are being explored. In our view, PVS may be treated as a tool bus, allowing
exploration of interfaces between often disparate tools. The system is open source, and
we encourage any and all additions to the system. More information, and instructions for
obtaining and installing PVS are available at http://pvs.csl.sri.com.

5

http://clean.cs.ru.nl/
http://pvs.csl.sri.com


References
[1] J.-R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen. The B-method. In S. Prehn and W. J.

Toetenel, editors, VDM ’91: Formal Software Development Methods, Volume 552 of Springer-Verlag Lecture Notes in
Computer Science, pages 398–405, Noordwijkerhout, The Netherlands, October 1991. Volume 2: Tutorials.

[2] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, and Sam Owre. Computer algebra
meets automated theorem proving: Integrating Maple and PVS. In Richard J. Boulton and Paul B. Jackson, editors,
Theorem Proving in Higher Order Logics, TPHOLs 2001, Volume 2152 of Springer-Verlag Lecture Notes in Computer
Science, pages 27–42, Edinburgh, Scotland, September 2001.

[3] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Using TAME to prove invariants of automata models: Two
case studies. In Proceedings of FMSP ’00: The Third Workshop on Formal Methods in Software Practice, pages 25–36,
Association for Computing Machinery, Portland, OR, August 2000.

[4] Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface to simplify proofs for automata models.
In User Interfaces for Theorem Provers, Eindhoven, The Netherlands, July 1998. Informal proceedings available at
http://www.win.tue.nl/cs/ipa/uitp/proceedings.html.

[5] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. InVeSt: A tool for the verification of invariants. In Alan J. Hu
and Moshe Y. Vardi, editors, Computer-Aided Verification, CAV ’98, Volume 1427 of Springer-Verlag Lecture Notes in
Computer Science, pages 505–510, Vancouver, Canada, June 1998.

[6] C.-B. Breunesse, N. Cataño, M. Huisman, and B. P. F. Jacobs. Formal methods for smart cards: An experience report.
Science of Computer Programming, 55(1–3):53–80, March 2005.

[7] Bettina Buth. PAMELA + PVS. In Michael Johnson, editor, Algebraic Methodology and Software Technology,
AMAST’97, Volume 1349 of Springer-Verlag Lecture Notes in Computer Science, pages 560–562, Sydney, Australia,
December 1997.

[8] Judy Crow, Sam Owre, John Rushby, N. Shankar, and Dave Stringer-Calvert. Evaluating, testing, and animating
PVS specifications. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA, March 2001.
Available from http://www.csl.sri.com/users/rushby/abstracts/attachments.

[9] Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus platform for deductive program verification
(tool paper). In Computer Aided Verification. pages 173–177, 2007.

[10] Carlo A. Furia, Matteo Rossi, Dino M, and Angelo Morzenti. Automated compositional proofs for real-time systems.
Theoretical Computer Science, pages 326–340, 2006.

[11] Ralph johan Back, Johannes Eriksson, and Magnus Myreen. Verifying invariant based programs in the SOCOS
environment. In In Teaching Formal Methods: Practice and Experience (BCS Electronic Workshops in Computing).
BCS-FACS, 2006.

[12] Todd Kaufmann, Chris McConnell, Ivan Vazquez, Marco Antoniotti, Rick Campbell, and Paolo Amoroso. ILISP User
Manual, 2002. Available with at http://sourceforge.net/projects/ilisp/.

[13] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The JIVE System Implementation Description, 2000. Available at http:
//softech.informatik.uni-kl.de/old/en/publications/jive.html.

[14] César Muñoz. PBS: Support for the B-method in PVS. Technical Report SRI-CSL-99-1, Computer Science Laboratory,
SRI International, Menlo Park, CA, February 1999.

[15] César Muñoz. Rapid Prototyping in PVS. National Institute of Aerospace, Hampton, VA, 2003. Available from
http://research.nianet.org/∼munoz/PVSio/.

[16] Sam Owre. Random testing in PVS. In Workshop on Automated Formal Methods (AFM), Seattle, WA, August 2006.
Available at http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf.

[17] Sam Owre and Harald Rueß. Integrating WS1S with PVS. In E. A. Emerson and A. P. Sistla, editors, Computer-Aided
Verification, CAV ’2000, Volume 1855 of Springer-Verlag Lecture Notes in Computer Science, pages 548–551, Chicago,
IL, July 2000.

[18] Sam Owre and N. Shankar. Writing PVS proof strategies. In Myla Archer, Ben Di Vito, and César Muñoz, editors,
Design and Application of Strategies/Tactics in Higher Order Logics (STRATA 2003), pages 1–15, Hampton, VA,
September 2003. Available at http://research.nianet.org/fm-at-nia/STRATA2003/.

[19] Carlos López Pombo, Sam Owre, and Natarajan Shankar. A semantic embedding of the Ag dynamic logic in PVS.
Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI International, Menlo Park, CA, October 2004.
Available at http://pvs.csl.sri.com/papers/AgExample/.

[20] N. Shankar. PVS: Combining specification, proof checking, and model checking. In Mandayam Srivas and Albert
Camilleri, editors, Formal Methods in Computer-Aided Design (FMCAD ’96), Volume 1166 of Springer-Verlag Lecture
Notes in Computer Science, pages 257–264, Palo Alto, CA, November 1996.

[21] Jens U. Skakkebæk and N. Shankar. A Duration Calculus proof checker: Using PVS as a semantic framework.
Technical Report SRI-CSL-93-10, Computer Science Laboratory, SRI International, Menlo Park, CA, December 1993.

[22] Joachim van den Berg and Bart Jacobs. The loop compiler for Java and JML. In T. Margaria and W. Yi, editors,
Tools and Algorithms for the Construction and Analysis of Systems: 7th International Conference, TACAS 2001, Volume
2031 of Springer-Verlag Lecture Notes in Computer Science, pages 299–312, Genova, Italy, April 2001.

6

http://www.win.tue.nl/cs/ipa/uitp/proceedings.html
http://www.csl.sri.com/users/rushby/abstracts/attachments
http://sourceforge.net/projects/ilisp/
http://softech.informatik.uni-kl.de/old/en/publications/jive.html
http://softech.informatik.uni-kl.de/old/en/publications/jive.html
http://research.nianet.org/~munoz/PVSio/
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf
http://research.nianet.org/fm-at-nia/STRATA2003/
http://pvs.csl.sri.com/papers/AgExample/

	Introduction
	Emacs
	Tcl/Tk Interface
	Prover interaction
	Generating Latex, HTML, and XML
	PVS as a Back-end
	PVS as a Front-end
	Proof discovery and maintenance
	Conclusion
	References

