
A Brief Overview of PVS

Sam Owre

Computer Science Laboratory
SRI International
Menlo Park, CA

August 19, 2008



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Introduction

PVS - Prototype Verification System

PVS is a verification system combining language
expressiveness with automated tools.

It features an interactive theorem prover with powerful
commands and user-definable strategies

PVS has been available since 1993

It has hundreds of users

It is open source

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

PVS Language

The PVS language is based on higher-order logic (type theory)

Many other systems use higher-order logic including Coq,
HOL, Isabelle/HOL, Nuprl

PVS uses classical (non-constructive) logic

It has a set-theoretic semantics

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

PVS Types

PVS has a rich type system

Basic types: number, boolean, etc. New basic types may be
introduced

Enumeration types: {red, green, blue}
Function, record, tuple, and cotuple types:

[number -> number]
[# flag: boolean, value: number #]
[boolean, number]
[boolean + number]

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

Recursive Types

Datatypes and Codatatypes:

list[T: TYPE]: DATATYPE BEGIN
null: null?
cons(car: T, cdr: list): cons?
END DATATYPE

colist[T: TYPE]: CODATATYPE BEGIN
cnull: cnull?
ccons(car: T, cdr: list): ccons?
END CODATATYPE

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

Subtypes

PVS has two notions of subtype:

Predicate subtypes:

{x: real | x /= 0}
{f: [real -> real] | injective?(f)}

The type {x: T | P(x)} may be abbreviated as (P).

Structural subtypes:

[# x, y: real, c: color #] <: [# x, y: real #]

Class hierarchy may be captured with this
Update is structural subtype polymorphic: r WITH [‘x := 0]

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

Dependent types

Function, tuple, record, and (co)datatypes may be dependent:

[n: nat -> {m: nat | m <= n}]
[n: nat, {m: nat | m <= n}]
[# n: nat, m: {k: nat | k <= n} #]

dt: DATATYPE BEGIN
b: b?
c(n: nat, m: {k: nat | k <= n}): c?
END DATATYPE

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

PVS Expressions

Logic: TRUE, FALSE, AND, OR, NOT, IMPLIES, FORALL,
EXISTS, =

Arithmetic: +, -, *, /, <, <=, >, >=, 0, 1, 2, . . .

Function application, abstraction, and update

Binder macro - the! (x: nat) p(x)

Coercions

Record construction, selection, and update

Tuple construction, projection, and update

IF-THEN-ELSE, COND

CASES: Pattern matching on (co)datatypes

Tables

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

Declarations

Types - P: TYPE = (prime?)

Constants, definitions, macros

Recursive definitions

Inductive and coinductive definitions

Formulas and axioms

Assumptions on formal parameters

Judgements, including recursive judgements

Conversions

Auto-rewrites

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

PVS Theories

Declarations are packaged into theories

Theories may be parameterized with types, constants, and
other theories

Theories and theory instances may be imported

Theory interpretations may be given, using mappings to
interpret uninterpreted types, constants, and theories

Theories may have assumptions on the parameters

Theories may state what is visible, through exportings

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

Names

Names may be heavily overloaded

All names have an identifier; in addition, they may have:

a theory identifier
actual parameters
a library identifier
a mapping giving a theory interpretation

For example, a reference to “a” may internally be equivalent
to the form

lib@th[int, 0]{{T := real, c := 1}}.a

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Types
Expressions
Declarations
Theories
Names
Prover

PVS Prover

The PVS prover is interactive, but with powerful automation

It supports exploration, design, implementation, and
maintenance of proofs

The prover was designed to preserve correspondence with an
informal argument

Support for user defined strategies and rules

Based on sequent calculus

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

PVS Example: Ordered Binary Trees

Ordered binary trees are fundamental data structures in
computing

Node values are from a totally ordered set

Defined over a datatype in PVS, parametric in value type T -
This generates three theories axiomatizing the binary tree
data structure

binary_tree[T: TYPE]: DATATYPE BEGIN

leaf: leaf?

node(val: T, left, right: binary_tree): node?

END binary_tree

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Binary Trees - recognizers, constructors, accessors

The main generated theory contains declarations for the type,
recognizers, constructors, and accessors

binary_tree: TYPE

node?: [binary_tree -> boolean]

node: [T, binary_tree, binary_tree -> (node?)]

left: [(node?) -> binary_tree]

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Binary Trees - extensionality and induction

Extensionality (no confusion) and induction (no junk) make
datatypes Initial Algebras

binary_tree_node_extensionality: AXIOM

FORALL (node?_var: (node?), node?_var2: (node?)):

val(node?_var) = val(node?_var2) AND

left(node?_var) = left(node?_var2) AND

right(node?_var) = right(node?_var2)

IMPLIES node?_var = node?_var2;

binary_tree_induction: AXIOM

FORALL (p: [binary_tree -> boolean]):

(p(leaf) AND

(FORALL (node1_var: T, node2_var: binary_tree,

node3_var: binary_tree):

p(node2_var) AND p(node3_var) IMPLIES

p(node(node1_var, node2_var, node3_var))))

IMPLIES (FORALL (binary_tree_var: binary_tree):

p(binary_tree_var));

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Ordered Binary Trees Theory

Ordered binary trees can be introduced by a theory that is
parametric in the value type as well as the total ordering relation.

obt [T: TYPE, <= : (total_order?[T])]: THEORY

BEGIN

IMPORTING binary_tree[T]

A, B, C: VAR binary_tree

x, y, z: VAR T

pp: VAR pred[T]

i, j, k: VAR nat
...

END obt

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Ordered Binary Trees - size, ordered?

The size function computes the number of nodes—used to
provide measures for recursive functions
The ordered? predicate checks:
left node values ≤ current node value ≤ right node values

size(A): nat = reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)

ordered?(A): RECURSIVE bool =

IF node?(A)

THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND

ordered?(left(A)) AND ordered?(right(A)))

ELSE TRUE

ENDIF

MEASURE size

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Insertion

Compares x against root value and recursively inserts into the left
or right subtree.

insert(x, A): RECURSIVE binary_tree[T] =

(CASES A OF

leaf: node(x, leaf, leaf),

node(y, B, C): (IF x<=y

THEN node(y, insert(x, B), C)

ELSE node(y, B, insert(x, C))

ENDIF)

ENDCASES)

MEASURE size(A)

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Insertion Property

The following is a very simple property of insert.

ordered?_insert_step: LEMMA

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))

Proved by induct-and-simplify

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Binary Tree Datatype
Generated Theories
Ordered Binary Trees Theory
Demo of main insertion property

Orderedness of insert

ordered?_insert: THEOREM

ordered?(A) IMPLIES ordered?(insert(x, A))

(""

(induct-and-simplify "A" :rewrites "ordered?_insert_step")

(rewrite "ordered?_insert_step")

(typepred "<=")

(grind :if-match all))

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Ground Evaluator
PVSio and ProofLite
PVSio Demo
List of Other Features

The Ground Evaluator

Much of PVS is executable

The ground evaluator generates efficient Lisp and Clean code

Performs analysis to generate safe destructive updates

The random test facility makes use of this to generate random
values for expressions

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Ground Evaluator
PVSio and ProofLite
PVSio Demo
List of Other Features

PVSio and ProofLite

PVSio and Prooflite are provided by César Muñoz of the
National Institute of Aerospace

PVSio extends the ground prover and ground evaluator:

An alternative, simplified Emacs interface
A facility for easily creating new semantic attachments
A standalone interface that does not need Emacs
New proof rules to safely use the ground evaluator in a proof

ProofLite is a PVS Package providing:

A command line utility
A proof scripting notation
Emacs commands for managing proof scripts

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Ground Evaluator
PVSio and ProofLite
PVSio Demo
List of Other Features

PVSio Demo

Start PVSio on theory obt eval

Evaluate insert list((: 3, 7, 2, -5, 0 :));

Evaluate
ordered?(insert list((: 3, 7, 2, -5, 0 :)));

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Ground Evaluator
PVSio and ProofLite
PVSio Demo
List of Other Features

Other Features

New proof rules and strategies may be defined

There is an API for adding new decision procedures

Tcl/Tk displays for proofs and theory hierarchies

LATEX, HTML, and XML generation

Yices interface

WS1S

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

The Prelude

The PVS prelude provides a lot of theories - over 1000 lemmas
These are available directly within PVS
It includes theories for:

booleans

numbers (real, rational, integer)

strings

sets, including definitions and basic properties of finite and
infinite sets

functions and relations

equivalences

ordinals

basic definitions and properties of bitvectors

mu calculus, LTL
Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

PVS Libraries and Packages

PVS may be extended by means of Libraries

Using an IMPORTING that references the library

Extending the prelude (M-x load-prelude-library)

Libraries that extend the theories of finite sets and bitvectors are
included in the PVS distribution
Packages extend the notion of library to include strategies, Lisp,
and Emacs code

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

About NASA Libraries

NASA has a large and growing set of libraries at
http://shemesh.larc.nasa.gov/fm/ftp/larc/
PVS-library/pvslib.html

Two important packages provided by Ben Divito and César
Muñoz are Manip and Field:

Manip provides for algebraic manipulation of formulas
Field remove divisions from a formula

Most of the NASA libraries depend on these, but they are
quite general

NASA Library Contributors: Rick Butler, Ben Di Vito, Bruno
Dutertre, Alfons Geser, David Griffioen, Jerry James, David
Lester, Jeff Maddalon, César Muñoz, Kristin Y. Rozier, Jon
Sjogren, Christian van der Stap

Sam Owre A Brief Overview of PVS

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html


Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

NASA Libraries

algebra groups, monoids, rings, etc
analysis real analysis, limits, continuity, derivatives, integrals
calculus axiomatic version of calculus
complex complex numbers
co structures sequences of countable length defined as coalgebra datatypes
digraphs directed graphs: circuits, maximal subtrees, paths, dags
float floating point numbers and arithmetic
graphs graph theory: connectedness, walks, trees, Menger’s Theo-

rem
ints integer division, gcd, mod, prime factorization, min, max
interval interval bounds and numerical approximations
lnexp logarithm, exponential and hyperbolic functions
lnexp fnd foundational definitions of logarithm, exponential and hyper-

bolic functions

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

NASA Libraries (cont)

orders abstract orders, lattices, fixedpoints
reals summations, sup, inf, sqrt over the reals, abs lemmas
scott Theories for reasoning about compiler correctness
series power series, comparison test, ratio test, Taylor’s theorem
sets aux powersets, orders, cardinality over infinite sets
sigma set summations over countably infinite sets
structures bounded arrays, finite sequences and bags
topology continuity, homeomorphisms, connected and compact spaces,

Borel sets/functions
trig trigonometry: definitions, identities, approximations
trig fnd foundational development of trigonometry: proofs of trig axioms
vectors basic properties of vectors
while Semantics for the Programming Language ”while”

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

Some Applications

Verification of the AAMP5 microprocessor - Mandayam K. Srivas, Steven P. Miller

TAME (Timed Automata Modeling Environment) uses PVS as back end It is used for requirements and

security, have a Common Criteria EAL7 certified embedded system - C.L. Heitmeyer, M.M. Archer, E.I.

Leonard, J.D. McLean

LOOP is used to verify Java code, applied to JavaCard - J. van den Berg, B. Jacobs, E. Poll

Mifare card security broken - Bart Jacobs

Many NASA/NIA applications - clock synchronization, fault-tolerance, floating point, collision avoidance -

C. Muñoz, R. Butler, B. Di Vito, P. Miner

InVeSt: A Tool for the Verification of Invariants - S. Bensalem, Y. Lakhnech, S. Owre

Maple interface - Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, Sam

Owre, Clare So

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

More Applications

A Semantic Embedding of the Ag Dynamic Logic - Carlos Pombo

Early validation of requirements - Steve Miller

Programming language meta theory - David Naumann

Cache coherence protocols - Paul Loewenstein

Systematic Verification of Pipelined Microprocessors - Ravi Hosabettu

Vamp processor - Christoph Berg, Christian Jacobi, Wolfgang Paul, Daniel Kroening, Mark Hillebrand,

Sven Beyer, Dirk Leinenbach

Flash protocol - Seungjoon Park

Trust management kernel - Drew Dean, Ajay Chander, John Mitchell

Self stabilization - N. Shankar, Shaz Qadeer, Sandeep Kulkarni, John Rushby

Sequential Reactive Systems, Garbage Collection verifications - Paul Jackson

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

Still More Applications

Software reuse, Java verification, CMULisp port of PVS - Joe Kiniry

Reactive systems, literate PVS - Pertti Kellomaki

Garbage collection - Klaus Havelund, N. Shankar

Nova microhypervisor, Coalgebras, Numerous PVS bug reports - Hendrik Tews

Why: software verification platform has PVS as a back-end prover - Jean-Christophe Filliâtre

Adaptive cache coherence protocol - Joe Stoy, et al

PBS: Support for the B-Method in PVS - César Muñoz

SPOTS: A System for Proving Optimizing Transformations Sound - Aditya Kanade

Time Warp-based parallel simulation - Perry Alexander

Linking QEPCAD with PVS - Ashish Tiwari

Distributed Embedded Real-Time Systems, Reactive Objects - Jozef Hooman

TLPVS: A PVS-Based LTL Verification System - Amir Pnueli, Tamarah Arons

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

Libraries
Some Applications
Courses using PVS

Courses using PVS

An introduction to theorem proving using PVS - Erik Poll, Radboud University Nijmegen

Logic For Software Engineering - Mark Lawford, McMaster

NASA LaRC PVS Class - NASA, NIA

Theorem Proving and Model Checking in PVS - Ed Clarke & Daniel Kroening, CMU

Formal Methods in Concurrent and Distributed Systems - Dino Mandrioli, Politecnico di Milano

Formal Methods in Software Development - Wolfgang Schreiner, Johannes Kepler University

Applied Computer-Aided Verifcation - Kathi Fisler, Rice University

Dependable Systems Case Study - Scott Hazelhurst, University of the Witwatersrand, Johannesburg

Introduction to Verification - Steven D. Johnson, Indiana Univerisity

Automatic Verification - Marsha Chechik, University of Toronto

Modeling Software Systems - Egon Boerger, University of Pisa

Advanced Software Engineering - Perry Alexander, University of Cincinnati

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

The Future of PVS
Conclusion

The Future of PVS

Declarative Proofs

A verified reference kernel

Generation of C code

Improved Yices interface

Incorporation into tool bus

Reflexive PVS

Polymorphism beyond theory parameters

Functors as an extension of (co)datatypes, i.e., mu and nu
operators

XML Proof Objects - a step toward integrating with other
systems

Sam Owre A Brief Overview of PVS



Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

The Future of PVS
Conclusion

Conclusion

PVS is available at http://pvs.csl.sri.com

There is a Wiki page users can contribute

Mailing lists

PVS is open source, available as tar files or subversion

Sam Owre A Brief Overview of PVS

http://pvs.csl.sri.com


Language & Prover
Example - Ordered Binary Trees

More Features of PVS
Libraries & Applications

Conclusion

The Future of PVS
Conclusion

Conclusion

Questions?

Sam Owre A Brief Overview of PVS


	Language & Prover
	Types
	Expressions
	Declarations
	Theories
	Names
	Prover

	Example - Ordered Binary Trees
	Binary Tree Datatype
	Generated Theories
	Ordered Binary Trees Theory
	Demo of main insertion property

	More Features of PVS
	Ground Evaluator
	PVSio and ProofLite
	PVSio Demo
	List of Other Features

	Libraries & Applications
	Libraries
	Some Applications
	Courses using PVS

	Conclusion
	The Future of PVS
	Conclusion


