
A Personal History of
Layered Trustworthiness

Peter G. Neumann
SRI International

Computer Science Laboratory
Menlo Park CA 94025-3493

Neumann@csl.sri.com
1-650-859-2375

These slides were used in the
Elliott Organick Memorial Lectures
University of Utah, 26-27 March

2013
along with project slides: see

http://www.csl.sri.com/neumann

1

These slides are approved for public
release, distribution unlimited.
Some of the material in this talk
is based on a project supported
by the Defense Advanced Research
Projects Agency (DARPA) and the
Air Force Research Laboratory (AFRL),
under contract FA8750-10-C-0237.
The views expressed are mine and
do not reflect the official policy
or position of the Department of
of Defense or the U.S. Government.

2

Trustworthiness
- -
Trustworthiness is a multidimensional
measure of the extent to which an
entity (person, system, network,
etc.) is worthy of being trusted
to satisfy certain requirements for
system security, system integrity,
system reliability, human safety,
system survivability despite
realistic adversities, real-time
performance, interoperability, ...
at particular layers of abstraction.

3

Untrustworthiness
- -
Untrustworthiness (e.g., failure to
satisfy critical needs) is ubiquitous,
due to incomplete requirements
(specified vs desired), unsound
architectures, bad implementation,
dependence on untrustworthy 3rd
parties, insider misuse [8], human
frailty, invalid assumptions, sloppy
evaluations, faulty risk analysis, etc.
• Weakness in depth and breadth!

4

Unsound Architectures
- -
• Building elaborate castles in sand
• Poor modularization (e.g., lack of

encapsulation/information hiding)
• Poor hierarchical abstraction

(e.g., flat software, without
layered protection)

• Anti-hierarchical dependencies
(e.g., circular; dependence on less
trustworthy components [20])

• Many other causes

5

Emergent Properties
- -
System Security, Survivability & Human
Safety are multidimensional emergent
properties of systems and networks,
requiring trustworthy foundations,
reliability, robustness, resilience,
interoperability, compatibility,
predictability, usability, sufficiently
trustworthy people, & much more.

6

Trustworthiness Interdependencies
- -
• Unreliable systems are not secure.
• Insecure systems are not reliable.
• Human safety and total-system

survivability require security,
reliability, timeliness, and more.

• Trustworthiness requirements
may interact with one another,
with bad emergent properties,

• People add significant risks.
• Compromises can be pervasive.

7

Layered Trustworthiness Compromises
- -
Compromise results from misuse,
HW faults, system failures, acts of
God, ..., with three basic types
• Compromise from above/outside:

penetrations, denials of service,
untrustworthy 3rd parties,
clouds, people

• Compromise from within: insider
misuse, software flaws

• Compromise from below:
subversion (overt or otherwise)

8

More Architectural Issues
- -
• Trustworthy critical components
• Sound bases for composition
• Trusted bootload, trusted paths
• Cryptographic authentication
• Finer-grained authorization
• Traceback abilities
• Tamper-resistant accountability
• Don’t forget denials of service
• Trustworthy code distribution
• Lots more to think about ...

9

Trust
- -
Trust is what you have to do –
whether you like it or not –
when you must depend on something
to satisfy desired properties.
• Today we have faith-based trust.
We need significant trustworthiness!

10

Trust vs Trustworthiness
- -
Trust is a slippery slope.
You may trust some entity because:
• You believe it is trustworthy.
• You don’t even know it exists.
• You are näıve or gullible.
• You ignore dialog boxes.
• You don’t check certificates.
• You know no alternatives.

11

Trust is a Belief Relation
- -
Mathematically/logically,
W trusts X to satisfy Y and Z.

W may be person(s) and/or agent(s).
X may be a collection of systems,

information, people, and so on.
Y might be a set of expectations.
Z might be mitigating constraints.
(Cf. Burrows, Abadi, Needham,

Belief Logic [28].)

12

A Basic Goal for Trust
- -
• We have learned much about

achieving trustworthiness
in systems, but not enough.

• We need corresponding ways to
systematize networked trust in
persons, artifacts, information,
communications, content, etc.,
and to advance trustworthiness.

13

Built-in System Integrity
- -
• Intuitively, beware of dependence

on less trustworthy entities.
This is the essence of Biba [20].

• In practice, we can sometimes
overcome such dependencies,
e.g., error-correcting codes,
fault-tolerant computing,
cryptography, dynamic checks,
and other mechanisms. See [4].

14

Trustworthy Systems
- -
• For meaningfully trustworthy

critical systems, incremental
changes are likely to be
fundamentally inadequate:
You cannot get there from here.

• We consider some hierarchical
system architectures, some of which
were mostly incremental, others
much more clean slate.

15

Trustworthy Layered Architectures
- -
• Multics 1965, PSOS, SIFT 1973
• Dijkstra, THE 1968 [27]
• Rushby separation kernel 1982

to Rushby-DeLong 2007–
• MLS: KSOS, KVM, SeaView ...
• MILS: Rushby-Randell DSS 1983,

NSA 1988, SRI 1992 [14]
• Virtualization: KVM 1977,

Rushby-DeLong 2007–
• Capsicum [21], CHERI [22,23]
• Composability [4]

16

Relevant Mentors/Inspirers
- -
• Albert Einstein 1952
• Multics: Corbató, Glaser, Daley,
Saltzer, Osanna, Vyssotsky, McIlroy,
Bob Morris, Ken Thompson, et al.
• E.W. Dijkstra 1968
• PSOS: Boyer, Feiertag, Levitt,
Robinson, 1973
• Dave Parnas, Brian Randell, Jim
Horning, Marv Schaefer, ... 1970s
• Robert N.M. Watson, Doug
Maughan, Howie Shrobe, 2000–

17

Multics Hardware, 1965 [29]
- -
• Independent virtual memory

segments, paging, address
spaces; process isolation

• Access control interpretation
• Descriptor cache for performance
• Hierarchical integrity: 8 rings

extend supervisor/user modes,
avoid compromise from above
– layer by layer.

18

Multics Software, 1965-1970 [29]
- -
Modular encapsulation, reentrant
PL/I code; per-user processes;
Directory hierarchy w. ACLs &
dynamic linking of symbolic
file and I/O names; ring X-ing;
unified design philosophy – e.g.,
dependence on symbolic addressing,
stream I/O, command standards,
conventions, argument validation
iexceptions, canonicalization, ...
pull-only version control, search
ordering, script-based commands

19

MLS Multics: AIM, 1972
(Access Isolation Mechanism)
- -
Ring 1 MLS AIM: 8 security levels
& 18 categories with very little
performance degradation as Standard
Multics feature (not often used?).
(8 MLS levels unrelated to 8 rings.)
Secure audit: logged failed accesses

20

PSOS Design (SRI-NSA, 1973-80)
- -
• Pervasive capability addressing,

tagged, typed, nonforgeable
in HW/SW, nonbypassable

• Hierarchical encapsulated
modular abstraction, object-
oriented user-definable types,
HW/SW formally specified in
SRI’s Hierarchical Development
Methodology (HDM) [1-3]

21

PSOS Capabilities
- -
• Only two operations create

capabilities: create new one,
or create restricted copy.

• All objects are capability
addressed, nonbypassably.

• Incremental trustworthiness.
Capabilities accessible
unless hidden by some layer.

• Capabilities could be tagged as
propagation limited, MLS/MLI

22

Layer PSOS Abstraction or Functions

17+ applications and user code (-)

16 user request interpreter *

15 user environments and name spaces *

14 user input-output *

13 procedure records *

12 user processes*, visible input-output*

11 creation and deletion of user objects*

10 directories (*)<c11>

9 extended types (*)<c11>

8 segmentation (*)<c11>

7 paging <8>

6 system processes, input-output <12>

5 primitive input/output <6>

4 arithmetic, other basic operations *

3 clocks <6>

2 interrupts <6>

1 registers (*), addressable memory <7>

0 capabilities * [could include MLS]

* user-visible interface

(*) partially visible interface

(-) user-restrictable as desired

<c11> creation/deletion hidden by layer 11

<i> module hidden by layer i=6,7,8, or 12

23

Layer PSOS Abstraction or Functions

17+ applications and user code (-)

16 user request interpreter *

15 user environments and name spaces *

14 user input-output *

13 procedure records *

12 user processes*, visible input-output*

11 creation and deletion of user objects*

10 directories (*)<c11>

9 extended types (*)<c11>

8 segmentation (*)<c11>

7 paging <8>

6 system processes, input-output <12>

5 primitive input/output <6>

4 arithmetic, other basic operations *

3 clocks <6>

2 interrupts <6>

1 registers (*), addressable memory <7>

0 capabilities * [could include MLS]

24

PSOS Principled Assurance
- -
• Pervasive assurance throughout

cycles of development and use

• Assured composability, layered
hierarchical noncompromisibility
(Robinson-Levitt 1977 [15]).
Cf. the UTexas CLInc stack.

• Assured multilevel security,
with several possible
alternative implementations.

25

PSOS Implementability
- -
• Many lower-layer ops ‘*’ would be

directly executable from above,
others could be hidden ‘[]’.

• Multilevel security (MLS) could
be embedded in layer 0, or in a
primitive secure object type.

• Hardware easily retrofittable.
• Honeywell/SCC secure systems

LoCK, SAT, SideWinder adopted
PSOS’s use of type safety.

26

SRI’s SIFT (aka NASA’s SwIFT)
- -
• SIFT: Software Implemented
Fault Tolerance, 1973-2000:

Application layer
Voting layer (2 of 3)
Broadcast layer
Synchronization layer
7x (Bendix avionics CPUs)

p(failure) = 10−10/hr, 10−5 better than
1 CPU. Never crashed for 20+ years.
Wensley/Levitt/Green/Goldberg/
PGN 1973, plus many later papers.

27

KSOS (Ford Aerospace, 1980s)
- -
34-function MLS kernel, formally
specified in HDM; SRI used the
Feiertag MLS flow analyzer and
Boyer-Moore theorem prover to
find security flaws in specifications,
most of which were fixed (except for
a few detected covert storage
channels). Also, code-to-spec
consistency proof feasibility.

28

KVM Layers (SDC, mid-1970s)
- -
MLS retrofit of kernel into IBM 370;
NonKernel Control Program (one per
security level); untrusted unmodified
virtual operating system instances of
MVS/MVT and VM/370 at desired
MLS levels; users. Formal top- and
2nd-level specs formally verified with
mappings in InaJo/FDM. Covert
channel analysis. [16,17]

29

SeaView (SRI/ONR-AFRL)
- -
• Multilevel Secure DBMS, 1980s:

Application layer
MLS-untrusted Oracle
An evaluated MLS kernel

Composition, ‘balanced assurance’:
System at evaluated kernel rating
despite Oracle not MLS, after
Oracle removed shared buffers.

30

DARPA CRASH Program
- -
• CRASH = Clean-slate design

of Resilient, Adaptive,
Secure Hosts:

Howard Shrobe is the DARPA PM.
• Our SRI/U.Cambridge CRASH

project is called CTSRD:
CRASH-worthy Trustworthy
Systems R&D.

31

CTSRD = CRASH-worthy
Trustworthy Systems R&D
- -
We’re building a principled, formally
supported, robust hardware/software
platform designed for technology
transfer. Security design principles
and program security structure are
reinforced by Temporally Enforced
Security Logic Assertions (TESLA)
and Capability Hardware Enhanced
RISC Instructions (CHERI [22,23]).

32

Historical Basis for CTSRD
- -
CTSRD is inspired by the formally
specified tagged/typed HW/SW
hierarchical capability-based
design of SRI’s PSOS [1,2,3], Rushby’s
separation kernels and recent work
with DeLong, Watson’s Capsicum [21],
FreeBSD, & Chrome OS, and
related efforts. The hybrid
architecture and formal methods
lead to significant advances.

33

Systemic Considerations
- -
• Dramatic changes in threats
• New research opportunities
• HL programmable FPGAs
• Exposing hardware parallelism
• Advances in programming languages
• New HW/OS open-source variants

(MIPS,ARM; iOS/Android)
• Advances in open source SW
• Advances in formal methods

34

Key Tenets of CTSRD
- -
• Typed-object program-aware HW

simplifies total assurance
• Fine-grained compartmentalizing of

applications without sacrificing
performance/programmability
of paged VM architectures.

• Secure division of memory within
address spaces; message passing
handled by compilers

35

CTSRD Architecture 1 [22,23]
- -
• CTSRD’s architecture is a hybrid
design, with high-assurance code for
CHERI and TESLA coexisting with
legacy OSs and software,
with a gradual adoption path for
high-assurance security features.
• Code may be compiled for general-
purpose and/or capability registers.
• Each address space has an
executive for memory allocation and
capability semantics (creation etc.).

36

37

CTSRD Architecture 2
- -
• Thread contexts may be limited to
using only capability addressing.
• ‘Capability pools’ let capability
code operate within hybrid processes
(Capsicum kernel, libraries, script
interpreters, etc.).
• High-assurance components (such
as a separation kernel and MirageOS
stack) would use capabilities and
be compiled with TESLA assertions
to detect violations of principles.

38

CTSRD Architecture 3
- -
• CTSRD supports critical TCB
components: separation kernels,
language runtimes, and particularly
exposed or frequently vulnerable
software components.
• Formal analysis can give confidence
in the design and implementation.
TESLA picks up at runtime where
formal analysis leaves off.

39

CHERI 1
- -
• The CHERI hardware architecture
is specified in Bluespec and
implemented in an FPGA
soft core: capability instructions
and paged virtual memory in HW.

• Program security structure is
exposed by the compiler to (and
enforced by) hardware: general-
purpose RISC registers + capability
registers and tagged memory.
(Multics-like rings are implicit.)

40

CHERI 2
- -
• Bluespec restructured for ease of
formal analysis. SRI FM tools are
inside the development tool chain.
• Massive multi-threading implements
procedure capabilities with hardware
message passing (vs. expensive
virtual-memory context switches).
• Multicore is also implemented.

41

CHERI Development Platform
- -
Our MIPS64 hardware began with
Cambridge’s TIGER MIPS64 soft core
with added capability instructions/
and registers. It is specified in
Bluespec (high-level, abstract,
typed); BSV compiles specs into
Verilog for Terasic DE4 Altera
FPGA and Xilinx NetFPGA boards.

42

Examples of HW-SW Co-design
- -
• PSOS HW/SW in SPECIAL [2,3]:
SPECIfication & Assertion Language
state-machine based, nonexecutable
• Elliott Organick: Serious efforts
on HW/SW abstract co-design:
“Ada to Silicon” [30]
• Nirav Dave PhD Thesis: Bluespec
BSV extended to BSL with movable
HW/SW boundary: executable,
compiles into Verilog or desired
programming languages [24].

43

Bottom-to-Top Layered Assurance
- -
• Consistently capability-aware

architecture mirrors hierarchical
incremental assurance (slide 30):
HW/kernel/compiler/apps.

• Layered selective use of formal
methods from the hardware up:
SRI’s PVS, SAL model checking,
YICES SMT solver, other tools
applied to HW/SW/compilers.

44

DARPA MRC Program
- -
• MRC = Mission-oriented

Resilient Clouds:
Howard Shrobe is the DARPA PM.
• Our SRI/U.Cambridge MRC

project is called (MRC)2:
Modular Research-based
Composably trustworthy MRC.

• Trustworthy Software-Defined
Networking & Datacenters,
Switch/controller co-design.

• More on CTSRD, (MRC)2 follows.

45

Simplicity: Fundamental Quote
- -
“Everything should be made as
simple as possible, but no simpler.”

Albert Einstein
Violations of that principle are
responsible for many breakdowns
in trust and trustworthiness, e.g.,
poor usability (too complex),
unforeseen risks (too simple).

46

Simplicity and Complexity
- -
• Simplicity is highly praised, but

oversimplifying almost always
creates problems.

• Attaining trustworthiness is
inherently complex even with
highly trustworthy components,
much harder in the presence of
anything that is untrustworthy.

47

Simplifying Inherent Complexity
- -
Layered & distributed architectures,
vertical and horizontal abstraction
with encapsulation, virtualized
interfaces, invisible encryption, and
more can help mask underlying
complexity, rigorize system-wide
analysis, and yield operationally
effective trustworthiness.

48

Trustworthy Composition [4]
- -
• Composition is meaningful

at many layers of abstraction
with respect to policies,
protocols, specs, components,
program language features,
proofs, evaluations, ...

• Vertical, horizontal, parallel,
sequential, distributed,
refinement, X-tolerant, ...

• Amplifying trustworthiness [4]

49

Composability/Compositionality
- -
• Predictable Composition is

crucial to managing complexity.
www.csl.sri.com/neumann/chats4.pdf
• Composability: Are properties

preserved or soundly transformed?
critical system requirements?

• Compositionality: Are emergent
properties consistent with
critical system requirements?

50

Impediments to Composition
- -
• Incompatible definitions
• Inadequate architectures
• Incompatible interfaces
• Nonencapsulated modularity
• Hidden state interactions,

memory residues, leaks, etc.
• Undocumented side-effects
• Unanalyzed emergent properties
• Undisciplined software practices
• Unsafe programming languages

51

The So-Called Perimeter of Trust
- -
This is also a multidimensional
slippery slope! There is typically
no single perimeter, other than the
totality of every user on every
accessible system (the Internet?).
Each property may have its own
would-be (fuzzy) perimeter.
Insiders vs Outsiders? Also fuzzy:
Clouds can be virtual insiders!

52

Illustrative Example: Elections
- -
Elections represent a paradigmatic
hard problem in which insiders and
outsiders have huge opportunities
for misuse, often with minimal
oversight. Untrustworthy third
parties abound inside the supply
chain and the election process.
Beginning-to-end and bottom-to-top
assurance are completely absent,
but urgently needed.

53

Insider Fraud in Elections
- -
• Clay Cty, Kentucky: 8 convictions
for insider fraud (rigging, contract
bribes, 2002, 2004, 2006), including
a circuit court judge.
• Ohio: 2 indictments for election
fraud; election managers mishandled
ballots, leaked partial tallies; illegal
cables; clock alterations; log gaps;
shared account; no dual control. 2006

54

More Insider Fraud in Elections
- -
• Indiana: 7 felony indictments
• Colorado: current Grand Jury
• Many others suspected
(weak authentication, accountability,
oversight; equipment sleep-overs, etc.)
• Cf. Nevada gambling frauds: Strong
regulations, weak oversight. Gaming
Board member embezzled, convicted,
murdered. See Jeff Burbank: EVT/
WOTE 2010 video; License to Steal

55

A Realistic View of Networks
- -
“To a first approximation, every
computer in the world is connected
with every other computer.”
Bob Morris, then Chief Scientist,
National Computer Security Center,
briefing the CSTB, 9/19/1988.
NSA Chief Sci. K. Speierman and
PGN also warned of impending chaos.

56

A Holistic View of the Future
- -
We cannot have a trustworthy
networked Web environment
unless we have secure/resilient
systems, servers, switches,
routers, switch controllers,
and cryptographic embeddings –
with operational stability,
autonomous maintainability,
and much more. This is a
very difficult challenge.

57

Holistic Approaches
- -
• We need principled trustworthy

networked systems with sound
requirements and architectures,
proactive design for security,
reliability, resilience, usability,
evolvability, pervasive assurance,
selective use of formal methods,
predictably composable [4],
holistic foresight [25,26].

58

Lessons Still To Be Learned
- -
• Reliance on misapplied technology

usually increases risks.
• With appropriate HW and system

architecture, layered designs
need not be inefficient.

• Eternal vigilance is required. (John
Dewey: Each generation has to learn
the lessons of the past all over again.)

59

Technological Desires
- -
• Better system architectures
• Better system engineering
• Better public-private cooperation
• Better technology in education

• Practical privacy-aware crypto
• Nonproprietary systems: open

source/arch/doc/composability
• (Leads to permanent job security?)

60

Possible Forcing Functions?
- -
• Market forces are inadequate.
• Incentives for open systems,

open interfaces, open source?
• Stronger regulation & liability?
• Professional certification?
• Tax incentives?
• Better awareness of the risks

of untrustworthiness; disasters?
• Maybe some or all of the above?
• But there are no easy answers.

61

Conclusions 1
- -
• Weakness in breadth and depth

must be avoided!
• We need constructive attention to

high-assurance trustworthiness
for national infrastructures:
trustworthy architectures,
transparency, accountability...

• We should not have to trust
untrustworthy systems!

62

Conclusions 2
- -
• We need long-term total-system
life-cycle approaches, far-sighted
optimization, and more [25,26].
• Above all, we need far-sighted
research, development, commitment
to proactive scientifically sound
approaches, and education.
• Time may be ripe for CTSRD’s
formally based hybrid approach,
with coordinated program-aware
HW/SW/languages/compilers.

63

Hierarchies and Plutarchies
- -
Plutarch’s Greek writings stimulated
among Romans considerable sense
of the importance of understanding
historical people and events. He
observed that little seemed to have
changed in human nature. Similarly,
little has changed in commercial
high-assurance systems, despite
some major research advances.
We need a better sense of history.

64

References: PSOS 1980 Report
- -
1. P.G. Neumann, R.S. Boyer,

R.J. Feiertag, K.N. Levitt,
L. Robinson, A Provably Secure
Operating System: The System,
Its Applications, and Proofs,
SRI International, Computer
Science Laboratory, 2nd edition,
Report CSL-116, May 1980.

http://www.csl.sri.com/neumann/
psos/psos80.pdf and .ps

65

1979 PSOS Paper
- -
2. R.J. Feiertag, P.G. Neumann,

The Foundations of a Provably
Secure Operating System (PSOS),
Proceedings of the National
Computer Conference, AFIPS
Press, 1979, 329–334.

http://www.csl.sri.com/neumann/
psos.pdf

66

2003 PSOS Revisited
- -
3. P.G. Neumann, R.J. Feiertag,

PSOS Revisited, Proceedings of the
19th Annual Computer Security
Applications Conference (ACSAC
2003), Classic Papers section, IEEE
Computer Society, Las Vegas NV,
December 2003, 208–216.

http://www.csl.sri.com/neumann/
psos03.pdf

67

More PGN References
- -
4. Principled assuredly trustworthy

composable architectures, 2004
(includes a wonderful appendix by
Virgil Gligor on system modularity).

http://www.CSL.sri.com/neumann/
chats4.html, .pdf, .ps

5. Reflections on System
Trustworthiness, Advances in
Computing v.70, Academic
Press (Elsevier), 2007, 267–309.

68

More PGN References
- -
6. Holistic Systems, ACM

SIGSOFT Softw.Eng.Notes, Nov. 2006.
http://www.csl.sri.com/
neumann/holistic.pdf

7. Practical Architectures for
Survivable Systems and
Networks, ARL, June 2000.
http://www.csl.sri.com/
neumann/survivability.html
neumann/survivability.pdf

69

More PGN References
- -
8. PGN, Combatting Insider Threats,

in Insider Threats in Cyber Security
and Beyond, Christian Probst,
Jeffrey Hunker, Dieter Gollmann,
and Matt Bishop (editors),
Springer Verlag, 2010.

9. The Role of Motherhood in the
Pop Art of System Programming,
SOSP, 1969. www.multicians.org/
pgn-motherhood.html

70

More PGN References
- -
10. Computer-Related Risks:

Addison-Wesley, 1995.
11. www.CSL.sri.com/neumann/

(elections: /illustrative.html)
12. ACM Risks Forum, www.risks.org

(every RISKS issue, since 1984)

71

Other Co-authored References 4
- -
13. Highly Dependable Distributed

Systems, PGN & Les Lamport,
US Army CECOM, June 1993.

14. N.E. Proctor and PGN,
Architectural Implications of
Covert Channels, Proc. 15th
National Computer Security
Conf. 1992. http://www.csl.
sri.com/neumann/ncs92.html

72

Robinson-Levitt 1977
- -
15. Larry Robinson and Karl Levitt,
Proof Techniques for Hierarchically
Structured Programs, Comm.

ACM, 20, 4, 271–283, April 1977.

73

KVM References
- -
16. M. Schaefer, BD Gold, RR Linde,
JF Scheid, Program confinement in
KVM/370, Proc. 1977 ACM Annual
Conference, Seattle, 404-410). (Flaw
discovered in Amdahl HW!)

17. BD Gold, RR Linde, PF
Cudney, KVM/370 in Retrospect,
IEEE SSP, Oakland, 1984, 13–23.

74

Saltzer-Schroeder-Kaashoek
- -
18. J.H. Saltzer & M.D. Schroeder
The Protection of Information in
Computer Systems, Proc. IEEE 63,
9, September 1975, 1278–1308.
http://www.multicians.org

19. J.H. Saltzer & F. Kaashoek,
Principles of Computer System
Design, Morgan Kauffman, 2009,
Chapters 1-6; 7-11 are online.
http://ocw.mit.edu/Saltzer-Kaashoek

75

Biba Integrity
- -
20. K.J. Biba,

Integrity Considerations for
Secure Computer Systems,
The Mitre Corporation technical
report MTR 3153, June 1975.

http://seclab.cs.ucdavis.edu/
projects/history/papers/biba75.pdf

76

Capsicum: Hybrid Architecture
- -
21. Robert N.M. Watson,

Jon Anderson, Ben Laurie,
and Kris Kennaway, Capsicum:
Practical Capabilities for Unix,
Proceedings of the 19th USENIX

Security Symposium, August 2010.

77

CTSRD System Architecture 1
- -
22. Peter G. Neumann and Robert
N.M. Watson (Univ. of Cambridge),
Capabilities Revisited: A Holistic
Approach to Bottom-to-Top
Assurance of Trustworthy Systems,
Layered Assurance Workshop,
Austin TX, 6-7 December 2010
http://www.csl.sri.com/neumann/

law10.pdf

78

CTSRD System Architecture 2
- -
23. R.N.M. Watson, P.G. Neumann,...
A Research Platform
Deconflating Hardware
Virtualization & Protection
RESoLVE Workshop, ASPLOS,
London, UK, March 2012
http://www.csl.sri.com/neumann/

2012resolve-cheri.pdf

79

BSL HW/SW Co-design
- -
24. Nirav Davé. A Unified Model
for Hardware/Software Co-design,
MIT, Cambridge, Mass., 2011.
http://people.csail.mit.edu/ndave/

80

Inside Risks: Foresight
- -
• 25. PGN, The Foresight Saga,

Redux: Short-term thinking is
the enemy of the long-term
future, CACM, Oct 2012.

• 26. PGN, More Sight on Foresight:
Reflecting on Elections, Natural
Disasters, and the Future,
CACM, Feb 2013.

81

Dijkstra THE System; BAN Logic
- -
27. E.W. Dijkstra, The Structure of
the THE Multiprogramming System,
Communications of the ACM, 11, 5, May
1968, 341–346.
28. M. Burrows, M. Abadi, R. Need-
ham, A Logic of Authentication, ACM

Trans. Computer Systems 8, 1, Feb 1990,
18-36.

82

Other References
- -
• 29. Elliott Organick, The Multics

System: An Examination of Its
Structure, MIT Press, 1972.
(Elliott wrote 19 books!)

• 30. Elliott Organick, 1925-1985,
Comm. ACM 29 3, March 1986,
p. 231.

• See my website for many more.

83

