The Potentials of
Open-Box Source Code in
Developing Robust Systems

Dr. Peter G. Neumann
Principal Scientist

Computer Science Lab

SRI International, Menlo Park
California USA 94025-3493
Telephone 1-650-859-2375
E-mail Neumann@CSL.sri.com

Commercial Off-The-Shelf
Products in Defence Applications:
The Ruthless Pursuit of COTS
NATO, Brussels, Belgium

4 April 2000

Acknowledgment of Support
and Contractual Disclaimer

This material is based upon work
supported by the U.S. Army Re-
search Laboratory under Contract
No. DAKF11-97-C-0020.

Any opinions, findings and con-
clusions or recommendations ex-
pressed in this material are those of
the author and do not necessarily
reflect the views of the U.S. Army
Research Laboratory.

Abstract

We consider the development of
robust systems that must satisfy
extremely critical requirements
such as security, reliability, safety,
and overall system survivability.
We examine the potentials of
source-available software within
emerging technologies such as
the Internet, mobile code, and
highly distributed architectures.

Fundamental System Needs

e Critical information systems and
their applications must predictably
satisfy stringent requirements such
as security, reliability and fault
tolerance, safety, robustness, and
survivability in the face of

many adversities, interoperability,
evolvability, maintainability, ...

e Stringent requirements cannot
be achieved without many factors,
such as good development practice,
operational security, etc.

Some Generic Problems in
Software Development and Use

e Developing robust systems is
inherently difficult.

e Today’s “Best Practices” are
inadequate and poorly applied.

e The Common Criteria approach is
incomplete and unwieldy, but
better than its predecessors.
Protection profiles are likely to be
incomplete.

e Operations management is
difficult and riskful.

e These problems are ubiquitous.

NATO-Relevant Risk Examples

e Vincennes’ AEGIS shootdown of
Iranian Airbus: inflexible software,
archaic hardware

e Patriot missile inaccuracies:
system clock drift, resulting from
requirement mismatch, bad clock
software; fix arrived too late, by
airplane, to avoid Dharan

e Sgt York gun: software flaws

e U.S. Navy: USS Hue City &
USS Vicksburg software integration
problems; USS Yorktown outage
due to unchecked divide-by-zero

System Realities Today

e Distributed and networked
systems are riskful. Embedded
systems are increasingly
dependent on other systems
rather than standalone.

e Personal-computer operating
systems are typically flawed,
bloated, inflexible, difficult to
administer, not suitable for critical
applications. Server OSs and
firewalls are often misconfigured.
Network protocols are inadequate.
There are many risks.

Proprietary-System Problems

e Many proprietary systems are
not capable of satisfying critical re-
quirements.

e Black-bozr systems (i.e., closed-box,
in which source code is unavailable)
hinder open analysis of system
development processes and the
resulting software quality, impede
system integration, and prevent
urgent on-site self-remediation.

e Lack of interoperability and

composability often encourages
inflexible monolithic solutions.

More Black-Box Problems:
Need for Reverse-Engineering

e Interoperability, local code patch-
ing for flaw removal, maintenance,
and other constructive purposes
conflict with the original World
Intellectual Property Organization
(WIPO) Copyright Treaty prohibi-
tions against reverse engineering,
although some of those restrictions
have been somewhat relaxed.

e The U.S. 1998 Digital Millenni-
um Copyright Act is overly restric-
tive. So is the pending U.S. Unifor-

m Computer Information Transac-
tions Act (UCITA).

Black-Box Software:
Potential Benefits for Users

e For proprietary systems, the iden-
tified proprietor is the supposed tar-
get for remediation, lawsuits, etc.
(However, this is not necessarily a
benefit, as remediation is often slow
and lawsuits are even slower!)

e For black-box systems, there are
very few significant benefits for
users that cannot also be achieved
with available source code, except
possibly the delaying effects of
security by obscurity.

11

Black-Box Software:
Benefits for System Developers

e Black-box code masks intellectual
property, and impedes development
of competitors’ systems and
dependent applications.

e Proprietary black-box business
models are well understood.

e Consumer retention/loyalty is
incentivized.

e For secure systems, attackers
may be slowed down somewhat by
“security through obscurity”.

10

Terminology

e Open-box code, i.e., source-available,
is the antithesis of black-bor code.
Many examples of open-box soft-
ware are found in the Open-Source
Movement and the Free Software
Movement (see next slides and cited
Websites), with various distribution
licenses. (INote: open-box software
may or may not be proprietary.)

e Open Source and Free Software
are not equivalent, although analy-
sis of the differences is beyond the
scope of this discussion.

12

The Free Software Movement’s
Free Software Foundation (FSF);
http://www.gnu.org

In FSF, free implies freedom to copy
and freedom to change, not necessarily
free of charge. FSF incentivizes
collaborative efforts and continual
improvements. Founded 1984.

e The FSF General Public Li-
cense (GPL) enforces copyright plus
copyleft, where copyleft requires
that redistribution (with or without
change) must not restrict freedom
to further copy and change.

13

Open-Box Examples, e.g.,
Free and Open-Source Software

e GPL-ed: The GNU System with
Linux (GNU Emacs, GCC, Gnome
2.0, Ghostview, GNUscape Naviga-
tor, gzip, Java packages, etc.), Free
VSD; not quite GPL-ed software
(Perl); non-GPL free software (Free
BSD, X windows, Apache, IATEX,
Mozilla, Netscape JavaScript ...);
Open BSD, Net BSD, Hyperlatex,
Eazel’s Linux graphical shell, ...

e Other licenses: MPL, QPL, ...

15

Open Source Movement’s
Open Source Definition (OSD)
http://www.opensource.org/osd.html

e Unrestricted redistribution

e Distributability of source code

e Permission for derived works

e Constraints on integrity

e Nondiscriminatory practices

e Transitive licensing of rights

e Context-free licensing

e No adverse affects on associated
software

14

Open-Box Potentials 1

e Extensive peer review is easy and
normal, and amenable to academics
and other researchers.

e Peer analysis is capable of finding
flaws and generating fixes rapidly.
e Open-box software is potentially
more readily capable of incremental
evolution.

16

Open-Box Potentials 2

e Users and administrators are
potentially in greater control,
because they may be able to obtain
fixes and new features.

e People other than the original de-
velopers can add significant value,
e.g., making systems more robust.
e Such software is often developed
altruistically and less motivated by
short-term cost-cutting.

e Open collaboration is easier.

e Software quality can be very high.

17

Open-Box Problems

e Many of the problems of black-
box software are also applicable to
open-box software, for example, the
risks of mobile code.

e Opportunities may be more
widespread for insertion of
malicious code (e.g., Trojan
horses) during development, and
for operational subversions.

e Management may be needed
across organizations, and is itself
difficult and possibly riskful.

19

Analytic Benefits of
Open-Box Code

The availability of source code for
analysis (even if it is proprietary)
enables application of analytic tools
such as

e Crispin Cowan, StackGuard
http://immunix.org

e David Wagner et al., Berkeley
buffer overflow analyzer approach
http://www.cs.berkeley.edu/"daw/papers/
e LOpht (now part of @Stake), slint
http://www.1lOpht.com/slint.html

e Reliable Software, ITS4 for C,
C++ http://www.rstcorp.com/its4/

18

Open vs Closed Analysis:
Seemingly Contradictory Views

e Easier access by adversaries to
available source implies less
operational security, because it
is easier to find exploitable
flaws in vulnerable systems

e Open box should be particularly
important for the analysis and im-
provement of life-critical and ultra-
reliable systems. Also, if a system
is meaningfully secure, open specs
and available source should not be
of less benefit to attackers, which
could give defenders a competitive
advantage (for a change).

20

Available Source Is Only Part of
What is Needed. There’s More.

e Open-box source code shares
many generic problems with black-
box source.

e Much more is needed to make
open-box systems robust, trustwor-
thy, and predictably dependable.

e See my Website for background
material on developing

survivable systems and networks:
http://www.csl.sri.com/neumann/

21

Robust Architectures

e Architectures that avoid excessive
dependence on untrustworthy
components

e Thin-client user platforms with
minimal operating systems, where
trustworthiness is required only
where essential

e Trustworthy servers, firewalls,
distribution paths for software,
provenance on all critical software;
nontrivial user authentication,
bilateral peer authentication,
aggressive resistance to denials of
service, better protocols, ...

23

Generic Desiderata

e Discipline in development,
software engineering, distribution,
operation, evolution, evaluations,
education, training, ...

e Inherently robust secure evolvable
interoperable architectures

e Responsible operational support
and configuration control

e Open standards for code,
interfaces, composability,
interoperability, distribution

e Contracts, liabilities, incentives:
compliance bonuses, noncompliance
penalties

e Sound business models for
nonproprietary open-box software

22

More on Robust Architectures

e Nonsubvertible implementations
of cryptography, used pervasively,
including cryptographic integrity

e Run-time detection of malicious
code and misuse

e Wireless applications and mobile
code add some stringent further
requirements.

24

Conclusions

e Nonproprietary open-box soft-
ware (e.g., Free Software and Open-
Source) is not a panacea, but has
huge potential, with discipline and
well-documented successes. (Disci-
pline is similarly needed for black-
box software, but is often lacking.)

e Open-box source could be particu-
larly promising in efforts to develop
dependable critical systems.

e Open-box successes can be an
incentive to black-box developers,
some of whom are already explor-
ing such alternatives.

BIOGRAPHICAL BACKGROUND

Peter G. Neumann is a Principal Scientist in the
Computer Science Laboratory at SRI (where he has
been since 1971), concerned with computer system
survivability, security, reliability, human safety, and
high assurance. He is the author of Computer-
Related Risks, Moderator of the ACM Risks Fo-
rum (comp.risks), Chairman of the ACM Commit-
tee on Computers and Public Policy, and Associate
Editor of the CACM for the Inside Risks column.
He founded and 19 years edited the ACM SIGSOFT
Software Engineering Notes. He is now a mem-
ber of the U.S. General Accounting Office Executive
Council on Information Management and Technolo-
gy. See http://www.CSL.sri.com/neumann/ for Sen-
ate and House testimonies, reports, RISKS, papers,
slides, etc.

Neumann taught at the Technische Hochschule
Darmstadt in 1960, Stanford University in 1964, the
University of California at Berkeley in 1970-71, and

27

A Few On-Line References

e Peter G. Neumann: reports; testi-
monies; survivability course; RISKS
materials; research papers, etc.
http://www.csl.sri.com/neumann

e Free Software Foundation: soft-
ware, philosophy, projects, licenses,
etc. http://www.gnu.org

e Eric Raymond: Cathedral
& Bazaar; Hallowe’en Documents
http://www.tuxedo.org/“esr/ and
http://www.opensource.org/: “Open
Source promotes software reliability
and quality by supporting indepen-
dent peer review and rapid evolu-
tion of source code.”

26

most recently a course on survivable systems and net-
works at the University of Maryland in the fall of 1999
(see my Website for notes).

Neumann is a Fellow of the American Association
for the Advancement of Science, the ACM, and the
Institute of Electrical and Electronics Engineers (of
which he is also a member of the Computer Soci-
ety). He has received the ACM Outstanding Con-
tribution Award for 1992, the first SRI Exception-
al Performance Award for Leadership in Community
Service in 1992, the Electronic Frontier Foundation
Pioneer Award in 1996, the ACM SIGSOFT Distin-
guished Service Award in 1997, and the CPSR Nor-
bert Wiener Award for in October 1997, for “deep
commitment to the socially responsible use of com-
puting technology.”

Peter G. Neumann, Computer Science Labora-
tory, SRI International 333 Ravenswood Ave.,
Menlo Park CA 94025-3493 Telephone 650-859-
2375, FAX 650-859-2844, neumann@csl.sri.com.
http://www.csl.sri.com/neumann.html

28

