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Abstract
Huge challenges exist with systems and networks that must
dependably satisfy stringent requirements for security,
reliability, and other attributes of trustworthiness. Drawing
on what we have learned over the past decades, our
CHATS project seeks to establish a coherent common-sense
approach toward trustworthy systems. The approach en-
compasses comprehensive sets of requirements, inherently
sound architectures that can be predictably composed out
of well-conceived subsystems, highly principled develop-
ment techniques, good software engineering disciplines,
sound operational practices, and judiciously applied
assurance measures. Although such an approach is likely
to seem completely old-hat to some researchers and totally
impractical to commercial developers, the wisdom thus
embodied is seldom used consistently (if at all) in practice;
if it were used wisely, much of the untrustworthiness in
today’s systems would simply disappear. This paper briefly
summarizes our approach and its potential benefits.

1. Introduction

We summarize the primary task of our two-year
project under Contract N66001-01-C-8040, as part of
DARPA’s Composable High-Assurance Trustworthy Sys-
tems (CHATS) program. The DARPA Program Manager
is Dr. Douglas Maughan. Our project spans the goals of
the DARPA CHATS program — including trustworthiness,
composability, and assurance. The final report [10] is avail-
able on the Web, in draft form prior to June 28, 2003, and
in final form thereafter:

http://www.CSL.SRI.com/neumann/chats4.html
http://www.CSL.SRI.com/neumann/chats4.pdf
http://www.CSL.SRI.com/neumann/chats4.ps

In our project, we are confronting an extremely diffi-
cult problem — namely, how to attain demonstrably trust-
worthy systems and networks that need to operate under
stringent requirements for security, reliability, survivabil-
ity, and other critical attributes. In particular, we pursue
sound foundations for the creation of trustworthy systems
and networks that can be easily composed out of subsys-
tems and components, with predictably high confidence that

they meet their requirements and also do something sensi-
ble when forced to operate outside of the expected normal
range of operational conditions. Toward this end, we ex-
amine various principles for achieving trustworthiness, con-
sider constraints that might enhance composability, propose
architectures and trustworthy subsystems that are inherently
likely to result in trustworthy systems and networks, con-
sider constraints on administrative practices that can reduce
the risks of bad behavior, and explore approaches that can
significantly increase assurance. We also outline needs for
new research and development that could significantly im-
prove the future for dependably trustworthy systems.

With respect to the future of trustworthy systems and
networks, perhaps the most important recommendations in-
volve the urgent establishment and consistent use of realis-
tic highly disciplined and principle-driven architectures, as
well as development practices that systematically encom-
pass trustworthiness and assurance as integral parts of what
must become coherent development processes and sound
subsequent operational practices. Only then can we have
any realistic hopes that our computer-communication in-
frastructures — and consequently our national infrastruc-
tures — will be able to behave as needed, in times of crisis
as well as in normal operation.

Developing systems with critical trustworthiness re-
quirements is inherently more complicated than ordinary
software. The risks are typically much greater [9], and the
challenges have no simple turn-the-crank solutions. Abil-
ity, understanding, experience, education, and enlightened
management are crucial. Success can be greatly increased
in many ways, including dependable hardware, robust sys-
tem and network architectures, pervasive use of good soft-
ware engineering practices, careful attention to human-
oriented interface design and especially ease of operation
and system administration, sound and properly used pro-
gramming languages, trustworthiness-enhancing compilers,
techniques for increasing interoperability among heteroge-
neous systems and subsystems, methods and tools for anal-
ysis and assurance, and other factors. The absence or rel-
ative deficiency of each of these factors today represents
a potential weak link in a process that is currently riddled
with too many weak links. On the other hand, much greater



emphasis on these factors can result in substantially greater
trustworthiness, often with more predictable results.

The approach of our project is strongly inspired by his-
torical perspectives of fruitful research efforts and extensive
experience (both positive and negative) relating to the devel-
opment of trustworthy systems. It is motivated by the prac-
tical needs and limitations of commercial developments as
well as by CHATS successes in inserting greater discipline
into the open-source world. It provides useful guidelines
for disciplined system developments. It also identifies vari-
ous recommendations for future efforts. As a consequence
of the inherent complexity associated with the challenges
of developing and operating trustworthy systems and net-
works, it is impossible to represent the breadth and depth
of scope of our work in this brief summary, which merely
touches on the problems and the potential solutions. Thus,
we urge you to read the cited report [10] and see how much
of it might be applicable to you.

The main thrust of the effort considers lessons drawn
from past research and prototype developments, and vari-
ous approaches that can lead to much greater trustworthi-
ness. Many of these concepts will be well known to you, at
least in the small; however, they need to be applied vigor-
ously and consistently in the large. The would-be lessons
of the past have been widely ignored, especially in com-
mercial developments — with a multitude of excuses being
offered: for example, perceived irrelevance of trustworthi-
ness in the mass marketplace; lack of customer demands for
systems satisfying critical requirements; absence of legal li-
ability for consequential damages; difficulties in using good
software engineering practices, high-assurance techniques,
and evaluation criteria; legacy compatibility constraints;
weak system-oriented computer science education; and a
pervasive tendency to blame users and system administra-
tors for the human failures that produce inherently flawed
systems, weak network protocols, and badly designed hu-
man interfaces. Short-sightedness abounds. In particular,
the perceived importance of short-term cost increases and
delayed deliveries could be largely marginalized if the long-
term costs of debugging, integration, recoding, incremental
maintenance, frequent upgrades, and critical dependence on
highly skilled administration were included in the analysis.
It is widely recognized that up-front efforts can greatly re-
duce the overall effort.

We do not wish to preach to the choir or to proselytize
the unwashed. This summary paper is written in the hopes
that you will read the report, irrespective of your software
development predilections. For developers who seriously
seek to overcome the typical practice of seat-of-the-pants
perhaps-just-good-enough software creation, particularly
for critical applications, we offer a few caveats about the
report. If you are looking for overall simplicity, you may be

sadly disappointed; indeed, each chapter of the report may
convince you that there are few if any easy answers. How-
ever, there are many answers — if properly applied. If you
are looking for some practical advice on how to develop
systems and networks that are substantially more trustwor-
thy than what can be achieved today by patching together
off-the-shelf flawed systems, then you may find some
encouraging directions to pursue. We believe that diligent
observance of the approaches described in our report [10]
can greatly improve the situation. The opportunities for this
within the open-source community are considerable; they
are also potentially applicable to closed-source proprietary
systems — if the excuses noted above can be eschewed.
However, in any case, what is needed is greater discipline
and attention to the fundamentals we discuss relating to the
entire life cycle, including the presence of meaningfully
comprehensive critical requirements, sound system and
network architectures, highly principled software develop-
ment, and operationally aware development. This approach
is neither simplistic nor overwhelmingly complicated.

2. Approach of the Project

Our starting point involves the desired roles of
principles relevant to the conceptualization, design, im-
plementation, operation, and use of information systems
and networks having critical requirements for security,
reliability, and survivability. We also identify obstacles to
achieving facile composability and interoperability, and to
consider approaches that can contribute to the development
of significantly greater composability in systems with
critical requirements. We then consider characteristics
of architectures that are likely to predictably satisfy the
CHATS goals, based on the discussion of principles and
the analysis of composability. If serious measures of
assurance of the required trustworthiness are desired, then
a variety of coherent and mutually supporting techniques
needs to be applied. There is no one approach that fits all.
Whenever assurance techniques are used, their strengths
and limitations need to be understood from the outset,
and applied specifically where they can be most effective.
Various techniques are considered.

3. Attaining Trustworthiness

We believe that many R&D directions are important for
the short- and long-term future — for computer and network
communities, for developers, and for DARPA. The basis of
our project is the exploration of a few of the potentially most
timely and significant approaches, which are summarized
roughly as follows. (See [10] for extensive discussion of
each item.)



Principles. We revisit fundamental principles of trustwor-
thy system development, cull out those likely to be most
effective, explore their practical limitations, and provide a
basis for principled architectures, principled development,
and principled operation. For example, the 1975 Saltzer-
Schroeder principles [16] are still mostly relevant today.

On one hand, some of the most basic principles seem
to be treated merely as arcana from the ancient literature;
they are found occasionally in university curricula, and are
intuitively appealing to some developers. On the other
hand, these principles are surprisingly absent in commer-
cial programming practice, and therefore unobserved in sys-
tem architectures, system implementations, programming
languages, compilers, software engineering disciplines, and
software development tools.

Certain principles are of great potential benefit to com-
posability, trustworthiness, and assurance; these include
(among others) abstraction, modularity, encapsulation,
layered protection, separation of policy and mechanism,
and separation of concerns — to the extent that they are
sensibly applied to the architecture and the implementation,
and that they do not interfere with one another. In practice,
some of the principles can sometimes be contradictory, and
therefore should not be overendowed or considered as ends
in themselves.

Composability. We explore obstacles to achieving seam-
less composability and techniques for attaining practical
composability in the future. Composability is meaningful
at many layers of abstraction, for components, subsystems,
networked systems, and networks of networks. It is also
applicable to policies, protocols, specifications, formal rep-
resentations, and proofs. Subsystem composability takes on
a variety of forms, including sequential (e.g., with or with-
out feedback, and with or without recursion) and parallel
execution.

Composability has long been a crusade of the research
community, but has typically been hindered by short-
sighted development practices. Obstacles to seamless
composability typically include (for example) hidden state
interactions; emergent properties that exist beyond what
is relevant to constituent subsystems and that manifest
themselves only because of composition; nonmodular
and poorly designed subsystems that seriously hinder
decomposition; and compositions that simply do not scale
properly. These and further difficulties often arise because
of poor design abstraction and the lack of appropriate mod-
ularity and encapsulation. Thus, principled architecture
and software development both can play a significant role
in enhancing composability. Particularly relevant are the
techniques and development tools that induce software
engineering discipline, sound programming-language

constructs, execution compatibility, and interoperability.
However, in certain cases, compositions of seemingly
compliant subsystems can actually compromise the ability
of the resulting system to satisfy its requirements.

Trustworthy composable architectures. We characterize
composable open distributed-system network-oriented ar-
chitectures capable of fulfilling critical security, reliability,
survivability, and performance requirements, while being
readily adaptable to widely differing applications, different
hardware and software providers, and changing technolo-
gies. By architecture, we specifically mean both the struc-
ture of systems and networks and the design of their func-
tional interfaces (at each layer of abstraction).

Although different architectures may be needed for dif-
ferent classes of applications, they can share many com-
mon principles and attributes. We consider several alter-
native architecture approaches. Particularly appealing are
architectures in which great attention is paid to minimiz-
ing the extent to which all subsystems must be trusted, in
which trustworthiness can be concentrated primarily in a
few particularly critical components within layered and dis-
tributed systems, with emphasis (for example) on trustwor-
thy servers and highly constrained well-defined interfaces
that can greatly enhance composability and interoperabil-
ity. Ideally, we favor architectures in which many com-
ponents do not have to be completely trustworthy (and in
which some may be completely untrustworthy, as in Byzan-
tine agreement), but where the overall system can still be
adequately trustworthy. An example of such an architec-
ture is a distributed and networked system in which a few
really critical special-purpose components (e.g., dedicated
servers) serve particular purposes for which they are ex-
tremely trustworthy. It should be possible to compose those
special-purpose systems out of just a few trustworthy com-
ponents, and to omit the vast majority of the bloatware
that might otherwise be found in a conventional operat-
ing system together with its default applications. The clue
to the decomposition problem (getting rid of all the func-
tionality you do not need, and consequently getting rid of
most of the corresponding security vulnerabilities) lies in
the composition problem — that is, being able to construc-
tively include just the essential functionality and nothing
else (achieving a stark subset). Examples of such architec-
tures are provided by Rushby and Randell [15] and Proc-
tor and Neumann [13] in implementing multilevel security
without having to trust every end-user system to enforce
multilevel security (MLS), although similar approaches are
valid for single-level systems. A different example is found
in SeaView [7], where a high-assurance MLS database man-
agement system was demonstrably achievable by putting
Oracle on top of an MLS security kernel, with no MLS-



trustworthiness required in the DBMS. Such architectures
are needed to provide alternatives to the relatively undisci-
plined mass-market operating systems in which essentially
all of the kernel code, utility programs, application code,
test software, and user behavior must be trusted — even
when they are not trustworthy. Also of considerable interest
is the concept of combining subsystems in ways that actu-
ally increase the resulting trustworthiness; we enumerate 22
such basic trustworthiness-enhancing mechanisms in [10].

For truly complex sets of requirements, complexity can
still be managed with a combination of sound composable
architectures, hierarchically layered and horizontally
distributed abstraction, sensible modularity together with
encapsulation, stark subsetting for critical subsystems by
removal of unnecessary functionality, proactively evolvable
but well-conceived conceptually simple interfaces that
mask local complexity, and principled software engi-
neering. As a result, inherently complex systems can be
reduced to relatively simple interconnections of relatively
simple components with relatively simple interfaces and
relatively simple exception conditions. (For a historical
example of this, see the Provably Secure Operating System
design [4, 11], in which each module was formally defined
in a few pages of formal specifications, and the interlayer
dependencies were also defined in a few lines of formally
defined abstract implementations [11, 14], but where the
overall system was quite complex.)

Trustworthy foundations and assurance. We seek
sound bases for requirements, specification, implementa-
tion, trustworthiness, and assurance for predictably com-
posable interoperable components. Whatever assurance
measures are deemed desirable in increasing trustworthi-
ness (as opposed to merely being trusted), those measures
need to be distributed throughout the development process
— from conceptualization and requirements through de-
sign, implementation, and operation — and integrated thor-
oughly throughout.

Some aspects of formal methods are certainly relevant,
especially when critical requirements are involved. Per-
haps surprising to some people, significant progress has
been made in the past 30 years in formal methodologies
and supporting tools, particularly for applications requiring
safety, reliability, and security. One area of particular rele-
vance that was explored in the 1970s but that has never been
widely used is the ability to formally map hierarchical ab-
stractions at one layer onto abstractions at other layers (as
for example in [12, 14]). This approach could be extremely
valuable in the present context, as it can enable the formal
analysis of compositions (e.g., systems of systems).

The use of formally or semiformally based analytic tools
is a very promising area. As one recent example, under our

CHATS project, Hao Chen and Dave Wagner at the Uni-
versity of California at Berkeley have developed a model-
checking environment that examines source code for pres-
ence or absence of certain types of characteristic implemen-
tation flaws in C code (e.g., involving setuid-like calls and
root privileges); they have already applied this tool to send-
mail, OpenSSH, and wu-ftpd [1, 2], and are continuing to
extend its applicability.

Looking to a future in which special-purpose and
general-purpose applications might become routinely
composable out of more-or-less compatible demonstrably
trustworthy components, an analysis tool would be highly
desirable that can analytically determine the composability
(among other properties) of software components — not
just for the initial creation of a composed system, but
also in subsequent reconfigurations, upgrades, and even
dynamic installation of mobile code. This approach could
(for example) take advantage of specifications and software
formally shown to be consistent with those specifications,
including descriptors relating to previously evaluated
characteristics of the components (such as internal locks
that might cause deadly embraces in certain contexts,
assumptions regarding dependence orderings, identified
interface limitations, and other attributes that might affect
the compositionality). Ideally, this approach could then
be used iteratively — for example, initially pairwise or

� -wise, and then over successively wider scopes, possibly
ascertaining obstacles to the desired compositions, or
even potential failure modes that would suggest that a
specific composition should not be permitted because of
its identified deficiencies. Other properties could also be
included, such as dynamic trustworthiness, configuration
stability, and operational factors. We realize that there are
all sorts of limitations of such an approach, but even small
steps forward could be very useful.

Trustworthy protocols. We need to develop new protocols
and/or extend existing protocols that effectively mask the
peculiarities of various networking technologies wherever
possible, but able to accommodate a wide range of tech-
nologies (e.g., wireless and wired, optical and electronic),
and capable of addressing all relevant critical requirements.
This is a very difficult challenge, and necessitates the
involvement of NIST standards efforts, the development
communities, and organizations such as the Internet Engi-
neering Task Force (IETF).

Principled operational practice. We need to bring the
above concepts into the realm of operational practice,
which is seriously in need of greater dependability and
controllability, including perhaps some formal dynamic
analyses inline with would-be reconfigurations and dy-



namic system changes. Many of the concepts considered
here have considerable potential toward that end.

4. Historical Reflections

Throughout the history of efforts to develop trustwor-
thy systems and networks, there is an unfortunate short-
age of observable long-term progress. Significant research
and development results are typically soon forgotten or
else widely ignored in practice. Computer systems have
come and gone; programming languages have come and
(occasionally) gone; certain specific systemic vulnerabili-
ties have come and gone. However, many generic classes
of vulnerabilities seem to persist forever — such as buffer
overflows, stack mismanagement, race conditions, off-by-
one errors, mismatched types, divide-by-zero crashes, and
unchecked procedure-call arguments, to name just a few
classes within a very long list. Overall, it is primarily only
the principles that have remained inviolable — at least in
principle — despite their having been widely ignored in
practice. It is time to change that unfortunate situation,
and honor the principles. This is particularly frustrating to
researchers who know better, but should also be very em-
barrassing to commercial developers who don’t (although it
seems not to bother them very much).

As an example of lessons that might have been learned
from the past, consider the Multics development that began
in 1965, with considerable support from ARPA, MIT,
Bell Labs, and Honeywell. Multics made some extremely
important early advances. Its architecture included truly
independent segmentation, paging, and concentric pro-
tection rings in the hardware, hierarchically structured
directories, access-control lists, and dynamic linking of
symbolic file names, and a highly principled development
process that enforced approval of specifications before
implementation and the use of a higher-level programming
language (a subset of PL/I). See also Fernando Corbató’s
Turing lecture [3] for a survey of lessons learned from the
effort. The system architecture took significant advantage
of abstraction, modularity, and encapsulation, and of the
constraints imposed by PL/I’s handling of strings, arrays,
and structures. Because of the flexibility built into the
design, it was subsequently relatively straightforward to
retrofit multilevel security into the delivered production
version of the system. Karger and Schell have recently
reconsidered their 1974 Multics security evaluation [5]
with a fresh analysis of the evaluation experience. Their
2002 paper [6] notes (for example) that the use of PL/I, the
underlying hardware protection, and the stack discipline
almost completely avoided buffer and stack overflows, data
interpretable as executables (because of the absence of the
execute bit), Trojan horses, and other characteristic security

problems — and generally greatly enhanced the security
and the ease of evaluation. Unfortunately, many of the
lessons observed by Corbató and more recently by Karger
and Schell — and many of the principles enumerated by
Neumann [8] in 1969, Saltzer and Schroeder [16] in 1975,
and others — have been widely ignored in more recent
system developments. DARPA should take considerable
credit for ARPA’s vision during the 1960s in supporting
the Multics effort, but should now also recognize the
importance of the lessons that should have been learned
by others along the way to the present — and should
encourage greater observance of those lessons. (Many
additional references are given in [10].)

5. Directions for the Future

Much effort remains in demonstrating the practical
relevance of the outlined approach. If intelligently applied,
significant long-term benefits are likely to result, including
inherently sound system and network architectures that
minimize the dependence on the trustworthiness of all
systems, subsystems, and users (local or remote, whether
malicious or not); highly disciplined development prac-
tice; fewer flaws and less need for frequent patches and
upgrades; and systems that do not overly rely on the
constant vigilance of an inordinate number of skilled
system administrators. People are clearly our most critical
resource, but there is a serious shortage of computer
professionals with a sense of history and theory, plus a
strong grasp of the discipline that is necessary for sound
development practice and sound operational practice.
Hardware that enhances software security and reliability
can also be very beneficial. Although certain mainstream
processors have some security-related functionality that
could approach the capabilities of the Multics hardware
noted above, little of that functionality is actually used
for trustworthiness. Some hardware aids are also clearly
desirable, such as special-purpose co-processors in digital
commerce, cryptography, and key management. Finally,
demonstrations of how techniques for high assurance can
realistically be incorporated into mainstream software
developments would be extremely valuable. Our CHATS
project is addressing all these directions.

6. Conclusions

The task of designing and implementing assuredly trust-
worthy systems and networks is inherently complex. It re-
quires great diligence, effort, experience, and — above all
— awareness of past mistakes and a commitment to avoid-
ing them. Obliviousness to the past is a high-probability
path to untrustworthy systems. We hope that our DARPA



CHATS report will provide you with useful pointers to the
past and the future. Please read the cited report [10], and
share your thoughts with us on its relevance within your
own environments.

It is evident that enormous benefits should result from
system and network developments that are highly principled
and that use inherently sound architectures and sensible
software engineering practices. This is not a new concept,
although it seems to be seldom practiced. One enormous
benefit therefrom would be the attainment of predictably
seamless composability of systems (or perhaps analytically
identifiable interactions) and starkly subsetted systems that
avoid the usual plethora of exploitable vulnerabilities. This
can entail compositions of demonstrably trustworthy sub-
systems, or in some cases compositions of less trustwor-
thy subsystems whereby it is possible to explicitly demon-
strate the attainability of greater trustworthiness (as dis-
cussed in [10]).
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